1
|
Dickson KB, Stadnyk AW, Zhou J, Lehmann C. Mucosal Immunity: Lessons from the Lower Respiratory and Small Intestinal Epithelia. Biomedicines 2025; 13:1052. [PMID: 40426880 DOI: 10.3390/biomedicines13051052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 05/29/2025] Open
Abstract
Mucosal epithelia represent a diverse group of tissues that function as a barrier against the external environment and exert a wide variety of tissue-specific secondary functions. This review focuses on the lower respiratory tract and small intestinal epithelia, which serve as two distinct sites within the body with respect to their physiological functions. This review provides an overview of their physiology, including both physiological and mechanical defense systems, and their immune responses, which allow both tissues to tolerate commensal organisms while mounting a response against potential pathogens. By highlighting the commonalities and differences across the two tissue types, opportunities to learn from these tissues emerge, which can inform the development of novel therapeutic strategies that harness the unique properties of mucosal epithelia.
Collapse
Affiliation(s)
- Kayle B Dickson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Andrew W Stadnyk
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Pediatrics, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Juan Zhou
- Department of Anesthesiology, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Christian Lehmann
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Anesthesiology, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
2
|
Lee C, Pei L, Park H, Kim H, Huh CS. Skin Protection Effects of Lactobacillus paragasseri HN910 Lysate and the Role of Alanine. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10533-2. [PMID: 40244537 DOI: 10.1007/s12602-025-10533-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2025] [Indexed: 04/18/2025]
Abstract
Skin aging is influenced by structural alterations, oxidative stress, inflammation, and microbiome changes, and a comprehensive approach to addressing these factors may be effective for mitigating skin aging. This study evaluates the multifaceted anti-aging effects of heat-killed (HK-HN910) and lysed (LS-HN910) forms of Lactobacillus paragasseri HN910. Protective effects on cell viability, cell permeability, nitric oxide (NO) production, and skin anti-aging gene expression for both HK-HN910 and LS-HN910 were observed. Both forms significantly enhanced tight junction (TJ) protein zonula occludens- 1 (ZO- 1) and antioxidant enzyme glutathione peroxidase (GPx) gene expression, while significantly downregulating that of senescence-associated secretory phenotype pro-inflammatory cytokines interleukin (IL)- 1α, IL- 1β, IL- 6, IL- 8, and tumor necrosis factor-alpha (TNFα). LS-HN910 showed significantly greater upregulation of ZO- 1 and GPx and greater downregulation of IL- 1β and TNFα expression compared to HK-HN910. Cell wall component D-alanine (D-Ala) was released in higher amounts in LS-HN910 than in HK-HN910 and demonstrated anti-aging effects. D-Ala upregulated gene expression of skin barrier ZO- 1, claudin- 1 (Cla- 1), occludin (OCC), filaggrin (FLG), and sphingomyelin phosphodiesterase 2 (SMPD2) and antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and GPx, while downregulating IL- 1α, IL- 1β, IL- 6, IL- 8, and TNFα. LS-HN910 treatment clinically revealed improvements in anti-aging parameters, including transepidermal water loss, skin water contents, sebum levels, dermal density, eye wrinkle index, skin pH, brightness, and microbiota composition, with a significant increase in Rhodococcus abundance. These findings indicate that LS-HN910, containing released D-Ala, is a promising cosmeceutical for preventing skin aging by enhancing the skin barrier, promoting oxidative defense, modulating inflammatory responses, and influencing skin microbiota.
Collapse
Affiliation(s)
- Chaewon Lee
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | | | - Hyunjun Park
- Research Institute of Eco-Friendly Livestock Science, Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, South Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Chul Sung Huh
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, South Korea.
- Biodome Co., Wonju, South Korea.
| |
Collapse
|
3
|
Nisar MF, Yan T, Cai Y, Wan C. Immuno-oncological Challenges and Chemoresistance in Veterinary Medicine: Probiotics as a New Strategic Tool. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10468-8. [PMID: 39954194 DOI: 10.1007/s12602-025-10468-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2025] [Indexed: 02/17/2025]
Abstract
Cancer has the highest death rates due to increased immuno-oncological (IO) challenges and chemoresistance caused by gut dysbiosis, whereas administration of probiotics may reverse these responses against anticancer therapies. Recently, immunotherapeutics have extensively been focused for significant advancements in pharmacological drug discovery and clinical outcomes. Mammals have intestinal epithelial cells, mucosal immune cells, and indigenous gut microbiota which may reshape immunotherapeutics efficacy. These include use of T-cell immune checkpoint inhibitors (ICPI), genetically engineered T-cells, tumor vaccines, monoclonal antibodies (mAbs), and anti-B- and T-cell antibodies. Immunotherapeutics for cancer treatment became popular in both veterinary and human health care systems due to their strong inhibitory actions against PD-1 and CTLA-4 to check tumorigenesis. IO issues in animals also need special attention, where caninized mAbs targeting CD-20 and CD-52 have been clinically used in treating canine B-cell and T-cell lymphomas, respectively. Probiotics appeared as strong immunotherapeutics that might be shaping the epigenetics of the organisms specifically in animal breeding practices for desired features, but limited literature regarding the immunomodulatory effects in humans and animals is available. In addition, considering the important role of probiotics in humans and veterinary medicine, a new perspective on the probiotic-mediated modulation of ncRNAs (miRNAs, lncRNAs, circRNAs) is also highlighted and would be a new therapeutic tool. This review provides insight into the cellular processes and pharmacological activities for treating veterinary infectious diseases and covers small drug molecules as ncRNA-modulators in veterinary medicine.
Collapse
Affiliation(s)
- Muhammad Farrukh Nisar
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang, 330045, China
- Jiangxi Key Laboratory for Post-harvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur, Pakistan
| | - Tingdong Yan
- School of Pharmacy, Nantong University, Nantong, 226001, China.
