1
|
Zhang J. Non-coding RNAs and angiogenesis in cardiovascular diseases: a comprehensive review. Mol Cell Biochem 2024; 479:2921-2953. [PMID: 38306012 DOI: 10.1007/s11010-023-04919-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/18/2023] [Indexed: 02/03/2024]
Abstract
Non-coding RNAs (ncRNAs) have key roles in the etiology of many illnesses, including heart failure, myocardial infarction, stroke, and in physiological processes like angiogenesis. In transcriptional regulatory circuits that control heart growth, signaling, and stress response, as well as remodeling in cardiac disease, ncRNAs have become important players. Studies on ncRNAs and cardiovascular disease have made great progress recently. Here, we go through the functions of non-coding RNAs (ncRNAs) like circular RNAs (circRNAs), and microRNAs (miRNAs) as well as long non-coding RNAs (lncRNAs) in modulating cardiovascular disorders.
Collapse
Affiliation(s)
- Jie Zhang
- Medical School, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
2
|
Peng Y, Jia J, Zhang M, Ma W, Cui Y, Yu M. Transcription Factor TFAP2B Exerts Neuroprotective Effects Targeting BNIP3-Mediated Mitophagy in Ischemia/Reperfusion Injury. Mol Neurobiol 2024; 61:7319-7334. [PMID: 38381297 DOI: 10.1007/s12035-024-04004-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/30/2024] [Indexed: 02/22/2024]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) leads to malignant brain edema, blood-brain barrier destruction, and neuronal apoptosis. N6-methyladenosine (m6A) RNA modification in CIRI was still limited explored. In this study, MeRIP- and RNA-sequencing were performed of middle cerebral artery occlusion and reperfusion (MCAO/R) rats to find novel potential molecular targets. Transcription factor TFAP2B stood out of which its m6A abundance decreased associated with a marked reduction of its mRNA based on cojoint interactive bioinformatics analysis of the MeRIP- and RNA-sequencing data. It was suggested TFAP2B could have a role in CIRI. Functionally, overexpression of TFAP2B in cultured primary neurons could effectively improve the cell survival and pro-survival autophagy in parallel with reduced cell apoptosis during OGD/R in vitro. Through the RNA-sequencing of TFAP2B overexpressed primary neurons and subsequent validation experiments, it was found that mitophagy receptor BNIP3 was one of the important targets of TFAP2B in OGD/R neurons through which TFAP2B could bind to its promoter region for transcriptional activation of BNIP3, thereby enhancing BNIP3-mediated mitophagy to protect against OGD/R injury of neurons. Lastly, TFAP2B was demonstrated to alleviate the MCAO/R damage to a certain extent in vivo. Although it failed to confirm TFAP2B dysregulation was m6A dependent in current research, this is the first research of TFAP2B in CIRI field with important guiding significance.
Collapse
Affiliation(s)
- Yong Peng
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, No. 139 Renmin Middle Road, Changsha, Hunan, 410011, People's Republic of China
| | - Jiaoying Jia
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, No. 139 Renmin Middle Road, Changsha, Hunan, 410011, People's Republic of China
| | - Mingming Zhang
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, No. 139 Renmin Middle Road, Changsha, Hunan, 410011, People's Republic of China
| | - Wenjia Ma
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, No. 139 Renmin Middle Road, Changsha, Hunan, 410011, People's Republic of China
| | - Yan Cui
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, No. 139 Renmin Middle Road, Changsha, Hunan, 410011, People's Republic of China
| | - Mengqiang Yu
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, No. 139 Renmin Middle Road, Changsha, Hunan, 410011, People's Republic of China.
| |
Collapse
|
3
|
Wang X, Li A, Fan H, Li Y, Yang N, Tang Y. Astrocyte-Derived Extracellular Vesicles for Ischemic Stroke: Therapeutic Potential and Prospective. Aging Dis 2024; 15:1227-1254. [PMID: 37728588 PMCID: PMC11081164 DOI: 10.14336/ad.2023.0823-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023] Open
Abstract
Stroke is a leading cause of death and disability in the world. Astrocytes are special glial cells within the central nervous system and play important roles in mediating neuroprotection and repair processes during stroke. Extracellular vesicles (EVs) are lipid bilayer particles released from cells that facilitate intercellular communication in stroke by delivering proteins, lipids, and RNA to target cells. Recently, accumulating evidence suggested that astrocyte-derived EVs (ADEVs) are actively involved in mediating numerous biological processes including neuroprotection and neurorepair in stroke and they are realized as an excellent therapeutic approach for treating stroke. In this review we systematically summarize the up-to-date research on ADEVs in stroke, and prospects for its potential as a novel therapeutic target for stroke. We also provide an overview of the effects and functions of ADEVs on stroke recovery, which may lead to developing clinically relevant therapies for stroke.
Collapse
Affiliation(s)
- Xianghui Wang
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong, China.
- School of Biomedical Engineering and Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Aihua Li
- Department of rehabilitation medicine, Jinan Hospital, Jinan, China
| | - Huaju Fan
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong, China.
| | - Yanyan Li
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong, China.
| | - Nana Yang
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong, China.
