1
|
Lee S, Tsavou A, Zarnowski R, Pforte R, Allert S, Krüger T, Kniemeyer O, Brakhage AA, Bui TTT, Andes DR, Richardson JP, Hube B, Naglik JR. Candida albicans biofilm extracellular vesicles deliver candidalysin to epithelial cell membranes and induce host cell responses. Infect Immun 2025; 93:e0040424. [PMID: 40172491 PMCID: PMC12070735 DOI: 10.1128/iai.00404-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/30/2025] [Indexed: 04/04/2025] Open
Abstract
Extracellular vesicles (EVs) are heterogeneous particles encapsulated with a phospholipid bilayer membrane. EVs have evolved diverse biological functions, serving mainly as prominent mediators and regulators of cell-cell communication. This study investigated whether candidalysin, a key virulence factor in Candida albicans infections, is present within EVs derived from C. albicans biofilms and retains activity by inducing host immune responses. We found that biofilm EVs contain candidalysin and can permeabilize planar lipid bilayer membranes in a dose-dependent manner. However, biofilm EVs were unable to damage oral epithelial cells (OECs) but were able to induce cytokine responses. Notably, EVs obtained from biofilms cultured for 24 h and 48 h exhibited differences in cargo composition and their ability to activate OECs. This study highlights the potential of biofilm EVs as a toxin delivery system during C. albicans infection and identifies temporal differences in the ability of EVs to activate epithelial cells.
Collapse
Affiliation(s)
- Sejeong Lee
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Antzela Tsavou
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Robert Zarnowski
- Department of Medicine, Infectious Disease Division, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Rita Pforte
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll Institute, Jena, Thuringia, Germany
| | - Stefanie Allert
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll Institute, Jena, Thuringia, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Jena, Thuringia, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Jena, Thuringia, Germany
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Jena, Thuringia, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Thuringia, Germany
| | - Tam T. T. Bui
- Centre for Biomolecular Spectroscopy and Randall Division of Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| | - David R. Andes
- Department of Medicine, Infectious Disease Division, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jonathan P. Richardson
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll Institute, Jena, Thuringia, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Thuringia, Germany
| | - Julian R. Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
2
|
Lortal L, Lyon CM, Sprague JL, Sonnberger J, Paulin OKA, Wickramasinghe DN, Richardson JP, Hube B, Naglik JR. Candidalysin biology and activation of host cells. mBio 2025:e0060324. [PMID: 40293285 DOI: 10.1128/mbio.00603-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Abstract
Candida albicans is an opportunistic fungal pathogen that can cause life-threatening systemic infections and distressing mucosal infections. A major breakthrough in understanding C. albicans pathogenicity was the discovery of candidalysin, the first cytolytic peptide toxin identified in a human pathogenic fungus. Secreted by C. albicans hyphae and encoded by the ECE1 gene, this 31-amino acid peptide integrates into and permeabilizes host cell membranes, causing damage across diverse cell types. Beyond its cytolytic activity, candidalysin can trigger potent innate immune responses in epithelial cells, macrophages, and neutrophils. Additionally, candidalysin plays a key role in nutrient acquisition during infection. This review explores the biology of candidalysin, its role in host cell activation, and extends the discussion to non-candidalysin Ece1p peptides, shedding light on their emerging significance.
Collapse
Affiliation(s)
- Léa Lortal
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Claire M Lyon
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Jakob L Sprague
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Johannes Sonnberger
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Olivia K A Paulin
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Don N Wickramasinghe
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Jonathan P Richardson
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| |
Collapse
|
3
|
Schille TB, Sprague JL, Naglik JR, Brunke S, Hube B. Commensalism and pathogenesis of Candida albicans at the mucosal interface. Nat Rev Microbiol 2025:10.1038/s41579-025-01174-x. [PMID: 40247134 DOI: 10.1038/s41579-025-01174-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2025] [Indexed: 04/19/2025]
Abstract
Fungi are important and often underestimated human pathogens. Infections with fungi mostly originate from the environment, from soil or airborne spores. By contrast, Candida albicans, one of the most common and clinically important fungal pathogens, permanently exists in the vast majority of healthy individuals as a member of the human mucosal microbiota. Only under certain circumstances will these commensals cause infections. However, although the pathogenic behaviour and disease manifestation of C. albicans have been at the centre of research for many years, its asymptomatic colonization of mucosal surfaces remains surprisingly understudied. In this Review, we discuss the interplay of the fungus, the host and the microbiome on the dualism of commensal and pathogenic life of C. albicans, and how commensal growth is controlled and permitted. We explore hypotheses that could explain how the mucosal environment shapes C. albicans adaptations to its commensal lifestyle, while still maintaining or even increasing its pathogenic potential.
Collapse
Affiliation(s)
- Tim B Schille
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Jakob L Sprague
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany.
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
4
|
Takeuchi N, Fukui K, Nakamura K, Tanaka A. Studies on the antifungal effects of Hinokitiol on Candida albicans: inhibition of germ tube formation and synergistic pharmacological effects of miconazole. Odontology 2025; 113:556-565. [PMID: 39292415 DOI: 10.1007/s10266-024-00992-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 08/15/2024] [Indexed: 09/19/2024]
Abstract
One of the goals of oral healthcare management is to manage dry mouth. Thus, moisturizers containing antimicrobial ingredients, such as hinokitiol (HT), are applied to the oral mucosa after oral care. In this study, we investigated the preventive effect of HT against the growth of Candida albicans (C. al) and its synergistic effect when combined with miconazole (MCZ), an oral treatment for candidiasis. As the concentration of HT increased, the length and percentage of germ tubes (GT) decreased. Larger inhibition circles were observed for MCZ concentrations of 2.0 and 4.0 μg/disc compared to the HT medium without HT. The increased inhibitory effect was observed in both aerobic and anaerobic cultures. This suggests that the production of reactive oxygen species (ROS) by C. al cells increased with the combination of HT and MCZ. The length and percentage of GT increased, whereas the amount of ROS decreased when ROS scavengers were used in combination with the drug. HT led to morphological changes that inhibited the GT associated with pathogenic C. al, exhibited a complementary action against MCZ, and showed a possible association with hydrogen peroxide and superhydroxy anion radicals. These effects suggest that HT is a promising candidate for inhibiting C. al. In conclusion, HT demonstrated a prophylactic effect by inhibiting C. al and a synergistic effect with MCZ, a drug used to treat oral candidiasis. HT may also be useful for suppressing the onset and reducing the severity of oral candidiasis.
Collapse
Affiliation(s)
- Nobuchika Takeuchi
- Course of Clinical Science, Field of Oral and Maxillofacial Surgery and Systemic Medicine, Oral and Maxillofacial Surgery, Graduate School of Life Dentistry at Niigata, The Nippon Dental University, 1-8 Hamaura-cho, Chuo-ku, Niigata, 951-8580, Japan.
| | - Kayoko Fukui
- Department of Pharmacology, School of Life Dentistry at Niigata, The Nippon Dental University, 1-8 Hamaura-cho, Chuo-ku, Niigata, 951-8580, Japan
| | - Kenjirou Nakamura
- School of Life Dentistry at Niigata, The Nippon Dental University, 1-8 Hamaura-cho, Chuo-ku, Niigata, 951-8580, Japan
| | - Akira Tanaka
- Course of Clinical Science, Field of Oral and Maxillofacial Surgery and Systemic Medicine, Oral and Maxillofacial Surgery, Graduate School of Life Dentistry at Niigata, The Nippon Dental University, 1-8 Hamaura-cho, Chuo-ku, Niigata, 951-8580, Japan
- Department of Oral and Maxillofacial Surgery, School of Life Dentistry at Niigata, The Nippon Dental University, 1-8 Hamaura-cho, Chuo-ku, Niigata, 951-8580, Japan
| |
Collapse
|
5
|
Lim SJ, Muhd Noor ND, Sabri S, Mohamad Ali MS, Salleh AB, Oslan SN. Features of the rare pathogen Meyerozyma guilliermondii strain SO and comprehensive in silico analyses of its adherence-contributing virulence factor agglutinin-like sequences. J Biomol Struct Dyn 2025; 43:3728-3748. [PMID: 38189364 DOI: 10.1080/07391102.2023.2300757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/17/2023] [Indexed: 01/09/2024]
Abstract
Meyerozyma guilliermondii is a rare yeast pathogen contributing to the deadly invasive candidiasis. M. guilliermondii strain SO, as a promising protein expression host, showed 99% proteome similarity with the clinically isolated ATCC 6260 (type strain) in a recent comparative genomic analysis. However, their in vitro virulence features and in vivo pathogenicity were uncharacterized. This study aimed to characterize the in vitro and in vivo pathogenicity of M. guilliermondii strain SO and analyze its Als proteins (MgAls) via comprehensive bioinformatics approaches. M. guilliermondii strain SO showed lower and higher sensitivity towards β-mercaptoethanol and lithium, respectively than the avirulent S. cerevisiae but exhibited the same tolerance towards cell wall-perturbing Congo Red with C. albicans. With 7.5× higher biofilm mass, M. guilliermondii strain SO also demonstrated 75% higher mortality rate in the zebrafish embryos with a thicker biofilm layer on the chorion compared to the avirulent S. cerevisiae. Being one of the most important Candida adhesins, sequence and structural analyses of four statistically identified MgAls showed that MgAls1056 was predicted to exhibit the most conserved amyloid-forming regions, tandem repeat domain and peptide binding cavity (PBC) compared to C. albicans Als3. Favoured from the predicted largest ligand binding site and druggable pockets, it showed the highest affinity towards hepta-threonine. Non-PBC druggable pockets in the most potent virulence contributing MgAls1056 provide new insights into developing antifungal drugs targeting non-albicans Candida spp. Virtual screening of available synthetic or natural bioactive compounds and MgAls1056 deletion from the fungal genome should be further performed and validated experimentally.
Collapse
Affiliation(s)
- Si Jie Lim
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Noor Dina Muhd Noor
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Suriana Sabri
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Abu Bakar Salleh
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| |
Collapse
|
6
|
Morelli M, Queiroz K. Breaking Barriers: Candidalysin Disrupts Epithelial Integrity and Induces Inflammation in a Gut-on-Chip Model. Toxins (Basel) 2025; 17:89. [PMID: 39998106 PMCID: PMC11861147 DOI: 10.3390/toxins17020089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
Candida albicans is an opportunistic pathogenic yeast commonly found in the gastrointestinal tract of healthy humans. Under certain conditions, it can become invasive and cause life-threatening systemic infections. One mechanism used by C.albicans to breach the epithelial barrier is the secretion of candidalysin, a cytolytic peptide toxin. Candidalysin damages epithelial membranes and activates the innate immune response, making it key to C.albicans' pathogenicity and a promising therapeutic target. Although candidalysin mediates C. albicans translocation through intestinal layers, its impact on epithelial responses is not fully understood. This study aims to characterize this response and develop scalable, quantitative methodologies to assess candidalysin's toxicological effects using gut-on-chip models. We used the OrganoPlate® platform to expose Caco-2 tubules to candidalysin and evaluated their response with trans-epithelial electrical resistance (TEER), protein detection, and immunostaining. We then validated our findings in a proof-of-concept experiment using human intestinal organoid tubules. Candidalysin impaired barrier integrity, induced actin remodeling, and increased cell permeability. It also induced the release of LDH, cytokines, and the antimicrobial peptide LL37, suggesting cellular damage, inflammation, and antimicrobial activity. This study strengthens our understanding of candidalysin's role in C. albicans pathogenesis and suggests new therapeutic strategies targeting this toxin. Moreover, patient-derived organoids show promise for capturing patient heterogeneity and developing personalized treatments.
