1
|
Randaisi VR, Bunch ML, Beavers WN, Rogers T, Mesler R, Ashurst TD, Donohoe DR, Monteith AJ, Johnson JG. Efficient gastrointestinal colonization by Campylobacter jejuni requires components of the ChuABCD heme transport system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.643992. [PMID: 40166214 PMCID: PMC11957022 DOI: 10.1101/2025.03.18.643992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Previous research demonstrated that Campylobacter jejuni encodes a heme utilization system that facilitates heme-dependent growth under iron-limiting conditions and that transcription of this system is induced during human infection. Despite these observations, it remained unknown whether the heme transport system is required for colonization and disease in a susceptible host. To address this, we created individual non-polar deletion mutants of each component of the heme transport system, as well as a total deletion of the inner membrane transporter, ChuBCD, and examined their ability to promote heme-dependent growth and iron uptake. From this work, we found that only the heme receptor, ChuA, was required for heme-dependent growth and iron acquisition, which supports earlier work of another group. Further, we examined whether intestinal colonization, immune activation, and pathology were altered during infection with these mutants. After establishing that elevated heme and chuABCD expression occurs during C. jejuni infection of IL-10-/- mice, we found that heme transport mutants exhibited significantly reduced fecal shedding and colonization of the cecum and colon. In addition, we found that neutrophil and macrophage recruitment and intestinal pathology often remained intermediately elevated despite decreased bacterial loads. These results suggest that heme utilization promotes efficient colonization and full pathogenicity in C. jejuni, but that neither is completely abrogated in its absence.
Collapse
|
2
|
Northrop-Albrecht EJ, Kim Y, Taylor WR, Majumder S, Kisiel JB, Lucien F. The proteomic landscape of stool-derived extracellular vesicles in patients with pre-cancerous lesions and colorectal cancer. Commun Biol 2025; 8:228. [PMID: 39948151 PMCID: PMC11825688 DOI: 10.1038/s42003-025-07652-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
Colorectal cancer (CRC) is the 2nd most fatal cancer in the United States, but when detected early it is highly curable. Stool-derived extracellular vesicles (EVs) are a novel biomarker source that could augment the sensitivity for detection of CRC precursors. However, standardization of isolation methods for stool-derived EVs remains underexplored. We previously reported that size-exclusion chromatography (SEC) followed by ultrafiltration (UF-100kDa) was suitable for human stool supernatant EV isolation. In this study, we first assess alternative EV concentration methods (ultrafiltration [UF]; 10 kDa, 30 kDa, 50 kDa, 100 kDa and speed vacuum [SV]). Second, we investigate the host/bacterial EV proteomes by mass spectrometry. We report no difference in recovery, RNA and soluble protein contamination among concentration methods. Proteomic analysis reveals a diverse bacterial proteome, while human-derived proteins are more abundant. Specifically, pancreatic enzymes are among the most abundant proteins, further exploration revealed that zymogen granules are likely co-isolated in stool EV preparations. To enable discovery of EV-based molecular signatures of CRC precursors with high sensitivity, immunocapture strategies will likely be needed. Notably, we identified 10 surface proteins that may serve as candidates for the purification of colon-derived EVs. This work serves as framework for the future discovery and validation of EV-based biomarkers for CRC.
Collapse
Affiliation(s)
| | - Yohan Kim
- Department of Urology, Mayo Clinic, Rochester, MN, USA
| | - William R Taylor
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Shounak Majumder
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - John B Kisiel
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Fabrice Lucien
- Department of Urology, Mayo Clinic, Rochester, MN, USA.
- Department of Immunology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
3
|
Hancock TJ, Vlasyuk M, Foster JS, Macy S, Wooliver DC, Balachandran M, Williams AD, Martin EB, Kennel SJ, Heidel ER, Wall JS, Jackson JW. Neutrophils enhance the clearance of systemic amyloid deposits in a murine amyloidoma model. Front Immunol 2024; 15:1487250. [PMID: 39600710 PMCID: PMC11588727 DOI: 10.3389/fimmu.2024.1487250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction Amyloid-specific antibodies have been shown to opsonize and enhance amyloid clearance in systemic amyloidosis mouse models. However, the immunological mechanisms by which amyloid is removed have not been clearly defined. Previous reports from preclinical in vivo studies suggest polymorphonuclear cells (i.e., neutrophils) can affect amyloid removal. Therefore, we sought to analyze how neutrophils may contribute to the clearance of human AL amyloid extracts, using a murine amyloidoma model. Methods Immunocompromised nude mice injected subcutaneously with patient-derived AL amyloid extract (generating a localized "amyloidoma") were used to circumvent confounding factors contributed by the adaptive immune system and served as the model system. Two representative AL amyloid extracts were used, ALλ(CLA), which is refractory to clearance, and ALκ(TAL), which is readily cleared in mice. Neutrophil recruitment to the amyloid masses, cellular activation, and propensity to engulf amyloid were assessed. Results Immunophenotyping of amyloidomas from animals implanted with 2 mg of either ALλ or ALκ revealed that more neutrophils were recruited to ALκ amyloid masses as compared to the ALλ material, which was generally devoid of neutrophils. Ex vivo analyses indicated neutrophils do not efficiently phagocytose amyloid directly. However, histological evaluation of the ALκ amyloidoma revealed the abundant presence of neutrophil extracellular traps, which were absent in the ALλ amyloidomas. Using neutrophil depletion experiments in mice, we determined that mice devoid of neutrophils cleared the human amyloid lesions less efficiently. Moreover, mice devoid of neutrophils also had significantly reduced intra-amyloid expression of inflammatory cytokines. Discussion Neutrophils may not directly mediate amyloid clearance through phagocytosis; however, these cells can be stimulated by the amyloid and may function to facilitate phagocytosis and amyloid clearance by professional phagocytes (e.g., macrophages).
