1
|
Li Z, Liu QS, Hu JJ, Deng CQ, Li T, Zheng WB, Zhu XQ, Zou FC. Spatiotemporal Diffusion, Colonization, and Antibody Responses in Susceptible C57BL/6J Mice Orally Infected with Toxoplasma gondii Cysts. Vet Sci 2025; 12:212. [PMID: 40266920 PMCID: PMC11945890 DOI: 10.3390/vetsci12030212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 04/25/2025] Open
Abstract
Toxoplasma gondii is an obligate intracellular protozoan that infects humans and other mammals. The C57BL/6J mouse strain is regarded as an ideal model organism for studying T. gondii due to its susceptibility to T. gondii infection and its other advantages over other laboratory animals. However, systematic studies on the response dynamics of the susceptible C57BL/6J mice after oral infection with T. gondii cysts are lacking. To address this research gap, we investigated the spatiotemporal dynamics of infection, colonization, and antibody fluctuations in susceptible C57BL/6J mice orally infected with Type II T. gondii ME49 strain cysts. Mice were orally challenged with T. gondii cysts to examine the infection dynamics. Daily monitoring was conducted for 60 days post-infection (dpi) to assess animals' clinical signs and survival rates. The parasite burden in various organs was quantified using qPCR targeting the T. gondii B1 gene. The serum antibody responses were evaluated using ELISA. The cyst burden in the mouse brain was assessed via histology and immunofluorescence. T. gondii infection induced clinical symptoms in the mice, including fever and weight loss. T. gondii rapidly invaded the mice's small intestine, spleen, lungs, liver, and heart via the bloodstream within 1-5 dpi. T. gondii had breached the blood-brain barrier and colonized the brain by 7 dpi. The levels of Toxoplasma-specific IgG antibodies increased and stabilized for two months (until the experiment ended). Systemic parasite dissemination occurred rapidly, infiltrating most tissues and organs, leading to pronounced enteritis and multi-organ damage due to inflammation. The tachyzoites differentiated into bradyzoites when T. gondii infection progressed from the acute to the chronic phase in mice, forming tissue cysts in organs, including the muscles and brain. As a result, the predilection site of T. gondii in mice is the brain, which is where the cysts persisted for the host's lifetime and continuously induced meningitis. These findings provide valuable insights into the spatiotemporal diffusion, colonization, predilection sites, temporal antibody dynamics, pathogen detection methodologies, and histopathological changes in C57BL/6J mice following oral infection with T. gondii cysts. These insights are important for elucidating T. gondii's pathogenesis and host-T. gondii interaction.
Collapse
Affiliation(s)
- Zhao Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China;
- Animal Research and Resource Center, School of Life Sciences, Yunnan University, Kunming 650500, China; (Q.-S.L.); (C.-Q.D.); (T.L.)
| | - Qi-Shuai Liu
- Animal Research and Resource Center, School of Life Sciences, Yunnan University, Kunming 650500, China; (Q.-S.L.); (C.-Q.D.); (T.L.)
| | - Jun-Jie Hu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China;
| | - Cai-Qin Deng
- Animal Research and Resource Center, School of Life Sciences, Yunnan University, Kunming 650500, China; (Q.-S.L.); (C.-Q.D.); (T.L.)
| | - Tao Li
- Animal Research and Resource Center, School of Life Sciences, Yunnan University, Kunming 650500, China; (Q.-S.L.); (C.-Q.D.); (T.L.)