Collapse
Affiliation(s)
- Moran Morelli
- MIMETAS B.V., De Limes 7, 2342 DH Oegstgeest, The Netherlands
| | | |
Collapse
|
7
|
Praetorius JP, Hitzler SUJ, Gresnigt MS, Figge MT. Image-based quantification of Candida albicans filamentation and hyphal length using the open-source visual programming language JIPipe. FEMS Yeast Res 2025; 25:foaf011. [PMID: 40082735 PMCID: PMC11963753 DOI: 10.1093/femsyr/foaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/28/2025] [Accepted: 03/12/2025] [Indexed: 03/16/2025] Open
Abstract
The formation of hyphae is one of the most crucial virulence traits the human pathogenic fungus Candida albicans possesses. The assessment of hyphal length in response to various stimuli, such as exposure to human serum, provides valuable insights into the adaptation strategies of C. albicans to the host environment. Despite the increasing high-throughput capacity live-cell imaging and data generation, the accurate analysis of hyphal growth has remained a laborious, error-prone, and subjective manual process. We developed an analysis pipeline utilizing the open-source visual programming language Java Image Processing Pipeline (JIPipe) to overcome the limitations associated with manual analysis of hyphal growth. By comparing our automated approach with manual analysis, we refined the strategies to achieve accurate differentiation between yeast cells and hyphae. The automated method enables length measurements of individual hyphae, facilitating a time-efficient, high-throughput, and user-friendly analysis. By utilizing this JIPipe analysis approach, we obtained insights into the filamentation behavior of two C. albicans strains when exposed to human serum albumin (HSA), the most abundant protein in human serum. Our findings indicate that despite the known role of HSA in stimulating fungal growth, it reduces filamentous growth. The implementation of our automated JIPipe analysis approach for hyphal growth represents a long-awaited and time-efficient solution to meet the demand of high-throughput data generation. This tool can benefit different research areas investigating the virulence aspects of C. albicans.
Collapse
Affiliation(s)
- Jan-Philipp Praetorius
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), 07745 Jena, Germany
| | - Sophia U J Hitzler
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
| | - Mark S Gresnigt
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
| | - Marc Thilo Figge
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), 07745 Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, 07745 Jena, Germany
| |
Collapse
|
8
|
Jaeger M, Dietschmann A, Austermeier S, Dinçer S, Porschitz P, Vornholz L, Maas RJ, Sprenkeler EG, Ruland J, Wirtz S, Azam T, Joosten LA, Hube B, Netea MG, Dinarello CA, Gresnigt MS. Alpha1-antitrypsin impacts innate host-pathogen interactions with Candida albicans by stimulating fungal filamentation. Virulence 2024; 15:2333367. [PMID: 38515333 PMCID: PMC11008552 DOI: 10.1080/21505594.2024.2333367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/08/2024] [Indexed: 03/23/2024] Open
Abstract
Our immune system possesses sophisticated mechanisms to cope with invading microorganisms, while pathogens evolve strategies to deal with threats imposed by host immunity. Human plasma protein α1-antitrypsin (AAT) exhibits pleiotropic immune-modulating properties by both preventing immunopathology and improving antimicrobial host defence. Genetic associations suggested a role for AAT in candidemia, the most frequent fungal blood stream infection in intensive care units, yet little is known about how AAT influences interactions between Candida albicans and the immune system. Here, we show that AAT differentially impacts fungal killing by innate phagocytes. We observed that AAT induces fungal transcriptional reprogramming, associated with cell wall remodelling and downregulation of filamentation repressors. At low concentrations, the cell-wall remodelling induced by AAT increased immunogenic β-glucan exposure and consequently improved fungal clearance by monocytes. Contrastingly, higher AAT concentrations led to excessive C. albicans filamentation and thus promoted fungal immune escape from monocytes and macrophages. This underscores that fungal adaptations to the host protein AAT can differentially define the outcome of encounters with innate immune cells, either contributing to improved immune recognition or fungal immune escape.
Collapse
Affiliation(s)
- Martin Jaeger
- Department of Medicine, University of Colorado Denver, Aurora, USA
- Department of Internal Medicine, Radboud University Medical Center and Radboud Center for Infectious diseases (RCI), Nijmegen, the Netherlands
| | - Axel Dietschmann
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Sophie Austermeier
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Sude Dinçer
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Pauline Porschitz
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Larsen Vornholz
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine and Health, Center for Translational Cancer Research (TranslaTUM), Munich, Germany
| | - Ralph J.A. Maas
- Department of Medicine, University of Colorado Denver, Aurora, USA
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Evelien G.G. Sprenkeler
- Department of Internal Medicine, Radboud University Medical Center and Radboud Center for Infectious diseases (RCI), Nijmegen, the Netherlands
| | - Jürgen Ruland
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine and Health, Center for Translational Cancer Research (TranslaTUM), Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Germany
| | - Stefan Wirtz
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tania Azam
- Department of Medicine, University of Colorado Denver, Aurora, USA
| | - Leo A.B. Joosten
- Department of Internal Medicine, Radboud University Medical Center and Radboud Center for Infectious diseases (RCI), Nijmegen, the Netherlands
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
- Institute of Microbiology, Friedrich-Schiller-University, Jena, Germany
| | - Mihai G. Netea
- Department of Internal Medicine, Radboud University Medical Center and Radboud Center for Infectious diseases (RCI), Nijmegen, the Netherlands
| | - Charles A. Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, USA
- Department of Internal Medicine, Radboud University Medical Center and Radboud Center for Infectious diseases (RCI), Nijmegen, the Netherlands
| | - Mark S. Gresnigt
- Department of Medicine, University of Colorado Denver, Aurora, USA
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| |
Collapse
|
9
|
Buda De Cesare G, Sauer FM, Kolecka A, Stavrou AA, Verrips TC, Boekhout T, Dolk E, Munro CA. The development of single-domain VHH nanobodies that target the Candida albicans cell surface. Microbiol Spectr 2024; 12:e0426923. [PMID: 39373478 PMCID: PMC11572700 DOI: 10.1128/spectrum.04269-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/27/2024] [Indexed: 10/08/2024] Open
Abstract
Candida albicans causes life-threatening invasive infections that are hard to diagnose and treat, with drug resistance leading to treatment failure. The goal of this study was to develop VHH (single variable domain on a heavy chain) nanobodies to detect drug-resistant infections. Llamas were immunized with a mixture of heat killed and fixed C. albicans cells of different morphologies. Llama lymphocyte RNA was used to generate phage display libraries that were tested for binding to C. albicans cells or cell wall fractions, and single antibody domains were isolated. The libraries were panned against echinocandin-resistant C. albicans isolates and counter-selected against echinocandin-susceptible isolates with the aim of isolating binding domains specific for antigens on drug-resistant cells. Thirty diverse VHH nanobodies were selected, and binding characteristics were assessed via dose-response ELISA. Binding was tested against a variety of C. albicans isolates and other Candida species, indicating that the VHHs were specific for C. albicans. The VHH nanobodies were sorted into four distinct groups based on their binding patterns. Two of the groups bound preferentially to the yeast cell poles and hyphae, respectively. Nanobody binding to C. albicans deletion mutants was tested by fluorescence microscopy and ELISA to identify the antigen targets. VHH19 nanobody, belonging to the largest group, recognized the Als4 adhesin. VHH14 antibody in the hyphae-specific group recognized Als3. None of the isolated VHH nanobodies was selective for drug-resistant clinical isolates. Our data indicate that this approach can generate valuable single-domain antibodies specific to C. albicans proteins.IMPORTANCEThe human fungal pathogen Candida albicans causes a range of diseases from superficial mucosal infections such as oral and vaginal thrush to life-threatening, systemic infections. Accurate and rapid diagnosis of these infections remains challenging, and currently, there are no rapid ways to diagnose drug-resistant infections without performing drug susceptibility testing from blood culture, which can take several days. In this proof-of-concept study, we have generated a diverse set of single domain VHH antibodies (nanobodies) from llamas that recognize and bind specifically to C. albicans cell surface. The nanobodies were classified into four groups based on their binding patterns, for example, cell poles or hyphae. Specific nanobodies were verified as recognizing the important adhesin Als4 or the hyphae associated invasin Als3, respectively. The data validate the approach that small VHH antibody domains hold future promise for diagnostic applications and as probes to study the fungal cell surface.
Collapse
Affiliation(s)
- Giuseppe Buda De Cesare
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Institute of Medical Sciences, Foresterhill, United Kingdom
| | | | - Anna Kolecka
- Previous Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - Aimilia A. Stavrou
- Previous Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
- GenDx, Utrecht, the Netherlands
| | | | - Teun Boekhout
- Previous Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
- College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | | | - Carol A. Munro
- Institute of Medical Sciences, Foresterhill, United Kingdom
| |
Collapse
|
10
|
Lin J, Miao J, Schaefer KG, Russell CM, Pyron RJ, Zhang F, Phan QT, Solis NV, Liu H, Tashiro M, Dordick JS, Linhardt RJ, Yeaman MR, King GM, Barrera FN, Peters BM, Filler SG. Sulfated glycosaminoglycans are host epithelial cell targets of the Candida albicans toxin candidalysin. Nat Microbiol 2024; 9:2553-2569. [PMID: 39285260 PMCID: PMC11734966 DOI: 10.1038/s41564-024-01794-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/23/2024] [Indexed: 10/03/2024]
Abstract
Candidalysin, a cytolytic peptide produced by the fungal pathogen Candida albicans, is a key virulence factor. However, its host cell targets remain elusive. Here we performed a genome-wide loss-of-function CRISPR screen in the TR146 human oral epithelial cell line and identified that disruption of genes (XYLT2, B3GALT6 and B3GAT3) in glycosaminoglycan (GAG) biosynthesis conferred resistance to damage induced by candidalysin and live C. albicans. Surface plasmon resonance and atomic force and electron microscopy indicated that candidalysin binds to sulfated GAGs, facilitating its enrichment on the host cell surface. Adding exogenous sulfated GAGs or the analogue dextran sulfate protected cells against candidalysin-induced damage. Dextran sulfate also inhibited C. albicans invasion and fungal-induced epithelial cell cytokine production. In mice with vulvovaginal candidiasis, topical dextran sulfate administration reduced intravaginal tissue damage and inflammation. Collectively, sulfated GAGs are epithelial cell targets of candidalysin and can be used therapeutically to protect cells from candidalysin-induced damage.
Collapse
Affiliation(s)
- Jianfeng Lin
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jian Miao
- Pharmaceutical Sciences Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | - Charles M Russell
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Robert J Pyron
- Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| | - Fuming Zhang
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Quynh T Phan
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Norma V Solis
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Hong Liu
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Masato Tashiro
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Michael R Yeaman
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Division of Infectious Diseases, Department of Medicine, Harbor-UCLA Medical Center, Torrance, CA, USA
- Division of Molecular Medicine, Department of Medicine, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Gavin M King
- Department of Physics and Astronomy, University of Missouri, Columbia, MO, USA
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO, USA
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Brian M Peters
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Scott G Filler
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA.
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
- Division of Infectious Diseases, Department of Medicine, Harbor-UCLA Medical Center, Torrance, CA, USA.
| |
Collapse
|
11
|
Jia LJ, González K, Orasch T, Schmidt F, Brakhage AA. Manipulation of host phagocytosis by fungal pathogens and therapeutic opportunities. Nat Microbiol 2024; 9:2216-2231. [PMID: 39187614 DOI: 10.1038/s41564-024-01780-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/09/2024] [Indexed: 08/28/2024]
Abstract
An important host defence mechanism against pathogens is intracellular killing, which is achieved through phagocytosis, a cellular process for engulfing and neutralizing extracellular particles. Phagocytosis results in the formation of matured phagolysosomes, which are specialized compartments that provide a hostile environment and are considered the end point of the degradative pathway. However, all fungal pathogens studied to date have developed strategies to manipulate phagosomal function directly and also indirectly by redirecting phagosomes from the degradative pathway to a non-degradative pathway with the expulsion and even transfer of pathogens between cells. Here, using the major human fungal pathogens Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans and Histoplasma capsulatum as examples, we discuss the processes involved in host phagosome-fungal pathogen interactions, with a focus on fungal evasion strategies. We also discuss recent approaches to targeting intraphagosomal pathogens, including the redirection of phagosomes towards degradative pathways for fungal pathogen eradication.