Collapse
Affiliation(s)
- Trevor J. Hancock
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN, United States
| | - Marina Vlasyuk
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN, United States
| | - James S. Foster
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN, United States
| | - Sallie Macy
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN, United States
| | - Daniel C. Wooliver
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN, United States
| | - Manasi Balachandran
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN, United States
| | - Angela D. Williams
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN, United States
| | - Emily B. Martin
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN, United States
| | - Stephen J. Kennel
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN, United States
| | - Eric R. Heidel
- Department of Surgery, University of Tennessee Graduate School of Medicine, Knoxville, TN, United States
| | - Jonathan S. Wall
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN, United States
| | - Joseph W. Jackson
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN, United States
| |
Collapse
|
4
|
Moriyama E, Nadatani Y, Higashimori A, Otani K, Ominami M, Fukunaga S, Hosomi S, Tanaka F, Taira K, Fujiwara Y, Watanabe T. Neutrophil extracellular trap formation and its implications in nonsteroidal anti-inflammatory drug-induced small intestinal injury. J Gastroenterol Hepatol 2024; 39:1123-1133. [PMID: 38576269 DOI: 10.1111/jgh.16543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/01/2024] [Accepted: 02/29/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND AND AIM Nonsteroidal anti-inflammatory drugs (NSAIDs) damage the small intestine via neutrophil infiltration driven by the mucosal invasion of enterobacteria. The antimicrobial function of neutrophils is partially dependent on neutrophil extracellular traps (NETs). Excessive NET formation has been associated with several inflammatory diseases. Here, we aimed to investigate the role of NETs in NSAID-induced small intestinal damage using human samples and an experimental mouse model. METHODS Human small intestine specimens were obtained from NSAID users during double-balloon enteroscopy. Wild-type, protein arginine deiminase 4 (PAD4) knockout, and antibiotic-treated mice were administered indomethacin to induce small intestinal injury. The expression of NET-associated proteins, including PAD4, citrullinated histone H3 (CitH3), cell-free DNA, and myeloperoxidase (MPO), was evaluated. RESULTS The double-positive stained area with CitH3 and MPO, which is specific for neutrophil-derived extracellular traps, was significantly high in the injured small intestinal mucosa of NSAID users. In a mouse model, small intestinal damage developed at 6 h after indomethacin administration, accompanied by increased mRNA levels of interleukin-1β and keratinocyte chemoattractant and elevated NET-associated protein levels of PAD4, CitH3, and MPO in small intestine and serum levels of cell-free DNA. Both genetic deletion and pharmacological inhibition of PAD4 attenuated this damage by reducing the mRNA expression of inflammatory cytokines and NET-associated proteins. Furthermore, mice pretreated with antibiotics showed resistance to indomethacin-induced small intestinal damage, with less NET formation. CONCLUSION These results suggest that NETs aggravate NSAID-induced small intestinal injury. Therefore, NET inhibition could be a potential treatment for NSAID-induced small intestinal injury.
Collapse
Affiliation(s)
- Eiji Moriyama
- Department of Gastroenterology, Graduate School of Medicine, Osaka city University, Osaka, Japan
- Department of Gastroenterology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yuji Nadatani
- Department of Gastroenterology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Department of Premier Preventive Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Akira Higashimori
- Department of Gastroenterology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Koji Otani
- Department of Gastroenterology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Masaki Ominami
- Department of Gastroenterology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Shusei Fukunaga
- Department of Gastroenterology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Shuhei Hosomi
- Department of Gastroenterology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Fumio Tanaka
- Department of Gastroenterology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Koichi Taira
- Department of Gastroenterology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yasuhiro Fujiwara
- Department of Gastroenterology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Toshio Watanabe
- Department of Premier Preventive Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
5
|
Smith CB, Gao A, Bravo P, Alam A. Microbial Metabolite Trimethylamine N-Oxide Promotes Campylobacter jejuni Infection by Escalating Intestinal Inflammation, Epithelial Damage, and Barrier Disruption. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588895. [PMID: 38645062 PMCID: PMC11030326 DOI: 10.1101/2024.04.10.588895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The interactions between Campylobacter jejuni , a critical foodborne cause of gastroenteritis, and the intestinal microbiota during infection are not completely understood. The crosstalk between C. jejuni and its host is impacted by the gut microbiota through mechanisms of competitive exclusion, microbial metabolites, or immune response. To investigate the role of gut microbiota on C. jejuni pathogenesis, we examined campylobacteriosis in the IL10KO mouse model, which was characterized by an increase in the relative abundance of intestinal proteobacteria, E. coli , and inflammatory cytokines during C. jejuni infection. We also found a significantly increased abundance of microbial metabolite Trimethylamine N-Oxide (TMAO) in the colonic lumens of IL10KO mice. We further investigated the effects of TMAO on C. jejuni pathogenesis. We determined that C. jejuni senses TMAO as a chemoattractant and the administration of TMAO promotes C. jejuni invasion into Caco-2 monolayers. TMAO also increased the transmigration of C. jejuni across polarized monolayers of Caco-2 cells, decreased TEER, and increased C. jejuni -mediated intestinal barrier damage. Interestingly, TMAO treatment and presence during C. jejuni infection of Caco-2 cells synergistically caused an increased inflammatory cytokine expression, specifically IL-1β and IL-8. These results establish that C. jejuni utilizes microbial metabolite TMAO for increased virulence during infection.
