1
|
Anaguano D, Adewale-Fasoro O, Vick GW, Yanik S, Blauwkamp J, Fierro MA, Absalon S, Srinivasan P, Muralidharan V. Plasmodium RON11 triggers biogenesis of the merozoite rhoptry pair and is essential for erythrocyte invasion. PLoS Biol 2024; 22:e3002801. [PMID: 39292724 PMCID: PMC11441699 DOI: 10.1371/journal.pbio.3002801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 09/30/2024] [Accepted: 08/13/2024] [Indexed: 09/20/2024] Open
Abstract
Malaria is a global and deadly human disease caused by the apicomplexan parasites of the genus Plasmodium. Parasite proliferation within human red blood cells (RBCs) is associated with the clinical manifestations of the disease. This asexual expansion within human RBCs begins with the invasion of RBCs by P. falciparum, which is mediated by the secretion of effectors from 2 specialized club-shaped secretory organelles in merozoite-stage parasites known as rhoptries. We investigated the function of the Rhoptry Neck Protein 11 (RON11), which contains 7 transmembrane domains and calcium-binding EF-hand domains. We generated conditional mutants of the P. falciparum RON11. Knockdown of RON11 inhibits parasite growth by preventing merozoite invasion. The loss of RON11 did not lead to any defects in processing of rhoptry proteins but instead led to a decrease in the amount of rhoptry proteins. We utilized ultrastructure expansion microscopy (U-ExM) to determine the effect of RON11 knockdown on rhoptry biogenesis. Surprisingly, in the absence of RON11, fully developed merozoites had only 1 rhoptry each. The single rhoptry in RON11-deficient merozoites were morphologically typical with a bulb and a neck oriented into the apical polar ring. Moreover, rhoptry proteins are trafficked accurately to the single rhoptry in RON11-deficient parasites. These data show that in the absence of RON11, the first rhoptry is generated during schizogony but upon the start of cytokinesis, the second rhoptry never forms. Interestingly, these single-rhoptry merozoites were able to attach to host RBCs but are unable to invade RBCs. Instead, RON11-deficient merozoites continue to engage with RBC for prolonged periods eventually resulting in echinocytosis, a result of secreting the contents from the single rhoptry into the RBC. Together, our data show that RON11 triggers the de novo biogenesis of the second rhoptry and functions in RBC invasion.
Collapse
Affiliation(s)
- David Anaguano
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Opeoluwa Adewale-Fasoro
- Department of Molecular Microbiology and Immunology, and Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- The Johns Hopkins Malaria Research Institute, Baltimore, Maryland, United States of America
| | - Grace W. Vick
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Sean Yanik
- Department of Molecular Microbiology and Immunology, and Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- The Johns Hopkins Malaria Research Institute, Baltimore, Maryland, United States of America
| | - James Blauwkamp
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Manuel A. Fierro
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Sabrina Absalon
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Prakash Srinivasan
- Department of Molecular Microbiology and Immunology, and Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- The Johns Hopkins Malaria Research Institute, Baltimore, Maryland, United States of America
| | - Vasant Muralidharan
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
2
|
Wan Nazri WSM, Ling LY, Wen CF. Detection of Plasmodium knowlesi in whole blood samples with sandwich enzyme-linked immunosorbent assay (ELISA) using rhoptry-associated protein 1 specific polyclonal antibodies. J Vector Borne Dis 2024; 61:203-210. [PMID: 38922654 DOI: 10.4103/jvbd.jvbd_55_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 11/06/2023] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND OBJECTIVES Plasmodium knowlesi, a simian malaria species, is now known to infect humans. Due to disadvantages in the current diagnosis methods, many efforts have been placed into developing new methods to diagnose the disease. This study assessed the ability of the PkRAP-1 sandwich enzyme-linked immunosorbent (ELISA) to detect P knowlesi antigens in whole blood specimens. METHODS Western blot assay was conducted to evaluate the ability of raised mouse and rabbit anti-PkRAP-1 polyclonal antibodies to bind to the native proteins in P. knowlesi lysate. The polyclonal antibodies were then used in sandwich ELISA to detect P. knowlesi. In the sandwich ELISA, mouse and rabbit polyclonal antibodies were used as the capture and detection antibodies, respectively. The limit of detection (LOD) of the assay was determined using P. knowlesi A1H1 culture and purified recombinant PkRAP-1. RESULTS Western blot results showed positive reactions towards the proteins in P. knowlesi lysate. The LOD of the assay from three technical replicates was 0.068% parasitaemia. The assay performance in detecting P. knowlesi was 83% sensitivity and 70% specificity with positive and negative predictive values of 74% and 80%, respectively. The anti-PkRAP-1 polyclonal antibodies did not cross-react with P. falciparum and healthy samples, but P. vivax by detecting all 12 samples. INTERPRETATION CONCLUSION PkRAP-1 has the potential as a biomarker for the development of a new diagnostic tool for P. knowlesi detection. Further studies need to be conducted to establish the full potential of the usage of anti-PkRAP-1 antibodies for P. knowlesi detection.
Collapse
|
3
|
Anaguano D, Adewale-Fasoro O, Vick GS, Yanik S, Blauwkamp J, Fierro MA, Absalon S, Srinivasan P, Muralidharan V. Plasmodium RON11 triggers biogenesis of the merozoite rhoptry pair and is essential for erythrocyte invasion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577654. [PMID: 38352500 PMCID: PMC10862748 DOI: 10.1101/2024.01.29.577654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Malaria is a global and deadly human disease caused by the apicomplexan parasites of the genus Plasmodium. Parasite proliferation within human red blood cells (RBC) is associated with the clinical manifestations of the disease. This asexual expansion within human RBCs, begins with the invasion of RBCs by P. falciparum, which is mediated by the secretion of effectors from two specialized club-shaped secretory organelles in merozoite-stage parasites known as rhoptries. We investigated the function of the Rhoptry Neck Protein 11 (RON11), which contains seven transmembrane domains and calcium-binding EF-hand domains. We generated conditional mutants of the P. falciparum RON11. Knockdown of RON11 inhibits parasite growth by preventing merozoite invasion. The loss of RON11 did not lead to any defects in processing of rhoptry proteins but instead led to a decrease in the amount of rhoptry proteins. We utilized ultrastructure expansion microscopy (U-ExM) to determine the effect of RON11 knockdown on rhoptry biogenesis. Surprisingly, in the absence of RON11, fully developed merozoites had only one rhoptry each. The single rhoptry in RON11 deficient merozoites were morphologically typical with a bulb and a neck oriented into the apical polar ring. Moreover, rhoptry proteins are trafficked accurately to the single rhoptry in RON11 deficient parasites. These data show that in the absence of RON11, the first rhoptry is generated during schizogony but upon the start of cytokinesis, the second rhoptry never forms. Interestingly, these single-rhoptry merozoites were able to attach to host RBCs but are unable to invade RBCs. Instead, RON11 deficient merozoites continue to engage with RBC for prolonged periods eventually resulting in echinocytosis, a result of secreting the contents from the single rhoptry into the RBC. Together, our data show that RON11 triggers the de novo biogenesis of the second rhoptry and functions in RBC invasion.