| | - Yi Cai
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Chunpeng Wan
- Jiangxi Key Laboratory for Post-harvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
4
|
Song HA, Jang SY, Park MJ, Kim SW, Kang CG, Lee JH, Kim HJ, Kim J, Lee JK, Chung KS, Lee KT. Immunostimulation Signaling via Toll-like Receptor 2 Activation: A Molecular Mechanism of Lactococcus lactis OTG1204 In Vitro and In Vivo. Nutrients 2024; 16:3629. [PMID: 39519462 PMCID: PMC11547582 DOI: 10.3390/nu16213629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
INTRODUCTION The immune system's defense against pathogens involves innate and adaptive responses, crucial in maintaining overall health. Immunosuppressed states render individuals more susceptible to potential diseases, indicating the need for effective strategies to bolster immune functions. OBJECTIVES Although the immunostimulatory effects of various probiotics have been studied, the specific effects and molecular mechanisms of Lactococcus lactis OTG1204 (OTG1204) remain unknown. In this study, the aim was to investigate the molecular mechanisms of OTG1204 in RAW 264.7 macrophages, the key effector cells of the innate immune system involved in host defense and inflammatory responses. Additionally, in this study, the effects of OTG1204 on cyclophosphamide (CTX)-induced immunosuppression states were investigated, thereby demonstrating its potential as an immune stimulant. METHODS To assess the macrophage activation ability and underlying mechanisms of OTG1204, RAW 264.7 cells were utilized with transfection, enzyme-linked immunosorbent assay, and quantitative real-time PCR analyses. Furthermore, to evaluate the immunostimulatory effects under immunosuppressed conditions, CTX-induced immunosuppression mice model was employed, and analyses were performed using hematoxylin and eosin staining, flow cytometry, and microbiota examination. RESULTS OTG1204 activated RAW 264.7 macrophages, leading to increased production of nitric oxide, prostaglandin E2, and cytokines. This immune activation was mediated through the upregulation of toll-like receptor 2, which subsequently activated the nuclear factor-κB (NF-kB) and mitogen-activated protein kinase (MAPK)/activator protein 1 (AP-1) pathways, thereby stimulating the immune response. In CTX-treated mice, OTG1204 recovered body weight, spleen, and mesenteric lymph node indices, and natural killer cell activity. It re-established populations of innate and adaptive immune cells and activated T cells to secrete cytokines. We also examined the gut barrier integrity and microbiota composition to assess OTG1204's impact on intestinal health, as these factors play a significant role in immune enhancement. OTG1204 enhanced gut barrier integrity by upregulating mucin 2 and tight junction proteins and modulated the gut microbiota by restoring the Firmicutes/Bacteroidetes balance and reducing the abundance of Actinobacteria and Tenericutes. CONCLUSION These results suggest that OTG1204 may serve as an effective probiotic for immune enhancement and gut health management by targeting the NF-κB and MAPK/AP-1 pathways, with minimal side effects.
Collapse
Affiliation(s)
- Hyeon-A Song
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (H.-A.S.); (S.-Y.J.); (M.-J.P.); (K.-S.C.)
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Seo-Yun Jang
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (H.-A.S.); (S.-Y.J.); (M.-J.P.); (K.-S.C.)
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Min-Ji Park
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (H.-A.S.); (S.-Y.J.); (M.-J.P.); (K.-S.C.)
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Seung Wook Kim
- Ottogi Research Center, Anyang 14060, Republic of Korea; (S.W.K.); (C.G.K.); (J.H.L.); (H.-J.K.); (J.K.)
| | - Choon Gil Kang
- Ottogi Research Center, Anyang 14060, Republic of Korea; (S.W.K.); (C.G.K.); (J.H.L.); (H.-J.K.); (J.K.)
| | - Joo Hyun Lee
- Ottogi Research Center, Anyang 14060, Republic of Korea; (S.W.K.); (C.G.K.); (J.H.L.); (H.-J.K.); (J.K.)
| | - Hye-Jin Kim
- Ottogi Research Center, Anyang 14060, Republic of Korea; (S.W.K.); (C.G.K.); (J.H.L.); (H.-J.K.); (J.K.)
| | - Jiheon Kim
- Ottogi Research Center, Anyang 14060, Republic of Korea; (S.W.K.); (C.G.K.); (J.H.L.); (H.-J.K.); (J.K.)
| | - Jong Kil Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (H.-A.S.); (S.-Y.J.); (M.-J.P.); (K.-S.C.)
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (H.-A.S.); (S.-Y.J.); (M.-J.P.); (K.-S.C.)
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| |
Collapse
|
5
|
Bárcenas-Preciado V, Mata-Haro V. Probiotics in miRNA-Mediated Regulation of Intestinal Immune Homeostasis in Pigs: A Physiological Narrative. Microorganisms 2024; 12:1606. [PMID: 39203448 PMCID: PMC11356641 DOI: 10.3390/microorganisms12081606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
The microbiota plays a crucial role in maintaining the host's intestinal homeostasis, influencing numerous physiological functions. Various factors, including diet, stress, and antibiotic use, can lead to such imbalances. Probiotics have been shown to restore the microbiota, contributing to maintaining this balance. For instance, the weaning stage in piglets is crucial; this transition can cause unfavorable changes that may contribute to the onset of diarrhea. Probiotic supplementation has increased due to its benefits. However, its mechanism of action is still controversial; one involves the regulation of intestinal immunity. When recognized by immune system cells through membrane receptors, probiotics activate intracellular signaling pathways that lead to changes in gene expression, resulting in an anti-inflammatory response. This complex regulatory system involves transcriptional and post-transcriptional mechanisms, including the modulation of various molecules, emphasizing microRNAs. They have emerged as important regulators of innate and adaptive immune responses. Analyzing these mechanisms can enhance our understanding of probiotic-host microbiota interactions, providing insights into their molecular functions. This knowledge can be applied not only in the swine industry, but also in studying microbiota-related disorders. Moreover, these studies serve as animal models, helping to understand better conditions such as inflammatory bowel disease and other related disorders.
Collapse
Affiliation(s)
| | - Verónica Mata-Haro
- Laboratorio de Microbiología e Inmunología, Centro de Investigación en Alimentación y Desarrollo, AC (CIAD) Carretera Gustavo E. Astiazarán 46, Col. La Victoria, Hermosillo 83304, Mexico;
| |
Collapse
|
6
|
Haque M, Kaminsky L, Abdulqadir R, Engers J, Kovtunov E, Rawat M, Al-Sadi R, Ma TY. Lactobacillus acidophilus inhibits the TNF-α-induced increase in intestinal epithelial tight junction permeability via a TLR-2 and PI3K-dependent inhibition of NF-κB activation. Front Immunol 2024; 15:1348010. [PMID: 39081324 PMCID: PMC11286488 DOI: 10.3389/fimmu.2024.1348010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/25/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Defective intestinal epithelial tight junction (TJ), characterized by an increase in intestinal TJ permeability, has been shown to play a critical role in the pathogenesis of inflammatory bowel disease (IBD). Tumor necrosis factor-α (TNF-α) is a key pro-inflammatory cytokine involved in the immunopathology of IBD and has been shown to cause an increase in intestinal epithelial TJ permeability. Although TNF-α antibodies and other biologics have been advanced for use in IBD treatment, these therapies are associated with severe side effects and have limited efficacy, and there is an urgent need for therapies with benign profiles and high therapeutic efficacy. Probiotic bacteria have beneficial effects and are generally safe and represent an important class of potential therapeutic agents in IBD. Lactobacillus acidophilus (LA) is one of the most used probiotics for wide-ranging health benefits, including in gastrointestinal, metabolic, and inflammatory disorders. A specific strain of LA, LA1, was recently demonstrated to have protective and therapeutic effects on the intestinal epithelial TJ barrier. However, the mechanisms of actions of LA1 remain largely unknown. METHODS The primary aim of this study was to investigate microbial-epithelial interactions and novel signaling pathways that regulate the effect of LA1 on TNF-α-induced increase in intestinal epithelial TJ permeability, using cell culture and animal model systems. RESULTS AND CONCLUSION Pre-treatment of filter-grown Caco-2 monolayers with LA1 prevented the TNF-α-induced increase in intestinal epithelial TJ permeability by inhibiting TNF-α-induced activation of NF-κB p50/p65 and myosin light chain kinase (MLCK) gene and kinase activity in a TLR-2-dependent manner. LA1 produced a TLR-2- and MyD88-dependent activation of NF-κB p50/p65 in immune cells; however, LA1, in intestinal cells, inhibited the NF-κB p50/p65 activation in a TLR-2-dependent but MyD88-independent manner. In addition, LA1 inhibition of NF-κB p50/p65 and MLCK gene was mediated by TLR-2 pathway activation of phosphatidylinositol 3-kinase (PI3K) and IKK-α phosphorylation. Our results demonstrated novel intracellular signaling pathways by which LA1/TLR-2 suppresses the TNF-α pathway activation of NF-κB p50/p65 in intestinal epithelial cells and protects against the TNF-α-induced increase in intestinal epithelial TJ permeability.