Collapse
|
6
|
Pilchová V, Gerhauser I, Armando F, Wirz K, Schreiner T, de Buhr N, Gabriel G, Wernike K, Hoffmann D, Beer M, Baumgärtner W, von Köckritz-Blickwede M, Schulz C. Characterization of young and aged ferrets as animal models for SARS-CoV-2 infection with focus on neutrophil extracellular traps. Front Immunol 2023; 14:1283595. [PMID: 38169647 PMCID: PMC10758425 DOI: 10.3389/fimmu.2023.1283595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are net-like structures released by activated neutrophils upon infection [e.g., severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)] as part of the innate immune response that have protective effects by pathogen entrapment and immobilization or result in detrimental consequences for the host due to the massive release of NETs and their impaired degradation by nucleases like DNase-1. Higher amounts of NETs are associated with coronavirus disease 2019 (COVID-19) severity and are a risk factor for severe disease outcome. The objective of our study was to investigate NET formation in young versus aged ferrets to evaluate their value as translational model for SARS-CoV-2-infection and to correlate different NET markers and virological parameters. In each of the two groups (young and aged), nine female ferrets were intratracheally infected with 1 mL of 106 TCID50/mL SARS-CoV-2 (BavPat1/2020) and euthanized at 4, 7, or 21 days post-infection. Three animals per group served as negative controls. Significantly more infectious virus and viral RNA was found in the upper respiratory tract of aged ferrets. Interestingly, cell-free DNA and DNase-1 activity was generally higher in bronchoalveolar lavage fluid (BALF) but significantly lower in serum of aged compared to young ferrets. In accordance with these data, immunofluorescence microscopy revealed significantly more NETs in lungs of aged compared to young infected ferrets. The association of SARS-CoV-2-antigen in the respiratory mucosa and NET markers in the nasal conchae, but the absence of virus antigen in the lungs, confirms the nasal epithelium as the major location for virus replication as described for young ferrets. Furthermore, a strong positive correlation was found between virus shedding and cell-free DNA or the level of DNAse-1 activity in aged ferrets. Despite the increased NET formation in infected lungs of aged ferrets, the animals did not show a strong NET phenotype and correlation among tested NET markers. Therefore, ferrets are of limited use to study SARS-CoV-2 pathogenesis associated with NET formation. Nevertheless, the mild to moderate clinical signs, virus shedding pattern, and the lung pathology of aged ferrets confirm those animals as a relevant model to study age-dependent COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Veronika Pilchová
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Ingo Gerhauser
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience Hannover (ZSN), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Federico Armando
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Katrin Wirz
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Tom Schreiner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience Hannover (ZSN), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Nicole de Buhr
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Gülşah Gabriel
- Department for Viral Zoonoses-One Health, Leibniz Institute of Virology, Hamburg, Germany
- Institute for Virology, University for Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich Loeffler Institute, Greifswald, Germany
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich Loeffler Institute, Greifswald, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich Loeffler Institute, Greifswald, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience Hannover (ZSN), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Maren von Köckritz-Blickwede
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Claudia Schulz
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
7
|
Xu J, Zhang Y, Fang XH, Liu Y, Huang YB, Ke ZL, Wang Y, Zhang YF, Zhang Y, Zhou JH, Su HT, Chen N, Liu YL. The oral bacterial microbiota facilitates the stratification for ulcerative colitis patients with oral ulcers. Ann Clin Microbiol Antimicrob 2023; 22:99. [PMID: 37946238 PMCID: PMC10633958 DOI: 10.1186/s12941-023-00646-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Clinically, a large part of inflammatory bowel disease (IBD) patients is complicated by oral lesions. Although previous studies proved oral microbial dysbiosis in IBD patients, the bacterial community in the gastrointestinal (GI) tract of those IBD patients combined with oral ulcers has not been profiled yet. METHODS In this study, we enrolled four groups of subjects, including healthy controls (CON), oral ulcer patients (OU), and ulcerative colitis patients with (UC_OU) and without (UC) oral ulcers. Bio-samples from three GI niches containing salivary, buccal, and fecal samples, were collected for 16S rRNA V3-V4 region sequencing. Bacterial abundance and related bio-functions were compared, and data showed that the fecal microbiota was more potent than salivary and buccal microbes in shaping the host immune system. ~ 22 UC and 10 UC_OU 5-aminosalicylate (5-ASA) routine treated patients were followed-up for six months; according to their treatment response (a decrease in the endoscopic Mayo score), they were further sub-grouped as responding and non-responding patients. RESULTS We found those UC patients complicated with oral ulcers presented weaker treatment response, and three oral bacterial genera, i.e., Fusobacterium, Oribacterium, and Campylobacter, might be connected with treatment responding. Additionally, the salivary microbiome could be an indicator of treatment responding in 5-ASA routine treatment rather than buccal or fecal ones. CONCLUSIONS The fecal microbiota had a strong effect on the host's immune indices, while the oral bacterial microbiota could help stratification for ulcerative colitis patients with oral ulcers. Additionally, the oral microbiota had the potential role in reflecting the treatment response of UC patients. Three oral bacteria genera (Fusobacterium, Oribacterium, and Campylobacter) might be involved in UC patients with oral ulcers lacking treatment responses, and monitoring oral microbiota may be meaningful in assessing the therapeutic response in UC patients.