Collapse
Affiliation(s)
- Lei-Jie Jia
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany.
- Junior Research Group Phagosome Biology and Engineering, Leibniz-HKI, Jena, Germany.
| | - Katherine González
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Thomas Orasch
- Transfer Group Anti-infectives, Leibniz-HKI, Jena, Germany
| | - Franziska Schmidt
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany.
- Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
12
|
Wickramasinghe DN, Lyon CM, Lee S, Hepworth OW, Priest EL, Maufrais C, Ryan AP, Permal E, Sullivan D, McManus BA, Hube B, Butler G, d'Enfert C, Naglik JR, Richardson JP. Variations in candidalysin amino acid sequence influence toxicity and host responses. mBio 2024; 15:e0335123. [PMID: 38953356 PMCID: PMC11323794 DOI: 10.1128/mbio.03351-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 06/10/2024] [Indexed: 07/04/2024] Open
Abstract
Candida albicans causes millions of mucosal infections in humans annually. Hyphal overgrowth on mucosal surfaces is frequently associated with tissue damage caused by candidalysin, a secreted peptide toxin that destabilizes the plasma membrane of host cells thereby promoting disease and immunopathology. Candidalysin was first identified in C. albicans strain SC5314, but recent investigations have revealed candidalysin "variants" of differing amino acid sequence in isolates of C. albicans, and the related species C. dubliniensis, and C tropicalis, suggesting that sequence variation among candidalysins may be widespread in natural populations of these Candida species. Here, we analyzed ECE1 gene sequences from 182 C. albicans isolates, 10 C. dubliniensis isolates, and 78 C. tropicalis isolates and identified 10, 3, and 2 candidalysin variants in these species, respectively. Application of candidalysin variants to epithelial cells revealed differences in the ability to cause cellular damage, changes in metabolic activity, calcium influx, MAPK signalling, and cytokine secretion, while biophysical analyses indicated that variants exhibited differences in their ability to interact with and permeabilize a membrane. This study identifies candidalysin variants with differences in biological activity that are present in medically relevant Candida species. IMPORTANCE Fungal infections are a significant burden to health. Candidalysin is a toxin produced by Candida albicans that damages host tissues, facilitating infection. Previously, we demonstrated that candidalysins exist in the related species C. dubliniensis and C. tropicalis, thereby identifying these molecules as a toxin family. Recent genomic analyses have highlighted the presence of a small number of candidalysin "variant" toxins, which have different amino acid sequences to those originally identified. Here, we screened genome sequences of isolates of C. albicans, C. dubliniensis, and C. tropicalis and identified candidalysin variants in all three species. When applied to epithelial cells, candidalysin variants differed in their ability to cause damage, activate intracellular signaling pathways, and induce innate immune responses, while biophysical analysis revealed differences in the ability of candidalysin variants to interact with lipid bilayers. These findings suggest that intraspecies variation in candidalysin amino acid sequence may influence fungal pathogenicity.
Collapse
Affiliation(s)
- Don N. Wickramasinghe
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Claire M. Lyon
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Sejeong Lee
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Olivia W. Hepworth
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Emily L. Priest
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Corinne Maufrais
- Institut Pasteur, Université Paris Cité, INRAe USC 2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Adam P. Ryan
- School of Biomedical and Biomolecular Science and UCD Conway Institute of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Dublin, Ireland
| | - Emmanuelle Permal
- Institut Pasteur, Université Paris Cité, INRAe USC 2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Derek Sullivan
- Division of Oral Biosciences, Dublin Dental University Hospital, and School of Dental Science, Trinity College Dublin, Dublin, Ireland
| | - Brenda A. McManus
- Division of Oral Biosciences, Dublin Dental University Hospital, and School of Dental Science, Trinity College Dublin, Dublin, Ireland
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoll Institute (HKI), Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Geraldine Butler
- School of Biomedical and Biomolecular Science and UCD Conway Institute of Biomolecular and Biomedical Research, Conway Institute, University College Dublin, Dublin, Ireland
| | - Christophe d'Enfert
- Institut Pasteur, Université Paris Cité, INRAe USC 2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Julian R. Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Jonathan P. Richardson
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
13
|
Sharafutdinov I, Friedrich B, Rottner K, Backert S, Tegtmeyer N. Cortactin: A major cellular target of viral, protozoal, and fungal pathogens. Mol Microbiol 2024; 122:165-183. [PMID: 38868928 DOI: 10.1111/mmi.15284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
Many viral, protozoal, and fungal pathogens represent major human and animal health problems due to their great potential of causing infectious diseases. Research on these pathogens has contributed substantially to our current understanding of both microbial virulence determinants and host key factors during infection. Countless studies have also shed light on the molecular mechanisms of host-pathogen interactions that are employed by these microbes. For example, actin cytoskeletal dynamics play critical roles in effective adhesion, host cell entry, and intracellular movements of intruding pathogens. Cortactin is an eminent host cell protein that stimulates actin polymerization and signal transduction, and recently emerged as fundamental player during host-pathogen crosstalk. Here we review the important role of cortactin as major target for various prominent viral, protozoal and fungal pathogens in humans, and its role in human disease development and cancer progression. Most if not all of these important classes of pathogens have been reported to hijack cortactin during infection through mediating up- or downregulation of cortactin mRNA and protein expression as well as signaling. In particular, pathogen-induced changes in tyrosine and serine phosphorylation status of cortactin at its major phospho-sites (Y-421, Y-470, Y-486, S-113, S-298, S-405, and S-418) are addressed. As has been reported for various Gram-negative and Gram-positive bacteria, many pathogenic viruses, protozoa, and fungi also control these regulatory phospho-sites, for example, by activating kinases such as Src, PAK, ERK1/2, and PKD, which are known to phosphorylate cortactin. In addition, the recruitment of cortactin and its interaction partners, like the Arp2/3 complex and F-actin, to the contact sites between pathogens and host cells is highlighted, as this plays an important role in the infection process and internalization of several pathogens. However, there are also other ways in which the pathogens can exploit the function of cortactin for their needs, as the cortactin-mediated regulation of cellular processes is complex and involves numerous different interaction partners. Here, the current state of knowledge is summarized.
Collapse
Affiliation(s)
- Irshad Sharafutdinov
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Barbara Friedrich
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Klemens Rottner
- Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Steffen Backert
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nicole Tegtmeyer
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
14
|
Lin J, Miao J, Schaefer KG, Russell CM, Pyron RJ, Zhang F, Phan QT, Solis-Swidergall NV, Liu H, Tashiro M, Dordick JS, Linhardt RJ, Yeaman MR, King GM, Barrera FN, Peters BM, Filler SG. A genome-scale screen identifies sulfated glycosaminoglycans as pivotal in epithelial cell damage by Candida albicans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595417. [PMID: 38826446 PMCID: PMC11142209 DOI: 10.1101/2024.05.23.595417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Candidalysin is a cytolytic peptide produced by the opportunistic fungal pathogen Candida albicans. This peptide is a key virulence factor in mouse models of mucosal and hematogenously disseminated candidiasis. Despite intense interest in the role of candidalysin in C. albicans pathogenicity, its host cell targets have remained elusive. To fill this knowledge gap, we performed a genome-wide loss-of-function CRISPR screen in a human oral epithelial cell line to identify specific host factors required for susceptibility to candidalysin-induced cellular damage. Among the top hits were XYLT2, B3GALT6 and B3GAT3, genes that function in glycosaminoglycan (GAG) biosynthesis. Deletion of these genes led to the absence of GAGs such as heparan sulfate on the epithelial cell surface and increased resistance to damage induced by both candidalysin and live C. albicans. Biophysical analyses including surface plasmon resonance and atomic force and electron microscopy indicated that candidalysin physically binds to sulfated GAGs, facilitating its oligomerization or enrichment on the host cell surface. The addition of exogenous sulfated GAGs or the GAG analogue dextran sulfate protected cells against candidalysin-induced damage. Dextran sulfate, but not non-sulfated dextran, also inhibited epithelial cell endocytosis of C. albicans and fungal-induced epithelial cell cytokine and chemokine production. In a murine model of vulvovaginal candidiasis, topical dextran sulfate administration reduced host tissue damage and decreased intravaginal IL-1β and neutrophil levels. Collectively, these data indicate that GAGs are epithelial cell targets of candidalysin and can be used therapeutically to protect cells from candidalysin-induced damage.
Collapse
Affiliation(s)
- Jianfeng Lin
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Jian Miao
- Pharmaceutical Sciences Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Katherine G Schaefer
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri United States
| | - Charles M Russell
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee United States
| | - Robert J Pyron
- Genome Science and Technology, University of Tennessee, Knoxville, United States
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Quynh T Phan
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Norma V Solis-Swidergall
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Hong Liu
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Masato Tashiro
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Michael R Yeaman
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Division of Infectious Diseases, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California, USA
- Division of Molecular Medicine, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California, USA
| | - Gavin M King
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri United States
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee United States
| | - Brian M Peters
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Scott G Filler
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Division of Infectious Diseases, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California, USA
| |
Collapse
|
15
|
Böttcher B, Kienast SD, Leufken J, Eggers C, Sharma P, Leufken CM, Morgner B, Drexler HCA, Schulz D, Allert S, Jacobsen ID, Vylkova S, Leidel SA, Brunke S. A highly conserved tRNA modification contributes to C. albicans filamentation and virulence. Microbiol Spectr 2024; 12:e0425522. [PMID: 38587411 PMCID: PMC11064501 DOI: 10.1128/spectrum.04255-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/18/2024] [Indexed: 04/09/2024] Open
Abstract
tRNA modifications play important roles in maintaining translation accuracy in all domains of life. Disruptions in the tRNA modification machinery, especially of the anticodon stem loop, can be lethal for many bacteria and lead to a broad range of phenotypes in baker's yeast. Very little is known about the function of tRNA modifications in host-pathogen interactions, where rapidly changing environments and stresses require fast adaptations. We found that two closely related fungal pathogens of humans, the highly pathogenic Candida albicans and its much less pathogenic sister species, Candida dubliniensis, differ in the function of a tRNA-modifying enzyme. This enzyme, Hma1, exhibits species-specific effects on the ability of the two fungi to grow in the hypha morphology, which is central to their virulence potential. We show that Hma1 has tRNA-threonylcarbamoyladenosine dehydratase activity, and its deletion alters ribosome occupancy, especially at 37°C-the body temperature of the human host. A C. albicans HMA1 deletion mutant also shows defects in adhesion to and invasion into human epithelial cells and shows reduced virulence in a fungal infection model. This links tRNA modifications to host-induced filamentation and virulence of one of the most important fungal pathogens of humans.IMPORTANCEFungal infections are on the rise worldwide, and their global burden on human life and health is frequently underestimated. Among them, the human commensal and opportunistic pathogen, Candida albicans, is one of the major causative agents of severe infections. Its virulence is closely linked to its ability to change morphologies from yeasts to hyphae. Here, this ability is linked-to our knowledge for the first time-to modifications of tRNA and translational efficiency. One tRNA-modifying enzyme, Hma1, plays a specific role in C. albicans and its ability to invade the host. This adds a so-far unknown layer of regulation to the fungal virulence program and offers new potential therapeutic targets to fight fungal infections.