- School of Biomedical Engineering and Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Yaohui Tang
- School of Biomedical Engineering and Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
4
|
Ameri A, Ahmed HM, Pecho RDC, Arabnozari H, Sarabadani H, Esbati R, Mirabdali S, Yazdani O. Diverse activity of miR-150 in Tumor development: shedding light on the potential mechanisms. Cancer Cell Int 2023; 23:261. [PMID: 37924077 PMCID: PMC10625198 DOI: 10.1186/s12935-023-03105-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/18/2023] [Indexed: 11/06/2023] Open
Abstract
There is a growing interest to understand the role and mechanism of action of microRNAs (miRNAs) in cancer. The miRNAs are defined as short non-coding RNAs (18-22nt) that regulate fundamental cellular processes through mRNA targeting in multicellular organisms. The miR-150 is one of the miRNAs that have a crucial role during tumor cell progression and metastasis. Based on accumulated evidence, miR-150 acts as a double-edged sword in malignant cells, leading to either tumor-suppressive or oncogenic function. An overview of miR-150 function and interactions with regulatory and signaling pathways helps to elucidate these inconsistent effects in metastatic cells. Aberrant levels of miR-150 are detectable in metastatic cells that are closely related to cancer cell migration, invasion, and angiogenesis. The ability of miR-150 in regulating of epithelial-mesenchymal transition (EMT) process, a critical stage in tumor cell migration and metastasis, has been highlighted. Depending on the cancer cells type and gene expression profile, levels of miR-150 and potential target genes in the fundamental cellular process can be different. Interaction between miR-150 and other non-coding RNAs, such as long non-coding RNAs and circular RNAs, can have a profound effect on the behavior of metastatic cells. MiR-150 plays a significant role in cancer metastasis and may be a potential therapeutic target for preventing or treating metastatic cancer.
Collapse
Affiliation(s)
- Ali Ameri
- Student Research Committee, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | | | | | - Hoda Sarabadani
- Rajiv Gandhi Institute of Information Technology & Biotechnology, Bharati Vidyapeeth University, Pune, India
| | - Romina Esbati
- Department of Medicine, Shahid Beheshti University, Tehran, Iran
| | - Seyedsaber Mirabdali
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Omid Yazdani
- Department of Medicine, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
5
|
Veryaskina YA, Titov SE, Kovynev IB, Pospelova TI, Fyodorova SS, Shebunyaeva YY, Sumenkova DV, Zhimulev IF. MicroRNA Expression Profile in Bone Marrow and Lymph Nodes in B-Cell Lymphomas. Int J Mol Sci 2023; 24:15082. [PMID: 37894763 PMCID: PMC10606460 DOI: 10.3390/ijms242015082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Hodgkin's lymphomas (HL) and the majority of non-Hodgkin's lymphomas (NHL) derive from different stages of B-cell differentiation. MicroRNA (miRNA) expression profiles change during lymphopoiesis. Thus, miRNA expression analysis can be used as a reliable diagnostic tool to differentiate tumors. In addition, the identification of miRNA's role in lymphopoiesis impairment is an important fundamental task. The aim of this study was to analyze unique miRNA expression profiles in different types of B-cell lymphomas. We analyzed the expression levels of miRNA-18a, -20a, -96, -182, -183, -26b, -34a, -148b, -9, -150, -451a, -23b, -141, and -128 in lymph nodes (LNs) in the following cancer samples: HL (n = 41), diffuse large B-cell lymphoma (DLBCL) (n = 51), mantle cell lymphoma (MCL) (n = 15), follicular lymphoma (FL) (n = 12), and lymphadenopathy (LA) (n = 37), as well as bone marrow (BM) samples: HL (n = 11), DLBCL (n = 42), MCL (n = 14), FL (n = 16), and non-cancerous blood diseases (NCBD) (n = 43). The real-time RT-PCR method was used for analysis. An increase in BM expression levels of miRNA-26b, -150, and -141 in MCL (p < 0.01) and a decrease in BM levels of the miR-183-96-182 cluster and miRNA-451a in DLBCL (p < 0.01) were observed in comparison to NCBD. We also obtained data on increased LN levels of the miR-183-96-182 cluster in MCL (p < 0.01) and miRNA-18a, miRNA-96, and miRNA-9 in FL (p < 0.01), as well as decreased LN expression of miRNA-150 in DLBCL (p < 0.01), and miRNA-182, miRNA-150, and miRNA-128 in HL (p < 0.01). We showed that miRNA expression profile differs between BM and LNs depending on the type of B-cell lymphoma. This can be due to the effect of the tumor microenvironment.
Collapse
Affiliation(s)
- Yuliya A. Veryaskina
- Department of the Structure and Function of Chromosomes, Laboratory of Molecular Genetics, Institute of Molecular and Cellular Biology, SB RAS, 630090 Novosibirsk, Russia; (S.E.T.); (I.F.Z.)