Collapse
Affiliation(s)
- Jun Xu
- Department of Gastroenterology, Peking University People's Hospital, No.11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Yu Zhang
- Department of Gastroenterology, Peking University People's Hospital, No.11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Xiao-Hui Fang
- Department of Gastroenterology, Peking University People's Hospital, No.11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Yun Liu
- Department of Gastroenterology, Peking University People's Hospital, No.11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Yi-Bo Huang
- Department of Gastroenterology, Peking University People's Hospital, No.11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Zi-Liang Ke
- Department of Gastroenterology, Peking University People's Hospital, No.11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Yang Wang
- Department of Gastroenterology, Peking University People's Hospital, No.11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Yi-Fan Zhang
- Department of Gastroenterology, Peking University People's Hospital, No.11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Yang Zhang
- Department of Gastroenterology, Peking University People's Hospital, No.11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Jian-Hua Zhou
- Institute of Clinical Molecular Biology and Central Laboratory, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Hui-Ting Su
- Institute of Clinical Molecular Biology and Central Laboratory, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Ning Chen
- Department of Gastroenterology, Peking University People's Hospital, No.11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Yu-Lan Liu
- Department of Gastroenterology, Peking University People's Hospital, No.11, Xizhimen South Street, Xicheng District, Beijing, 100044, China.
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China.
| |
Collapse
|
8
|
Sinha R, LeVeque RM, Callahan SM, Chatterjee S, Stopnisek N, Kuipel M, Johnson JG, DiRita VJ. Gut metabolite L-lactate supports Campylobacter jejuni population expansion during acute infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560557. [PMID: 37873437 PMCID: PMC10592923 DOI: 10.1101/2023.10.02.560557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
How the microaerobic pathogen Campylobacter jejuni establishes its niche and expands in the gut lumen during infection is poorly understood. Using six-week-old ferrets as a natural disease model, we examined this aspect of C. jejuni pathogenicity. Unlike mice, which require significant genetic or physiological manipulation to become colonized with C. jejuni , ferrets are readily infected without the need to disarm the immune system or alter the gut microbiota. Disease after C. jejuni infection in ferrets reflects closely how human C. jejuni infection proceeds. Rapid growth of C. jejuni and associated intestinal inflammation was observed within two-three days of infection. We observed pathophysiological changes that were noted by cryptic hyperplasia through the induction of tissue repair systems, accumulation of undifferentiated amplifying cells on the colon surface, and instability of HIF-1α in colonocytes, which indicated increased epithelial oxygenation. Metabolomic analysis demonstrated that lactate levels in colon content were elevated in infected animals. A C. jejuni mutant lacking lctP , which encodes an L-lactate transporter, was significantly decreased for colonization during infection. Lactate also influences adhesion and invasion by C. jejuni to a colon carcinoma cell line (HCT116). The oxygenation required for expression of lactate transporter ( lctP ) led to discovery of a putative thiol based redox switch regulator (LctR) that may repress lctP transcription under anaerobic conditions. Our work provides new insights into the pathogenicity of C. jejuni . Significance There is a gap in knowledge about the mechanisms by which C. jejuni populations expand during infection. Using an animal model which accurately reflects human infection without the need to alter the host microbiome or the immune system prior to infection, we explored pathophysiological alterations of the gut after C. jejuni infection. Our study identified the gut metabolite L-lactate as playing an important role as a growth substrate for C. jejuni during acute infection. We identified a DNA binding protein, LctR, that binds to the lctP promoter and may repress lctP expression, resulting in decreased lactate transport under low oxygen levels. This work provides new insights about C. jejuni pathogenicity.