Collapse
Affiliation(s)
- Bettina Böttcher
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany
| | - Sandra D. Kienast
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Research Group for Cellular RNA Biochemistry, Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Johannes Leufken
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Research Group for Cellular RNA Biochemistry, Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Cristian Eggers
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Research Group for Cellular RNA Biochemistry, Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Puneet Sharma
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Research Group for Cellular RNA Biochemistry, Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Christine M. Leufken
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Bianka Morgner
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany
| | - Hannes C. A. Drexler
- Bioanalytical Mass Spectrometry Unit, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Daniela Schulz
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany
| | - Stefanie Allert
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany
| | - Ilse D. Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Slavena Vylkova
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany
| | - Sebastian A. Leidel
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Research Group for Cellular RNA Biochemistry, Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany
| |
Collapse
|
16
|
Yang Z, Zhang S, Ji N, Li J, Chen Q. The evil companion of OSCC: Candida albicans. Oral Dis 2024; 30:1873-1886. [PMID: 37530513 DOI: 10.1111/odi.14700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 08/03/2023]
Abstract
OBJECTIVE Microbial dysbiosis and microbiome-induced inflammation may play a role in the etiopathogenesis of oral squamous cell carcinoma (OSCC). Candida albicans (C. albicans) is the most prevalent opportunistic pathogenic fungus in the oral cavity, and Candida infection is considered as one of its high-risk factors. Although oral microbiota-host interactions are closely associated with the development of OSCC, the interrelationship between fungi and OSCC is poorly understood compared to that between bacteria and viruses. RESULTS We accumulated knowledge of the evidence, pathogenic factors, and possible multiple mechanisms by which C. albicans promotes malignant transformation of OSCC, focusing on the induction of epithelial damage, production of carcinogens, and regulation of the tumor microenvironment. In addition, we highlight the latest treatment strategies for Candida infection. CONCLUSION This review provides a new perspective on the interrelationship between C. albicans and OSCC and contributes to the establishment of a systematic and reliable clinical treatment system for OSCC patients with C. albicans infection.
Collapse
Affiliation(s)
- Zhixin Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Shiyu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
17
|
Valentine M, Rudolph P, Dietschmann A, Tsavou A, Mogavero S, Lee S, Priest EL, Zhurgenbayeva G, Jablonowski N, Timme S, Eggeling C, Allert S, Dolk E, Naglik JR, Figge MT, Gresnigt MS, Hube B. Nanobody-mediated neutralization of candidalysin prevents epithelial damage and inflammatory responses that drive vulvovaginal candidiasis pathogenesis. mBio 2024; 15:e0340923. [PMID: 38349176 PMCID: PMC10936171 DOI: 10.1128/mbio.03409-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 03/14/2024] Open
Abstract
Candida albicans can cause mucosal infections in humans. This includes oropharyngeal candidiasis, which is commonly observed in human immunodeficiency virus infected patients, and vulvovaginal candidiasis (VVC), which is the most frequent manifestation of candidiasis. Epithelial cell invasion by C. albicans hyphae is accompanied by the secretion of candidalysin, a peptide toxin that causes epithelial cell cytotoxicity. During vaginal infections, candidalysin-driven tissue damage triggers epithelial signaling pathways, leading to hyperinflammatory responses and immunopathology, a hallmark of VVC. Therefore, we proposed blocking candidalysin activity using nanobodies to reduce epithelial damage and inflammation as a therapeutic strategy for VVC. Anti-candidalysin nanobodies were confirmed to localize around epithelial-invading C. albicans hyphae, even within the invasion pocket where candidalysin is secreted. The nanobodies reduced candidalysin-induced damage to epithelial cells and downstream proinflammatory responses. Accordingly, the nanobodies also decreased neutrophil activation and recruitment. In silico mathematical modeling enabled the quantification of epithelial damage caused by candidalysin under various nanobody dosing strategies. Thus, nanobody-mediated neutralization of candidalysin offers a novel therapeutic approach to block immunopathogenic events during VVC and alleviate symptoms.IMPORTANCEWorldwide, vaginal infections caused by Candida albicans (VVC) annually affect millions of women, with symptoms significantly impacting quality of life. Current treatments are based on anti-fungals and probiotics that target the fungus. However, in some cases, infections are recurrent, called recurrent VVC, which often fails to respond to treatment. Vaginal mucosal tissue damage caused by the C. albicans peptide toxin candidalysin is a key driver in the induction of hyperinflammatory responses that fail to clear the infection and contribute to immunopathology and disease severity. In this pre-clinical evaluation, we show that nanobody-mediated candidalysin neutralization reduces tissue damage and thereby limits inflammation. Implementation of candidalysin-neutralizing nanobodies may prove an attractive strategy to alleviate symptoms in complicated VVC cases.
Collapse
Affiliation(s)
- Marisa Valentine
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute, Jena, Germany
| | - Paul Rudolph
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Axel Dietschmann
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute, Jena, Germany
| | - Antzela Tsavou
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, England, United Kingdom
| | - Selene Mogavero
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute, Jena, Germany
| | - Sejeong Lee
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, England, United Kingdom
| | - Emily L. Priest
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, England, United Kingdom
| | - Gaukhar Zhurgenbayeva
- Institute of Applied Optics and Biophysics, Friedrich Schiller University, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany
| | - Nadja Jablonowski
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute, Jena, Germany
| | - Sandra Timme
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Christian Eggeling
- Institute of Applied Optics and Biophysics, Friedrich Schiller University, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany
- Biophysical Imaging, Leibniz Institute of Photonic Technology, Jena, Germany
- Jena Center for Soft Matter (JCSM), Jena, Germany
| | - Stefanie Allert
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute, Jena, Germany
| | | | - Julian R. Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, England, United Kingdom
| | - Marc T. Figge
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany
- Institute of Microbiology, Friedrich-Schiller-University, Jena, Germany
| | - Mark S. Gresnigt
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany
- Institute of Microbiology, Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
18
|
Müller R, König A, Groth S, Zarnowski R, Visser C, Handrianz T, Maufrais C, Krüger T, Himmel M, Lee S, Priest EL, Yildirim D, Richardson JP, Blango MG, Bougnoux ME, Kniemeyer O, d'Enfert C, Brakhage AA, Andes DR, Trümper V, Nehls C, Kasper L, Mogavero S, Gutsmann T, Naglik JR, Allert S, Hube B. Secretion of the fungal toxin candidalysin is dependent on conserved precursor peptide sequences. Nat Microbiol 2024; 9:669-683. [PMID: 38388771 DOI: 10.1038/s41564-024-01606-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/12/2024] [Indexed: 02/24/2024]
Abstract
The opportunistic fungal pathogen Candida albicans damages host cells via its peptide toxin, candidalysin. Before secretion, candidalysin is embedded in a precursor protein, Ece1, which consists of a signal peptide, the precursor of candidalysin and seven non-candidalysin Ece1 peptides (NCEPs), and is found to be conserved in clinical isolates. Here we show that the Ece1 polyprotein does not resemble the usual precursor structure of peptide toxins. C. albicans cells are not susceptible to their own toxin, and single NCEPs adjacent to candidalysin are sufficient to prevent host cell toxicity. Using a series of Ece1 mutants, mass spectrometry and anti-candidalysin nanobodies, we show that NCEPs play a role in intracellular Ece1 folding and candidalysin secretion. Removal of single NCEPs or modifications of peptide sequences cause an unfolded protein response (UPR), which in turn inhibits hypha formation and pathogenicity in vitro. Our data indicate that the Ece1 precursor is not required to block premature pore-forming toxicity, but rather to prevent intracellular auto-aggregation of candidalysin sequences.
Collapse
Affiliation(s)
- Rita Müller
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany
| | - Annika König
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Sabrina Groth
- Division of Biophysics, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Robert Zarnowski
- Department of Medicine, Section of Infectious Diseases, University of Wisconsin-Madison, Madison, WI, USA
| | - Corissa Visser
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany
| | - Tom Handrianz
- Division of Biophysics, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Corinne Maufrais
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
- Institut Pasteur, Université Paris Cité, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany
| | - Maximilian Himmel
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany
| | - Sejeong Lee
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Emily L Priest
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Deniz Yildirim
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany
| | - Jonathan P Richardson
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Matthew G Blango
- RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany
| | - Marie-Elisabeth Bougnoux
- Institut Pasteur, Université Paris Cité, Unité Biologie et Pathogénicité Fongiques, Paris, France
- Unité de Parasitologie-Mycologie, Service de Microbiologie Clinique, Hôpital Necker-Enfants-Malades, Assistance Publique des Hôpitaux de Paris (APHP), Paris, France
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany
| | - Christophe d'Enfert
- Institut Pasteur, Université Paris Cité, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Axel A Brakhage
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - David R Andes
- Department of Medicine, Section of Infectious Diseases, University of Wisconsin-Madison, Madison, WI, USA
| | - Verena Trümper
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany
| | - Christian Nehls
- Division of Biophysics, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
- Kiel Nano, Surface and Interface Science KiNSIS, Kiel University, Kiel, Germany
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany
| | - Selene Mogavero
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany
| | - Thomas Gutsmann
- Division of Biophysics, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
- Kiel Nano, Surface and Interface Science KiNSIS, Kiel University, Kiel, Germany
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Stefanie Allert
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany.
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany.
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
19
|
Sprague JL, Schille TB, Allert S, Trümper V, Lier A, Großmann P, Priest EL, Tsavou A, Panagiotou G, Naglik JR, Wilson D, Schäuble S, Kasper L, Hube B. Candida albicans translocation through the intestinal epithelial barrier is promoted by fungal zinc acquisition and limited by NFκB-mediated barrier protection. PLoS Pathog 2024; 20:e1012031. [PMID: 38427950 PMCID: PMC10907035 DOI: 10.1371/journal.ppat.1012031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/06/2024] [Indexed: 03/03/2024] Open
Abstract
The opportunistic fungal pathogen Candida albicans thrives on human mucosal surfaces as a harmless commensal, but frequently causes infections under certain predisposing conditions. Translocation across the intestinal barrier into the bloodstream by intestine-colonizing C. albicans cells serves as the main source of disseminated candidiasis. However, the host and microbial mechanisms behind this process remain unclear. In this study we identified fungal and host factors specifically involved in infection of intestinal epithelial cells (IECs) using dual-RNA sequencing. Our data suggest that host-cell damage mediated by the peptide toxin candidalysin-encoding gene ECE1 facilitates fungal zinc acquisition. This in turn is crucial for the full virulence potential of C. albicans during infection. IECs in turn exhibit a filamentation- and damage-specific response to C. albicans infection, including NFκB, MAPK, and TNF signaling. NFκB activation by IECs limits candidalysin-mediated host-cell damage and mediates maintenance of the intestinal barrier and cell-cell junctions to further restrict fungal translocation. This is the first study to show that candidalysin-mediated damage is necessary for C. albicans nutrient acquisition during infection and to explain how IECs counteract damage and limit fungal translocation via NFκB-mediated maintenance of the intestinal barrier.
Collapse
Affiliation(s)
- Jakob L. Sprague
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
| | - Tim B. Schille
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
| | - Stefanie Allert
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
| | - Verena Trümper
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
| | - Adrian Lier
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
| | - Peter Großmann
- Department of Microbiome Dynamics, Hans-Knöll-Institute, Jena, Germany
| | - Emily L. Priest
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Antzela Tsavou
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Gianni Panagiotou
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Department of Microbiome Dynamics, Hans-Knöll-Institute, Jena, Germany
- Institute of Microbiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Julian R. Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Duncan Wilson
- Medical Research Council, Centre for Medical Mycology at the University of Exeter, Exeter, United Kingdom
| | - Sascha Schäuble
- Department of Microbiome Dynamics, Hans-Knöll-Institute, Jena, Germany
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Institute of Microbiology, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
20
|
Liang SH, Sircaik S, Dainis J, Kakade P, Penumutchu S, McDonough LD, Chen YH, Frazer C, Schille TB, Allert S, Elshafee O, Hänel M, Mogavero S, Vaishnava S, Cadwell K, Belenky P, Perez JC, Hube B, Ene IV, Bennett RJ. The hyphal-specific toxin candidalysin promotes fungal gut commensalism. Nature 2024; 627:620-627. [PMID: 38448595 PMCID: PMC11230112 DOI: 10.1038/s41586-024-07142-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/31/2024] [Indexed: 03/08/2024]
Abstract
The fungus Candida albicans frequently colonizes the human gastrointestinal tract, from which it can disseminate to cause systemic disease. This polymorphic species can transition between growing as single-celled yeast and as multicellular hyphae to adapt to its environment. The current dogma of C. albicans commensalism is that the yeast form is optimal for gut colonization, whereas hyphal cells are detrimental to colonization but critical for virulence1-3. Here, we reveal that this paradigm does not apply to multi-kingdom communities in which a complex interplay between fungal morphology and bacteria dictates C. albicans fitness. Thus, whereas yeast-locked cells outcompete wild-type cells when gut bacteria are absent or depleted by antibiotics, hyphae-competent wild-type cells outcompete yeast-locked cells in hosts with replete bacterial populations. This increased fitness of wild-type cells involves the production of hyphal-specific factors including the toxin candidalysin4,5, which promotes the establishment of colonization. At later time points, adaptive immunity is engaged, and intestinal immunoglobulin A preferentially selects against hyphal cells1,6. Hyphal morphotypes are thus under both positive and negative selective pressures in the gut. Our study further shows that candidalysin has a direct inhibitory effect on bacterial species, including limiting their metabolic output. We therefore propose that C. albicans has evolved hyphal-specific factors, including candidalysin, to better compete with bacterial species in the intestinal niche.