Collapse
Affiliation(s)
- David Anaguano
- Department of Cellular Biology, University of Georgia, Athens, GA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA
| | - Opeoluwa Adewale-Fasoro
- Department of Molecular Microbiology and Immunology, and Johns Hopkins Malaria Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Grace S. Vick
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA
| | - Sean Yanik
- Department of Molecular Microbiology and Immunology, and Johns Hopkins Malaria Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - James Blauwkamp
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis IN
| | - Manuel A. Fierro
- Department of Cellular Biology, University of Georgia, Athens, GA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA
| | - Sabrina Absalon
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis IN
| | - Prakash Srinivasan
- Department of Molecular Microbiology and Immunology, and Johns Hopkins Malaria Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Vasant Muralidharan
- Department of Cellular Biology, University of Georgia, Athens, GA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA
| |
Collapse
|
4
|
Andrews M, Baum J, Gilson PR, Wilson DW. Bottoms up! Malaria parasite invasion the right way around. Trends Parasitol 2023; 39:1004-1013. [PMID: 37827961 DOI: 10.1016/j.pt.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023]
Abstract
A critical part of the malaria parasite's life cycle is invasion of red blood cells (RBCs) by merozoites. Inside RBCs, the parasite forms a schizont, which undergoes segmentation to produce daughter merozoites. These cells are released, establishing cycles of invasion. Traditionally, merozoites are represented as nonmotile, egg-shaped cells that invade RBCs 'narrower end' first and pack within schizonts with this narrower end facing outwards. Here, we discuss recent evidence and re-evaluate previous data which suggest that merozoites are capable of motility and have spherical or elongated-teardrop shapes. Furthermore, merozoites invade RBCs 'wider end' first and pack within schizonts with this wider end facing outwards. We encourage the field to review this revised model and consider its implications for future studies.
Collapse
Affiliation(s)
- Mia Andrews
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide 5005, Australia
| | - Jake Baum
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW 2052, Australia; Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Paul R Gilson
- Burnet Institute, Melbourne 3004, Victoria, Australia; Department of Microbiology and Immunology, The University of Melbourne, Melbourne 3010, Victoria, Australia
| | - Danny W Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide 5005, Australia; Burnet Institute, Melbourne 3004, Victoria, Australia; Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, 5005, SA, Australia.
| |
Collapse
|
5
|
Vallintine T, van Ooij C. Timing of dense granule biogenesis in asexual malaria parasites. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001389. [PMID: 37647112 PMCID: PMC10482371 DOI: 10.1099/mic.0.001389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/15/2023] [Indexed: 09/01/2023]
Abstract
Malaria is an important infectious disease that continues to claim hundreds of thousands of lives annually. The disease is caused by infection of host erythrocytes by apicomplexan parasites of the genus Plasmodium. The parasite contains three different apical organelles - micronemes, rhoptries and dense granules (DGs) - whose contents are secreted to mediate binding to and invasion of the host cell and the extensive remodelling of the host cell that occurs following invasion. Whereas the roles of micronemes and rhoptries in binding and invasion of the host erythrocyte have been studied in detail, the roles of DGs in Plasmodium parasites are poorly understood. They have been proposed to control host cell remodelling through regulated protein secretion after invasion, but many basic aspects of the biology of DGs remain unknown. Here we describe DG biogenesis timing for the first time, using RESA localization as a proxy for the timing of DG formation. We show that DG formation commences approximately 37 min prior to schizont egress, as measured by the recruitment of the DG marker RESA. Furthermore, using a bioinformatics approach, we aimed to predict additional cargo of the DGs and identified the J-dot protein HSP40 as a DG protein, further supporting the very early role of these organelles in the interaction of the parasite with the host cell.
Collapse
Affiliation(s)
- Tansy Vallintine
- Faculty of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Christiaan van Ooij
- Faculty of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
6
|
Hildebrandt F, Mohammed M, Dziedziech A, Bhandage AK, Divne AM, Barrenäs F, Barragan A, Henriksson J, Ankarklev J. scDual-Seq of Toxoplasma gondii-infected mouse BMDCs reveals heterogeneity and differential infection dynamics. Front Immunol 2023; 14:1224591. [PMID: 37575232 PMCID: PMC10415529 DOI: 10.3389/fimmu.2023.1224591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023] Open
Abstract
Dendritic cells and macrophages are integral parts of the innate immune system and gatekeepers against infection. The protozoan pathogen, Toxoplasma gondii, is known to hijack host immune cells and modulate their immune response, making it a compelling model to study host-pathogen interactions. Here we utilize single cell Dual RNA-seq to parse out heterogeneous transcription of mouse bone marrow-derived dendritic cells (BMDCs) infected with two distinct genotypes of T. gondii parasites, over multiple time points post infection. We show that the BMDCs elicit differential responses towards T. gondii infection and that the two parasite lineages distinctly manipulate subpopulations of infected BMDCs. Co-expression networks define host and parasite genes, with implications for modulation of host immunity. Integrative analysis validates previously established immune pathways and additionally, suggests novel candidate genes involved in host-pathogen interactions. Altogether, this study provides a comprehensive resource for characterizing host-pathogen interplay at high-resolution.
Collapse
Affiliation(s)
- Franziska Hildebrandt
- Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden
| | - Mubasher Mohammed
- Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden
| | - Alexis Dziedziech
- Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden
- Department of Global Health, Institut Pasteur, Paris, France
| | - Amol K. Bhandage
- Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden
| | - Anna-Maria Divne
- Microbial Single Cell Genomics Facility, SciLifeLab, Biomedical Center (BMC) Uppsala University, Uppsala, Sweden
| | - Fredrik Barrenäs
- Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden
| | - Johan Henriksson
- Laboratory of Molecular Infection Medicine Sweden (MIMS), Umeå Center for Microbial Research, Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Johan Ankarklev
- Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden
- Microbial Single Cell Genomics Facility, SciLifeLab, Biomedical Center (BMC) Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Ito D, Kondo Y, Takashima E, Iriko H, Thongkukiatkul A, Torii M, Otsuki H. Roles of the RON3 C-terminal fragment in erythrocyte invasion and blood-stage parasite proliferation in Plasmodium falciparum. Front Cell Infect Microbiol 2023; 13:1197126. [PMID: 37457963 PMCID: PMC10340547 DOI: 10.3389/fcimb.2023.1197126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Plasmodium species cause malaria, and in the instance of Plasmodium falciparum is responsible for a societal burden of over 600,000 deaths annually. The symptoms and pathology of malaria are due to intraerythocytic parasites. Erythrocyte invasion is mediated by the parasite merozoite stage, and is accompanied by the formation of a parasitophorous vacuolar membrane (PVM), within which the parasite develops. The merozoite apical rhoptry organelle contains various proteins that contribute to erythrocyte attachment and invasion. RON3, a rhoptry bulb membrane protein, undergoes protein processing and is discharged into the PVM during invasion. RON3-deficient parasites fail to develop beyond the intraerythrocytic ring stage, and protein export into erythrocytes by the Plasmodium translocon of exported proteins (PTEX) apparatus is abrogated, as well as glucose uptake into parasites. It is known that truncated N- and C-terminal RON3 fragments are present in rhoptries, but it is unclear which RON3 fragments contribute to protein export by PTEX and glucose uptake through the PVM. To investigate and distinguish the roles of the RON3 C-terminal fragment at distinct developmental stages, we used a C-terminus tag for conditional and post-translational control. We demonstrated that RON3 is essential for blood-stage parasite survival, and knockdown of RON3 C-terminal fragment expression from the early schizont stage induces a defect in erythrocyte invasion and the subsequent development of ring stage parasites. Protein processing of full-length RON3 was partially inhibited in the schizont stage, and the RON3 C-terminal fragment was abolished in subsequent ring-stage parasites compared to the RON3 N-terminal fragment. Protein export and glucose uptake were abrogated specifically in the late ring stage. Plasmodial surface anion channel (PSAC) activity was partially retained, facilitating small molecule traffic across the erythrocyte membrane. The knockdown of the RON3 C-terminal fragment after erythrocyte invasion did not alter parasite growth. These data suggest that the RON3 C-terminal fragment participates in erythrocyte invasion and serves an essential role in the progression of ring-stage parasite growth by the establishment of the nutrient-permeable channel in the PVM, accompanying the transport of ring-stage parasite protein from the plasma membrane to the PVM.