- Laboratory of Gene Engineering, Institute of Cytology and Genetics, SB RAS, 630090 Novosibirsk, Russia
| | - Sergei E. Titov
- Department of the Structure and Function of Chromosomes, Laboratory of Molecular Genetics, Institute of Molecular and Cellular Biology, SB RAS, 630090 Novosibirsk, Russia; (S.E.T.); (I.F.Z.)
- AO Vector-Best, 630117 Novosibirsk, Russia
| | - Igor B. Kovynev
- Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University, 630091 Novosibirsk, Russia; (I.B.K.); (T.I.P.); (S.S.F.); (Y.Y.S.); (D.V.S.)
| | - Tatiana I. Pospelova
- Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University, 630091 Novosibirsk, Russia; (I.B.K.); (T.I.P.); (S.S.F.); (Y.Y.S.); (D.V.S.)
| | - Sofya S. Fyodorova
- Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University, 630091 Novosibirsk, Russia; (I.B.K.); (T.I.P.); (S.S.F.); (Y.Y.S.); (D.V.S.)
| | - Yana Yu. Shebunyaeva
- Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University, 630091 Novosibirsk, Russia; (I.B.K.); (T.I.P.); (S.S.F.); (Y.Y.S.); (D.V.S.)
| | - Dina V. Sumenkova
- Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University, 630091 Novosibirsk, Russia; (I.B.K.); (T.I.P.); (S.S.F.); (Y.Y.S.); (D.V.S.)
| | - Igor F. Zhimulev
- Department of the Structure and Function of Chromosomes, Laboratory of Molecular Genetics, Institute of Molecular and Cellular Biology, SB RAS, 630090 Novosibirsk, Russia; (S.E.T.); (I.F.Z.)
| |
Collapse
|
6
|
Abstract
Owing to its high disability and mortality rates, stroke has been the second leading cause of death worldwide. Since the pathological mechanisms of stroke are not fully understood, there are few clinical treatment strategies available with an exception of tissue plasminogen activator (tPA), the only FDA-approved drug for the treatment of ischemic stroke. Angiogenesis is an important protective mechanism that promotes neural regeneration and functional recovery during the pathophysiological process of stroke. Thus, inducing angiogenesis in the peri-infarct area could effectively improve hemodynamics, and promote vascular remodeling and recovery of neurovascular function after ischemic stroke. In this review, we summarize the cellular and molecular mechanisms affecting angiogenesis after cerebral ischemia registered in PubMed, and provide pro-angiogenic strategies for exploring the treatment of ischemic stroke, including endothelial progenitor cells, mesenchymal stem cells, growth factors, cytokines, non-coding RNAs, etc.
Collapse
Affiliation(s)
- Jie Fang
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, 200433, China
| | - Zhi Wang
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, 200433, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
7
|
Sha M, Zhang S, Beejadhursing R, Sun Y, Qin Y, Chen S, Li W. Extracellular vesicles derived from hypoxic HTR-8/SVneo trophoblast inhibit endothelial cell functions through the miR-150-3p /CHPF pathway. Placenta 2023; 138:21-32. [PMID: 37156185 DOI: 10.1016/j.placenta.2023.04.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/21/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
INTRODUCTION Endothelial dysfunction is one of the basic pathological changes in pre-eclampsia. Extracellular vesicles (EVs) can transport miRNAs expressed by placental trophoblast cells into endothelial cells. The aim of this study was to explore the differential effects of EVs induced by hypoxic trophoblasts (1%HTR-8-EV) and those derived from normoxic trophoblasts (20%HTR-8-EV) on the regulation of endothelial cell functions. METHODS Normoxia and hypoxia were preconditioned to induce trophoblast cells-derived EVs. The effect of EVs, miRNA, target gene, and their interactions on endothelial cell proliferation, migration, and angiogenesis were determined. Quantitative analysis of miR-150-3p and CHPF were verified by qRT-PCR and western blotting. The binding relationship among EVs pathway was demonstrated by luciferase reporter assay. RESULTS Compared with 20%HTR-8-EV, 1%HTR-8-EV had a suppressive effect on proliferation, migration, and angiogenesis of endothelial cells. The results of miRNA sequencing showed the vital role of miR-150-3p in trophoblast-to-endothelium communication. 1%HTR-8-EV carrying miR-150-3p could move into endothelial cells and target chondroitin polymerizing factor (CHPF) gene. MiR-150-3p inhibited endothelial cell functions by regulating CHPF. In patient-derived placental vascular tissues, there was a similar negative correlating between miR-150-3p and CHPF. DISCUSSION Our findings indicate that extracellular vesicles miR-150-3p derived from hypoxic trophoblasts inhibits endothelial cells proliferation, migration, and angiogenesis by modulating CHPF, illuminating a novel mechanism of hypoxic trophoblasts regulation of endothelial cells and their potential role in PE pathogenesis.