Collapse
Affiliation(s)
- Shen-Huan Liang
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Shabnam Sircaik
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Joseph Dainis
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Pallavi Kakade
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Swathi Penumutchu
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Liam D McDonough
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Ying-Han Chen
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Corey Frazer
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Tim B Schille
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute (HKI), Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Stefanie Allert
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute (HKI), Jena, Germany
| | - Osama Elshafee
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute (HKI), Jena, Germany
| | - Maria Hänel
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute (HKI), Jena, Germany
| | - Selene Mogavero
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute (HKI), Jena, Germany
| | - Shipra Vaishnava
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Ken Cadwell
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - J Christian Perez
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute (HKI), Jena, Germany.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany.
| | - Iuliana V Ene
- Institut Pasteur, Université Paris Cité, Fungal Heterogeneity Group, Paris, France
| | - Richard J Bennett
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA.
| |
Collapse
|
21
|
Carlson SL, Mathew L, Savage M, Kok K, Lindsay JO, Munro CA, McCarthy NE. Mucosal Immunity to Gut Fungi in Health and Inflammatory Bowel Disease. J Fungi (Basel) 2023; 9:1105. [PMID: 37998910 PMCID: PMC10672531 DOI: 10.3390/jof9111105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 11/25/2023] Open
Abstract
The gut microbiome is a diverse microbial community composed of bacteria, viruses, and fungi that plays a major role in human health and disease. Dysregulation of these gut organisms in a genetically susceptible host is fundamental to the pathogenesis of inflammatory bowel disease (IBD). While bacterial dysbiosis has been a predominant focus of research for many years, there is growing recognition that fungal interactions with the host immune system are an important driver of gut inflammation. Candida albicans is likely the most studied fungus in the context of IBD, being a near universal gut commensal in humans and also a major barrier-invasive pathogen. There is emerging evidence that intra-strain variation in C. albicans virulence factors exerts a critical influence on IBD pathophysiology. In this review, we describe the immunological impacts of variations in C. lbicans colonisation, morphology, genetics, and proteomics in IBD, as well as the clinical and therapeutic implications.
Collapse
Affiliation(s)
- Sean L. Carlson
- Centre for Immunobiology, The Blizard Institute, Queen Mary University of London, London E1 2AT, UK
- Gastroenterology Department, Royal London Hospital, Barts Health NHS Trust, London E1 1BB, UK
| | - Liya Mathew
- Centre for Immunobiology, The Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Michael Savage
- Centre for Immunobiology, The Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Klaartje Kok
- Centre for Immunobiology, The Blizard Institute, Queen Mary University of London, London E1 2AT, UK
- Gastroenterology Department, Royal London Hospital, Barts Health NHS Trust, London E1 1BB, UK
| | - James O. Lindsay
- Centre for Immunobiology, The Blizard Institute, Queen Mary University of London, London E1 2AT, UK
- Gastroenterology Department, Royal London Hospital, Barts Health NHS Trust, London E1 1BB, UK
| | - Carol A. Munro
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB24 3FX, UK
| | - Neil E. McCarthy
- Centre for Immunobiology, The Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| |
Collapse
|
22
|
Unger L, Skoluda S, Backman E, Amulic B, Ponce‐Garcia FM, Etiaba CNC, Yellagunda S, Krüger R, von Bernuth H, Bylund J, Hube B, Naglik JR, Urban CF. Candida albicans induces neutrophil extracellular traps and leucotoxic hypercitrullination via candidalysin. EMBO Rep 2023; 24:e57571. [PMID: 37795769 PMCID: PMC10626426 DOI: 10.15252/embr.202357571] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/05/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023] Open
Abstract
The peptide toxin candidalysin, secreted by Candida albicans hyphae, promotes stimulation of neutrophil extracellular traps (NETs). However, candidalysin alone triggers a distinct mechanism for NET-like structures (NLS), which are more compact and less fibrous than canonical NETs. Candidalysin activates NADPH oxidase and calcium influx, with both processes contributing to morphological changes in neutrophils resulting in NLS formation. NLS are induced by leucotoxic hypercitrullination, which is governed by calcium-induced protein arginine deaminase 4 activation and initiation of intracellular signalling events in a dose- and time-dependent manner. However, activation of signalling by candidalysin does not suffice to trigger downstream events essential for NET formation, as demonstrated by lack of lamin A/C phosphorylation, an event required for activation of cyclin-dependent kinases that are crucial for NET release. Candidalysin-triggered NLS demonstrate anti-Candida activity, which is resistant to nuclease treatment and dependent on the deprivation of Zn2+ . This study reveals that C. albicans hyphae releasing candidalysin concurrently trigger canonical NETs and NLS, which together form a fibrous sticky network that entangles C. albicans hyphae and efficiently inhibits their growth.
Collapse
Affiliation(s)
- Lucas Unger
- Department of Clinical MicrobiologyUmeå UniversityUmeåSweden
- Umeå Centre for Microbial Research (UCMR)Umeå UniversityUmeåSweden
| | - Samuel Skoluda
- Department of Clinical MicrobiologyUmeå UniversityUmeåSweden
- Umeå Centre for Microbial Research (UCMR)Umeå UniversityUmeåSweden
| | - Emelie Backman
- Department of Clinical MicrobiologyUmeå UniversityUmeåSweden
- Umeå Centre for Microbial Research (UCMR)Umeå UniversityUmeåSweden
| | - Borko Amulic
- School of Cellular and Molecular MedicineUniversity of BristolBristolUK
| | | | - Chinelo NC Etiaba
- School of Cellular and Molecular MedicineUniversity of BristolBristolUK
| | - Sujan Yellagunda
- Department of Clinical MicrobiologyUmeå UniversityUmeåSweden
- Umeå Centre for Microbial Research (UCMR)Umeå UniversityUmeåSweden
| | - Renate Krüger
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care MedicineCharité – Universitätsmedizin BerlinBerlinGermany
| | - Horst von Bernuth
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care MedicineCharité – Universitätsmedizin BerlinBerlinGermany
- Department of ImmunologyLabor Berlin Labor Berlin – Charité Vivantes GmbHBerlinGermany
- Berlin Institute of Health at Charité – Universitätsmedizin BerlinBerlinGermany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of Health (BIH)Berlin‐Brandenburg Center for Regenerative Therapies (BCRT)BerlinGermany
| | - Johan Bylund
- Department of Oral Microbiology & Immunology, Institute of OdontologySahlgrenska Academy at University of GothenburgGothenburgSweden
| | - Bernhard Hube
- Department of Microbial Pathogenicity MechanismsLeibniz Institute for Natural Product Research and Infection Biology ‐ Hans‐Knoell‐InstituteJenaGermany
- Friedrich Schiller UniversityJenaGermany
| | - Julian R Naglik
- Centre for Host‐Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial SciencesKing's College LondonLondonUK
| | - Constantin F Urban
- Department of Clinical MicrobiologyUmeå UniversityUmeåSweden
- Umeå Centre for Microbial Research (UCMR)Umeå UniversityUmeåSweden
| |
Collapse
|
23
|
Lilly EA, Bender BE, Noverr MC, Fidel PL. Protection against lethal sepsis following immunization with Candida species varies by isolate and inversely correlates with bone marrow tissue damage. Infect Immun 2023; 91:e0025223. [PMID: 37702509 PMCID: PMC10580931 DOI: 10.1128/iai.00252-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 09/14/2023] Open
Abstract
Protection against lethal Candida albicans (Ca)/Staphylococcus aureus (Sa) intra-abdominal infection (IAI)-mediated sepsis can be achieved by a novel form of trained innate immunity (TII) involving Gr-1+ myeloid-derived suppressor cells (MDSCs) that are induced by inoculation (immunization) with low virulence Candida species [i.e., Candida dubliniensis (Cd)] that infiltrate the bone marrow (BM). In contrast, more virulent Candida species (i.e., C. albicans), even at sub-lethal inocula, fail to induce similar levels of protection. The purpose of the present study was to test the hypothesis that the level of TII-mediated protection induced by Ca strains inversely correlates with damage in the BM as a reflection of virulence. Mice were immunized by intraperitoneal inoculation with several parental and mutant strains of C. albicans deficient in virulence factors (hyphal formation and candidalysin production), followed by an intraperitoneal Ca/Sa challenge 14 d later and monitored for sepsis and mortality. Whole femur bones were collected 24 h and 13 d after immunization and assessed for BM tissue/cellular damage via ferroptosis and histology. While immunization with standard but not sub-lethal inocula of most wild-type C. albicans strains resulted in considerable mortality, protection against lethal Ca/Sa IAI challenge varied by strain was usually less than that for C. dubliniensis, with no differences observed between parental and corresponding mutants. Finally, levels of protection afforded by the Ca strains were inversely correlated with BM tissue damage (R 2 = -0.773). TII-mediated protection against lethal Ca/Sa sepsis induced by Candida strain immunization inversely correlates with BM tissue/cellular damage as a reflection of localized virulence.
Collapse
Affiliation(s)
- Elizabeth A. Lilly
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Breah E. Bender
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Mairi C. Noverr
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Paul L. Fidel
- Center of Excellence in Oral and Craniofacial Biology, Louisiana State University Health Sciences Center School of Dentistry, New Orleans, Louisiana, USA
| |
Collapse
|
24
|
Rapala-Kozik M, Surowiec M, Juszczak M, Wronowska E, Kulig K, Bednarek A, Gonzalez-Gonzalez M, Karkowska-Kuleta J, Zawrotniak M, Satała D, Kozik A. Living together: The role of Candida albicans in the formation of polymicrobial biofilms in the oral cavity. Yeast 2023; 40:303-317. [PMID: 37190878 DOI: 10.1002/yea.3855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023] Open
Abstract
The oral cavity of humans is colonized by diversity of microbial community, although dominated by bacteria, it is also constituted by a low number of fungi, often represented by Candida albicans. Although in the vast minority, this usually commensal fungus under certain conditions of the host (e.g., immunosuppression or antibiotic therapy), can transform into an invasive pathogen that adheres to mucous membranes and also to medical or dental devices, causing mucosal infections. This transformation is correlated with changes in cell morphology from yeast-like cells to hyphae and is supported by numerous virulence factors exposed by C. albicans cells at the site of infection, such as multifunctional adhesins, degradative enzymes, or toxin. All of them affect the surrounding host cells or proteins, leading to their destruction. However, at the site of infection, C. albicans can interact with different bacterial species and in its filamentous form may produce biofilms-the elaborated consortia of microorganisms, that present increased ability to host colonization and resistance to antimicrobial agents. In this review, we highlight the modification of the infectious potential of C. albicans in contact with different bacterial species, and also consider the mutual bacterial-fungal relationships, involving cooperation, competition, or antagonism, that lead to an increase in the propagation of oral infection. The mycofilm of C. albicans is an excellent hiding place for bacteria, especially those that prefer low oxygen availability, where microbial cells during mutual co-existence can avoid host recognition or elimination by antimicrobial action. However, these microbial relationships, identified mainly in in vitro studies, are modified depending on the complexity of host conditions and microbial dominance in vivo.