Collapse
|
9
|
Callahan SM, Hancock TJ, Doster RS, Parker CB, Wakim ME, Gaddy JA, Johnson JG. A secreted sirtuin from Campylobacter jejuni contributes to neutrophil activation and intestinal inflammation during infection. SCIENCE ADVANCES 2023; 9:eade2693. [PMID: 37566649 PMCID: PMC10421069 DOI: 10.1126/sciadv.ade2693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 07/13/2023] [Indexed: 08/13/2023]
Abstract
Histone modifications control numerous processes in eukaryotes, including inflammation. Some bacterial pathogens alter the activity or expression of host-derived factors, including sirtuins, to modify histones and induce responses that promote infection. In this study, we identified a deacetylase encoded by Campylobacter jejuni which has sirtuin activities and contributes to activation of human neutrophils by the pathogen. This sirtuin is secreted from the bacterium into neutrophils, where it associates with and deacetylates host histones to promote neutrophil activation and extracellular trap production. Using the murine model of campylobacteriosis, we found that a mutant of this bacterial sirtuin efficiently colonized the gastrointestinal tract but was unable to induce cytokine production, gastrointestinal inflammation, and tissue pathology. In conclusion, these results suggest that secreted bacterial sirtuins represent a previously unreported class of bacterial effector and that bacterial-mediated modification of host histones is responsible for the inflammation and pathology that occurs during campylobacteriosis.
Collapse
Affiliation(s)
- Sean M. Callahan
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Trevor J. Hancock
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
- Department of Medicine, University of Tennessee Medical Center, Knoxville, TN 37930, USA
| | - Ryan S. Doster
- Division of Infectious Diseases, Department of Medicine Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, USA
| | - Caroline B. Parker
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Mary E. Wakim
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Jennifer A. Gaddy
- Division of Infectious Diseases, Department of Medicine Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeremiah G. Johnson
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
10
|
Jahan I, Ahmed R, Ahmed J, Khurshid S, Biswas PP, Upama IJ, Hamid Y, Papri N, Islam Z. Neutrophil-lymphocyte ratio in Guillain-Barré syndrome: A prognostic biomarker of severe disease and mechanical ventilation in Bangladesh. J Peripher Nerv Syst 2023; 28:47-57. [PMID: 36700342 PMCID: PMC10155239 DOI: 10.1111/jns.12531] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
In addition to cellular and humoral immunity, inflammatory markers play an important role in the pathogenesis of Guillain-Barré syndrome (GBS) and are used to predict prognosis in many autoimmune diseases. The aim of this study was to identify whether the neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio, and monocyte-lymphocyte ratio in the early stages of GBS have prognostic value for severe disease, mechanical ventilation (MV) and poor long-term outcome. A prospective cohort study of 140 adult patients with GBS and 140 healthy controls (HC) was performed in Bangladesh during 2019-2022. Clinicodemographic characteristics of the patients were recorded, and hematological parameters were measured using an automated hematology analyzer. Median patient age was 35 (44-23) years; 71% were male; 88% were severely affected (GBS Disability Score> 3); 32% required MV. Patients had higher NLR than HC (P< .0001). Among patients, elevated NLR was associated with severe GBS and MV (P= .001 and <.0001, respectively) and moderately positively correlated with poor outcomes at 4 weeks (r = 0.423). Multiple logistic regression revealed NLR was an independent risk factor for severe GBS (OR = 5.2, 95% CI = 1.6-17.4) and MV (OR = 1.5 1.1-2.1). No significant association was observed between elevated NLR and the long-term outcome of GBS. Receiver operating characteristic curves revealed NLR cut-off values of ≥ 2.432 and ≥ 4.4423 predicted severe disease (sensitivity = 71%, specificity = 75%, AUC = 0.750, 95% CI = 0.651-0.849, P = .001) and MV (sensitivity = 65.9%, specificity = 81.7%, AUC = 0.804, 95% CI=0.724-0.884; P< .001). The NLR in the early stage of GBS may represent an independent prognostic factor of severe GBS and the requirement for MV.