Collapse
Affiliation(s)
- Mohammad Haque
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Lauren Kaminsky
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Raz Abdulqadir
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Jessica Engers
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Evgeny Kovtunov
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Manmeet Rawat
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Rana Al-Sadi
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Thomas Y. Ma
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| |
Collapse
|
7
|
Cao Y, Wang Z, Dai X, Zhang D, Zeng Y, Ni X, Pan K. Evaluation of probiotic properties of a Brevibacillus laterosporus strain. FASEB J 2024; 38:e23530. [PMID: 38466314 DOI: 10.1096/fj.202302408r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/25/2024] [Accepted: 02/19/2024] [Indexed: 03/12/2024]
Abstract
Brevibacillus laterosporus is a strain of probiotic bacteria that has been widely used in pest control, cash crop, and other production areas. However, few studies have been conducted on its use as a feed additive in animals. Therefore, the probiotic potential of B. laterosporus PBC01 was evaluated by characterizing hydrophobicity, auto-aggregation activity, bile salt and simulated gastrointestinal fluid tolerance, bienzymatic, and antibacterial activity. Antibiotic susceptibility, hemolysis assays, and supplemental feeding of mice were also performed to evaluate safety features. Our results showed that B. laterosporus PBC01 had moderate hydrophobicity, high auto-agglutination ability. Meanwhile, B. laterosporus PBC01 had good tolerance to bile salt and simulated gastrointestinal fluid. It had the ability to secrete protease, cellulase, and to inhibit various pathogens. In addition, B. laterosporus PBC01 was sensitive to many antibiotics, and did not produce hemolysin. In the safety assessment of mice, it did not cause any deaths, nor did it affect the cell components of blood, antioxidant capacity, and reproductive health. The study indicated the great probiotic characteristics and safety of B. laterosporus PBC01. This may provide a theoretical basis for the clinical application and development of probiotic-based feed additives.
Collapse
Affiliation(s)
- Yuheng Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | | | - Xixi Dai
- Chongqing Three Gorges Vocational College, Chongqing, China
| | - Dongmei Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yan Zeng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xueqin Ni
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Kangcheng Pan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
8
|
Forouhandeh H, Soofiyani SR, Hosseini K, Beirami SM, Ahangari H, Moammer Y, Ebrahimzadeh S, Nejad MK, Farjami A, Khodaiefar F, Tarhriz V. Modulation of the Immune System Mechanisms using Probiotic Bacteria in Allergic Diseases: Focus on Allergic Retinitis and Food Allergies. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2024; 18:11-26. [PMID: 37842889 DOI: 10.2174/0127722708246899230928080651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/28/2023] [Accepted: 08/21/2023] [Indexed: 10/17/2023]
Abstract
Allergic illnesses occur when an organism's immune system is excessively responsive to certain antigens, such as those that are presented in the environment. Some people suffer from a wide range of immune system-related illnesses including allergic rhinitis, asthma, food allergies, hay fever, and even anaphylaxis. Immunotherapy and medications are frequently used to treat allergic disorders. The use of probiotics in bacteriotherapy has lately gained interest. Probiotics are essential to human health by modulating the gut microbiota in some ways. Due to probiotics' immunomodulatory properties present in the gut microbiota of all animals, including humans, these bacterial strains can prevent a wide variety of allergic disorders. Probiotic treatment helps allergy patients by decreasing inflammatory cytokines and enhancing intestinal permeability, which is important in the battle against allergy. By altering the balance of Th1 and Th2 immune responses in the intestinal mucosa, probiotics can heal allergic disorders. Numerous studies have shown a correlation between probiotics and a reduced risk of allergy disorders. A wide range of allergic disorders, including atopic dermatitis, asthma, allergic retinitis and food allergies has been proven to benefit from probiotic bacteria. Therefore, the use of probiotics in the treatment of allergic diseases offers a promising perspective. Considering that probiotic intervention in the treatment of diseases is a relatively new field of study, more studies in this regard seem necessary.
Collapse
Affiliation(s)
- Haleh Forouhandeh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saiedeh Razi Soofiyani
- Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamran Hosseini
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sohrab Minaei Beirami
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Ahangari
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yusif Moammer
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Ebrahimzadeh
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoomeh Kashef Nejad
- Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afsaneh Farjami
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Khodaiefar
- Department of Traditional Medicine, Faculty of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahideh Tarhriz
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
9
|
Rawling M, Schiavone M, Mugnier A, Leclercq E, Merrifield D, Foey A, Apper E. Modulation of Zebrafish ( Danio rerio) Intestinal Mucosal Barrier Function Fed Different Postbiotics and a Probiotic from Lactobacilli. Microorganisms 2023; 11:2900. [PMID: 38138044 PMCID: PMC10745996 DOI: 10.3390/microorganisms11122900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
It is generally accepted that microbes play a critical role in maintaining gut barrier function, making them ideal to target in order to mitigate the effects of intestinal diseases such as inflammatory bowel disease with specialist supplementations such as probiotic or postbiotic preparations. In this study, specific strains of Lactobacillus helvictus both live and inactivated and Lactobacillus plantarum inactivated were fed to zebrafish at an inclusion level of 6 × 106 cells/g in order to assess the effects on gut barrier function and protection. Taken together, our results indicate that dietary administration of pro- or postbiotics strengthens the gut barrier function and innate immunity of healthy zebrafish in a strain-specific and process-dependent way. With some differences in the response intensity, the three treatments led to increased intestinal villi length and proportion of IELs, reinforcement of the GC population and up-regulated expression of biomarkers of AMP production and tight junction zona-occludin 2a (zo-2a). In addition, LPPost had an impact on the adaptive immune response, and we hypothesized that it conferred the potential to drive Th17/ILC3 immunity, as suggested by its effect on the gene expression of il22, of different AMPs, and the expression of zo2a. Moreover, LPPost showed the potential to drive Th1/ILC1-like immunity, with a higher percentage of CD8+ cells and higher ifnγ gene expression. In summary, the use of inactivated Lactobacilli species in this study represented a promising strategy for improving barrier function and regulating the immune fate of the intestinal mucosa in a strain-specific way.