Collapse
Affiliation(s)
- Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Magdalena Surowiec
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Magdalena Juszczak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Ewelina Wronowska
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Kamila Kulig
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Aneta Bednarek
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Miriam Gonzalez-Gonzalez
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Dorota Satała
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| |
Collapse
|
25
|
Sala A, Ardizzoni A, Spaggiari L, Vaidya N, van der Schaaf J, Rizzato C, Cermelli C, Mogavero S, Krüger T, Himmel M, Kniemeyer O, Brakhage AA, King BL, Lupetti A, Comar M, de Seta F, Tavanti A, Blasi E, Wheeler RT, Pericolini E. A New Phenotype in Candida-Epithelial Cell Interaction Distinguishes Colonization- versus Vulvovaginal Candidiasis-Associated Strains. mBio 2023; 14:e0010723. [PMID: 36856418 PMCID: PMC10128025 DOI: 10.1128/mbio.00107-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
Vulvovaginal candidiasis (VVC) affects nearly 3/4 of women during their lifetime, and its symptoms seriously reduce quality of life. Although Candida albicans is a common commensal, it is unknown if VVC results from a switch from a commensal to pathogenic state, if only some strains can cause VVC, and/or if there is displacement of commensal strains with more pathogenic strains. We studied a set of VVC and colonizing C. albicans strains to identify consistent in vitro phenotypes associated with one group or the other. We find that the strains do not differ in overall genetic profile or behavior in culture media (i.e., multilocus sequence type [MLST] profile, rate of growth, and filamentation), but they show strikingly different behaviors during their interactions with vaginal epithelial cells. Epithelial infections with VVC-derived strains yielded stronger fungal proliferation and shedding of fungi and epithelial cells. Transcriptome sequencing (RNA-seq) analysis of representative epithelial cell infections with selected pathogenic or commensal isolates identified several differentially activated epithelial signaling pathways, including the integrin, ferroptosis, and type I interferon pathways; the latter has been implicated in damage protection. Strikingly, inhibition of type I interferon signaling selectively increases fungal shedding of strains in the colonizing cohort, suggesting that increased shedding correlates with lower interferon pathway activation. These data suggest that VVC strains may intrinsically have enhanced pathogenic potential via differential elicitation of epithelial responses, including the type I interferon pathway. Therefore, it may eventually be possible to evaluate pathogenic potential in vitro to refine VVC diagnosis. IMPORTANCE Despite a high incidence of VVC, we still have a poor understanding of this female-specific disease whose negative impact on women's quality of life has become a public health issue. It is not yet possible to determine by genotype or laboratory phenotype if a given Candida albicans strain is more or less likely to cause VVC. Here, we show that Candida strains causing VVC induce more fungal shedding from epithelial cells than strains from healthy women. This effect is also accompanied by increased epithelial cell detachment and differential activation of the type I interferon pathway. These distinguishing phenotypes suggest it may be possible to evaluate the VVC pathogenic potential of fungal isolates. This would permit more targeted antifungal treatments to spare commensals and could allow for displacement of pathogenic strains with nonpathogenic colonizers. We expect these new assays to provide a more targeted tool for identifying fungal virulence factors and epithelial responses that control fungal vaginitis.
Collapse
Affiliation(s)
- Arianna Sala
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Ardizzoni
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Luca Spaggiari
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Nikhil Vaidya
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Jane van der Schaaf
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Cosmeri Rizzato
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Claudio Cermelli
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Selene Mogavero
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Maximilian Himmel
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Benjamin L. King
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
| | - Antonella Lupetti
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Manola Comar
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Francesco de Seta
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | | | - Elisabetta Blasi
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Robert T. Wheeler
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
| | - Eva Pericolini
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
26
|
Dickenson RE, Pellon A, Ponde NO, Hepworth O, Daniels Gatward LF, Naglik JR, Moyes DL. EGR1 regulates oral epithelial cell responses to Candida albicans via the EGFR- ERK1/2 pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.31.535186. [PMID: 37066428 PMCID: PMC10103955 DOI: 10.1101/2023.03.31.535186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Candida albicans is a fungal pathobiont colonising mucosal surfaces of the human body, including the oral cavity. Under certain predisposing conditions, C. albicans invades mucosal tissues activating EGFR-MAPK signalling pathways in epithelial cells via the action of its peptide toxin candidalysin. However, our knowledge of the epithelial mechanisms involved during C. albicans colonisation is rudimentary. Here, we describe the role of the transcription factor early growth response protein 1 (EGR1) in human oral epithelial cells (OECs) in response to C. albicans. EGR1 expression increases in OECs when exposed to C. albicans independently of fungal viability, morphology, or candidalysin release, suggesting EGR1 is involved in the fundamental recognition of C. albicans, rather than in response to invasion or 'pathogenesis'. Upregulation of EGR1 is mediated by EGFR via Raf1, ERK1/2 and NF-κB signalling but not PI3K/mTOR signalling. Notably, EGR1 mRNA silencing impacts on anti-C. albicans immunity, reducing GM-CSF, IL-1α and IL-1β release, and increasing IL-6 and IL-8 production. These findings identify an important role for EGR1 in priming epithelial cells to respond to subsequent invasive infection by C. albicans and elucidate the regulation circuit of this transcription factor after contact.
Collapse
Affiliation(s)
- Ruth E Dickenson
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
- Department of Infectious Diseases, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Aize Pellon
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Nicole O Ponde
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
- Now at Department of Medicine, University of Pittsburgh, USA
| | - Olivia Hepworth
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Lydia F Daniels Gatward
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
- School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - David L Moyes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
27
|
Asare KK, Bentil HA, Gyesi E, Amoah S, Bentsi-Enchill F, Opoku YK. Candidiasis profile at the outpatient department of the university of cape coast hospital in the central region of Ghana: a retrospective study. BMC Womens Health 2023; 23:101. [PMID: 36899343 PMCID: PMC9999660 DOI: 10.1186/s12905-023-02253-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
INTRODUCTION Vulvovaginal candidiasis (VVC) is a public health problem with an estimated 138 million women globally experiencing recurrent VVC annually. The microscopic diagnosis of VVC has low sensitivity, but it remains an essential tool for diagnosis as the microbiological culture methods are limited to advanced clinical microbiology laboratories in developing countries. The study retrospectively analyzed the presence of red blood cells (RBCs), epithelial cells (ECs), pus cells (PCs) and Candida albicans positive in wet mount preparation of urine or high vaginal swabs (HVS) samples to test for their sensitivity and specificity for the diagnosis of candidiasis. METHODS The study is a retrospective analysis at the Outpatient Department of the University of Cape Coast between 2013 and 2020. All urine and high vagina swabs (HVS) cultures samples using Sabourauds dextrose agar with wet mount data were analyzed. 2 × 2 contingency diagnostic test was used to ascertain the diagnostic accuracy of red blood cells (RBCs), epithelial cells (ECs), pus cells (PCs), and Candida albicans positive in wet mount preparation of urine or high vaginal swabs (HVS) samples for the diagnosis of candidiasis. The association of candidiasis among patients' demographics was analyzed using relative risk (RR) analysis. RESULTS The high prevalence of candida infection was among female subjects 97.1% (831/856) compared to males 2.9% (25/856). The microscopic profiles which characterized candida infection were pus cells 96.4% (825/856), epithelial cells 98.7% (845/856), red blood cells (RBCs) 7.6% (65/856) and Candida albicans positive 63.2% (541/856). There was a lower risk of Candida infections among male patients compared to female patients RR (95% CI) = 0.061 (0.041-0.088). The sensitivity (95%) for detecting Candida albicans positive and red blood cells (0.62 (0.59-0.65)), Candida albicans positive and pus cells (0.75 (0.72-0.78)) and Candida albicans positive and epithelial cells (0.95 (0.92-0.96)) with corresponding specificity (95% CI) of 0.63 (0.60-0.67), 0.69 (0.66-0.72) and 0.74 (0.71-0.76) were detected among the high vaginal swab samples. CONCLUSION In conclusion, the study has shown that the presence of PCs, ECs, RBCs or ratio of RBCs/ECs and RBCs/PCs in the wet mount preparation from urine or HVS can enhance microscopic diagnosis of VVC cases.
Collapse
Affiliation(s)
- Kwame Kumi Asare
- Department of Biomedical Science, School of Allied Health Sciences, College of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana. .,Biomedical and Clinical Research Centre, College of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana.
| | - Hilda Amuaku Bentil
- Department of Biomedical Science, School of Allied Health Sciences, College of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Emmanuel Gyesi
- Department of Biomedical Science, School of Allied Health Sciences, College of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Samuel Amoah
- Department of Laboratory, University of Cape Coast Hospital, Cape Coast, Ghana
| | - Felicity Bentsi-Enchill
- Department of Biology Education, Faculty of Science Education, University of Education, Winneba, Ghana
| | - Yeboah Kwaku Opoku
- Department of Biology Education, Faculty of Science Education, University of Education, Winneba, Ghana
| |
Collapse
|
28
|
Okaa UJ, Bertuzzi M, Fortune-Grant R, Thomson DD, Moyes DL, Naglik JR, Bignell E. Aspergillus fumigatus Drives Tissue Damage via Iterative Assaults upon Mucosal Integrity and Immune Homeostasis. Infect Immun 2023; 91:e0033322. [PMID: 36625602 PMCID: PMC9933693 DOI: 10.1128/iai.00333-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/21/2022] [Indexed: 01/11/2023] Open
Abstract
The human lung is constantly exposed to Aspergillus fumigatus spores, the most prevalent worldwide cause of fungal respiratory disease. Pulmonary tissue damage is a unifying feature of Aspergillus-related diseases; however, the mechanistic basis of damage is not understood. In the lungs of susceptible hosts, A. fumigatus undergoes an obligatory morphological switch involving spore germination and hyphal growth. We modeled A. fumigatus infection in cultured A549 human pneumocytes, capturing the phosphoactivation status of five host signaling pathways, nuclear translocation and DNA binding of eight host transcription factors, and expression of nine host response proteins over six time points encompassing exposures to live fungus and the secretome thereof. The resulting data set, comprised of more than 1,000 data points, reveals that pneumocytes mount differential responses to A. fumigatus spores, hyphae, and soluble secreted products via the NF-κB, JNK, and JNK + p38 pathways, respectively. Importantly, via selective degradation of host proinflammatory (IL-6 and IL-8) cytokines and growth factors (FGF-2), fungal secreted products reorchestrate the host response to fungal challenge as well as driving multiparameter epithelial damage, culminating in cytolysis. Dysregulation of NF-κB signaling, involving sequential stimulation of canonical and noncanonical signaling, was identified as a significant feature of host damage both in vitro and in a mouse model of invasive aspergillosis. Our data demonstrate that composite tissue damage results from iterative (repeated) exposures to different fungal morphotypes and secreted products and suggest that modulation of host responses to fungal challenge might represent a unified strategy for therapeutic control of pathologically distinct types of Aspergillus-related disease.