Collapse
Affiliation(s)
- Daisuke Ito
- Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Yoko Kondo
- Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Hideyuki Iriko
- Division of Global Infectious Diseases, Department of Public Health, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | | | - Motomi Torii
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Hitoshi Otsuki
- Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
8
|
Moss S, Mańko E, Vasileva H, Da Silva ET, Goncalves A, Osborne A, Phelan J, Rodrigues A, Djata P, D'Alessandro U, Mabey D, Krishna S, Last A, Clark TG, Campino S. Population dynamics and drug resistance mutations in Plasmodium falciparum on the Bijagós Archipelago, Guinea-Bissau. Sci Rep 2023; 13:6311. [PMID: 37072433 PMCID: PMC10113324 DOI: 10.1038/s41598-023-33176-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/08/2023] [Indexed: 05/03/2023] Open
Abstract
Following integrated malaria control interventions, malaria burden on the Bijagós Archipelago has significantly decreased. Understanding the genomic diversity of circulating Plasmodium falciparum malaria parasites can assist infection control, through identifying drug resistance mutations and characterising the complexity of population structure. This study presents the first whole genome sequence data for P. falciparum isolates from the Bijagós Archipelago. Amplified DNA from P. falciparum isolates sourced from dried blood spot samples of 15 asymptomatic malaria cases were sequenced. Using 1.3 million SNPs characterised across 795 African P. falciparum isolates, population structure analyses revealed that isolates from the archipelago cluster with samples from mainland West Africa and appear closely related to mainland populations; without forming a separate phylogenetic cluster. This study characterises SNPs associated with antimalarial drug resistance on the archipelago. We observed fixation of the PfDHFR mutations N51I and S108N, associated with resistance to sulphadoxine-pyrimethamine, and the continued presence of PfCRT K76T, associated with chloroquine resistance. These data have relevance for infection control and drug resistance surveillance; particularly considering expected increases in antimalarial drug use following updated WHO recommendations, and the recent implementation of seasonal malaria chemoprevention and mass drug administration in the region.
Collapse
Affiliation(s)
- Sophie Moss
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| | - Emilia Mańko
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Hristina Vasileva
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Eunice Teixeira Da Silva
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Ministry of Public Health, Bissau, Guinea-Bissau
| | - Adriana Goncalves
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Ashley Osborne
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Jody Phelan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | | | - Paulo Djata
- National Malaria Control Programme, Ministry of Public Health, Bissau, Guinea-Bissau
| | | | - David Mabey
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Sanjeev Krishna
- Clinical Academic Group, Institute for Infection and Immunity, and St. George's University Hospitals NHS Foundation Trust, St. George's University of London, London, UK
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Institut Für Tropenmedizin Universitätsklinikum Tübingen, Tübingen, Germany
| | - Anna Last
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
9
|
Tripathi H, Bhalerao P, Singh S, Arya H, Alotaibi BS, Rashid S, Hasan MR, Bhatt TK. Malaria therapeutics: are we close enough? Parasit Vectors 2023; 16:130. [PMID: 37060004 PMCID: PMC10103679 DOI: 10.1186/s13071-023-05755-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/22/2023] [Indexed: 04/16/2023] Open
Abstract
Malaria is a vector-borne parasitic disease caused by the apicomplexan protozoan parasite Plasmodium. Malaria is a significant health problem and the leading cause of socioeconomic losses in developing countries. WHO approved several antimalarials in the last 2 decades, but the growing resistance against the available drugs has worsened the scenario. Drug resistance and diversity among Plasmodium strains hinder the path of eradicating malaria leading to the use of new technologies and strategies to develop effective vaccines and drugs. A timely and accurate diagnosis is crucial for any disease, including malaria. The available diagnostic methods for malaria include microscopy, RDT, PCR, and non-invasive diagnosis. Recently, there have been several developments in detecting malaria, with improvements leading to achieving an accurate, quick, cost-effective, and non-invasive diagnostic tool for malaria. Several vaccine candidates with new methods and antigens are under investigation and moving forward to be considered for clinical trials. This article concisely reviews basic malaria biology, the parasite's life cycle, approved drugs, vaccine candidates, and available diagnostic approaches. It emphasizes new avenues of therapeutics for malaria.
Collapse
Affiliation(s)
- Himani Tripathi
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, 305817, Rajasthan, India
| | - Preshita Bhalerao
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, 305817, Rajasthan, India
| | - Sujeet Singh
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, 305817, Rajasthan, India
| | - Hemant Arya
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, 305817, Rajasthan, India.
| | - Bader Saud Alotaibi
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Alquwayiyah, Shaqra University, Riyadh, 11971, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia
| | - Mohammad Raghibul Hasan
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Alquwayiyah, Shaqra University, Riyadh, 11971, Saudi Arabia.
| | - Tarun Kumar Bhatt
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, 305817, Rajasthan, India.
| |
Collapse
|
10
|
Sparvoli D, Delabre J, Penarete‐Vargas DM, Kumar Mageswaran S, Tsypin LM, Heckendorn J, Theveny L, Maynadier M, Mendonça Cova M, Berry‐Sterkers L, Guérin A, Dubremetz J, Urbach S, Striepen B, Turkewitz AP, Chang Y, Lebrun M. An apical membrane complex for triggering rhoptry exocytosis and invasion in Toxoplasma. EMBO J 2022; 41:e111158. [PMID: 36245278 PMCID: PMC9670195 DOI: 10.15252/embj.2022111158] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 01/13/2023] Open
Abstract
Apicomplexan parasites possess secretory organelles called rhoptries that undergo regulated exocytosis upon contact with the host. This process is essential for the parasitic lifestyle of these pathogens and relies on an exocytic machinery sharing structural features and molecular components with free-living ciliates. However, how the parasites coordinate exocytosis with host interaction is unknown. Here, we performed a Tetrahymena-based transcriptomic screen to uncover novel exocytic factors in Ciliata and conserved in Apicomplexa. We identified membrane-bound proteins, named CRMPs, forming part of a large complex essential for rhoptry secretion and invasion in Toxoplasma. Using cutting-edge imaging tools, including expansion microscopy and cryo-electron tomography, we show that, unlike previously described rhoptry exocytic factors, TgCRMPs are not required for the assembly of the rhoptry secretion machinery and only transiently associate with the exocytic site-prior to the invasion. CRMPs and their partners contain putative host cell-binding domains, and CRMPa shares similarities with GPCR proteins. Collectively our data imply that the CRMP complex acts as a host-molecular sensor to ensure that rhoptry exocytosis occurs when the parasite contacts the host cell.