| | - Wen-Bin Zheng
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China;
| | - Xing-Quan Zhu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China;
- The Yunnan Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Feng-Cai Zou
- The Yunnan Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
2
|
Wang X, Qu L, Chen J, Hu K, Zhou Z, Zhang J, An Y, Zheng J. Rhoptry proteins affect the placental barrier in the context of Toxoplasma gondii infection: Signaling pathways and functions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116567. [PMID: 38850700 DOI: 10.1016/j.ecoenv.2024.116567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/21/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Toxoplasma gondii is an opportunistic and pathogenic obligate intracellular parasitic protozoan that is widespread worldwide and can infect most warm-blooded animals, seriously endangering human health and affecting livestock production. Toxoplasmosis caused by T. gondii infection has different clinical manifestations, which are mainly determined by the virulence of T. gondii and host differences. Among the manifestations of this condition, abortion, stillbirth, and fetal malformation can occur if a woman is infected with T. gondii in early pregnancy. Here, we discuss how the T. gondii rhoptry protein affects host pregnancy outcomes and speculate on the related signaling pathways involved. The effects of rhoptry proteins of T. gondii on the placental barrier are complex. Rhoptry proteins not only regulate interferon-regulated genes (IRGs) to ensure the survival of parasites in activated cells but also promote the spread of worms in tissues and the invasive ability of the parasites. The functions of these rhoptry proteins and the associated signaling pathways highlight relevant mechanisms by which Toxoplasma crosses the placental barrier and influences fetal development and will guide future studies to uncover the complexity of the host-pathogen interactions.
Collapse
Affiliation(s)
- Xinlei Wang
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Lai Qu
- Department of Intensive Care Unit, First Hospital of Jilin University, Changchun, China
| | - Jie Chen
- Institute of Theoretical Chemistry, Jilin University, Changchun, China
| | - Kaisong Hu
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Zhengjie Zhou
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jiaqi Zhang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yiming An
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jingtong Zheng
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, China.
| |
Collapse
|
3
|
Morales P, Brown AJ, Sangaré LO, Yang S, Kuihon SVNP, Chen B, Saeij JPJ. The Toxoplasma secreted effector TgWIP modulates dendritic cell motility by activating host tyrosine phosphatases Shp1 and Shp2. Cell Mol Life Sci 2024; 81:294. [PMID: 38977495 PMCID: PMC11335217 DOI: 10.1007/s00018-024-05283-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 07/10/2024]
Abstract
The obligate intracellular parasite Toxoplasma gondii causes life-threatening toxoplasmosis to immunocompromised individuals. The pathogenesis of Toxoplasma relies on its swift dissemination to the central nervous system through a 'Trojan Horse' mechanism using infected leukocytes as carriers. Previous work found TgWIP, a protein secreted from Toxoplasma, played a role in altering the actin cytoskeleton and promoting cell migration in infected dendritic cells (DCs). However, the mechanism behind these changes was unknown. Here, we report that TgWIP harbors two SH2-binding motifs that interact with tyrosine phosphatases Shp1 and Shp2, leading to phosphatase activation. DCs infected with Toxoplasma exhibited hypermigration, accompanying enhanced F-actin stress fibers and increased membrane protrusions such as filopodia and pseudopodia. By contrast, these phenotypes were abrogated in DCs infected with Toxoplasma expressing a mutant TgWIP lacking the SH2-binding motifs. We further demonstrated that the Rho-associated kinase (Rock) is involved in the induction of these phenotypes, in a TgWIP-Shp1/2 dependent manner. Collectively, the data uncover a molecular mechanism by which TgWIP modulates the migration dynamics of infected DCs in vitro.