Collapse
Affiliation(s)
- Menghan Sha
- Department of Obstetrics and Gynecology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Shunran Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rajluxmee Beejadhursing
- Department of Obstetrics and Gynecology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanan Sun
- Department of Obstetrics and Gynecology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu Qin
- Department of Obstetrics and Gynecology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Suhua Chen
- Department of Obstetrics and Gynecology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Wei Li
- Department of Obstetrics and Gynecology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
8
|
Ren ZL, Kang XD, Zheng YX, Shi HF, Chen CA, Shi YY, Wang QG, Cheng FF, Wang XQ, Li CX. Emerging effects of non-coding RNA in vascular endothelial cells during strokes. Vascul Pharmacol 2023; 150:107169. [PMID: 37059212 DOI: 10.1016/j.vph.2023.107169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/05/2023] [Accepted: 03/24/2023] [Indexed: 04/16/2023]
Abstract
Vascular and neurological damage are the typical outcomes of ischemic strokes. Vascular endothelial cells (VECs), a substantial component of the blood-brain barrier (BBB), are necessary for normal cerebrovascular physiology. During an ischemic stroke (IS), changes in the brain endothelium can lead to a BBB rupture, inflammation, and vasogenic brain edema, and VECs are essential for neurotrophic effects and angiogenesis. Non-coding RNAs (nc-RNAs) are endogenous molecules, and brain ischemia quickly changes the expression patterns of several non-coding RNA types, such as microRNA (miRNA/miR), long non-coding RNA (lncRNA), and circular RNA (circRNA). Furthermore, vascular endothelium-associated nc-RNAs are important mediators in the maintenance of healthy cerebrovascular function. In order to better understand how VECs are regulated epigenetically during an IS, in this review, we attempted to assemble the molecular functions of nc-RNAs that are linked with VECs during an IS.
Collapse
Affiliation(s)
- Zi-Lin Ren
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiang-Dong Kang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yu-Xiao Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Han-Fen Shi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Cong-Ai Chen
- Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing 100700, China
| | - Yu-Yu Shi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qing-Guo Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fa-Feng Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Xue-Qian Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Chang-Xiang Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
9
|
Pan Y, Liu Y, Wei W, Yang X, Wang Z, Xin W. Extracellular Vesicles as Delivery Shippers for Noncoding RNA-Based Modulation of Angiogenesis: Insights from Ischemic Stroke and Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205739. [PMID: 36592424 DOI: 10.1002/smll.202205739] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Ischemic stroke and systemic cancer are two of the leading causes of mortality. Hypoxia is a central pathophysiological component in ischemic stroke and cancer, representing a joint medical function. This function includes angiogenesis regulation. Vascular remodeling coupled with axonal outgrowth following cerebral ischemia is critical in improving poststroke neurological functional recovery. Antiangiogenic strategies can inhibit cancer vascularization and play a vital role in impeding cancer growth, invasion, and metastasis. Although there are significant differences in the cause of angiogenesis across both pathophysiological conditions, emerging evidence states that common signaling structures, such as extracellular vesicles (EVs) and noncoding RNAs (ncRNAs), are involved in this context. EVs, heterogeneous membrane vesicles encapsulating proteomic genetic information from parental cells, act as multifunctional regulators of intercellular communication. Among the multifaceted roles in modulating biological responses, exhaustive evidence shows that ncRNAs are selectively sorted into EVs, modulating common specific aspects of cancer development and stroke prognosis, namely, angiogenesis. This review will discuss recent advancements in the EV-facilitated/inhibited progression of specific elements of angiogenesis with a particular concern about ncRNAs within these vesicles. The review is concluded by underlining the clinical opportunities of EV-derived ncRNAs as diagnostic, prognostic, and therapeutic agents.
Collapse
Affiliation(s)
- Yongli Pan
- Department of Neurology, University Medical Center of Göttingen, Georg-August-University of Göttingen, 37075, Göttingen, Lower Saxony, Germany
- Department of Neurology, Weifang Medical University, Weifang, Shandong, 261053, China
| | - Yuheng Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Neurological Institute, Tianjin, 300052, China
| | - Wei Wei
- Department of Neurology, University Medical Center of Göttingen, Georg-August-University of Göttingen, 37075, Göttingen, Lower Saxony, Germany
- Department of Neurology, Mianyang Central Hospital, Mianyang, Sichuan, 621000, China
| | - Xinyu Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Neurological Institute, Tianjin, 300052, China
| | - Zengguang Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Neurological Institute, Tianjin, 300052, China
| | - Wenqiang Xin
- Department of Neurology, University Medical Center of Göttingen, Georg-August-University of Göttingen, 37075, Göttingen, Lower Saxony, Germany
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Neurological Institute, Tianjin, 300052, China
| |
Collapse
|
10
|
Yang M, Zhang Y, Li M, Liu X, Darvishi M. The various role of microRNAs in breast cancer angiogenesis, with a special focus on novel miRNA-based delivery strategies. Cancer Cell Int 2023; 23:24. [PMID: 36765409 PMCID: PMC9912632 DOI: 10.1186/s12935-022-02837-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/20/2022] [Indexed: 02/12/2023] Open
Abstract
After skin malignancy, breast cancer is the most widely recognized cancer detected in women in the United States. Breast cancer (BCa) can happen in all kinds of people, but it's much more common in women. One in four cases of cancer and one in six deaths due to cancer are related to breast cancer. Angiogenesis is an essential factor in the growth of tumors and metastases in various malignancies. An expanded level of angiogenesis is related to diminished endurance in BCa patients. This function assumes a fundamental part inside the human body, from the beginning phases of life to dangerous malignancy. Various factors, referred to as angiogenic factors, work to make a new capillary. Expanding proof demonstrates that angiogenesis is managed by microRNAs (miRNAs), which are small non-coding RNA with 19-25 nucleotides. MiRNA is a post-transcriptional regulator of gene expression that controls many critical biological processes. Endothelial miRNAs, referred to as angiomiRs, are probably concerned with tumor improvement and angiogenesis via regulation of pro-and anti-angiogenic factors. In this article, we reviewed therapeutic functions of miRNAs in BCa angiogenesis, several novel delivery carriers for miRNA-based therapeutics, as well as CRISPR/Cas9 as a targeted therapy in breast cancer.