Collapse
Affiliation(s)
- Daniela Sparvoli
- Laboratory of Pathogen Host InteractionsUMR 5235 CNRS, Université de MontpellierMontpellierFrance
| | - Jason Delabre
- Laboratory of Pathogen Host InteractionsUMR 5235 CNRS, Université de MontpellierMontpellierFrance
| | | | - Shrawan Kumar Mageswaran
- Department of Biochemistry and Biophysics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Lev M Tsypin
- Department of Molecular Genetics and Cell BiologyUniversity of ChicagoChicagoILUSA
- Present address:
Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCAUSA
| | - Justine Heckendorn
- Laboratory of Pathogen Host InteractionsUMR 5235 CNRS, Université de MontpellierMontpellierFrance
| | - Liam Theveny
- Department of Biochemistry and Biophysics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Marjorie Maynadier
- Laboratory of Pathogen Host InteractionsUMR 5235 CNRS, Université de MontpellierMontpellierFrance
| | - Marta Mendonça Cova
- Laboratory of Pathogen Host InteractionsUMR 5235 CNRS, Université de MontpellierMontpellierFrance
| | - Laurence Berry‐Sterkers
- Laboratory of Pathogen Host InteractionsUMR 5235 CNRS, Université de MontpellierMontpellierFrance
| | - Amandine Guérin
- Department of Pathobiology, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Jean‐François Dubremetz
- Laboratory of Pathogen Host InteractionsUMR 5235 CNRS, Université de MontpellierMontpellierFrance
| | - Serge Urbach
- IGFUniversité de Montpellier, CNRS, INSERMMontpellierFrance
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Aaron P Turkewitz
- Department of Molecular Genetics and Cell BiologyUniversity of ChicagoChicagoILUSA
| | - Yi‐Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Maryse Lebrun
- Laboratory of Pathogen Host InteractionsUMR 5235 CNRS, Université de MontpellierMontpellierFrance
| |
Collapse
|
11
|
Cova MM, Lamarque MH, Lebrun M. How Apicomplexa Parasites Secrete and Build Their Invasion Machinery. Annu Rev Microbiol 2022; 76:619-640. [PMID: 35671531 DOI: 10.1146/annurev-micro-041320-021425] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Apicomplexa are obligatory intracellular parasites that sense and actively invade host cells. Invasion is a conserved process that relies on the timely and spatially controlled exocytosis of unique specialized secretory organelles termed micronemes and rhoptries. Microneme exocytosis starts first and likely controls the intricate mechanism of rhoptry secretion. To assemble the invasion machinery, micronemal proteins-associated with the surface of the parasite-interact and form complexes with rhoptry proteins, which in turn are targeted into the host cell. This review covers the molecular advances regarding microneme and rhoptry exocytosis and focuses on how the proteins discharged from these two compartments work in synergy to drive a successful invasion event. Particular emphasis is given to the structure and molecular components of the rhoptry secretion apparatus, and to the current conceptual framework of rhoptry exocytosis that may constitute an unconventional eukaryotic secretory machinery closely related to the one described in ciliates. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Marta Mendonça Cova
- Laboratory of Pathogen Host Interactions (LPHI), CNRS, University of Montpellier, Montpellier, France;
| | - Mauld H Lamarque
- Laboratory of Pathogen Host Interactions (LPHI), CNRS, University of Montpellier, Montpellier, France;
| | - Maryse Lebrun
- Laboratory of Pathogen Host Interactions (LPHI), CNRS, University of Montpellier, Montpellier, France;
| |
Collapse
|
12
|
Onzere CK, Fry LM, Bishop RP, Da Silva M, Madsen-Bouterse SA, Bastos RG, Knowles DP, Suarez CE. Theileria equi RAP-1a and RAP-1b proteins contain immunoreactive epitopes and are suitable candidates for vaccine and diagnostics development. Int J Parasitol 2022; 52:385-397. [DOI: 10.1016/j.ijpara.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 11/16/2022]
|
13
|
Knudsen AS, Walker MR, Agullet JP, Björnsson KH, Bassi MR, Barfod L. Enhancing neutralization of Plasmodium falciparum using a novel monoclonal antibody against the rhoptry-associated membrane antigen. Sci Rep 2022; 12:3040. [PMID: 35197516 PMCID: PMC8866459 DOI: 10.1038/s41598-022-06921-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/31/2022] [Indexed: 11/09/2022] Open
Abstract
The pathogenesis of malaria is associated with blood-stage infection and there is strong evidence that antibodies specific to parasite blood-stage antigens can control parasitemia. This provides a strong rational for applying blood-stage antigen components in a multivalent vaccine, as the induced antibodies in combination can enhance protection. The Plasmodium falciparum rhoptry-associated membrane antigen (PfRAMA) is a promising vaccine target, due to its fundamental role in merozoite invasion and low level of polymorphism. Polyclonal antibodies against PfRAMA are able to inhibit P. falciparum growth and interact synergistically when combined with antibodies against P. falciparum reticulocyte-binding protein 5 (PfRh5) or cysteine-rich protective antigen (PfCyRPA). In this study, we identified a novel PfRAMA-specific mAb with neutralizing activity, which in combination with PfRh5- or PfCyRPA-specific mAbs potentiated the neutralizing effect. By applying phage display technology, we mapped the protective epitope to be in the C-terminal region of PfRAMA. Our results confirmed previous finding of synergy between PfRAMA-, PfRh5- and PfCyRPA-specific antibodies, thereby paving the way of testing these antigens (or fragments of these antigens) in combination to improve the efficacy of blood-stage malaria vaccines. The results emphasize the importance of directing antibody responses towards protective epitopes, as the majority of anti-PfRAMA mAbs were unable to inhibit merozoite invasion of erythrocytes.
Collapse
Affiliation(s)
- Anne S Knudsen
- Department of Immunology and Microbiology, Centre for Medical Parasitology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Melanie R Walker
- Department of Immunology and Microbiology, Centre for Medical Parasitology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Judit P Agullet
- Department of Immunology and Microbiology, Centre for Medical Parasitology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper H Björnsson
- Department of Immunology and Microbiology, Centre for Medical Parasitology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria R Bassi
- Department of Immunology and Microbiology, Centre for Medical Parasitology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lea Barfod
- Department of Immunology and Microbiology, Centre for Medical Parasitology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
14
|
Ahmed MA, Deshmukh GY, Zaidi RH, Saif A, Alshahrani MA, Wazid SW, Patgiri SJ, Quan FS. Identification, Mapping, and Genetic Diversity of Novel Conserved Cross-Species Epitopes of RhopH2 in Plasmodium knowlesi With Plasmodium vivax. Front Cell Infect Microbiol 2022; 11:810398. [PMID: 35096656 PMCID: PMC8793677 DOI: 10.3389/fcimb.2021.810398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Malaria is a major public health concern, and any tangible intervention during the pre-elimination phase can result in a significant reduction in infection rates. Recent studies have reported that antigens producing cross-protective immunity can play an important role as vaccines and halt malaria transmission in different endemic regions. In this study, we studied the genetic diversity, natural selection, and discovered novel conserved epitopes of a high molecular weight rhoptry protein 2 (RhopH2) in clinical samples of Plasmodium knowlesi and Plasmodium vivax cross-protective domains, which has been proven to produce cross-protective immunity in both species. We found low levels of nucleotide diversity (P. knowlesi; π ~ 0.0093, SNPs = 49 and P. vivax π ~ 0.0014, SNPs = 23) in P. knowlesi (n = 40) and P. vivax (n = 65) samples in the PkRhopH2 cross-protective domain. Strong purifying selection was observed for both species (P. knowlesi; dS - dN = 2.41, p < 0.009, P. vivax; dS - dN = 1.58, p < 0.050). In silico epitope prediction in P. knowlesi identified 10 potential epitopes, of which 7 epitopes were 100% conserved within clinical samples. Of these epitopes, an epitope with 10 amino acids (QNSKHFKKEK) was found to be fully conserved within all P. knowlesi and P. vivax clinical samples and 80%–90% conservation within simian malaria ortholog species, i.e., P. coatneyi and P. cynomolgi. Phylogenetic analysis of the PkRhopH2 cross-protective domain showed geographical clustering, and three subpopulations of P. knowlesi were identified of which two subpopulations originated from Sarawak, Malaysian Borneo, and one comprised only the laboratory lines from Peninsular Malaysia. This study suggests that RhopH2 could be an excellent target for cross-protective vaccine development with potential for outwitting strain as well as species-specific immunity. However, more detailed studies on genetic diversity using more clinical samples from both species as well as the functional role of antibodies specific to the novel conserved epitope identified in this study can be explored for protection against infection.
Collapse
Affiliation(s)
- Md Atique Ahmed
- Indian Council of Medical Research (ICMR)-Regional Medical Research Centre, North East Region (NER), Dibrugarh, India
- *Correspondence: Md Atique Ahmed, ; Fu-Shi Quan,
| | | | - Rehan Haider Zaidi
- Department of Biotechnology and Microbiology, National College, Tiruchirapalli, India
| | - Ahmed Saif
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Narjan, Saudi Arabia
| | | | | | - Saurav Jyoti Patgiri
- Indian Council of Medical Research (ICMR)-Regional Medical Research Centre, North East Region (NER), Dibrugarh, India
| | - Fu-Shi Quan
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, South Korea
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
- *Correspondence: Md Atique Ahmed, ; Fu-Shi Quan,
| |
Collapse
|
15
|
Wiser MF. Unique Endomembrane Systems and Virulence in Pathogenic Protozoa. Life (Basel) 2021; 11:life11080822. [PMID: 34440567 PMCID: PMC8401336 DOI: 10.3390/life11080822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
Virulence in pathogenic protozoa is often tied to secretory processes such as the expression of adhesins on parasite surfaces or the secretion of proteases to assisted in tissue invasion and other proteins to avoid the immune system. This review is a broad overview of the endomembrane systems of pathogenic protozoa with a focus on Giardia, Trichomonas, Entamoeba, kinetoplastids, and apicomplexans. The focus is on unique features of these protozoa and how these features relate to virulence. In general, the basic elements of the endocytic and exocytic pathways are present in all protozoa. Some of these elements, especially the endosomal compartments, have been repurposed by the various species and quite often the repurposing is associated with virulence. The Apicomplexa exhibit the most unique endomembrane systems. This includes unique secretory organelles that play a central role in interactions between parasite and host and are involved in the invasion of host cells. Furthermore, as intracellular parasites, the apicomplexans extensively modify their host cells through the secretion of proteins and other material into the host cell. This includes a unique targeting motif for proteins destined for the host cell. Most notable among the apicomplexans is the malaria parasite, which extensively modifies and exports numerous proteins into the host erythrocyte. These modifications of the host erythrocyte include the formation of unique membranes and structures in the host erythrocyte cytoplasm and on the erythrocyte membrane. The transport of parasite proteins to the host erythrocyte involves several unique mechanisms and components, as well as the generation of compartments within the erythrocyte that participate in extraparasite trafficking.