Collapse
Affiliation(s)
- Mark Rawling
- Aquatic Animal Nutrition and Health Research Group, School of Marine and Biological Sciences, Plymouth University, Plymouth, Devon PL4 8AA, UK; (D.M.); (A.F.)
| | - Marion Schiavone
- Lallemand SAS, 19 rue des Briquetiers, 31702 Blagnac, France; (M.S.); (A.M.); (E.L.)
| | - Amélie Mugnier
- Lallemand SAS, 19 rue des Briquetiers, 31702 Blagnac, France; (M.S.); (A.M.); (E.L.)
| | - Eric Leclercq
- Lallemand SAS, 19 rue des Briquetiers, 31702 Blagnac, France; (M.S.); (A.M.); (E.L.)
| | - Daniel Merrifield
- Aquatic Animal Nutrition and Health Research Group, School of Marine and Biological Sciences, Plymouth University, Plymouth, Devon PL4 8AA, UK; (D.M.); (A.F.)
| | - Andrew Foey
- Aquatic Animal Nutrition and Health Research Group, School of Marine and Biological Sciences, Plymouth University, Plymouth, Devon PL4 8AA, UK; (D.M.); (A.F.)
| | - Emmanuelle Apper
- Lallemand SAS, 19 rue des Briquetiers, 31702 Blagnac, France; (M.S.); (A.M.); (E.L.)
| |
Collapse
|
10
|
Wyczanska M, Rohling J, Keller U, Benz MR, Kirschning C, Lange-Sperandio B. TLR2 mediates renal apoptosis in neonatal mice subjected experimentally to obstructive nephropathy. PLoS One 2023; 18:e0294142. [PMID: 38015955 PMCID: PMC10684073 DOI: 10.1371/journal.pone.0294142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/25/2023] [Indexed: 11/30/2023] Open
Abstract
Urinary tract obstruction during renal development leads to inflammation, tubular apoptosis, and interstitial fibrosis. Toll like receptors (TLRs) expressed on leukocytes, myofibroblasts and renal cells play a central role in acute inflammation. TLR2 is activated by endogenous danger signals in the kidney; its contribution to renal injury in early life is still a controversial topic. We analyzed TLR2 for a potential role in the neonatal mouse model of congenital obstructive nephropathy. Inborn obstructive nephropathies are a leading cause of end-stage kidney disease in children. Thus, newborn Tlr2-/- and wild type (WT) C57BL/6 mice were subjected to complete unilateral ureteral obstruction (UUO) or sham-operation on the 2nd day of life. The neonatal kidneys were harvested and analyzed at days 7 and 14 of life. Relative expression levels of TLR2, caspase-8, Bcl-2, Bax, GSDMD, GSDME, HMGB1, TNF, galectin-3, α-SMA, MMP-2, and TGF-β proteins were quantified semi-quantitatively by immunoblot analyses. Tubular apoptosis, proliferation, macrophage- and T-cell infiltration, tubular atrophy, and interstitial fibrosis were analyzed immunohistochemically. Neonatal Tlr2-/- mice kidneys exhibited less tubular and interstitial apoptosis as compared to those of WT C57BL/6 mice after UUO. UUO induced neonatally did trigger pyroptosis in kidneys, however to similar degrees in Tlr2-/- and WT mice. Also, tubular atrophy, interstitial fibrosis, tubular proliferation, as well as macrophage and T-cell infiltration were unremarkable. We conclude that while TLR2 mediates apoptosis in the kidneys of neonatal mice subjected to UUO, leukocyte recruitment, interstitial fibrosis, and consequent neonatal obstructive nephropathy might lack a TLR2 involvement.
Collapse
Affiliation(s)
- Maja Wyczanska
- Department of Pediatrics, Dr. v. Hauner Children’s Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Jana Rohling
- Department of Pediatrics, Dr. v. Hauner Children’s Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Ursula Keller
- Department of Pediatrics, Dr. v. Hauner Children’s Hospital, University Hospital, LMU Munich, Munich, Germany
| | | | | | - Bärbel Lange-Sperandio
- Department of Pediatrics, Dr. v. Hauner Children’s Hospital, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
11
|
Flynn CM, Yuan Q. Probiotic supplement as a promising strategy in early tau pathology prevention: Focusing on GSK-3β? Front Neurosci 2023; 17:1159314. [PMID: 37034173 PMCID: PMC10073452 DOI: 10.3389/fnins.2023.1159314] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Neurofibrillary tangles (NFT) is one of the hallmarks of Alzheimer's disease (AD). Recent research suggests that pretangle tau, the soluble precursor of NFT, is an initiator for AD pathogenesis, thus targeting pretangle tau pathology may be a promising early intervention focus. The bidirectional communications between the gut and the brain play a crucial role in health. The compromised gut-brain axis is involved in various neurodegenerative diseases including AD. However, most research on the relationship between gut microbiome and AD have focused on amyloid-β. In this mini review, we propose to target preclinical pretangle tau stages with gut microbiota interventions such as probiotic supplementation. We discuss the importance of targeting pretangle tau that starts decades before the onset of clinical symptoms, and potential intervention focusing on probiotic regulation of tau hyperphosphorylation. A particular focus is on GSK-3β, a protein kinase that is at the interface between tau phosphorylation, AD and diabetes mellitus.
Collapse
|
12
|
Unhealthy Diets Induce Distinct and Regional Effects on Intestinal Inflammatory Signalling Pathways and Long-Lasting Metabolic Dysfunction in Rats. Int J Mol Sci 2022; 23:ijms231810984. [PMID: 36142897 PMCID: PMC9503261 DOI: 10.3390/ijms231810984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
The intestinal epithelium is a principal site for environmental agents’ detection. Several inflammation- and stress-related signalling pathways have been identified as key players in these processes. However, it is still unclear how the chronic intake of inadequate nutrients triggers inflammatory signalling pathways in different intestinal regions. We aimed to evaluate the impact of unhealthy dietary patterns, starting at a younger age, and the association with metabolic dysfunction, intestinal inflammatory response, and obesity in adulthood. A rat model was used to evaluate the effects of the consumption of sugary beverages (HSD) and a Western diet (WD), composed of ultra-processed foods. Both diets showed a positive correlation with adiposity index, but a positive correlation was found between the HSD diet and the levels of blood glucose and triglycerides, whereas the WD diet correlated positively with triglyceride levels. Moreover, a distinct inflammatory response was associated with either the WD or HSD diets. The WD induced an increase in TLR2, TLR4, and nuclear factor-kappa B (NF-κB) intestinal gene expression, with higher levels in the colon and overexpression of the inducible nitric oxide synthase. In turn, the HSD diet induced activation of the TLR2-mediated NF-κB signalling pathway in the small intestine. Altogether, these findings support the concept that early intake of unhealthy foods and nutrients are a main exogenous signal for disturbances of intestinal immune mechanisms and in a region-specific manner, ultimately leading to obesity-related disorders in later life.