Collapse
Affiliation(s)
- Israt Jahan
- Laboratory of Gut-Brain Signaling, Laboratory Sciences and Services Division, icddr,b, Dhaka-1212, Bangladesh
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Rasel Ahmed
- Laboratory of Gut-Brain Signaling, Laboratory Sciences and Services Division, icddr,b, Dhaka-1212, Bangladesh
| | - Jigishu Ahmed
- Laboratory of Gut-Brain Signaling, Laboratory Sciences and Services Division, icddr,b, Dhaka-1212, Bangladesh
| | - Sarah Khurshid
- Laboratory of Gut-Brain Signaling, Laboratory Sciences and Services Division, icddr,b, Dhaka-1212, Bangladesh
| | - Pritha Promita Biswas
- Laboratory of Gut-Brain Signaling, Laboratory Sciences and Services Division, icddr,b, Dhaka-1212, Bangladesh
| | - Ismat Jahan Upama
- Laboratory of Gut-Brain Signaling, Laboratory Sciences and Services Division, icddr,b, Dhaka-1212, Bangladesh
| | - Yameen Hamid
- Laboratory of Gut-Brain Signaling, Laboratory Sciences and Services Division, icddr,b, Dhaka-1212, Bangladesh
| | - Nowshin Papri
- Laboratory of Gut-Brain Signaling, Laboratory Sciences and Services Division, icddr,b, Dhaka-1212, Bangladesh
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Zhahirul Islam
- Laboratory of Gut-Brain Signaling, Laboratory Sciences and Services Division, icddr,b, Dhaka-1212, Bangladesh
| |
Collapse
|
11
|
Sun S, Wen Y, Li S, Huang Z, Zhu J, Li Y. Neutrophil-to-lymphocyte ratio is a risk indicator of Guillain-Barré syndrome and is associated with severity and short-term prognosis. Heliyon 2023; 9:e14321. [PMID: 36967912 PMCID: PMC10036506 DOI: 10.1016/j.heliyon.2023.e14321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/27/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Introduction Guillain-Barré syndrome (GBS) is an autoimmune disorder targeting the peripheral nervous system. The neutrophil-to-lymphocyte ratio (NLR), a simple indicator of immune function, is potentially related to its incidence and severity; however, this should be confirmed. We aimed to evaluate the role of NLR in the diagnosis, severity, and prognosis of GBS. Methods Data of GBS patients and controls visiting our hospital from January 2010 to December 2020 were retrospectively analyzed (Clinical trial registration: ChiCTR2100053540). Risk factors were determined through logistic regression. Smoothing curves, receiver-operating characteristic curves, and forest plots were drawn. Results We included 136 GBS patients and 211 controls. NLR, as a continuous variable, was associated with GBS risk (OR, 2.32; 95% CI, 1.68-3.21; p < 0.001), severe functional disability (OR, 1.23; 95% CI, 1.06-1.43; p = 0.006), severe weakness (OR, 1.19; 95% CI, 1.06-1.35, p = 0.004), and short-term prognosis (OR, 1.21; 95% CI, 1.08-1.36; p = 0.001). NLR was more strongly associated with GBS risk in older (≥60 years) (OR, 7.17; 95% CI, 2.38-21.61) or male (OR, 2.88; 95% CI, 1.78-4.64) patients than in younger (<60 years) (OR, 1.88; 95% CI, 1.37-2.57) or female (OR, 1.85; 95% CI, 1.24-2.77) patients. NLR was significantly associated with severe functional disability in faster disease progression (OR, 1.53; 95% CI, 1.03-12.29) and male patients (OR, 1.41; 95% CI, 1.03-1.92) versus in slower disease progression (OR, 1.12; 95% CI, 0.77-1.64) and female patients (OR, 1.12; 95% CI, 0.77-1.64). Conclusions NLR may be an independent GBS risk factor and predictor of severe functional disability, severe weakness, and short-term prognosis.
Collapse
|
12
|
Dolislager CG, Callahan SM, Donohoe DR, Johnson JG. Campylobacter jejuni induces differentiation of human neutrophils to the CD16 hi /CD62L lo subtype. J Leukoc Biol 2022; 112:1457-1470. [PMID: 35866361 DOI: 10.1002/jlb.4a0322-155rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/29/2022] [Indexed: 01/04/2023] Open
Abstract
The discovery of neutrophil subtypes has expanded what is known about neutrophil functions, yet there is still much to learn about the role of these subtypes during bacterial infection. We investigated whether Campylobacter jejuni induced differentiation of human neutrophils into the hypersegmented, CD16hi /CD62Llo subtype. In addition, we investigated whether C. jejuni-dependent differentiation of this neutrophil subtype induced cancer-promoting activities of human T cells and colonocytes, which were observed in other studies of hypersegmented, CD16hi /CD62Llo neutrophils. We found that C. jejuni causes a significant shift in human neutrophil populations to the hypersegmented, CD16hi /CD62Llo subtype and that those populations exhibit delayed apoptosis, elevated arginase-1 expression, and increased reactive oxygen species production. Furthermore, incubation of C. jejuni-infected neutrophils with human T cells resulted in decreased expression of the ζ-chain of the TCR, which was restored upon supplementation with exogenous l-arginine. In addition, incubation of C. jejuni-infected neutrophils with human colonocytes resulted in increased HIF-1α stabilization and NF-κB activation in those colonocytes, which may result in the up-regulation of protumorigenic genes.
Collapse
Affiliation(s)
| | - Sean M Callahan
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Dallas R Donohoe
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA.,Department of Nutrition, University of Tennessee, Knoxville, Tennessee, USA
| | - Jeremiah G Johnson
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
13
|
Cao X, van de Lest CH, Huang LZ, van Putten JP, Wösten MM. Campylobacter jejuni permeabilizes the host cell membrane by short chain lysophosphatidylethanolamines. Gut Microbes 2022; 14:2091371. [PMID: 35797141 PMCID: PMC9272830 DOI: 10.1080/19490976.2022.2091371] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lysophospholipids (LPLs) are crucial for regulating epithelial integrity and homeostasis in eukaryotes, however the effects of LPLs produced by bacteria on host cells is largely unknown. The membrane of the human bacterial pathogen Campylobacter jejuni is rich in LPLs. Although C. jejuni possesses several virulence factors, it lacks traditional virulence factors like type III secretion systems, present in most enteropathogens. Here, we provide evidence that membrane lipids lysophosphatidylethanolamines (lysoPEs) of C. jejuni are able to lyse erythrocytes and are toxic for HeLa and Caco-2 cells. Lactate dehydrogenase (LDH) release assays and confocal microscopy revealed that lysoPE permeabilizes the cells. LysoPE toxicity was partially rescued by oxidative stress inhibitors, indicating that intracellular reactive oxygen species may contribute to the cell damage. Our results show that especially the short-chain lysoPEs (C:14) which is abundantly present in the C. jejuni membrane may be considered as a novel virulence factor.