Collapse
Affiliation(s)
- Mark F Wiser
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
16
|
Sparvoli D, Lebrun M. Unraveling the Elusive Rhoptry Exocytic Mechanism of Apicomplexa. Trends Parasitol 2021; 37:622-637. [PMID: 34045149 DOI: 10.1016/j.pt.2021.04.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022]
Abstract
Apicomplexan parasites are unicellular eukaryotes that invade the cells in which they proliferate. The development of genetic tools in Toxoplasma, and then in Plasmodium, in the 1990s allowed the first description of the molecular machinery used for motility and invasion, revealing a crucial role for two different secretory organelles, micronemes and rhoptries. Rhoptry proteins are injected directly into the host cytoplasm not only to promote invasion but also to manipulate host functions. Nonetheless, the injection machinery has remained mysterious, a major conundrum in the field. Here we review recent progress in uncovering structural components and proteins implicated in rhoptry exocytosis and explain how revisiting early findings and considering the evolutionary origins of Apicomplexa contributed to some of these discoveries.
Collapse
Affiliation(s)
- Daniela Sparvoli
- LPHI UMR5235, Univ Montpellier, CNRS, F-34095 Montpellier, France
| | - Maryse Lebrun
- LPHI UMR5235, Univ Montpellier, CNRS, F-34095 Montpellier, France.
| |
Collapse
|
17
|
Cai YC, Yang CL, Hu W, Song P, Xu B, Lu Y, Ai L, Chu YH, Chen MX, Chen JX, Chen SH. Molecular Characterization and Immunological Evaluation of Truncated Babesia microti Rhoptry Neck Protein 2 as a Vaccine Candidate. Front Immunol 2021; 12:616343. [PMID: 33717108 PMCID: PMC7943735 DOI: 10.3389/fimmu.2021.616343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/07/2021] [Indexed: 11/13/2022] Open
Abstract
Babesia microti is a protozoan that infects red blood cells. Babesiosis is becoming a new global threat impacting human health. Rhoptry neck proteins (RONs) are proteins located at the neck of the rhoptry and studies indicate that these proteins play an important role in the process of red blood cell invasion. In the present study, we report on the bioinformatic analysis, cloning, and recombinant gene expression of two truncated rhoptry neck proteins 2 (BmRON2), as well as their potential for incorporation in a candidate vaccine for babesiosis. Western blot and immunofluorescence antibody (IFA) assays were performed to detect the presence of specific antibodies against BmRON2 in infected mice and the localization of N-BmRON2 in B. microti parasites. In vitro experiments were carried out to investigate the role of BmRON2 proteins during the B. microti invasion process and in vivo experiments to investigate immunoprotection. Homologous sequence alignment and molecular phylogenetic analysis indicated that BmRON2 showed similarities with RON2 proteins of other Babesia species. We expressed the truncated N-terminal (33-336 aa, designated rN-BmRON2) and C-terminal (915-1171 aa, designated rC-BmRON2) fragments of the BmRON2 protein, with molecular weights of 70 and 29 kDa, respectively. Western blot assays showed that the native BmRON2 protein is approximately 170 kDa, and that rN-BmRON2 was recognized by serum of mice experimentally infected with B. microti. Immunofluorescence analysis indicated that the BmRON2 protein was located at the apical end of merozoites, at the opposite end of the nucleus. In vitro red blood cell invasion inhibition studies with B. microti rBmRON2 proteins showed that relative invasion rate of rN-BmRON2 and rC-BmRON2 group is 45 and 56%, respectively. Analysis of the host immune response after immunization and B. microti infection showed that both rN-BmRON2 and rC-BmRON2 enhanced the immune response, but that rN-BmRON2 conferred better protection than rC-BmRON2. In conclusion, our results indicate that truncated rhoptry neck protein 2, especially its N-terminal fragment (rN-BmRON2), plays an important role in the invasion of host red blood cells, confers immune protection, and shows good potential as a candidate vaccine against babesiosis.
Collapse
Affiliation(s)
- Yu chun Cai
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
| | - Chun li Yang
- Department of Clinical Research, The 903rd Hospital of PLA, Hangzhou, China
| | - Wei Hu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Peng Song
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
| | - Bin Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
| | - Yan Lu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
| | - Lin Ai
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
| | - Yan hong Chu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
| | - Mu xin Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
| | - Jia xu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
| | - Shao hong Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
| |
Collapse
|
18
|
Gnangnon B, Peucelle V, Pierrot C. Differential Fractionation of Erythrocytes Infected by Plasmodium berghei. Bio Protoc 2020; 10:e3647. [PMID: 33659316 DOI: 10.21769/bioprotoc.3647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 11/02/2022] Open
Abstract
The study of host/pathogen interactions at the cellular level during Plasmodium intra-erythrocytic cycle requires differential extraction techniques aiming to analyze the different compartments of the infected cell. Various protocols have been proposed in the literature to study specific compartments and/or membranes in the infected erythrocyte. The task remains delicate despite the use of enzymes or detergents theoretically capable of degrading specific membranes inside the infected cell. The remit of this protocol is to propose a method to isolate the erythrocyte cytosol and ghosts from the other compartments of the infected cell via a percoll gradient. Also, the lysis of the erythrocyte membrane is done using equinatoxin II, which has proven to be more effective at erythrocyte lysis regardless of the cell infection status, compared to the commonly used streptolysin. The parasitophorous vacuole (PV) content is collected after saponin lysis, before recovering membrane and parasite cytosol proteins by Triton X-100 lysis. The lysates thus obtained are analyzed by Western blot to assess the accuracy of the various extraction steps. This protocol allows the separation of the host compartment from the parasite compartments (PV and parasite), leading to potential studies of host proteins as well as parasite proteins exported to the host cell.
Collapse
Affiliation(s)
- Bénédicte Gnangnon
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Véronique Peucelle
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Christine Pierrot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| |
Collapse
|
19
|
Hou N, Jiang N, Ma Y, Zou Y, Piao X, Liu S, Chen Q. Low-Complexity Repetitive Epitopes of Plasmodium falciparum Are Decoys for Humoural Immune Responses. Front Immunol 2020; 11:610. [PMID: 32351503 PMCID: PMC7174639 DOI: 10.3389/fimmu.2020.00610] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/17/2020] [Indexed: 01/18/2023] Open
Abstract
Induction of humoural immunity is critical for clinical protection against malaria. More than 100 malaria vaccine candidates have been investigated at different developmental stages, but with limited protection. One of the roadblocks constrains the development of malaria vaccines is the poor immunogenicity of the antigens. The objective of this study was to map the linear B-cell epitopes of the Plasmodium falciparum erythrocyte invasion-associated antigens with a purpose of understanding humoural responses and protection. We conducted a large-scale screen using overlapping peptide microarrays of 37 proteins from the P. falciparum parasite, most of which are invasion-associated antigens which have been tested in clinical settings as vaccine candidates, with sera from individuals with various infection episodes. Analysis of the epitome of the antigens revealed that the most immunogenic epitopes were predominantly located in the low-complexity regions of the proteins containing repetitive and/or glutamate-rich motifs in different sequence contexts. However, in vitro assay showed the antibodies specific for these epitopes did not show invasion inhibitory effect. These discoveries indicated that the low-complexity regions of the parasite proteins might drive immune responses away from functional domains, which may be an instructive finding for the rational design of vaccine candidates.