Collapse
|
13
|
Zeinali T, Faraji N, Joukar F, Khan Mirzaei M, Kafshdar Jalali H, Shenagari M, Mansour-Ghanaei F. Gut bacteria, bacteriophages, and probiotics: Tripartite mutualism to quench the SARS-CoV2 storm. Microb Pathog 2022; 170:105704. [PMID: 35948266 PMCID: PMC9357283 DOI: 10.1016/j.micpath.2022.105704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/19/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022]
Abstract
Patients with SARS-CoV-2 infection, exhibit various clinical manifestations and severity including respiratory and enteric involvements. One of the main reasons for death among covid-19 patients is excessive immune responses directed toward cytokine storm with a low chance of recovery. Since the balanced gut microbiota could prepare health benefits by protecting against pathogens and regulating immune homeostasis, dysbiosis or disruption of gut microbiota could promote severe complications including autoimmune disorders; we surveyed the association between the imbalanced gut bacteria and the development of cytokine storm among COVID-19 patients, also the impact of probiotics and bacteriophages on the gut bacteria community to alleviate cytokine storm in COVID-19 patients. In present review, we will scrutinize the mechanism of immunological signaling pathways which may trigger a cytokine storm in SARS-CoV2 infections. Moreover, we are explaining in detail the possible immunological signaling pathway-directing by the gut bacterial community. Consequently, the specific manipulation of gut bacteria by using probiotics and bacteriophages for alleviation of the cytokine storm will be investigated. The tripartite mutualistic cooperation of gut bacteria, probiotics, and phages as a candidate prophylactic or therapeutic approach in SARS-CoV-2 cytokine storm episodes will be discussed at last.
Collapse
Affiliation(s)
- Tahereh Zeinali
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Niloofar Faraji
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Farahnaz Joukar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammadali Khan Mirzaei
- Institute of Virology, Helmholtz Center Munich and Technical University of Munich, 85764, Neuherberg, Germany
| | - Hossnieh Kafshdar Jalali
- Department of Microbiology, Faculty of Science, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | - Mohammad Shenagari
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Fariborz Mansour-Ghanaei
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Caspian Digestive Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
14
|
Sudan S, Zhan X, Li J. A Novel Probiotic Bacillus subtilis Strain Confers Cytoprotection to Host Pig Intestinal Epithelial Cells during Enterotoxic Escherichia coli Infection. Microbiol Spectr 2022; 10:e0125721. [PMID: 35736372 PMCID: PMC9430607 DOI: 10.1128/spectrum.01257-21] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 05/26/2022] [Indexed: 01/13/2023] Open
Abstract
Enteric infections caused by enterotoxic Escherichia coli (ETEC) negatively impact the growth performance of piglets during weaning, resulting in significant economic losses for the producers. With the ban on antibiotic usage in livestock production, probiotics have gained a lot of attention as a potential alternative. However, strain specificity and limited knowledge on the host-specific targets limit their efficacy in preventing ETEC-related postweaning enteric infections. We recently isolated and characterized a novel probiotic Bacillus subtilis bacterium (CP9) that demonstrated antimicrobial activity. Here, we report anti-ETEC properties of CP9 and its impact on metabolic activity of swine intestinal epithelial (IPEC-J2) cells. Our results showed that pre- or coincubation with CP9 protected IPEC-J2 cells from ETEC-induced cytotoxicity. CP9 significantly attenuated ETEC-induced inflammatory response by reducing ETEC-induced nitric oxide production and relative mRNA expression of the Toll-like receptors (TLRs; TLR2, TLR4, and TLR9), proinflammatory tumor necrosis factor alpha, interleukins (ILs; IL-6 and IL-8), augmenting anti-inflammatory granulocyte-macrophage colony-stimulating factor and host defense peptide mucin 1 (MUC1) mRNA levels. We also show that CP9 significantly (P < 0.05) reduced caspase-3 activity, reinstated cell proliferation and increased relative expression of tight junction genes, claudin-1, occludin, and zona occludens-1 in ETEC-infected cells. Finally, metabolomic analysis revealed that CP9 exposure induced metabolic modulation in IPEC J2 cells with the greatest impact seen in alanine, aspartate, and glutamate metabolism; pyrimidine metabolism; nicotinate and nicotinamide metabolism; glutathione metabolism; the citrate cycle (TCA cycle); and arginine and proline metabolism. Our study shows that CP9 incubation attenuated ETEC-induced cytotoxicity in IPEC-J2 cells and offers insight into potential application of this probiotic for ETEC infection control. IMPORTANCE ETEC remains one of the leading causes of postweaning diarrhea and mortality in swine production. Due to the rising concerns with the antibiotic use in livestock, alternative interventions need to be developed. In this study, we analyzed the cytoprotective effect of a novel probiotic strain in combating ETEC infection in swine intestinal cells, along with assessing its mechanism of action. To our knowledge, this is also the first study to analyze the metabolic impact of a probiotic on intestinal cells. Results from this study should provide effective cues in developing a probiotic intervention for ameliorating ETEC infection and improving overall gut health in swine production.
Collapse
Affiliation(s)
- Sudhanshu Sudan
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | - Xiaoshu Zhan
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | - Julang Li
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
15
|
Ying HZ, Xie W, Wang MC, He JQ, Zhang HH, Yu CH. Gut microbiota: An emerging therapeutic approach of herbal medicine for prevention of colorectal cancer. Front Cell Infect Microbiol 2022; 12:969526. [PMID: 36051242 PMCID: PMC9426771 DOI: 10.3389/fcimb.2022.969526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022] Open
Abstract
The gut dysbiosis has emerged as a prominent player in the pathogenesis and development of colorectal cancer (CRC), which in turn intensifies dysregulated gut microbiota composition and inflammation. Since most drugs are given orally, this dysbiosis directly and indirectly impinges the absorption and metabolism of drugs in the gastrointestinal tract, and subsequently affects the clinical outcome of patients with CRC. Herbal medicine, including the natural bioactive products, have been used traditionally for centuries and can be considered as novel medicinal sources for anticancer drug discovery. Due to their various structures and pharmacological effects, natural products have been found to improve microbiota composition, repair intestinal barrier and reduce inflammation in human and animal models of CRC. This review summarizes the chemo-preventive effects of extracts and/or compounds derived from natural herbs as the promising antineoplastic agents against CRC, and will provide innovative strategies to counteract dysregulated microbiota and improve the lives of CRC patients.