Collapse
Affiliation(s)
- Pavel Morales
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Abbigale J Brown
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, USA
| | - Lamba Omar Sangaré
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Sheng Yang
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, USA
- Target & Protein Sciences, Johnson & Johnson, New Brunswick, USA
| | - Simon V N P Kuihon
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, USA
| | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, USA
| | - Jeroen P J Saeij
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
4
|
Morales P, Brown AJ, Sangare LO, Yang S, Kuihon S, Chen B, Saeij J. The Toxoplasma secreted effector TgWIP modulates dendritic cell motility by activating host tyrosine phosphatases Shp1 and Shp2. RESEARCH SQUARE 2024:rs.3.rs-4539584. [PMID: 38978596 PMCID: PMC11230507 DOI: 10.21203/rs.3.rs-4539584/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The obligate intracellular parasite Toxoplasma gondii causes life-threatening toxoplasmosis to immunocompromised individuals. The pathogenesis of Toxoplasma relies on its swift dissemination to the central nervous system through a 'Trojan Horse' mechanism using infected leukocytes as carriers. Previous work found TgWIP, a protein secreted from Toxoplasma, played a role in altering the actin cytoskeleton and promoting cell migration in infected dendritic cells (DCs). However, the mechanism behind these changes was unknown. Here, we report that TgWIP harbors two SH2-binding motifs that interact with tyrosine phosphatases Shp1 and Shp2, leading to phosphatase activation. DCs infected with Toxoplasma exhibited hypermigration, accompanying enhanced F-actin stress fibers and increased membrane protrusions such as filopodia and pseudopodia. By contrast, these phenotypes were abrogated in DCs infected with Toxoplasma expressing a mutant TgWIP lacking the SH2-binding motifs. We further demonstrated that the Rho-associated kinase (Rock) is involved in the induction of these phenotypes, in a TgWIP-Shp1/2 dependent manner. Collectively, the data uncover a molecular mechanism by which TgWIP modulates the migration dynamics of infected DCs in vitro.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jeroen Saeij
- University of California Davis School of Veterinary Medicine
| |
Collapse
|
5
|
Wang X, Qu L, Chen J, Jin Y, Hu K, Zhou Z, Zhang J, An Y, Zheng J. Toxoplasma rhoptry proteins that affect encephalitis outcome. Cell Death Discov 2023; 9:439. [PMID: 38049394 PMCID: PMC10696021 DOI: 10.1038/s41420-023-01742-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 12/06/2023] Open
Abstract
Toxoplasma gondii, a widespread obligate intracellular parasite, can infect almost all warm-blooded animals, including humans. The cellular barrier of the central nervous system (CNS) is generally able to protect the brain parenchyma from infectious damage. However, T. gondii typically causes latent brain infections in humans and other vertebrates. Here, we discuss how T. gondii rhoptry proteins (ROPs) affect signaling pathways in host cells and speculate how this might affect the outcome of Toxoplasma encephalitis.
Collapse
Affiliation(s)
- Xinlei Wang
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, 130021, China
| | - Lai Qu
- Department of Intensive Care Unit, First Hospital of Jilin University, Changchun, 130021, China
| | - Jie Chen
- Institute of Theoretical Chemistry, Jilin University, Changchun, 130021, China
| | - Yufen Jin
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, 130021, China
| | - Kaisong Hu
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Zhengjie Zhou
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Jiaqi Zhang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Yiming An
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Jingtong Zheng
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| |
Collapse
|
6
|
TAKASHIMA Y. Visualization of parasite dynamics in the host tissues: application of tissue transparency technology to parasite research. J Vet Med Sci 2023; 85:1146-1150. [PMID: 37766567 PMCID: PMC10686769 DOI: 10.1292/jvms.23-0272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Many parasite species migrate to another site of infection after entering the host body. Such parasite dynamics are closely related to pathogenicity, but it is not easy to observe such parasite behavior deep within the organs. In recent years, technology that can make organs transparent has been developed that enables us to observe deep within organs ex vivo while maintaining their three-dimensional structure. This review describes a series of attempts to apply this technology to understand the behavior of Toxoplasma gondii in the host body. A series of studies has shown that T. gondii tachyzoites that infect leukocytes can reach target organs far from the site of invasion via the circulatory system. In addition, infected leukocytes in the bloodstream adhere more readily to vascular endothelial cells than uninfected leukocytes and are more likely to remain inside the target organs. When infected leukocytes adhere to the vascular endothelial cells of the target organ, the tachyzoites inside the cells immediately escape and infect the parenchyma of the organs. As described above, organ transparency technology is a powerful tool for understanding the internal dynamics of parasites.