Collapse
Affiliation(s)
- Min Yang
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, 132101 China
| | - Ying Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, 132101 China
| | - Min Li
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, 132101 China
| | - Xinglong Liu
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, 132101 China
| | - Mohammad Darvishi
- Infectious Diseases and Tropical Medicine Research Center (IDTMRC), Department of Aerospace and Subaquatic Medicine, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Perales G, Westenskow M, Gutierrez R, Caldwell KK, Allan AM, Gardiner AS. MicroRNA-150-5p is upregulated in the brain microvasculature during prenatal alcohol exposure and inhibits the angiogenic factor Vezf1. Alcohol Clin Exp Res 2022; 46:1953-1966. [PMID: 36109176 PMCID: PMC9722592 DOI: 10.1111/acer.14939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 08/11/2022] [Accepted: 09/06/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Fetal alcohol spectrum disorders (FASD) occur in children who were exposed to alcohol in utero and are manifested in a wide range of neurocognitive deficits. These deficits could be caused by alterations to the cortical microvasculature that are controlled by post-transcriptional regulators such as microRNAs. METHODS Using an established mouse model of moderate prenatal alcohol exposure (PAE), we isolated cortices (CTX) and brain microvascular endothelial cells (BMVECs) at embryonic day 18 (E18) and examined the expression of miR-150-5p and potential downstream targets. Cellular transfections and intrauterine injections with LNA™ mimics or inhibitors were used to test miR-150-5p regulation of novel target vascular endothelial zinc finger 1 (Vezf1). Dual-luciferase assays were used to assess the direct binding of miR-150-5p to the Vezf1 3'UTR. The effects of miR-150-5p and Vezf1 on endothelial cell function were determined by in vitro migration and tube formation assays. RESULTS We found that miR-150-5p was upregulated and Vezf1 was downregulated during PAE in the E18 CTX and BMVECs. Transfection with miR-150-5p mimics resulted in decreased Vezf1 expression in BMVECs, while miR-150-5p inhibition did the opposite. Dual-luciferase assays revealed direct binding of miR-150-5p with the Vezf1 3'UTR. Intrauterine injections showed that miR-150-5p regulates the expression of Vezf1 in vivo during PAE. miR-150-5p overexpression decreased BMVEC migration and tube formation, while miR-150-5p inhibition enhanced migration and tube formation. Vezf1 overexpression rescued the effects of the miR-150-5p mimic. Alcohol treatment of BMVECs increased miR-150-5p expression and inhibited migration and tube formation. Finally, miR-150-5p inhibition and Vezf1 overexpression rescued the negative effects of alcohol on migration and tube formation. CONCLUSIONS miR-150-5p regulation of Vezf1 results in altered endothelial cell function during alcohol exposure. Further, miR-150-5p inhibition of Vezf1 may adversely alter the development of the cortical microvasculature during PAE and contribute to deficits seen in patients with FASD.
Collapse
Affiliation(s)
- Gabriela Perales
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Marissa Westenskow
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Roxana Gutierrez
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Kevin K. Caldwell
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Andrea M. Allan
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Amy S. Gardiner
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| |
Collapse
|
12
|
Can U, Marzioglu E, Akdu S. Some miRNA expressions and their targets in ischemic stroke. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:1224-1262. [PMID: 35876186 DOI: 10.1080/15257770.2022.2098974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/15/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Ischemic stroke (IS) is a global health challenge leading to life-long disabilities or the deaths of patients. IS is a complex disease where genetic and environmental factors are both concerned with the pathophysiology of the condition. Here, we aimed to investigate various microRNA (miRNA) expressions and their targets in IS. A rapid and accurate diagnosis of acute IS is important to perform appropriate treatment. Therefore, there is a need for a more rapid and simple tool to carry out an acute diagnosis of IS. miRNAs are small RNA molecules serving as precious biomarkers due to their easy detection and stability in blood samples. The present systematic review aimed to summarize previous studies investigating several miRNA expressions and their targets in IS.