Collapse
Affiliation(s)
- Hua-Zhong Ying
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou, China
| | - Wei Xie
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou, China
| | - Meng-Chuan Wang
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou, China
| | - Jia-Qi He
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Huan-Huan Zhang
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou, China
| | - Chen-Huan Yu
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou, China
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, China
- *Correspondence: Chen-Huan Yu,
| |
Collapse
|
16
|
Characterization of extracellular vesicles from Lactiplantibacillus plantarum. Sci Rep 2022; 12:13330. [PMID: 35941134 PMCID: PMC9360025 DOI: 10.1038/s41598-022-17629-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 07/28/2022] [Indexed: 11/08/2022] Open
Abstract
We investigated the characteristics and functionalities of extracellular vesicles (EVs) from Lactiplantibacillus plantarum (previously Lactobacillus plantarum) towards host immune cells. L. plantarum produces EVs that have a cytoplasmic membrane and contain cytoplasmic metabolites, membrane and cytoplasmic proteins, and small RNAs, but not bacterial cell wall components, namely, lipoteichoic acid and peptidoglycan. In the presence of L. plantarum EVs, Raw264 cells inducibly produced the pro-inflammatory cytokines IL-1β and IL-6, the anti-inflammatory cytokine IL-10, and IF-γ and IL-12, which are involved in the differentiation of naive T-helper cells into T-helper type 1 cells. IgA was produced by PP cells following the addition of EVs. Therefore, L. plantarum EVs activated innate and acquired immune responses. L. plantarum EVs are recognized by Toll-like receptor 2 (TLR2), which activates NF-κB, but not by other TLRs or NOD-like receptors. N-acylated peptides from lipoprotein19180 (Lp19180) in L. plantarum EVs were identified as novel TLR2 ligands. Therefore, L. plantarum induces an immunostimulation though the TLR2 recognition of the N-acylated amino acid moiety of Lp19180 in EVs. Additionally, we detected a large amount of EVs in the rat gastrointestinal tract for the first time, suggesting that EVs released by probiotics function as a modulator of intestinal immunity.
Collapse
|
17
|
Gou HZ, Zhang YL, Ren LF, Li ZJ, Zhang L. How do intestinal probiotics restore the intestinal barrier? Front Microbiol 2022; 13:929346. [PMID: 35910620 PMCID: PMC9330398 DOI: 10.3389/fmicb.2022.929346] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/27/2022] [Indexed: 12/14/2022] Open
Abstract
The intestinal barrier is a structure that prevents harmful substances, such as bacteria and endotoxins, from penetrating the intestinal wall and entering human tissues, organs, and microcirculation. It can separate colonizing microbes from systemic tissues and prevent the invasion of pathogenic bacteria. Pathological conditions such as shock, trauma, stress, and inflammation damage the intestinal barrier to varying degrees, aggravating the primary disease. Intestinal probiotics are a type of active microorganisms beneficial to the health of the host and an essential element of human health. Reportedly, intestinal probiotics can affect the renewal of intestinal epithelial cells, and also make cell connections closer, increase the production of tight junction proteins and mucins, promote the development of the immune system, regulate the release of intestinal antimicrobial peptides, compete with pathogenic bacteria for nutrients and living space, and interact with the host and intestinal commensal flora to restore the intestinal barrier. In this review, we provide a comprehensive overview of how intestinal probiotics restore the intestinal barrier to provide new ideas for treating intestinal injury-related diseases.
Collapse
Affiliation(s)
- Hong-Zhong Gou
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yu-Lin Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Long-Fei Ren
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zhen-Jiao Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Lei Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
- *Correspondence: Lei Zhang,
| |
Collapse
|
18
|
Mohseni AH, Casolaro V, Bermúdez-Humarán LG, Keyvani H, Taghinezhad-S S. Modulation of the PI3K/Akt/mTOR signaling pathway by probiotics as a fruitful target for orchestrating the immune response. Gut Microbes 2022; 13:1-17. [PMID: 33615993 PMCID: PMC7899637 DOI: 10.1080/19490976.2021.1886844] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) and the phosphatidylinositol-3-kinase (PI3K)/protein kinase B or Akt (PKB/Akt) signaling pathways are considered as two but somewhat interconnected significant immune pathways which play complex roles in a variety of physiological processes as well as pathological conditions. Aberrant activation of PI3K/Akt/mTOR signaling pathways has been reported to be associated in a wide variety of human diseases. Over the past few years, growing evidence in in vitro and in vivo models suggest that this sophisticated and subtle cascade mediates the orchestration of the immune response in health and disease through exposure to probiotics. An expanding body of literature has highlighted the contribution of probiotics and PI3K/Akt/mTOR signaling pathways in gastrointestinal disorders, metabolic syndrome, skin diseases, allergy, salmonella infection, and aging. However, longitudinal human studies are possibly required to verify more conclusively whether the investigational tools used to understand the regulation of these pathways might provide effective approaches in the prevention and treatment of various disorders. In this Review, we summarize the experimental evidence from recent peer-reviewed studies and provide a brief overview of the causal relationship between the effects of probiotics and their metabolites on the components of PI3K/Akt/mTOR signaling pathways and human disease.
Collapse
Affiliation(s)
- Amir Hossein Mohseni
- Department of Microbiology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Salerno, Italy
| | | | - Hossein Keyvani
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran,Hossein Keyvani Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran, Tel +98 21 88715350
| | - Sedigheh Taghinezhad-S
- Department of Microbiology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran,CONTACT Sedigheh Taghinezhad-S Department of Microbiology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, 1477893855, Iran
| |
Collapse
|
19
|
Kaur H, Ali SA. Probiotics and gut microbiota: mechanistic insights into gut immune homeostasis through TLR pathway regulation. Food Funct 2022; 13:7423-7447. [DOI: 10.1039/d2fo00911k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Consumption of probiotics as a useful functional food improves the host's wellbeing, and, when paired with prebiotics (indigestible dietary fibre/carbohydrate), often benefits the host through anaerobic fermentation.