Collapse
Affiliation(s)
- Yasuhiro TAKASHIMA
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Japan
- Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
7
|
Shortt E, Hackett CG, Stadler RV, Kent RS, Herneisen AL, Ward GE, Lourido S. CDPK2A and CDPK1 form a signaling module upstream of Toxoplasma motility. mBio 2023; 14:e0135823. [PMID: 37610220 PMCID: PMC10653799 DOI: 10.1128/mbio.01358-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 06/17/2023] [Indexed: 08/24/2023] Open
Abstract
IMPORTANCE This work uncovers interactions between various signaling pathways that govern Toxoplasma gondii egress. Specifically, we compare the function of three canonical calcium-dependent protein kinases (CDPKs) using chemical-genetic and conditional-depletion approaches. We describe the function of a previously uncharacterized CDPK, CDPK2A, in the Toxoplasma lytic cycle, demonstrating that it contributes to parasite fitness through regulation of microneme discharge, gliding motility, and egress from infected host cells. Comparison of analog-sensitive kinase alleles and conditionally depleted alleles uncovered epistasis between CDPK2A and CDPK1, implying a partial functional redundancy. Understanding the topology of signaling pathways underlying key events in the parasite life cycle can aid in efforts targeting kinases for anti-parasitic therapies.
Collapse
Affiliation(s)
- Emily Shortt
- Whitehead Institute, Cambridge, Massachusetts, USA
| | | | - Rachel V. Stadler
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, USA
| | - Robyn S. Kent
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, USA
| | - Alice L. Herneisen
- Whitehead Institute, Cambridge, Massachusetts, USA
- Biology Department, MIT, Cambridge, Massachusetts, USA
| | - Gary E. Ward
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, USA
| | - Sebastian Lourido
- Whitehead Institute, Cambridge, Massachusetts, USA
- Biology Department, MIT, Cambridge, Massachusetts, USA
| |
Collapse
|
8
|
A Signaling Factor Linked to Toxoplasma gondii Guanylate Cyclase Complex Controls Invasion and Egress during Acute and Chronic Infection. mBio 2022; 13:e0196522. [PMID: 36200777 PMCID: PMC9600588 DOI: 10.1128/mbio.01965-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toxoplasma gondii is an intracellular apicomplexan parasite that relies on cyclic GMP (cGMP)-dependent signaling to trigger timely egress from host cells in response to extrinsic and intrinsic signals. A guanylate cyclase (GC) complex, conserved across the Apicomplexa, plays a pivotal role in integrating these signals, such as the key lipid mediator phosphatidic acid and changes in pH and ionic composition. This complex is composed of an atypical GC fused to a flippase-like P4-ATPase domain and assembled with the cell division control protein CDC50.1 and a unique GC organizer (UGO). While the dissemination of the fast-replicating tachyzoites responsible for acute infection is well understood, it is less clear if the cyst-forming bradyzoites can disseminate and contribute to cyst burden. Here, we characterized a novel component of the GC complex recently termed signaling linking factor (SLF). Tachyzoites conditionally depleted in SLF are impaired in microneme exocytosis, conoid extrusion, and motility and hence unable to invade and egress. A stage-specific promoter swap strategy allowed the generation of SLF- and GC-deficient bradyzoites that are viable as tachyzoites but show a reduction in cyst burden during the onset of chronic infection. Upon oral infection, SLF-deficient cysts failed to establish infection in mice, suggesting SLF's importance for the natural route of T. gondii infection. IMPORTANCE Toxoplasma gondii is an obligate intracellular parasite of the phylum Apicomplexa. This life-threatening opportunistic pathogen establishes a chronic infection in human and animals that is resistant to immune attacks and chemotherapeutic intervention. The slow-growing parasites persist in tissue cysts that constitute a predominant source of transmission. Host cell invasion and egress are two critical steps of the parasite lytic cycle that are governed by a guanylate cyclase complex conserved across the Apicomplexa. A signaling linked factor is characterized here as an additional component of the complex that not only is essential during acute infection but also plays a pivotal role during natural oral infection with tissue cysts' dissemination and persistence.