Collapse
Affiliation(s)
- Xuefeng Cao
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, Netherlands
| | | | - Liane Z.X. Huang
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, Netherlands
| | - Jos P.M. van Putten
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, Netherlands
| | - Marc M.S.M. Wösten
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, Netherlands,CONTACT Marc M.S.M. Wösten Department Biomolecular Health Sciences, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, Netherlands
| |
Collapse
|
14
|
Callahan SM, Johnson JG. Transposon-Based Identification of Factors That Promote Campylobacter jejuni Nuclease Activity. Curr Protoc 2021; 1:e293. [PMID: 34875141 DOI: 10.1002/cpz1.293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nucleases are ubiquitous in pathogens and allow bacteria to acquire nucleotide nutrients, take up foreign DNA, induce tissue damage, degrade neutrophil extracellular traps, and modulate the host inflammatory response. Furthermore, nucleases can modulate numerous bacterial virulence factors, promoting bacterial growth and disease. To understand how bacteria can produce nucleases, an unbiased approach is needed to identify these systems. Campylobacter jejuni is the leading cause of bacterial-derived gastroenteritis and utilizes numerous systems to damage host DNA. Therefore, it is imperative to identify C. jejuni nucleases to understand the molecular mechanism of both infection and pathology. Detailed protocols for a transposon insertion sequencing-based DNase agar screen, a quantitative PCR nuclease screen, and PCR transposon insertion confirmation are included in this article. © 2021 Wiley Periodicals LLC. Basic Protocol 1: DNase agar colony screen of Campylobacter jejuni transposon insertion sequencing library isolates Basic Protocol 2: Quantitative PCR nuclease screen of transposon insertion sequencing library isolates Basic Protocol 3: PCR transposon insertion confirmation.
Collapse
Affiliation(s)
- Sean M Callahan
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee
| | - Jeremiah G Johnson
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee
| |
Collapse
|
15
|
Callahan SM, Hancock TJ, Johnson JG. Characterization of Campylobacter jejuni-Neutrophil Interactions. Curr Protoc 2021; 1:e294. [PMID: 34807525 DOI: 10.1002/cpz1.294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Campylobacter jejuni is the leading cause of bacterial-derived gastroenteritis worldwide, infecting 96 million individuals annually. During infection, inflammation and tissue pathology occur in the lower gastrointestinal tract, including the recruitment of leukocytes. Neutrophils are the most abundant leukocyte in humans, and recruitment is associated with bacterial infections and the development of various inflammatory disorders, including inflammatory bowel disease. Neutrophils possess three main antibacterial functions: phagocytosis and degradation of microbes, degranulation to release antimicrobial proteins, and extrusion of neutrophil extracellular traps (NETs). Because neutrophils are recruited to the site of C. jejuni infection and they are associated with damaging inflammation in other diseases, it is imperative to understand the immunopathology that occurs during C. jejuni infection and thoroughly study the neutrophil response to the pathogen. Detailed protocols for human and ferret neutrophil isolations, neutrophil gentamicin protection assay, neutrophil activation flow cytometry assay, NET induction and quantification, and neutrophil western blot analysis are included in this article. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Isolation of human and ferret neutrophils Basic Protocol 2: Neutrophil gentamicin protection assay Basic Protocol 3: Neutrophil activation flow cytometry analyses Basic Protocol 4: Neutrophil extracellular trap induction and quantification Basic Protocol 5: Western blot detection of neutrophil-derived antimicrobial proteins.
Collapse
Affiliation(s)
- Sean M Callahan
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee
| | - Trevor J Hancock
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee
| | - Jeremiah G Johnson
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee
| |
Collapse
|
16
|
The Host Cellular Immune Response to Infection by Campylobacter Spp. and Its Role in Disease. Infect Immun 2021; 89:e0011621. [PMID: 34031129 DOI: 10.1128/iai.00116-21] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Campylobacter spp. are the leading cause of bacterium-derived gastroenteritis worldwide, impacting 96 million individuals annually. Unlike other bacterial pathogens of the gastrointestinal tract, Campylobacter spp. lack many of the classical virulence factors that are often associated with the ability to induce disease in humans, including an array of canonical secretion systems and toxins. Consequently, the clinical manifestations of human campylobacteriosis and its resulting gastrointestinal pathology are believed to be primarily due to the host immune response toward the bacterium. Further, while gastrointestinal infection is usually self-limiting, numerous postinfectious disorders can occur, including the development of Guillain-Barré syndrome, reactive arthritis, and irritable bowel syndrome. Because gastrointestinal disease likely results from the host immune response, the development of these postinfectious disorders may be due to dysregulation or misdirection of the same inflammatory response. As a result, it is becoming increasingly important to the Campylobacter field, and human health, that the cellular immune responses toward Campylobacter be better understood, including which immunological events are critical to the development of disease and the postinfectious disorders mentioned above. In this review, we collectively cover the cellular immune responses across susceptible hosts to Campylobacter jejuni infection, along with the tissue pathology and postinfectious disorders which may develop.