Collapse
Affiliation(s)
- Ummugulsum Can
- Department of Biochemistry, Konya City Hospital, Konya, Türkiye
| | - Ebru Marzioglu
- Department of Genetics, Konya Training and Research Hospital, Konya, Türkiye
| | - Sadinaz Akdu
- Department of Biochemistry, Fethiye State Hospital, Muğla, Turkey
| |
Collapse
|
13
|
Li T, Qing BL, Deng Y, Que XT, Wang CZ, Lu HW, Wang SH, Wang ZJ. Inhibition of Long non-coding RNA zinc finger antisense 1 improves functional recovery and angiogenesis after focal cerebral ischemia via microRNA-144-5p/fibroblast growth factor 7 axis. Bioengineered 2022; 13:1702-1716. [PMID: 35012442 PMCID: PMC8805975 DOI: 10.1080/21655979.2021.2018093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/08/2021] [Indexed: 11/12/2022] Open
Abstract
Long non-coding RNA zinc finger antisense 1 (ZFAS1) has been probed in cerebral ischemia, while the regulatory mechanism of ZFAS1 in focal cerebral ischemia (FCI) via binding to microRNA (miR)-144-5p remains rarely explored. This study aims to decipher the function of ZFAS1 on FCI via sponging miR-144-5p to modulate fibroblast growth factor 7 (FGF7). The focal cerebral ischemia rat model was established by occlusion of the middle cerebral artery (MCAO) Lentivirus vectors altering ZFAS1, miR-144-5p or FGF7 expression were injected into rats before MCAO. Then, ZFAS1, miR-144-5p, and FGF7 levels were detected, the inflammatory factor level, oxidative stress level, angiogenesis, neurological function injury and neuronal apoptosis were assessed. The binding relations among ZFAS1, miR-144-5p and FGF7 were validated. ZFAS1 and FGF7 expression was elevated, while miR-144-5p expression was reduced in FCI rats. Decreased ZFAS1 or FGF7 or enriched miR-144-5p repressed the inflammatory response, oxidative stress, neuronal apoptosis, while it improved angiogenesis, and neurological function recovery; while up-regulated ZFAS1 exerted opposite effects. The augmented miR-144-5p or silenced FGF7 reversed the effects of enriched ZFAS1. ZFAS1 sponged miR-144-5p that targeted FGF7. Inhibition of lncRNA ZFAS1 improves functional recovery and angiogenesis after FCI via miR-144-5p/FGF7 axis. This study provides novel therapeutic targets for FCI treatment.
Collapse
Affiliation(s)
- Tong Li
- Department of Neurology, Nanning Second People’s Hospital, Nanning, GuangXi, China
| | - Bai Ling Qing
- Department of Neurology, Nanning Second People’s Hospital, Nanning, GuangXi, China
| | - Yan Deng
- Department of Medical Records, Nanning Second People’s Hospital, Nanning, GuangXi, China
| | - Xian Ting Que
- Department of Neurology, Nanning Second People’s Hospital, Nanning, GuangXi, China
| | - Cheng Zhi Wang
- Department of Neurology, Nanning Second People’s Hospital, Nanning, GuangXi, China
| | - Hua Wen Lu
- Department of Neurology, Nanning Second People’s Hospital, Nanning, GuangXi, China
| | - Shao Hua Wang
- Department of Neurology, Nanning Second People’s Hospital, Nanning, GuangXi, China
| | - Zi Jun Wang
- Department of Neurology, Nanning Second People’s Hospital, Nanning, GuangXi, China
| |
Collapse
|
14
|
Zhang Y, Wang Y, Zeng L, Liu Y, Sun H, Li S, Wang S, Shu L, Liu N, Yin S, Wang J, Ni D, Wu Y, Yang Y, He L, Meng B, Yang X. Amphibian-derived peptide homodimer OA-GL17d promotes skin wound regeneration through the miR-663a/TGF-β1/Smad axis. BURNS & TRAUMA 2022; 10:tkac032. [PMID: 35832307 PMCID: PMC9273405 DOI: 10.1093/burnst/tkac032] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/08/2022] [Indexed: 11/29/2022]
Abstract
Background Amphibian-derived peptides exhibit considerable potential in the discovery and development of new therapeutic interventions for clinically challenging chronic skin wounds. MicroRNAs (miRNAs) are also considered promising targets for the development of effective therapies against skin wounds. However, further research in this field is anticipated. This study aims to identify and provide a new peptide drug candidate, as well as to explore the underlying miRNA mechanisms and possible miRNA drug target for skin wound healing. Methods A combination of Edman degradation, mass spectrometry and cDNA cloning were adopted to determine the amino acid sequence of a peptide that was fractionated from the secretion of Odorrana andersonii frog skin using gel-filtration and reversed-phase high-performance liquid chromatography. The toxicity of the peptide was evaluated by Calcein-AM/propidium iodide (PI) double staining against human keratinocytes (HaCaT cells), hemolytic activity against mice blood cells and acute toxicity against mice. The stability of the peptide in plasma was also evaluated. The prohealing potency of the peptide was determined by MTS, scratch healing and a Transwell experiment against HaCaT cells, full-thickness injury wounds and scald wounds in the dorsal skin of mice. miRNA transcriptome sequencing analysis, enzyme-linked immunosorbent assay, real-time polymerase chain reaction and western blotting were performed to explore the molecular mechanisms. Results A novel peptide homodimer (named OA-GL17d) that contains a disulfide bond between the 16th cysteine residue of the peptide monomer and the sequence ‘GLFKWHPRCGEEQSMWT’ was identified. Analysis showed that OA-GL17d exhibited no hemolytic activity or acute toxicity, but effectively promoted keratinocyte proliferation and migration and strongly stimulated the repair of full-thickness injury wounds and scald wounds in the dorsal skin of mice. Mechanistically, OA-GL17d decreased the level of miR-663a to increase the level of transforming growth factor-β1 (TGF-β1) and activate the subsequent TGF-β1/Smad signaling pathway, thereby resulting in accelerated skin wound re-epithelialization and granular tissue formation. Conclusions Our results suggest that OA-GL17d is a new peptide drug candidate for skin wound repair. This study emphasizes the importance of exogenous peptides as molecular probes for exploring competing endogenous RNA mechanisms and indicates that miR-663a may be an effective target for promoting skin repair.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Anatomy and Histology & Embryology , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