Collapse
Affiliation(s)
- Nan Hou
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China.,The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Yu Ma
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yang Zou
- Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xianyu Piao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuai Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qijun Chen
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China.,The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| |
Collapse
|
20
|
Horta MF, Andrade LO, Martins-Duarte ÉS, Castro-Gomes T. Cell invasion by intracellular parasites - the many roads to infection. J Cell Sci 2020; 133:133/4/jcs232488. [PMID: 32079731 DOI: 10.1242/jcs.232488] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Intracellular parasites from the genera Toxoplasma, Plasmodium, Trypanosoma, Leishmania and from the phylum Microsporidia are, respectively, the causative agents of toxoplasmosis, malaria, Chagas disease, leishmaniasis and microsporidiosis, illnesses that kill millions of people around the globe. Crossing the host cell plasma membrane (PM) is an obstacle these parasites must overcome to establish themselves intracellularly and so cause diseases. The mechanisms of cell invasion are quite diverse and include (1) formation of moving junctions that drive parasites into host cells, as for the protozoans Toxoplasma gondii and Plasmodium spp., (2) subversion of endocytic pathways used by the host cell to repair PM, as for Trypanosoma cruzi and Leishmania, (3) induction of phagocytosis as for Leishmania or (4) endocytosis of parasites induced by specialized structures, such as the polar tubes present in microsporidian species. Understanding the early steps of cell entry is essential for the development of vaccines and drugs for the prevention or treatment of these diseases, and thus enormous research efforts have been made to unveil their underlying biological mechanisms. This Review will focus on these mechanisms and the factors involved, with an emphasis on the recent insights into the cell biology of invasion by these pathogens.
Collapse
Affiliation(s)
- Maria Fátima Horta
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, CEP 31270-901, Brazil
| | - Luciana Oliveira Andrade
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, CEP 31270-901, Brazil
| | - Érica Santos Martins-Duarte
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, CEP 31270-901, Brazil
| | - Thiago Castro-Gomes
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, CEP 31270-901, Brazil
| |
Collapse
|
21
|
Suarez C, Lentini G, Ramaswamy R, Maynadier M, Aquilini E, Berry-Sterkers L, Cipriano M, Chen AL, Bradley P, Striepen B, Boulanger MJ, Lebrun M. A lipid-binding protein mediates rhoptry discharge and invasion in Plasmodium falciparum and Toxoplasma gondii parasites. Nat Commun 2019; 10:4041. [PMID: 31492901 PMCID: PMC6731292 DOI: 10.1038/s41467-019-11979-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/07/2019] [Indexed: 11/09/2022] Open
Abstract
Members of the Apicomplexa phylum, including Plasmodium and Toxoplasma, have two types of secretory organelles (micronemes and rhoptries) whose sequential release is essential for invasion and the intracellular lifestyle of these eukaryotes. During invasion, rhoptries inject an array of invasion and virulence factors into the cytoplasm of the host cell, but the molecular mechanism mediating rhoptry exocytosis is unknown. Here we identify a set of parasite specific proteins, termed rhoptry apical surface proteins (RASP) that cap the extremity of the rhoptry. Depletion of RASP2 results in loss of rhoptry secretion and completely blocks parasite invasion and therefore parasite proliferation in both Toxoplasma and Plasmodium. Recombinant RASP2 binds charged lipids and likely contributes to assembling the machinery that docks/primes the rhoptry to the plasma membrane prior to fusion. This study provides important mechanistic insight into a parasite specific exocytic pathway, essential for the establishment of infection. Plasmodium and Toxoplasma parasites rely on rhoptry exocytosis for invasion, but the underlying mechanism is not known. Here, Suarez et al. characterize rhoptry apical surface proteins (RASP) that localize to the rhoptry cap and bind charged lipids, and are essential for rhoptry secretion and invasion.
Collapse
Affiliation(s)
- Catherine Suarez
- UMR 5235 CNRS, Université de Montpellier, 34095, Montpellier, France
| | - Gaëlle Lentini
- UMR 5235 CNRS, Université de Montpellier, 34095, Montpellier, France
| | - Raghavendran Ramaswamy
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, V8W 3P6, Canada
| | | | - Eleonora Aquilini
- UMR 5235 CNRS, Université de Montpellier, 34095, Montpellier, France
| | | | - Michael Cipriano
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Allan L Chen
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peter Bradley
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Martin J Boulanger
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, V8W 3P6, Canada
| | - Maryse Lebrun
- UMR 5235 CNRS, Université de Montpellier, 34095, Montpellier, France.
| |
Collapse
|
22
|
Sherling ES, Perrin AJ, Knuepfer E, Russell MRG, Collinson LM, Miller LH, Blackman MJ. The Plasmodium falciparum rhoptry bulb protein RAMA plays an essential role in rhoptry neck morphogenesis and host red blood cell invasion. PLoS Pathog 2019; 15:e1008049. [PMID: 31491036 PMCID: PMC6750612 DOI: 10.1371/journal.ppat.1008049] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/18/2019] [Accepted: 08/27/2019] [Indexed: 01/08/2023] Open
Abstract
The malaria parasite Plasmodium falciparum invades, replicates within and destroys red blood cells in an asexual blood stage life cycle that is responsible for clinical disease and crucial for parasite propagation. Invasive malaria merozoites possess a characteristic apical complex of secretory organelles that are discharged in a tightly controlled and highly regulated order during merozoite egress and host cell invasion. The most prominent of these organelles, the rhoptries, are twinned, club-shaped structures with a body or bulb region that tapers to a narrow neck as it meets the apical prominence of the merozoite. Different protein populations localise to the rhoptry bulb and neck, but the function of many of these proteins and how they are spatially segregated within the rhoptries is unknown. Using conditional disruption of the gene encoding the only known glycolipid-anchored malarial rhoptry bulb protein, rhoptry-associated membrane antigen (RAMA), we demonstrate that RAMA is indispensable for blood stage parasite survival. Contrary to previous suggestions, RAMA is not required for trafficking of all rhoptry bulb proteins. Instead, RAMA-null parasites display selective mislocalisation of a subset of rhoptry bulb and neck proteins (RONs) and produce dysmorphic rhoptries that lack a distinct neck region. The mutant parasites undergo normal intracellular development and egress but display a fatal defect in invasion and do not induce echinocytosis in target red blood cells. Our results indicate that distinct pathways regulate biogenesis of the two main rhoptry sub-compartments in the malaria parasite. Despite improved control measures over recent decades, malaria is still a considerable health burden across much of the globe. The disease is caused by a single-celled parasite that invades and replicates within host cells. During invasion, the parasite discharges a set of flask-shaped secretory organelles called rhoptries, the contents of which are crucial for invasion as well as for modifications to the host cell that are important for parasite survival. Rhoptry discharge occurs through fusion of the relatively elongated rhoptry neck to the apical surface of the parasite. Different proteins reside within the bulbous rhoptry body and the neck regions, but how these proteins are selectively sent to their correct sub-compartments within the rhoptries and how the rhoptries are formed, is poorly understood. Here we show that a malaria parasite rhoptry bulb protein called rhoptry-associated membrane antigen (RAMA) plays an essential role in rhoptry neck formation and correct trafficking of certain rhoptry neck and bulb proteins. Parasites deficient in RAMA produce malformed rhoptries and–probably as a result—cannot invade host red blood cells. Our work sheds new light on how rhoptries are formed and reveals insights into the mechanism by which the correct sorting of proteins to distinct regions of the rhoptry is regulated.