Collapse
Affiliation(s)
- Uju Joy Okaa
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Margherita Bertuzzi
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Rachael Fortune-Grant
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Darren D. Thomson
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - David L. Moyes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Julian R. Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Elaine Bignell
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
29
|
Garbe E, Thielemann N, Hohner S, Kumar A, Vylkova S, Kurzai O, Martin R. Functional analysis of the Candida albicans ECE1 Promoter. Microbiol Spectr 2023; 11:e0025323. [PMID: 36786567 PMCID: PMC10100963 DOI: 10.1128/spectrum.00253-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 02/15/2023] Open
Abstract
The formation of hyphae is a key virulence attribute of Candida albicans as they are required for adhesion to and invasion of host cells, and ultimately deep-tissue dissemination. Hyphae also secrete the peptide toxin candidalysin, which is crucial for destruction of host cell membranes. The peptide is derived from a precursor protein encoded by the gene ECE1 which is strongly induced during hyphal growth. Previous studies revealed a very complex regulation of this gene involving several transcription factors. However, the promoter of the gene is still not characterized. Here, we present a functional analysis of the intergenic region upstream of the ECE1 gene. Rapid amplification of cDNA ends (RACE)-PCR was performed to identify the 5' untranslated region, which has a size of 49 bp regardless of the hyphae-inducing condition. By using green fluorescent protein (GFP) reporter constructs we further defined a minimal promoter length of 1,500 bp which was verified by RT-qPCR. Finally, we identified the TATA element required for the expression of the gene. It is located 106 to 109 bp upstream of the ECE1 start codon. Our results illustrate that despite a very short 5' UTR, a relatively long promoter is required to secure ECE1 transcription, indicating a complex regulatory machinery tightly controlling the expression of the gene. IMPORTANCE In recent years it was shown that secretion of the toxic peptide candidalysin from hyphae of the major human fungal pathogen Candida albicans contributes heavily to its virulence. The peptide is derived from a precursor protein which is encoded by the ECE1 gene whose transcription is known to be closely associated with formation of hyphae. Here, we used a GFP reporter system to determine the length of the ECE1 promoter and were able to show that it has a minimal size of 1,500 bp. Surprisingly, the gene has a very short 5' UTR of only 49 bp. In accordance with this, the TATA element required for transcription is located 106 to 109 bp upstream of the start codon. This indicates that ECE1 expression is controlled by a very long promoter allowing a complex network of transcription factors to contribute to the gene's regulation.
Collapse
Affiliation(s)
- Enrico Garbe
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Nadja Thielemann
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Sina Hohner
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Animesh Kumar
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Slavena Vylkova
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Oliver Kurzai
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
- Research Group Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
- National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Ronny Martin
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
30
|
van Thiel I, de Jonge W, van den Wijngaard R. Fungal feelings in the irritable bowel syndrome: the intestinal mycobiome and abdominal pain. Gut Microbes 2023; 15:2168992. [PMID: 36723172 PMCID: PMC9897793 DOI: 10.1080/19490976.2023.2168992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Although the gut microbiota consists of bacteria, viruses, and fungi, most publications addressing the microbiota-gut-brain axis in irritable bowel syndrome (IBS) have a sole focus on bacteria. This may relate to the relatively low presence of fungi and viruses as compared to bacteria. Yet, in the field of inflammatory bowel disease research, the publication of several papers addressing the role of the intestinal mycobiome now suggested that these low numbers do not necessarily translate to irrelevance. In this review, we discuss the available clinical and preclinical IBS mycobiome data, and speculate how these recent findings may relate to earlier observations in IBS. By surveying literature from the broader mycobiome research field, we identified questions open to future IBS-oriented investigations.
Collapse
Affiliation(s)
- Iam van Thiel
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Amsterdam, The Netherlands,Amsterdam UMC, University of Amsterdam, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Wj de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Amsterdam, The Netherlands,Amsterdam UMC, University of Amsterdam, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands,Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam, The Netherlands,Department of General, Visceral-, Thoracic and Vascular Surgery, University Hospital Bonn, Bonn, Germany
| | - Rm van den Wijngaard
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Amsterdam, The Netherlands,Amsterdam UMC, University of Amsterdam, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands,Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam, The Netherlands,CONTACT RM van den Wijngaard Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Meibergdreef 69-71, Amsterdam1105 BK, The Netherlands
| |
Collapse
|
31
|
Takano T, Kudo H, Eguchi S, Matsumoto A, Oka K, Yamasaki Y, Takahashi M, Koshikawa T, Takemura H, Yamagishi Y, Mikamo H, Kunishima H. Inhibitory effects of vaginal Lactobacilli on C andida albicans growth, hyphal formation, biofilm development, and epithelial cell adhesion. Front Cell Infect Microbiol 2023; 13:1113401. [PMID: 37201113 PMCID: PMC10188118 DOI: 10.3389/fcimb.2023.1113401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/19/2023] [Indexed: 05/20/2023] Open
Abstract
Introduction Antifungal agents are not always efficient in resolving vulvovaginal candidiasis (VVC), a common genital infection caused by the overgrowth of Candida spp., including Candida albicans, or in preventing recurrent infections. Although lactobacilli (which are dominant microorganisms constituting healthy human vaginal microbiota) are important barriers against VVC, the Lactobacillus metabolite concentration needed to suppress VVC is unknown. Methods We quantitatively evaluated Lactobacillus metabolite concentrations to determine their effect on Candida spp., including 27 vaginal strains of Lactobacillus crispatus, L. jensenii, L. gasseri, Lacticaseibacillus rhamnosus, and Limosilactobacillus vaginalis, with inhibitory abilities against biofilms of C. albicans clinical isolates. Results Lactobacillus culture supernatants suppressed viable fungi by approximately 24%-92% relative to preformed C. albicans biofilms; however, their suppression differed among strains and not species. A moderate negative correlation was found between Lactobacillus lactate production and biofilm formation, but no correlation was observed between hydrogen peroxide production and biofilm formation. Both lactate and hydrogen peroxide were required to suppress C. albicans planktonic cell growth. Lactobacillus strains that significantly inhibited biofilm formation in culture supernatant also inhibited C. albicans adhesion to epithelial cells in an actual live bacterial adhesion competition test. Discussion Healthy human microflora and their metabolites may play important roles in the development of new antifungal agent against C. albicans-induced VVC.
Collapse
Affiliation(s)
- Tomonori Takano
- Department of Infectious Diseases, St. Marianna University School of Medicine, Kawasaki-shi, Kanagawa, Japan
| | - Hayami Kudo
- Research Department, R&D Division, Miyarisan Pharmaceutical Co., Ltd., Saitama-shi, Saitama, Japan
| | - Shuhei Eguchi
- Research Department, R&D Division, Miyarisan Pharmaceutical Co., Ltd., Saitama-shi, Saitama, Japan
| | - Asami Matsumoto
- Research Department, R&D Division, Miyarisan Pharmaceutical Co., Ltd., Saitama-shi, Saitama, Japan
| | - Kentaro Oka
- Research Department, R&D Division, Miyarisan Pharmaceutical Co., Ltd., Saitama-shi, Saitama, Japan
| | - Yukitaka Yamasaki
- Department of Infectious Diseases, St. Marianna University School of Medicine, Kawasaki-shi, Kanagawa, Japan
| | - Motomichi Takahashi
- Research Department, R&D Division, Miyarisan Pharmaceutical Co., Ltd., Saitama-shi, Saitama, Japan
| | - Takuro Koshikawa
- Department of Microbiology, St. Marianna University School of Medicine, Kawasaki-shi, Japan
| | - Hiromu Takemura
- Department of Microbiology, St. Marianna University School of Medicine, Kawasaki-shi, Japan
| | - Yuka Yamagishi
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, Aichi, Japan
- Department of Clinical Infectious Diseases, Kochi Medical School, Nankoku-shi, Kochi, Japan
| | - Hiroshige Mikamo
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, Aichi, Japan
| | - Hiroyuki Kunishima
- Department of Infectious Diseases, St. Marianna University School of Medicine, Kawasaki-shi, Kanagawa, Japan
- *Correspondence: Hiroyuki Kunishima,
| |
Collapse
|
32
|
Zaongo SD, Ouyang J, Isnard S, Zhou X, Harypursat V, Cui H, Routy JP, Chen Y. Candida albicans can foster gut dysbiosis and systemic inflammation during HIV infection. Gut Microbes 2023; 15:2167171. [PMID: 36722096 PMCID: PMC9897780 DOI: 10.1080/19490976.2023.2167171] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Candida albicans (C. albicans) is a ubiquitous fungal commensal component of the human microbiota, and under certain circumstances, such as during an immunocompromised state, it may initiate different types of infection. Moreover, C. albicans continuously and reciprocally interacts with the host immune system as well as with other elements of the gut microbiota, thus contributing significantly to both gut homeostasis and host immunity. People living with HIV (PLWH), including those receiving antiretroviral therapy, are characterized by a depletion of CD4 + T-cells and dysbiosis in their gut. C. albicans colonization is frequent in PLWH, causing both a high prevalence and high morbidity. Gut barrier damage and elevated levels of microbial translocation are also fairly common in this population. Herein, we take a closer look at the reciprocity among C. albicans, gut microbiota, HIV, and the host immune system, thus throwing some light on this complex interplay.
Collapse
Affiliation(s)
- Silvere D Zaongo
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China,Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Jing Ouyang
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Stéphane Isnard
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada,Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada,Canadian HIV Trials Network, Canadian Institutes for Health Research, Vancouver, British Columbia, Canada
| | - Xin Zhou
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China,Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Vijay Harypursat
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Hongjuan Cui
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Jean-Pierre Routy
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada,Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada,Division of Hematology, McGill University Health Centre, Montréal, QC, Canada
| | - Yaokai Chen
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China,Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China,CONTACT Yaokai Chen Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
33
|
Srisa A, Promhuad K, San H, Laorenza Y, Wongphan P, Wadaugsorn K, Sodsai J, Kaewpetch T, Tansin K, Harnkarnsujarit N. Antibacterial, Antifungal and Antiviral Polymeric Food Packaging in Post-COVID-19 Era. Polymers (Basel) 2022; 14:4042. [PMID: 36235988 PMCID: PMC9573034 DOI: 10.3390/polym14194042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 12/22/2022] Open
Abstract
Consumers are now more concerned about food safety and hygiene following the COVID-19 pandemic. Antimicrobial packaging has attracted increased interest by reducing contamination of food surfaces to deliver quality and safe food while maintaining shelf life. Active packaging materials to reduce contamination or inhibit viral activity in packaged foods and on packaging surfaces are mostly prepared using solvent casting, but very few materials demonstrate antiviral activity on foods of animal origin, which are important in the human diet. Incorporation of silver nanoparticles, essential oils and natural plant extracts as antimicrobial agents in/on polymeric matrices provides improved antifungal, antibacterial and antiviral properties. This paper reviews recent developments in antifungal, antibacterial and antiviral packaging incorporating natural or synthetic compounds using preparation methods including extrusion, solvent casting and surface modification treatment for surface coating and their applications in several foods (i.e., bakery products, fruits and vegetables, meat and meat products, fish and seafood and milk and dairy foods). Findings showed that antimicrobial material as films, coated films, coating and pouches exhibited efficient antimicrobial activity in vitro but lower activity in real food systems. Antimicrobial activity depends on (i) polar or non-polar food components, (ii) interactions between antimicrobial compounds and the polymer materials and (iii) interactions between environmental conditions and active films (i.e., relative humidity, oxygen and water vapor permeability and temperature) that impact the migration or diffusion of active compounds in foods. Knowledge gained from the plethora of existing studies on antimicrobial polymers can be effectively utilized to develop multifunctional antimicrobial materials that can protect food products and packaging surfaces from SARS-CoV-2 contamination.