Collapse
|
9
|
Rinkenberger N, Abrams ME, Matta SK, Schoggins JW, Alto NM, Sibley LD. Overexpression screen of interferon-stimulated genes identifies RARRES3 as a restrictor of Toxoplasma gondii infection. eLife 2021; 10:e73137. [PMID: 34871166 PMCID: PMC8789288 DOI: 10.7554/elife.73137] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/05/2021] [Indexed: 12/26/2022] Open
Abstract
Toxoplasma gondii is an important human pathogen infecting an estimated one in three people worldwide. The cytokine interferon gamma (IFNγ) is induced during infection and is critical for restricting T. gondii growth in human cells. Growth restriction is presumed to be due to the induction of interferon-stimulated genes (ISGs) that are upregulated to protect the host from infection. Although there are hundreds of ISGs induced by IFNγ, their individual roles in restricting parasite growth in human cells remain somewhat elusive. To address this deficiency, we screened a library of 414 IFNγ induced ISGs to identify factors that impact T. gondii infection in human cells. In addition to IRF1, which likely acts through the induction of numerous downstream genes, we identified RARRES3 as a single factor that restricts T. gondii infection by inducing premature egress of the parasite in multiple human cell lines. Overall, while we successfully identified a novel IFNγ induced factor restricting T. gondii infection, the limited number of ISGs capable of restricting T. gondii infection when individually expressed suggests that IFNγ-mediated immunity to T. gondii infection is a complex, multifactorial process.
Collapse
Affiliation(s)
- Nicholas Rinkenberger
- Department of Molecular Microbiology, Washington University in St. LouisSt LouisUnited States
| | - Michael E Abrams
- Department of Microbiology, University of Texas SouthwesternDallasUnited States
| | - Sumit K Matta
- Department of Molecular Microbiology, Washington University in St. LouisSt LouisUnited States
| | - John W Schoggins
- Department of Microbiology, University of Texas SouthwesternDallasUnited States
| | - Neal M Alto
- Department of Microbiology, University of Texas SouthwesternDallasUnited States
| | - L David Sibley
- Department of Molecular Microbiology, Washington University in St. LouisSt LouisUnited States
| |
Collapse
|
10
|
Fu Y, Brown KM, Jones NG, Moreno SNJ, Sibley LD. Toxoplasma bradyzoites exhibit physiological plasticity of calcium and energy stores controlling motility and egress. eLife 2021; 10:e73011. [PMID: 34860156 PMCID: PMC8683080 DOI: 10.7554/elife.73011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/03/2021] [Indexed: 01/01/2023] Open
Abstract
Toxoplasma gondii has evolved different developmental stages for disseminating during acute infection (i.e., tachyzoites) and establishing chronic infection (i.e., bradyzoites). Calcium ion (Ca2+) signaling tightly regulates the lytic cycle of tachyzoites by controlling microneme secretion and motility to drive egress and cell invasion. However, the roles of Ca2+ signaling pathways in bradyzoites remain largely unexplored. Here, we show that Ca2+ responses are highly restricted in bradyzoites and that they fail to egress in response to agonists. Development of dual-reporter parasites revealed dampened Ca2+ responses and minimal microneme secretion by bradyzoites induced in vitro or harvested from infected mice and tested ex vivo. Ratiometric Ca2+ imaging demonstrated lower Ca2+ basal levels, reduced magnitude, and slower Ca2+ kinetics in bradyzoites compared with tachyzoites stimulated with agonists. Diminished responses in bradyzoites were associated with downregulation of Ca2+-ATPases involved in intracellular Ca2+ storage in the endoplasmic reticulum (ER) and acidocalcisomes. Once liberated from cysts by trypsin digestion, bradyzoites incubated in glucose plus Ca2+ rapidly restored their intracellular Ca2+ and ATP stores, leading to enhanced gliding. Collectively, our findings indicate that intracellular bradyzoites exhibit dampened Ca2+ signaling and lower energy levels that restrict egress, and yet upon release they rapidly respond to changes in the environment to regain motility.