Collapse
Affiliation(s)
- Emma S. Sherling
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Abigail J. Perrin
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Ellen Knuepfer
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Matthew R. G. Russell
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Lucy M. Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Louis H. Miller
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Michael J. Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- * E-mail:
| |
Collapse
|
23
|
Shears MJ, Sekhar Nirujogi R, Swearingen KE, Renuse S, Mishra S, Jaipal Reddy P, Moritz RL, Pandey A, Sinnis P. Proteomic Analysis of Plasmodium Merosomes: The Link between Liver and Blood Stages in Malaria. J Proteome Res 2019; 18:3404-3418. [PMID: 31335145 DOI: 10.1021/acs.jproteome.9b00324] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The pre-erythrocytic liver stage of the malaria parasite, comprising sporozoites and the liver stages into which they develop, remains one of the least understood parts of the lifecycle, in part owing to the low numbers of parasites. Nonetheless, it is recognized as an important target for antimalarial drugs and vaccines. Here we provide the first proteomic analysis of merosomes, which define the final phase of the liver stage and are responsible for initiating the blood stage of infection. We identify a total of 1879 parasite proteins, and a core set of 1188 proteins quantitatively detected in every biological replicate, providing an extensive picture of the protein repertoire of this stage. This unique data set will allow us to explore key questions about the biology of merosomes and hepatic merozoites.
Collapse
Affiliation(s)
- Melanie J Shears
- Department of Molecular Microbiology & Immunology , Johns Hopkins Bloomberg School of Public Health , 615 North Wolfe Street , Baltimore , Maryland 21205 , United States
| | - Raja Sekhar Nirujogi
- Department of Biological Chemistry , Johns Hopkins School of Medicine , 733 N. Broadway , Baltimore , Maryland 21205 , United States.,Institute of Bioinformatics , International Tech Park , Bangalore 560 066 , India
| | - Kristian E Swearingen
- Institute for Systems Biology , 401 Terry Avenue , North Seattle , Washington 98109 , United States
| | - Santosh Renuse
- Department of Biological Chemistry , Johns Hopkins School of Medicine , 733 N. Broadway , Baltimore , Maryland 21205 , United States
| | - Satish Mishra
- Department of Molecular Microbiology & Immunology , Johns Hopkins Bloomberg School of Public Health , 615 North Wolfe Street , Baltimore , Maryland 21205 , United States
| | - Panga Jaipal Reddy
- Institute for Systems Biology , 401 Terry Avenue , North Seattle , Washington 98109 , United States
| | - Robert L Moritz
- Institute for Systems Biology , 401 Terry Avenue , North Seattle , Washington 98109 , United States
| | - Akhilesh Pandey
- Department of Biological Chemistry , Johns Hopkins School of Medicine , 733 N. Broadway , Baltimore , Maryland 21205 , United States
| | - Photini Sinnis
- Department of Molecular Microbiology & Immunology , Johns Hopkins Bloomberg School of Public Health , 615 North Wolfe Street , Baltimore , Maryland 21205 , United States
| |
Collapse
|
24
|
Siau A, Huang X, Loh HP, Zhang N, Meng W, Sze SK, Renia L, Preiser P. Immunomic Identification of Malaria Antigens Associated With Protection in Mice. Mol Cell Proteomics 2019; 18:837-853. [PMID: 30718293 DOI: 10.1074/mcp.ra118.000997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/22/2019] [Indexed: 11/06/2022] Open
Abstract
Efforts to develop vaccines against malaria represent a major research target. The observations that 1) sterile protection can be obtained when the host is exposed to live parasites and 2) the immunity against blood stage parasite is principally mediated by protective antibodies suggest that a protective vaccine is feasible. However, only a small number of proteins have been investigated so far and most of the Plasmodium proteome has yet to be explored. To date, only few immunodominant antigens have emerged for testing in clinical trials but no formulation has led to substantial protection in humans. The nature of parasite molecules associated with protection remains elusive. Here, immunomic screening of mice immune sera with different protection efficiencies against the whole parasite proteome allowed us to identify a large repertoire of antigens validated by screening a library expressing antigens. The calculation of weighted scores reflecting the likelihood of protection of each antigen using five predictive criteria derived from immunomic and proteomic data sets, highlighted a priority list of protective antigens. Altogether, the approach sheds light on conserved antigens across Plasmodium that are amenable to targeting by the host immune system upon merozoite invasion and blood stage development. Most of these antigens have preliminary protection data but have not been widely considered as candidate for vaccine trials, opening new perspectives that overcome the limited choice of immunodominant, poorly protective vaccines currently being the focus of malaria vaccine researches.
Collapse
Affiliation(s)
- Anthony Siau
- From the ‡Nanyang Technological University, School of Biological Sciences, Singapore;.
| | - Ximei Huang
- From the ‡Nanyang Technological University, School of Biological Sciences, Singapore;; From the ‡Nanyang Technological University, School of Biological Sciences, Singapore
| | - Han Ping Loh
- From the ‡Nanyang Technological University, School of Biological Sciences, Singapore;; From the ‡Nanyang Technological University, School of Biological Sciences, Singapore
| | - Neng Zhang
- From the ‡Nanyang Technological University, School of Biological Sciences, Singapore
| | - Wei Meng
- From the ‡Nanyang Technological University, School of Biological Sciences, Singapore
| | - Siu Kwan Sze
- From the ‡Nanyang Technological University, School of Biological Sciences, Singapore
| | - Laurent Renia
- §Singapore Immunology Network (SIgN), A*STAR, Biopolis, Singapore
| | - Peter Preiser
- From the ‡Nanyang Technological University, School of Biological Sciences, Singapore;.
| |
Collapse
|
25
|
Lew MH, Noordin R, Monsur Alam Khan M, Tye GJ. Immune Stimulation of RAP domain binding protein (rTgRA15) from Toxoplasma gondii. Pathog Glob Health 2018; 112:387-394. [PMID: 30332344 DOI: 10.1080/20477724.2018.1536854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Toxoplasmosis, a parasitic disease in human and animals, is caused by Toxoplasma gondii. Our previous study has led to the discovery of a novel RAP domain binding protein antigen (TgRA15), an apparent in-vivo induced antigen recognised by antibodies in acutely infected individuals. This study is aimed to evaluate the humoral response and cytokine release elicited by recombinant TgRA15 protein in C57BL/6 mice, demonstrating its potential as a candidate vaccine for Toxoplasma gondii infection. In this study, the recombinant TgRA15 protein was expressed in Escherichia coli, purified and refolded into soluble form. C57BL/6 mice were immunised intradermally with the antigen and CASAC (Combined Adjuvant for Synergistic Activation of Cellular immunity). Antigen-specific humoral and cell-mediated responses were evaluated using Western blot and ELISA. The total IgG, IgG1 and IgG2a antibodies specific to the antigen were significantly increased in treatment group compare to control group. A higher level of interferon gamma (IFN-γ) secretion was demonstrated in the mice group receiving booster doses of rTgRA15 protein, suggesting a potential Th1-mediated response. In conclusion, the rTgRA15 protein has the potential to generate specific antibody response and elicit cellular response, thus potentially serve as a vaccine candidate against T. gondii infection.