Collapse
Affiliation(s)
- Atcharawan Srisa
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Khwanchat Promhuad
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Horman San
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Yeyen Laorenza
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Phanwipa Wongphan
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Kiattichai Wadaugsorn
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Janenutch Sodsai
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Thitiporn Kaewpetch
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Kittichai Tansin
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Nathdanai Harnkarnsujarit
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
- Center for Advanced Studies for Agriculture and Food, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
34
|
Lachat J, Pascault A, Thibaut D, Le Borgne R, Verbavatz JM, Weiner A. Trans-cellular tunnels induced by the fungal pathogen Candida albicans facilitate invasion through successive epithelial cells without host damage. Nat Commun 2022; 13:3781. [PMID: 35773250 PMCID: PMC9246882 DOI: 10.1038/s41467-022-31237-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 06/09/2022] [Indexed: 11/09/2022] Open
Abstract
The opportunistic fungal pathogen Candida albicans is normally commensal, residing in the mucosa of most healthy individuals. In susceptible hosts, its filamentous hyphal form can invade epithelial layers leading to superficial or severe systemic infection. Although invasion is mainly intracellular, it causes no apparent damage to host cells at early stages of infection. Here, we investigate C. albicans invasion in vitro using live-cell imaging and the damage-sensitive reporter galectin-3. Quantitative single cell analysis shows that invasion can result in host membrane breaching at different stages and host cell death, or in traversal of host cells without membrane breaching. Membrane labelling and three-dimensional 'volume' electron microscopy reveal that hyphae can traverse several host cells within trans-cellular tunnels that are progressively remodelled and may undergo 'inflations' linked to host glycogen stores. Thus, C. albicans early invasion of epithelial tissues can lead to either host membrane breaching or trans-cellular tunnelling.
Collapse
Affiliation(s)
- Joy Lachat
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, 75013, Paris, France
| | - Alice Pascault
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, 75013, Paris, France
| | - Delphine Thibaut
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, 75013, Paris, France
| | - Rémi Le Borgne
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013, Paris, France
| | | | - Allon Weiner
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, 75013, Paris, France.
| |
Collapse
|
35
|
Lemberg C, Martinez de San Vicente K, Fróis-Martins R, Altmeier S, Tran VDT, Mertens S, Amorim-Vaz S, Rai LS, d’Enfert C, Pagni M, Sanglard D, LeibundGut-Landmann S. Candida albicans commensalism in the oral mucosa is favoured by limited virulence and metabolic adaptation. PLoS Pathog 2022; 18:e1010012. [PMID: 35404986 PMCID: PMC9041809 DOI: 10.1371/journal.ppat.1010012] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 04/26/2022] [Accepted: 03/17/2022] [Indexed: 12/19/2022] Open
Abstract
As part of the human microbiota, the fungus Candida albicans colonizes the oral cavity and other mucosal surfaces of the human body. Commensalism is tightly controlled by complex interactions of the fungus and the host to preclude fungal elimination but also fungal overgrowth and invasion, which can result in disease. As such, defects in antifungal T cell immunity render individuals susceptible to oral thrush due to interrupted immunosurveillance of the oral mucosa. The factors that promote commensalism and ensure persistence of C. albicans in a fully immunocompetent host remain less clear. Using an experimental model of C. albicans oral colonization in mice we explored fungal determinants of commensalism in the oral cavity. Transcript profiling of the oral isolate 101 in the murine tongue tissue revealed a characteristic metabolic profile tailored to the nutrient poor conditions in the stratum corneum of the epithelium where the fungus resides. Metabolic adaptation of isolate 101 was also reflected in enhanced nutrient acquisition when grown on oral mucosa substrates. Persistent colonization of the oral mucosa by C. albicans also correlated inversely with the capacity of the fungus to induce epithelial cell damage and to elicit an inflammatory response. Here we show that these immune evasive properties of isolate 101 are explained by a strong attenuation of a number of virulence genes, including those linked to filamentation. De-repression of the hyphal program by deletion or conditional repression of NRG1 abolished the commensal behaviour of isolate 101, thereby establishing a central role of this factor in the commensal lifestyle of C. albicans in the oral niche of the host. The oral microbiota represents an important part of the human microbiota and includes several hundreds to several thousands of bacterial and fungal species. One of the most prominent fungus colonizing the oral cavity is the yeast Candida albicans. While the presence of C. albicans usually remains unnoticed, the fungus can under certain circumstances cause lesions on the lining of the mouth referred to as oral thrush or contribute to other common oral diseases such as caries. Maintaining C. albicans commensalism in the oral mucosa is therefore of utmost importance for oral health and overall wellbeing. While overt fungal growth and disease is limited by immunosurveillance mechanisms during homeostasis, C. albicans strives to survive and evades elimination from the host. Here, we show that while commensalism in the oral cavity is characterized by a restricted fungal virulence and hyphal program, enforcing filamentation in a commensal isolate is sufficient for driving pathogenicity and fungus-induced inflammation in the oral mucosa thwarting persistent colonization. Our results further support a critical role for specialized nutrient acquisition allowing the fungus to thrive in the nutrient poor environment of the squamous epithelium. Together, this work revealed key determinants of C. albicans commensalism in the oral niche.
Collapse
Affiliation(s)
- Christina Lemberg
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Kontxi Martinez de San Vicente
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Ricardo Fróis-Martins
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Simon Altmeier
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Van Du T. Tran
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sarah Mertens
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Sara Amorim-Vaz
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - Laxmi Shanker Rai
- Institut Pasteur, Université de Paris, INRAE, USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Christophe d’Enfert
- Institut Pasteur, Université de Paris, INRAE, USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Marco Pagni
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Dominique Sanglard
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - Salomé LeibundGut-Landmann
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
- * E-mail:
| |
Collapse
|
36
|
Li XV, Leonardi I, Putzel GG, Semon A, Fiers WD, Kusakabe T, Lin WY, Gao IH, Doron I, Gutierrez-Guerrero A, DeCelie MB, Carriche GM, Mesko M, Yang C, Naglik JR, Hube B, Scherl EJ, Iliev ID. Immune regulation by fungal strain diversity in inflammatory bowel disease. Nature 2022; 603:672-678. [PMID: 35296857 PMCID: PMC9166917 DOI: 10.1038/s41586-022-04502-w] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 02/02/2022] [Indexed: 12/21/2022]
Abstract
The fungal microbiota (mycobiota) is an integral part of the complex multikingdom microbial community colonizing the mammalian gastrointestinal tract and has an important role in immune regulation1-6. Although aberrant changes in the mycobiota have been linked to several diseases, including inflammatory bowel disease3-9, it is currently unknown whether fungal species captured by deep sequencing represent living organisms and whether specific fungi have functional consequences for disease development in affected individuals. Here we developed a translational platform for the functional analysis of the mycobiome at the fungal-strain- and patient-specific level. Combining high-resolution mycobiota sequencing, fungal culturomics and genomics, a CRISPR-Cas9-based fungal strain editing system, in vitro functional immunoreactivity assays and in vivo models, this platform enables the examination of host-fungal crosstalk in the human gut. We discovered a rich genetic diversity of opportunistic Candida albicans strains that dominate the colonic mucosa of patients with inflammatory bowel disease. Among these human-gut-derived isolates, strains with high immune-cell-damaging capacity (HD strains) reflect the disease features of individual patients with ulcerative colitis and aggravated intestinal inflammation in vivo through IL-1β-dependent mechanisms. Niche-specific inflammatory immunity and interleukin-17A-producing T helper cell (TH17 cell) antifungal responses by HD strains in the gut were dependent on the C. albicans-secreted peptide toxin candidalysin during the transition from a benign commensal to a pathobiont state. These findings reveal the strain-specific nature of host-fungal interactions in the human gut and highlight new diagnostic and therapeutic targets for diseases of inflammatory origin.
Collapse
Affiliation(s)
- Xin V Li
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Irina Leonardi
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Gregory G Putzel
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Alexa Semon
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - William D Fiers
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Takato Kusakabe
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Woan-Yu Lin
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Iris H Gao
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Itai Doron
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Alejandra Gutierrez-Guerrero
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Meghan B DeCelie
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Guilhermina M Carriche
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Marissa Mesko
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Chen Yang
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, FriedrichSchiller University, Jena, Germany
| | - Ellen J Scherl
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The Jill Roberts Center for Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
| | - Iliyan D Iliev
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
37
|
Richardson JP, Brown R, Kichik N, Lee S, Priest E, Mogavero S, Maufrais C, Wickramasinghe DN, Tsavou A, Kotowicz NK, Hepworth OW, Gallego-Cortés A, Ponde NO, Ho J, Moyes DL, Wilson D, D’Enfert C, Hube B, Naglik JR. Candidalysins Are a New Family of Cytolytic Fungal Peptide Toxins. mBio 2022; 13:e0351021. [PMID: 35073742 PMCID: PMC8787473 DOI: 10.1128/mbio.03510-21] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/22/2021] [Indexed: 12/24/2022] Open
Abstract
Candidalysin is the first cytolytic peptide toxin identified in any human fungal pathogen. Candidalysin is secreted by Candida albicans and is critical for driving infection and host immune responses in several model systems. However, Candida infections are also caused by non-C. albicans species. Here, we identify and characterize orthologs of C. albicans candidalysin in C. dubliniensis and C. tropicalis. The candidalysins have different amino acid sequences, are amphipathic, and adopt a predominantly α-helical secondary structure in solution. Comparative functional analysis demonstrates that each candidalysin causes epithelial damage and calcium influx and activates intracellular signaling pathways and cytokine secretion. Importantly, C. dubliniensis and C. tropicalis candidalysins have higher damaging and activation potential than C. albicans candidalysin and exhibit more rapid membrane binding and disruption, although both fungal species cause less damage to epithelial cells than C. albicans. This study identifies the first family of peptide cytolysins in human-pathogenic fungi. IMPORTANCE Pathogenic fungi kill an estimated 1.5 million people every year. Recently, we discovered that the fungal pathogen Candida albicans secretes a peptide toxin called candidalysin during mucosal infection. Candidalysin causes damage to host cells, a process that supports disease progression. However, fungal infections are also caused by Candida species other than C. albicans. In this work, we identify and characterize two additional candidalysin toxins present in the related fungal pathogens C. dubliniensis and C. tropicalis. While the three candidalysins have different amino acid sequences, all three toxins are α-helical and amphipathic. Notably, the candidalysins from C. dubliniensis and C. tropicalis are more potent at inducing cell damage, calcium influx, mitogen-activated protein kinase signaling, and cytokine responses than C. albicans candidalysin, with the C. dubliniensis candidalysin having the most rapid membrane binding kinetics. These observations identify the candidalysins as the first family of peptide toxins in human-pathogenic fungi.
Collapse
Affiliation(s)
- Jonathan P. Richardson
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Rhys Brown
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Nessim Kichik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Sejeong Lee
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Emily Priest
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Selene Mogavero
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Corinne Maufrais
- Institut Pasteur, Université de Paris, Bioinformatics and Biostatistics Hub, Paris, France
- Institut Pasteur, Université de Paris, INRAE, USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Don N. Wickramasinghe
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Antzela Tsavou
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Natalia K. Kotowicz
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Olivia W. Hepworth
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Ana Gallego-Cortés
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Nicole O. Ponde
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Jemima Ho
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
| | - David L. Moyes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Duncan Wilson
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, United Kingdom
| | - Christophe D’Enfert
- Institut Pasteur, Université de Paris, INRAE, USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Julian R. Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
38
|
Lee S, Kichik N, Hepworth OW, Richardson JP, Naglik JR. In Vitro Biophysical Characterization of Candidalysin: A Fungal Peptide Toxin. Methods Mol Biol 2022; 2542:163-176. [PMID: 36008664 DOI: 10.1007/978-1-0716-2549-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In 2016, the first peptide toxin in any human fungal pathogen was identified. It was discovered in Candida albicans and was named candidalysin. Candidalysin is an amphipathic cationic peptide that damages cell membranes. Like most lytic peptides, candidalysin shows alpha-helical secondary structure. As the helicity and the membrane lytic activity of candidalysin are key factors for pathogenicity, here we describe in vitro approaches to monitor both its membrane-lytic function and the secondary structure. First, membrane permeabilization activity of candidalysin is measured in real time by direct electrical recording. Second, the secondary structure and helicity of candidalysin are determined by circular dichroism spectroscopy. These biophysical methods provide a means to characterize the activity and physical properties of candidalysin in vitro and will be useful in determining the structural and functional features of candidalysin and other similar cationic membrane-active peptides.
Collapse
Affiliation(s)
- Sejeong Lee
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Nessim Kichik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Olivia W Hepworth
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
- Department of Chemistry, King's College London, London, UK
| | - Jonathan P Richardson
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK.
| |
Collapse
|