Collapse
Affiliation(s)
- Yong Fu
- Department of Molecular Microbiology, Washington University in St. Louis, School of MedicineSt LouisUnited States
| | - Kevin M Brown
- Department of Molecular Microbiology, Washington University in St. Louis, School of MedicineSt LouisUnited States
| | - Nathaniel G Jones
- Department of Molecular Microbiology, Washington University in St. Louis, School of MedicineSt LouisUnited States
| | - Silvia NJ Moreno
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of GeorgiaAthensUnited States
| | - L David Sibley
- Department of Molecular Microbiology, Washington University in St. Louis, School of MedicineSt LouisUnited States
| |
Collapse
|
11
|
Arranz-Solís D, Mukhopadhyay D, Saeij JJP. Toxoplasma Effectors that Affect Pregnancy Outcome. Trends Parasitol 2021; 37:283-295. [PMID: 33234405 PMCID: PMC7954850 DOI: 10.1016/j.pt.2020.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/18/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
As an immune-privileged organ, the placenta can tolerate the introduction of antigens without inducing a strong inflammatory response that would lead to abortion. However, for the control of intracellular pathogens, a strong Th1 response characterized by the production of interferon-γ is needed. Thus, invasion of the placenta by intracellular parasites puts the maternal immune system in a quandary: The proinflammatory response needed to eliminate the pathogen can also lead to abortion. Toxoplasma is a highly successful parasite that causes lifelong chronic infections and is a major cause of abortions in humans and livestock. Here, we discuss how Toxoplasma strain type and parasite effectors influence host cell signaling pathways, and we speculate about how this might affect the outcome of gestation.
Collapse
Affiliation(s)
- David Arranz-Solís
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Debanjan Mukhopadhyay
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Jeroen J P Saeij
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
12
|
Mukhopadhyay D, Arranz-Solís D, Saeij JPJ. Influence of the Host and Parasite Strain on the Immune Response During Toxoplasma Infection. Front Cell Infect Microbiol 2020; 10:580425. [PMID: 33178630 PMCID: PMC7593385 DOI: 10.3389/fcimb.2020.580425] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/11/2020] [Indexed: 01/02/2023] Open
Abstract
Toxoplasma gondii is an exceptionally successful parasite that infects a very broad host range, including humans, across the globe. The outcome of infection differs remarkably between hosts, ranging from acute death to sterile infection. These differential disease patterns are strongly influenced by both host- and parasite-specific genetic factors. In this review, we discuss how the clinical outcome of toxoplasmosis varies between hosts and the role of different immune genes and parasite virulence factors, with a special emphasis on Toxoplasma-induced ileitis and encephalitis.
Collapse
Affiliation(s)
| | | | - Jeroen P. J. Saeij
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
13
|
Tartarelli I, Tinari A, Possenti A, Cherchi S, Falchi M, Dubey JP, Spano F. During host cell traversal and cell-to-cell passage, Toxoplasma gondii sporozoites inhabit the parasitophorous vacuole and posteriorly release dense granule protein-associated membranous trails. Int J Parasitol 2020; 50:1099-1115. [PMID: 32882286 DOI: 10.1016/j.ijpara.2020.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/21/2020] [Accepted: 06/23/2020] [Indexed: 10/23/2022]
Abstract
Toxoplasma gondii has a worldwide distribution and infects virtually all warm-blooded animals, including humans. Ingestion of the environmentally resistant oocyst stage, excreted only in the feces of cats, is central to transmission of this apicomplexan parasite. There is vast literature on the host and T. gondii tachyzoite (proliferative stage of the parasite) but little is known of the host-parasite interaction and conversion of the free-living stage (sporozoite inside the oocyst) to the parasitic stage. Here, we present events that follow invasion of host cells with T. gondii sporozoites by using immunofluorescence (IF) and transmission electron microscopy (TEM). Several human type cell cultures were infected with T. gondii sporozoites of the two genotypes (Type II, ME49 and Type III, VEG) most prevalent worldwide. For the first known time, using anti-rhoptry neck protein 4 (RON4) antibodies, the moving junction was visualized in sporozoites during the invasion process and shortly after its completion. Surprisingly, IF and TEM evaluation revealed that intracellular sporozoites release, at their posterior end, long membranous tails, herein named sporozoite-specific trails (SSTs). Differential permeabilization and IF experiments showed that the SSTs are associated with several dense granule proteins (GRAs) and that their membranous component is of parasite origin. Furthermore, TEM observations demonstrated that SST-associated sporozoites are delimited by a typical parasitophorous vacuole, which is retained during parasite exit from the host cell and during cell-to-cell passage. Our data strongly suggest that host cell traversal by T. gondii sporozoites relies on a novel force-producing mechanism, based on the massive extrusion at the parasite posterior pole of GRA-associated membranous material derived from the same pool of membranes forming the intravacuolar network.