Collapse
Affiliation(s)
- Harpreet Kaur
- Animal Biochemistry Division, ICAR-NDRI, 132001, India
| | - Syed Azmal Ali
- Cell Biology and Proteomics Lab, Animal Biotechnology Center, ICAR-NDRI, 132001, India
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
20
|
Jastrząb R, Graczyk D, Siedlecki P. Molecular and Cellular Mechanisms Influenced by Postbiotics. Int J Mol Sci 2021; 22:ijms222413475. [PMID: 34948270 PMCID: PMC8707144 DOI: 10.3390/ijms222413475] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, commensal bacteria colonizing the human body have been recognized as important determinants of health and multiple pathologic conditions. Among the most extensively studied commensal bacteria are the gut microbiota, which perform a plethora of functions, including the synthesis of bioactive products, metabolism of dietary compounds, and immunomodulation, both through attenuation and immunostimulation. An imbalance in the microbiota population, i.e., dysbiosis, has been linked to many human pathologies, including various cancer types and neurodegenerative diseases. Targeting gut microbiota and microbiome-host interactions resulting from probiotics, prebiotics, and postbiotics is a growing opportunity for the effective treatment of various diseases. As more research is being conducted, the microbiome field is shifting from simple descriptive analysis of commensal compositions to more molecular, cellular, and functional studies. Insight into these mechanisms is of paramount importance for understanding and modulating the effects that microbiota, probiotics, and their derivatives exert on host health.
Collapse
|
21
|
Gorecki AM, Anyaegbu CC, Anderton RS. TLR2 and TLR4 in Parkinson's disease pathogenesis: the environment takes a toll on the gut. Transl Neurodegener 2021; 10:47. [PMID: 34814947 PMCID: PMC8609261 DOI: 10.1186/s40035-021-00271-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/29/2021] [Indexed: 02/08/2023] Open
Abstract
Parkinson's disease (PD) is an incurable, devastating disorder that is characterized by pathological protein aggregation and neurodegeneration in the substantia nigra. In recent years, growing evidence has implicated the gut environment and the gut-brain axis in the pathogenesis and progression of PD, especially in a subset of people who exhibit prodromal gastrointestinal dysfunction. Specifically, perturbations of gut homeostasis are hypothesized to contribute to α-synuclein aggregation in enteric neurons, which may spread to the brain over decades and eventually result in the characteristic central nervous system manifestations of PD, including neurodegeneration and motor impairments. However, the mechanisms linking gut disturbances and α-synuclein aggregation are still unclear. A plethora of research indicates that toll-like receptors (TLRs), especially TLR2 and TLR4, are critical mediators of gut homeostasis. Alongside their established role in innate immunity throughout the body, studies are increasingly demonstrating that TLR2 and TLR4 signalling shapes the development and function of the gut and the enteric nervous system. Notably, TLR2 and TLR4 are dysregulated in patients with PD, and may thus be central to early gut dysfunction in PD. To better understand the putative contribution of intestinal TLR2 and TLR4 dysfunction to early α-synuclein aggregation and PD, we critically discuss the role of TLR2 and TLR4 in normal gut function as well as evidence for altered TLR2 and TLR4 signalling in PD, by reviewing clinical, animal model and in vitro research. Growing evidence on the immunological aetiology of α-synuclein aggregation is also discussed, with a focus on the interactions of α-synuclein with TLR2 and TLR4. We propose a conceptual model of PD pathogenesis in which microbial dysbiosis alters the permeability of the intestinal barrier as well as TLR2 and TLR4 signalling, ultimately leading to a positive feedback loop of chronic gut dysfunction promoting α-synuclein aggregation in enteric and vagal neurons. In turn, α-synuclein aggregates may then migrate to the brain via peripheral nerves, such as the vagal nerve, to contribute to neuroinflammation and neurodegeneration typically associated with PD.
Collapse
Affiliation(s)
- Anastazja M Gorecki
- School of Biological Science, University of Western Australia, Crawley, WA, Australia.
- Neurodegenerative Disorders Research Group, Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.
| | - Chidozie C Anyaegbu
- Curtin Health Innovation Research Institute, Ralph and Patricia Sarich Neuroscience Research Institute, Curtin University, Nedlands, WA, Australia
| | - Ryan S Anderton
- Faculty of Medicine, Nursing and Midwifery and Faculty of Health Sciences, University of Notre Dame Australia, Fremantle, WA, Australia
- School of Nursing, Midwifery, Health Sciences and Physiotherapy, University of Notre Dame Australia, Fremantle, WA, Australia
| |
Collapse
|
22
|
Oligosaccharide Metabolism and Lipoteichoic Acid Production in Lactobacillus gasseri and Lactobacillus paragasseri. Microorganisms 2021; 9:microorganisms9081590. [PMID: 34442669 PMCID: PMC8401598 DOI: 10.3390/microorganisms9081590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
Lactobacillus gasseri and Lactobacillus paragasseri are human commensal lactobacilli that are candidates for probiotic application. Knowledge of their oligosaccharide metabolic properties is valuable for synbiotic application. The present study characterized oligosaccharide metabolic systems and their impact on lipoteichoic acid (LTA) production in the two organisms, i.e., L. gasseri JCM 1131T and L. paragasseri JCM 11657. The two strains grew well in medium with glucose but poorly in medium with raffinose, and growth rates in medium with kestose differed between the strains. Oligosaccharide metabolism markedly influenced their LTA production, and apparent molecular size of LTA in electrophoresis recovered from cells cultured with glucose and kestose differed from that from cells cultured with raffinose in the strains. On the other hand, more than 15-fold more LTA was observed in the L. gasseri cells cultured with raffinose when compared with glucose or kestose after incubation for 15 h. Transcriptome analysis identified glycoside hydrolase family 32 enzyme as a potential kestose hydrolysis enzyme in the two strains. Transcriptomic levels of multiple genes in the dlt operon, involved in D-alanine substitution of LTA, were lower in cells cultured with raffinose than in those cultured with kestose or glucose. This suggested that the different sizes of LTA observed among the carbohydrates tested were partly due to different levels of alanylation of LTA. The present study indicates that available oligosaccharide has the impact on the LTA production of the industrially important lactobacilli, which might influence their probiotic properties.
Collapse
|
23
|
Polster A, Öhman L, Tap J, Derrien M, Le Nevé B, Sundin J, Törnblom H, Cvijovic M, Simrén M. A novel stepwise integrative analysis pipeline reveals distinct microbiota-host interactions and link to symptoms in irritable bowel syndrome. Sci Rep 2021; 11:5521. [PMID: 33750831 PMCID: PMC7943560 DOI: 10.1038/s41598-021-84686-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 02/15/2021] [Indexed: 12/15/2022] Open
Abstract
Although incompletely understood, microbiota-host interactions are assumed to be altered in irritable bowel syndrome (IBS). We, therefore, aimed to develop a novel analysis pipeline tailored for the integrative analysis of microbiota-host interactions and association to symptoms and prove its utility in a pilot cohort. A multilayer stepwise integrative analysis pipeline was developed to visualize complex variable associations. Application of the pipeline was demonstrated on a dataset of IBS patients and healthy controls (HC), using the R software package to analyze colonic host mRNA and mucosal microbiota (16S rRNA gene sequencing), as well as gastrointestinal (GI) and psychological symptoms. In total, 42 IBS patients (57% female, mean age 33.6 (range 18–58)) and 20 HC (60% female, mean age 26.8 (range 23–41)) were included. Only in IBS patients, mRNA expression of Toll-like receptor 4 and genes associated with barrier function (PAR2, OCLN, TJP1) intercorrelated closely, suggesting potential functional relationships. This host genes-based “permeability cluster” was associated to mucosa-adjacent Chlamydiae and Lentisphaerae, and furthermore associated to satiety as well as to anxiety, depression and fatigue. In both IBS patients and HC, chromogranins, secretogranins and TLRs clustered together. In IBS patients, this host genes-based “immune-enteroendocrine cluster” was associated to specific members of Firmicutes, and to depression and fatigue, whereas in HC no significant association to microbiota was identified. We have developed a stepwise integrative analysis pipeline that allowed identification of unique host-microbiota intercorrelation patterns and association to symptoms in IBS patients. This analysis pipeline may aid in advancing the understanding of complex variable associations in health and disease.