- Kunming Medical University , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources & Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes , State Ethnic Affairs Commission & Ministry of Education, School of Ethnomedicine and Ethnopharmacy, , Kunming 650504, Yunnan, China
- Yunnan MinZu University , State Ethnic Affairs Commission & Ministry of Education, School of Ethnomedicine and Ethnopharmacy, , Kunming 650504, Yunnan, China
| | - Lin Zeng
- Institutional Center for Shared Technologies and Facilities of Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, Yunnan, China
| | - Yixiang Liu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources & Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes , State Ethnic Affairs Commission & Ministry of Education, School of Ethnomedicine and Ethnopharmacy, , Kunming 650504, Yunnan, China
- Yunnan MinZu University , State Ethnic Affairs Commission & Ministry of Education, School of Ethnomedicine and Ethnopharmacy, , Kunming 650504, Yunnan, China
| | - Huiling Sun
- Department of Anatomy and Histology & Embryology , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
- Kunming Medical University , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
| | - Shanshan Li
- Department of Anatomy and Histology & Embryology , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
- Kunming Medical University , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
| | - Siyu Wang
- Department of Anatomy and Histology & Embryology , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
- Kunming Medical University , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
| | - Longjun Shu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources & Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes , State Ethnic Affairs Commission & Ministry of Education, School of Ethnomedicine and Ethnopharmacy, , Kunming 650504, Yunnan, China
- Yunnan MinZu University , State Ethnic Affairs Commission & Ministry of Education, School of Ethnomedicine and Ethnopharmacy, , Kunming 650504, Yunnan, China
| | - Naixin Liu
- Department of Anatomy and Histology & Embryology , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
- Kunming Medical University , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
| | - Saige Yin
- Department of Anatomy and Histology & Embryology , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
- Kunming Medical University , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
| | - Junsong Wang
- Department of Anatomy and Histology & Embryology , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
- Kunming Medical University , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
| | - Dan Ni
- Department of Anatomy and Histology & Embryology , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
- Kunming Medical University , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
| | - Yutong Wu
- Department of Anatomy and Histology & Embryology , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
- Kunming Medical University , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
| | - Ying Yang
- Endocrinology Department of Affiliated Hospital of Yunnan University , Kunming 650021, Yunnan, China
| | - Li He
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University , Kunming, 650500, Yunnan, China
| | - Buliang Meng
- Department of Anatomy and Histology & Embryology , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
- Kunming Medical University , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
| | - Xinwang Yang
- Department of Anatomy and Histology & Embryology , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
- Kunming Medical University , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
| |
Collapse
|
15
|
Yang S, Li X, Bi T. Exosomal microRNA-150-5p from bone marrow mesenchymal stromal cells mitigates cerebral ischemia/reperfusion injury via targeting toll-like receptor 5. Bioengineered 2021; 13:3030-3043. [PMID: 34898357 PMCID: PMC8973841 DOI: 10.1080/21655979.2021.2012402] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
MicroRNA (miR)-150-5p has been investigated in many studies, while the role of exosomal miR-150-5p from bone arrow mesenchymal stromal cells (BMSCs) on cerebral ischemia/reperfusion (I/R) injury is not fully explored. This research aims to probe the effects of exosomal miR-150-5p from BMSCs on cerebral I/R injury via regulating B-cell translocation gene 2 (TLR5). Bone marrow mesenchymal stem cell-derived exosomes (BMSCs-Exo) were isolated and identified. The middle cerebral artery occlusion (MCAO) rat model was established and treated by BMSCs-Exo. Then, functional assays were conducted to explore neurological function, pathological changes, neuron apoptosis and inflammatory factors in MCAO rats. miR-150-5p and TLR5 expression in rat brain tissues were detected. Then, gain and loss-function assays were conducted to determine the impact of exosomes, miR-150-5p