Collapse
Affiliation(s)
- Irene Tartarelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Antonella Tinari
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Alessia Possenti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Simona Cherchi
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Mario Falchi
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Jitender P Dubey
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, Maryland 20705, United States
| | - Furio Spano
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
14
|
Baker TL, Sun M, Semple BD, Tyebji S, Tonkin CJ, Mychasiuk R, Shultz SR. Catastrophic consequences: can the feline parasite Toxoplasma gondii prompt the purrfect neuroinflammatory storm following traumatic brain injury? J Neuroinflammation 2020; 17:222. [PMID: 32711529 PMCID: PMC7382044 DOI: 10.1186/s12974-020-01885-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/02/2020] [Indexed: 12/02/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of morbidity and mortality worldwide; however, treatment development is hindered by the heterogenous nature of TBI presentation and pathophysiology. In particular, the degree of neuroinflammation after TBI varies between individuals and may be modified by other factors such as infection. Toxoplasma gondii, a parasite that infects approximately one-third of the world’s population, has a tropism for brain tissue and can persist as a life-long infection. Importantly, there is notable overlap in the pathophysiology between TBI and T. gondii infection, including neuroinflammation. This paper will review current understandings of the clinical problems, pathophysiological mechanisms, and functional outcomes of TBI and T. gondii, before considering the potential synergy between the two conditions. In particular, the discussion will focus on neuroinflammatory processes such as microglial activation, inflammatory cytokines, and peripheral immune cell recruitment that occur during T. gondii infection and after TBI. We will present the notion that these overlapping pathologies in TBI individuals with a chronic T. gondii infection have the strong potential to exacerbate neuroinflammation and related brain damage, leading to amplified functional deficits. The impact of chronic T. gondii infection on TBI should therefore be investigated in both preclinical and clinical studies as the possible interplay could influence treatment strategies.
Collapse
Affiliation(s)
- Tamara L Baker
- Department of Neuroscience, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Mujun Sun
- Department of Neuroscience, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Bridgette D Semple
- Department of Neuroscience, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia.,Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Shiraz Tyebji
- Division of Infectious Diseases and Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Christopher J Tonkin
- Division of Infectious Diseases and Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia. .,Department of Medicine, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
15
|
Augusto L, Martynowicz J, Amin PH, Alakhras NS, Kaplan MH, Wek RC, Sullivan WJ. Toxoplasma gondii Co-opts the Unfolded Protein Response To Enhance Migration and Dissemination of Infected Host Cells. mBio 2020; 11:e00915-20. [PMID: 32636244 PMCID: PMC7343987 DOI: 10.1128/mbio.00915-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/03/2020] [Indexed: 01/04/2023] Open
Abstract
Toxoplasma gondii is an intracellular parasite that reconfigures its host cell to promote pathogenesis. One consequence of Toxoplasma parasitism is increased migratory activity of host cells, which facilitates dissemination. Here, we show that Toxoplasma triggers the unfolded protein response (UPR) in host cells through calcium release from the endoplasmic reticulum (ER). We further identify a novel role for the host ER stress sensor protein IRE1 in Toxoplasma pathogenesis. Upon infection, Toxoplasma activates IRE1, engaging its noncanonical role in actin remodeling through the binding of filamin A. By inducing cytoskeletal remodeling via IRE1 oligomerization in host cells, Toxoplasma enhances host cell migration in vitro and dissemination of the parasite to host organs in vivo Our study has identified novel mechanisms used by Toxoplasma to induce dissemination of infected cells, providing new insights into strategies for treatment of toxoplasmosis.IMPORTANCE Cells that are infected with the parasite Toxoplasma gondii exhibit heightened migratory activity, which facilitates dissemination of the infection throughout the body. In this report, we identify a new mechanism used by Toxoplasma to hijack its host cell and increase its mobility. We further show that the ability of Toxoplasma to increase host cell migration involves not the enzymatic activity of IRE1 but rather IRE1 engagement with actin cytoskeletal remodeling. Depletion of IRE1 from infected host cells reduces their migration in vitro and significantly hinders dissemination of Toxoplasma in vivo Our findings reveal a new mechanism underlying host-pathogen interactions, demonstrating how host cells are co-opted to spread a persistent infection around the body.