Collapse
Affiliation(s)
- Annikka Polster
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Gothenburg, 41345, Göteborg, Sweden.
| | - Lena Öhman
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Gothenburg, 41345, Göteborg, Sweden.,Department of Microbiology and Immunology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Julien Tap
- Danone Nutricia Research, Palaiseau, France
| | | | | | - Johanna Sundin
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Gothenburg, 41345, Göteborg, Sweden.,Department of Microbiology and Immunology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Hans Törnblom
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Gothenburg, 41345, Göteborg, Sweden
| | - Marija Cvijovic
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Göteborg, Sweden
| | - Magnus Simrén
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Gothenburg, 41345, Göteborg, Sweden.,Center for Functional Gastrointestinal and Motility Disorders, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
24
|
Gorecki AM, Bakeberg MC, Theunissen F, Kenna JE, Hoes ME, Pfaff AL, Akkari PA, Dunlop SA, Kõks S, Mastaglia FL, Anderton RS. Single Nucleotide Polymorphisms Associated With Gut Homeostasis Influence Risk and Age-at-Onset of Parkinson's Disease. Front Aging Neurosci 2020; 12:603849. [PMID: 33328979 PMCID: PMC7718032 DOI: 10.3389/fnagi.2020.603849] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022] Open
Abstract
Research is increasingly focusing on gut inflammation as a contributor to Parkinson's disease (PD). Such gut inflammation is proposed to arise from a complex interaction between various genetic, environmental, and lifestyle factors, however these factors are under-characterized. This study investigated the association between PD and single-nucleotide polymorphisms (SNPs) in genes responsible for binding of bacterial metabolites and intestinal homeostasis, which have been implicated in intestinal infections or inflammatory bowel disease. A case-control analysis was performed utilizing the following cohorts: (i) patients from the Australian Parkinson's Disease Registry (APDR) (n = 212); (ii) a Caucasian subset of the Parkinson's Progression Markers Initiative (PPMI) cohort (n = 376); (iii) a combined control group (n = 404). The following SNPs were analyzed: PGLYRP2 rs892145, PGLYRP4 rs10888557, TLR1 rs4833095, TLR2 rs3804099, TLR4 rs7873784, CD14 rs2569190, MUC1 rs4072037, MUC2 rs11825977, CLDN2 rs12008279 and rs12014762, and CLDN4 rs8629. PD risk was significantly associated with PGLYRP4 rs10888557 genotype in both cohorts. PGLYRP2 rs892145 and TLR1 rs4833095 were also associated with disease risk in the APDR cohort, and TLR2 rs3804099 and MUC2 rs11825977 genotypes in the PPMI cohort. Interactive risk effects between PGLYRP2/PGLYRP4 and PGLYRP4/TLR2 were evident in the APDR and PPMI cohorts, respectively. In the APDR cohort, the PGLYRP4 GC genotype was significantly associated with age of symptom onset, independently of gender, toxin exposure or smoking status. This study demonstrates that genetic variation in the bacterial receptor PGLYRP4 may modulate risk and age-of-onset in idiopathic PD, while variants in PGLYRP2, TLR1/2, and MUC2 may also influence PD risk. Overall, this study provides evidence to support the role of dysregulated host-microbiome signaling and gut inflammation in PD, and further investigation of these SNPs and proteins may help identify people at risk of developing PD or increase understanding of early disease mechanisms.
Collapse
Affiliation(s)
- Anastazja M Gorecki
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - Megan C Bakeberg
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, WA, Australia
| | - Frances Theunissen
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,The Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
| | - Jade E Kenna
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, WA, Australia
| | - Madison E Hoes
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Abigail L Pfaff
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,The Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
| | - P Anthony Akkari
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, WA, Australia.,The Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
| | - Sarah A Dunlop
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia.,Minderoo Foundation, Perth, WA, Australia
| | - Sulev Kõks
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,The Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
| | - Frank L Mastaglia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, WA, Australia
| | - Ryan S Anderton
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, WA, Australia.,Institute for Health Research, University of Notre Dame Australia, Fremantle, WA, Australia.,School of Health Sciences, University of Notre Dame Australia, Fremantle, WA, Australia
| |
Collapse
|
25
|
Paveljšek D, Ivičak-Kocjan K, Treven P, Benčina M, Jerala R, Rogelj I. Distinctive probiotic features share common TLR2-dependent signalling in intestinal epithelial cells. Cell Microbiol 2020; 23:e13264. [PMID: 32945079 PMCID: PMC7757178 DOI: 10.1111/cmi.13264] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 12/14/2022]
Abstract
The underlying mechanisms of probiotics and postbiotics are not well understood, but it is known that both affect the adaptive and innate immune responses. In addition, there is a growing concept that some probiotic strains have common core mechanisms that provide certain health benefits. Here, we aimed to elucidate the signalization of the probiotic bacterial strains Lactobacillus paragasseri K7, Limosilactobacillus fermentum L930BB, Bifidobacterium animalis subsp. animalis IM386 and Lactiplantibacillus plantarum WCFS1. We showed in in vitro experiments that the tested probiotics exhibit common TLR2- and TLR10-dependent downstream signalling cascades involving inhibition of NF-κB signal transduction. Under inflammatory conditions, the probiotics activated phosphatidylinositol 3-kinase (PI3K)/Akt anti-apoptotic pathways and protein kinase C (PKC)-dependent pathways, which led to regulation of the actin cytoskeleton and tight junctions. These pathways contribute to the regeneration of the intestinal epithelium and modulation of the mucosal immune system, which, together with the inhibition of canonical TLR signalling, promote general immune tolerance. With this study we identified shared probiotic mechanisms and were the first to pinpoint the role of anti-inflammatory probiotic signalling through TLR10.
Collapse
Affiliation(s)
- Diana Paveljšek
- Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Domžale, Slovenia
| | - Karolina Ivičak-Kocjan
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Primož Treven
- Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Domžale, Slovenia
| | - Mojca Benčina
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Irena Rogelj
- Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Domžale, Slovenia
| |
Collapse
|