Collapse
Affiliation(s)
- Min Han Lew
- a Institute for Research in Molecular Medicine (INFORMM) , Universiti Sains Malaysia , Minden , Penang , Malaysia
| | - Rahmah Noordin
- a Institute for Research in Molecular Medicine (INFORMM) , Universiti Sains Malaysia , Minden , Penang , Malaysia
| | - Mohammed Monsur Alam Khan
- a Institute for Research in Molecular Medicine (INFORMM) , Universiti Sains Malaysia , Minden , Penang , Malaysia
| | - Gee Jun Tye
- a Institute for Research in Molecular Medicine (INFORMM) , Universiti Sains Malaysia , Minden , Penang , Malaysia
| |
Collapse
|
26
|
Painter HJ, Chung NC, Sebastian A, Albert I, Storey JD, Llinás M. Genome-wide real-time in vivo transcriptional dynamics during Plasmodium falciparum blood-stage development. Nat Commun 2018; 9:2656. [PMID: 29985403 PMCID: PMC6037754 DOI: 10.1038/s41467-018-04966-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/31/2018] [Indexed: 01/12/2023] Open
Abstract
Genome-wide analysis of transcription in the malaria parasite Plasmodium falciparum has revealed robust variation in steady-state mRNA abundance throughout the 48-h intraerythrocytic developmental cycle (IDC), suggesting that this process is highly dynamic and tightly regulated. Here, we utilize rapid 4-thiouracil (4-TU) incorporation via pyrimidine salvage to specifically label, capture, and quantify newly-synthesized RNA transcripts at every hour throughout the IDC. This high-resolution global analysis of the transcriptome captures the timing and rate of transcription for each newly synthesized mRNA in vivo, revealing active transcription throughout all IDC stages. Using a statistical model to predict the mRNA dynamics contributing to the total mRNA abundance at each timepoint, we find varying degrees of transcription and stabilization for each mRNA corresponding to developmental transitions. Finally, our results provide new insight into co-regulation of mRNAs throughout the IDC through regulatory DNA sequence motifs, thereby expanding our understanding of P. falciparum mRNA dynamics. Transcriptomic analysis often doesn’t differentiate between newly synthesized and stabilized mRNAs. Using rapid 4-thiouracil incorporation, Painter et al. here define genome-wide active transcription throughout Plasmodium blood-stage developmental stages and identify associated regulatory DNA sequence motifs.
Collapse
Affiliation(s)
- Heather J Painter
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.,Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Neo Christopher Chung
- Lewis-Sigler Institute for Integrative Genomics and Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.,Institute of Informatics, Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, 02-097 Warsaw, Poland
| | - Aswathy Sebastian
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Istvan Albert
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - John D Storey
- Lewis-Sigler Institute for Integrative Genomics and Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.,Center for Statistics and Machine Learning, Princeton University, Princeton, NJ, 08544, USA
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA. .,Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA, 16802, USA. .,Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
27
|
Abdi A, Yu L, Goulding D, Rono MK, Bejon P, Choudhary J, Rayner J. Proteomic analysis of extracellular vesicles from a Plasmodium falciparum Kenyan clinical isolate defines a core parasite secretome. Wellcome Open Res 2017; 2:50. [PMID: 28944300 PMCID: PMC5583745 DOI: 10.12688/wellcomeopenres.11910.2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Many pathogens secrete effector molecules to subvert host immune responses, to acquire nutrients, and/or to prepare host cells for invasion. One of the ways that effector molecules are secreted is through extracellular vesicles (EVs) such as exosomes. Recently, the malaria parasite P. falciparum has been shown to produce EVs that can mediate transfer of genetic material between parasites and induce sexual commitment. Characterizing the content of these vesicles may improve our understanding of P. falciparum pathogenesis and virulence. METHODS Previous studies of P. falciparum EVs have been limited to long-term adapted laboratory isolates. In this study, we isolated EVs from a Kenyan P. falciparum clinical isolate adapted to in vitro culture for a short period and characterized their protein content by mass spectrometry (data are available via ProteomeXchange, with identifier PXD006925). RESULTS We show that P. falciparum extracellular vesicles ( PfEVs) are enriched in proteins found within the exomembrane compartments of infected erythrocytes such as Maurer's clefts (MCs), as well as the secretory endomembrane compartments in the apical end of the merozoites, suggesting that these proteins play a role in parasite-host interactions. Comparison of this novel clinically relevant dataset with previously published datasets helps to define a core secretome present in Plasmodium EVs. CONCLUSIONS P. falciparum extracellular vesicles contain virulence-associated parasite proteins. Therefore, analysis of PfEVs contents from a range of clinical isolates, and their functional validation may improve our understanding of the virulence mechanisms of the parasite, and potentially identify targets for interventions or diagnostics.
Collapse
Affiliation(s)
- Abdirahman Abdi
- Pwani University Bioscience Research Centre, Pwani University, Kilifi, Kenya.,KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Lu Yu
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - David Goulding
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Martin K Rono
- Pwani University Bioscience Research Centre, Pwani University, Kilifi, Kenya.,KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Philip Bejon
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Jyoti Choudhary
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Julian Rayner
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| |
Collapse
|
28
|
Abdi A, Yu L, Goulding D, Rono MK, Bejon P, Choudhary J, Rayner J. Proteomic analysis of extracellular vesicles from a Plasmodium falciparum Kenyan clinical isolate defines a core parasite secretome. Wellcome Open Res 2017. [PMID: 28944300 DOI: 10.12688/wellcomeopenres.11910.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Many pathogens secrete effector molecules to subvert host immune responses, to acquire nutrients, and/or to prepare host cells for invasion. One of the ways that effector molecules are secreted is through extracellular vesicles (EVs) such as exosomes. Recently, the malaria parasite P. falciparum has been shown to produce EVs that can mediate transfer of genetic material between parasites and induce sexual commitment. Characterizing the content of these vesicles may improve our understanding of P. falciparum pathogenesis and virulence. METHODS Previous studies of P. falciparum EVs have been limited to long-term adapted laboratory isolates. In this study, we isolated EVs from a Kenyan P. falciparum clinical isolate adapted to in vitro culture for a short period and characterized their protein content by mass spectrometry (data are available via ProteomeXchange, with identifier PXD006925). RESULTS We show that P. falciparum extracellular vesicles ( PfEVs) are enriched in proteins found within the exomembrane compartments of infected erythrocytes such as Maurer's clefts (MCs), as well as the secretory endomembrane compartments in the apical end of the merozoites, suggesting that these proteins play a role in parasite-host interactions. Comparison of this novel clinically relevant dataset with previously published datasets helps to define a core secretome present in Plasmodium EVs. CONCLUSIONS P. falciparum extracellular vesicles contain virulence-associated parasite proteins. Therefore, analysis of PfEVs contents from a range of clinical isolates, and their functional validation may improve our understanding of the virulence mechanisms of the parasite, and potentially identify targets for interventions or diagnostics.
Collapse
Affiliation(s)
- Abdirahman Abdi
- Pwani University Bioscience Research Centre, Pwani University, Kilifi, Kenya.,KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Lu Yu
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - David Goulding
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Martin K Rono
- Pwani University Bioscience Research Centre, Pwani University, Kilifi, Kenya.,KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Philip Bejon
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Jyoti Choudhary
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Julian Rayner
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| |
Collapse
|
29
|
In silico design of knowledge-based Plasmodium falciparum epitope ensemble vaccines. J Mol Graph Model 2017; 78:195-205. [PMID: 29100164 DOI: 10.1016/j.jmgm.2017.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 01/24/2023]
Abstract
Malaria is a global health burden, and a major cause of mortality and morbidity in Africa. Here we designed a putative malaria epitope ensemble vaccine by selecting an optimal set of pathogen epitopes. From the IEDB database, 584 experimentally-verified CD8+ epitopes and 483 experimentally-verified CD4+ epitopes were collected; 89% of which were found in 8 proteins. Using the PVS server, highly conserved epitopes were identified from variability analysis of multiple alignments of Plasmodium falciparum protein sequences. The allele-dependent binding of epitopes was then assessed using IEDB analysis tools, from which the population protection coverage of single and combined epitopes was estimated. Ten conserved epitopes from four well-studied antigens were found to have a coverage of 97.9% of the world population: 7 CD8+ T cell epitopes (LLMDCSGSI, FLIFFDLFLV, LLACAGLAYK, TPYAGEPAPF, LLACAGLAY, SLKKNSRSL, and NEVVVKEEY) and 3 CD4+ T cell epitopes (MRKLAILSVSSFLFV, KSKYKLATSVLAGLL and GLAYKFVVPGAATPYE). The addition of four heteroclitic peptides - single point mutated epitopes - increased HLA binding affinity and raised the predicted world population coverage above 99%.
Collapse
|