Collapse
Affiliation(s)
- Leonardo Augusto
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jennifer Martynowicz
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Parth H Amin
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nada S Alakhras
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mark H Kaplan
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ronald C Wek
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - William J Sullivan
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
16
|
Rodríguez ME, Rizzi M, Caeiro LD, Masip YE, Perrone A, Sánchez DO, Búa J, Tekiel V. Transmigration of Trypanosoma cruzi trypomastigotes through 3D cultures resembling a physiological environment. Cell Microbiol 2020; 22:e13207. [PMID: 32270902 DOI: 10.1111/cmi.13207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/05/2020] [Accepted: 03/29/2020] [Indexed: 12/24/2022]
Abstract
To disseminate and colonise tissues in the mammalian host, Trypanosoma cruzi trypomastogotes should cross several biological barriers. How this process occurs or its impact in the outcome of the disease is largely speculative. We examined the in vitro transmigration of trypomastigotes through three-dimensional cultures (spheroids) to understand the tissular dissemination of different T. cruzi strains. Virulent strains were highly invasive: trypomastigotes deeply transmigrate up to 50 μm inside spheroids and were evenly distributed at the spheroid surface. Parasites inside spheroids were systematically observed in the space between cells suggesting a paracellular route of transmigration. On the contrary, poorly virulent strains presented a weak migratory capacity and remained in the external layers of spheroids with a patch-like distribution pattern. The invasiveness-understood as the ability to transmigrate deep into spheroids-was not a transferable feature between strains, neither by soluble or secreted factors nor by co-cultivation of trypomastigotes from invasive and non-invasive strains. Besides, we demonstrated that T. cruzi isolates from children that were born congenitally infected presented a highly migrant phenotype while an isolate from an infected mother (that never transmitted the infection to any of her children) presented significantly less migration. In brief, we demonstrated that in a 3D microenvironment each strain presents a characteristic migration pattern that can be associated to their in vivo behaviour. Altogether, data presented here repositionate spheroids as a valuable tool to study host-pathogen interactions.
Collapse
Affiliation(s)
- Matías Exequiel Rodríguez
- Instituto de Investigaciones Biotecnológicas "Dr. R. Ugalde" (IIBIO) Universidad Nacional de San Martín (UNSAM)-CONICET, Buenos Aires, Argentina
| | - Mariana Rizzi
- Instituto de Investigaciones Biotecnológicas "Dr. R. Ugalde" (IIBIO) Universidad Nacional de San Martín (UNSAM)-CONICET, Buenos Aires, Argentina
| | - Lucas D Caeiro
- Instituto de Investigaciones Biotecnológicas "Dr. R. Ugalde" (IIBIO) Universidad Nacional de San Martín (UNSAM)-CONICET, Buenos Aires, Argentina
| | - Yamil E Masip
- Instituto de Investigaciones Biotecnológicas "Dr. R. Ugalde" (IIBIO) Universidad Nacional de San Martín (UNSAM)-CONICET, Buenos Aires, Argentina
| | - Alina Perrone
- Instituto Nacional de Parasitología "Dr Mario Fatala Chaben", ANLIS-Carlos G. Malbrán, Buenos Aires, Argentina
| | - Daniel O Sánchez
- Instituto de Investigaciones Biotecnológicas "Dr. R. Ugalde" (IIBIO) Universidad Nacional de San Martín (UNSAM)-CONICET, Buenos Aires, Argentina
| | - Jacqueline Búa
- Instituto Nacional de Parasitología "Dr Mario Fatala Chaben", ANLIS-Carlos G. Malbrán, Buenos Aires, Argentina
| | - Valeria Tekiel
- Instituto de Investigaciones Biotecnológicas "Dr. R. Ugalde" (IIBIO) Universidad Nacional de San Martín (UNSAM)-CONICET, Buenos Aires, Argentina
| |
Collapse
|