Collapse
|
17
|
Thomas C, Nothaft H, Yadav R, Fodor C, Alemka A, Oni O, Bell M, Rada B, Szymanski CM. Characterization of ecotin homologs from Campylobacter rectus and Campylobacter showae. PLoS One 2020; 15:e0244031. [PMID: 33378351 PMCID: PMC7773321 DOI: 10.1371/journal.pone.0244031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/01/2020] [Indexed: 12/18/2022] Open
Abstract
Ecotin, first described in Escherichia coli, is a potent
inhibitor of a broad range of serine proteases including those typically
released by the innate immune system such as neutrophil elastase (NE). Here we
describe the identification of ecotin orthologs in various
Campylobacter species, including Campylobacter
rectus and Campylobacter showae residing in the
oral cavity and implicated in the development and progression of periodontal
disease in humans. To investigate the function of these ecotins in
vitro, the orthologs from C.
rectus and C. showae were
recombinantly expressed and purified from E.
coli. Using CmeA degradation/protection assays,
fluorescence resonance energy transfer and NE activity assays, we found that
ecotins from C. rectus and C.
showae inhibit NE, factor Xa and trypsin, but not the
Campylobacter jejuni serine protease HtrA or its ortholog
in E. coli, DegP. To further evaluate ecotin
function in vivo, an E. coli
ecotin-deficient mutant was complemented with the C.
rectus and C. showae
homologs. Using a neutrophil killing assay, we demonstrate that the low survival
rate of the E. coli ecotin-deficient mutant
can be rescued upon expression of ecotins from C.
rectus and C. showae. In
addition, the C. rectus and
C. showae ecotins partially compensate for
loss of N-glycosylation and increased protease susceptibility in the related
pathogen, Campylobacter jejuni, thus implicating a similar role
for these proteins in the native host to cope with the protease-rich environment
of the oral cavity.
Collapse
Affiliation(s)
- Cody Thomas
- Department of Microbiology and Complex Carbohydrate Research Center,
University of Georgia, Athens, Georgia, United States of
America
| | - Harald Nothaft
- Department of Biological Sciences, University of Alberta, Edmonton,
Alberta, Canada
| | - Ruchi Yadav
- Department of Infectious Diseases, University of Georgia, Athens,
Georgia, United States of America
| | - Christopher Fodor
- Department of Biological Sciences, University of Alberta, Edmonton,
Alberta, Canada
| | - Abofu Alemka
- Department of Biological Sciences, University of Alberta, Edmonton,
Alberta, Canada
| | - Oluwadamilola Oni
- Department of Infectious Diseases, University of Georgia, Athens,
Georgia, United States of America
| | - Michael Bell
- Department of Infectious Diseases, University of Georgia, Athens,
Georgia, United States of America
| | - Balázs Rada
- Department of Infectious Diseases, University of Georgia, Athens,
Georgia, United States of America
| | - Christine M. Szymanski
- Department of Microbiology and Complex Carbohydrate Research Center,
University of Georgia, Athens, Georgia, United States of
America
- Department of Biological Sciences, University of Alberta, Edmonton,
Alberta, Canada
- * E-mail:
| |
Collapse
|
18
|
Zhang Y, Yang Y, Hu X, Wang Z, Li L, Chen P. PADs in cancer: Current and future. Biochim Biophys Acta Rev Cancer 2020; 1875:188492. [PMID: 33321174 DOI: 10.1016/j.bbcan.2020.188492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023]
Abstract
Protein arginine deiminases (PADs), is a group of calcium-dependent enzymes, which play crucial roles in citrullination, and can catalyze arginine residues into citrulline. This chemical reaction induces citrullinated proteins formation with altered structure and function, leading to numerous pathological diseases, including inflammation and autoimmune diseases. To date, multiple studies have provided solid evidence that PADs are implicated in cancer progression. Nevertheless, the findings on PADs functions in tumors are too complex to understand due to its involvements in variable signaling pathways. The increasing interest in PADs has heightened the need for a comprehensive description for its role in cancer. The present study aims to identify the gaps in present knowledge, including its structures, biological substrates and tissue distribution. Since several irreversible inhibitors for PADs with good potency and selectivity have been explored, the mechanisms on the dysregulation in tumors remain poorly understood. The present study discusses the relationship between PADs and tumor apoptosis, EMT formation and metastasis as well as the implication of neutrophil extracellular traps (NETs) in tumorigenesis. In addition, the potential uses of citrullinated antigens for immunotherapy were proposed.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pathology and Pathophysiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Yiqiong Yang
- Department of Pathology and Pathophysiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Xiuxiu Hu
- Department of Pathology and Pathophysiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Zhi Wang
- Department of Pathology and Pathophysiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Li Li
- Department of Pathology and Pathophysiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Pingsheng Chen
- Department of Pathology and Pathophysiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China.
| |
Collapse
|