and TLR5 on neurological function, pathological changes, neuron apoptosis and inflammatory factors of MCAO rats. The binding relation between miR-150-5p and TLR5 was validated. It was found that miR-150-5p expression was decreased while TLR5 level was augmented in MCAO rats. BMSCs-Exo could improve neurological function, pathological changes, decelerate neuron apoptosis and reduce inflammatory factors in MCAO rats. Enriched miR-150-5pcould enhance the protective effects of BMSCs-Exo on cerebral I/R injury. The elevated TLR5 reversed the impacts of elevated exosomal miR-150-5p on cerebral I/R injury. TLR5 was targeted by miR-150-5p. This research manifested that exosomal miR-150-5p from BMSCs exerts protective effects on cerebral I/R injury via repressing TLR5. This study provided novel therapeutic targets for the treatment of cerebral I/R injury.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Geriatrics, Daqing Oilfield General Hospital, 163000, Daqing, , Heilongjiang, P.R.China
| | - Xue Li
- Department of Geriatrics, Daqing Oilfield General Hospital, 163000, Daqing, , Heilongjiang, P.R.China
| | - Ting Bi
- Department of Geriatrics, Daqing Oilfield General Hospital, 163000, Daqing, , Heilongjiang, P.R.China
| |
Collapse
|
16
|
Battistella R, Kritsilis M, Matuskova H, Haswell D, Cheng AX, Meissner A, Nedergaard M, Lundgaard I. Not All Lectins Are Equally Suitable for Labeling Rodent Vasculature. Int J Mol Sci 2021; 22:ijms222111554. [PMID: 34768985 PMCID: PMC8584019 DOI: 10.3390/ijms222111554] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
The vascular system is vital for all tissues and the interest in its visualization spans many fields. A number of different plant-derived lectins are used for detection of vasculature; however, studies performing direct comparison of the labeling efficacy of different lectins and techniques are lacking. In this study, we compared the labeling efficacy of three lectins: Griffonia simplicifolia isolectin B4 (IB4); wheat germ agglutinin (WGA), and Lycopersicon esculentum agglutinin (LEA). The LEA lectin was identified as being far superior to the IB4 and WGA lectins in histological labeling of blood vessels in brain sections. A similar signal-to-noise ratio was achieved with high concentrations of the WGA lectin injected during intracardial perfusion. Lectins were also suitable for labeling vasculature in other tissues, including spinal cord, dura mater, heart, skeletal muscle, kidney, and liver tissues. In uninjured tissues, the LEA lectin was as accurate as the Tie2–eGFP reporter mice and GLUT-1 immunohistochemistry for labeling the cerebral vasculature, validating its specificity and sensitivity. However, in pathological situations, e.g., in stroke, the sensitivity of the LEA lectin decreases dramatically, limiting its applicability in such studies. This work can be used for selecting the type of lectin and labeling method for various tissues.
Collapse
Affiliation(s)
- Roberta Battistella
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22362 Lund, Sweden; (R.B.); (M.K.); (H.M.); (A.M.)
- WCMM Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, 22362 Lund, Sweden
| | - Marios Kritsilis
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22362 Lund, Sweden; (R.B.); (M.K.); (H.M.); (A.M.)
- WCMM Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, 22362 Lund, Sweden
| | - Hana Matuskova
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22362 Lund, Sweden; (R.B.); (M.K.); (H.M.); (A.M.)
- WCMM Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, 22362 Lund, Sweden
- German Center for Neurodegenerative Diseases, 53127 Bonn, Germany
- Department of Neurology, Division of Vascular Neurology, University Hospital Bonn, 53127 Bonn, Germany
| | - Douglas Haswell
- Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA; (D.H.); (A.X.C.); (M.N.)
| | - Anne Xiaoan Cheng
- Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA; (D.H.); (A.X.C.); (M.N.)
| | - Anja Meissner
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22362 Lund, Sweden; (R.B.); (M.K.); (H.M.); (A.M.)
- WCMM Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, 22362 Lund, Sweden
- German Center for Neurodegenerative Diseases, 53127 Bonn, Germany
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA; (D.H.); (A.X.C.); (M.N.)
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, Neurology Department, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Iben Lundgaard
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22362 Lund, Sweden; (R.B.); (M.K.); (H.M.); (A.M.)
- WCMM Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, 22362 Lund, Sweden
- Correspondence:
| |
Collapse
|
17
|
Shen J, Li G, Zhu Y, Xu Q, Zhou H, Xu K, Huang K, Zhan R, Pan J. Foxo1-induced miR-92b down-regulation promotes blood-brain barrier damage after ischaemic stroke by targeting NOX4. J Cell Mol Med 2021; 25:5269-5282. [PMID: 33955666 PMCID: PMC8178288 DOI: 10.1111/jcmm.16537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
The blood‐brain barrier (BBB) damage is a momentous pathological process of ischaemic stroke. NADPH oxidases 4 (NOX4) boosts BBB damage after ischaemic stroke and its expression can be influenced by microRNAs. This study aimed to probe into whether miR‐92b influenced the BBB damage after ischaemic stroke by regulating NOX4 expression. Here, miR‐92b expression was lessened in the ischaemic brains of rats and oxygen‐glucose deprivation (OGD)‐induced brain microvascular endothelial cells (BMECs). In middle cerebral artery occlusion (MCAo) rats, miR‐92b overexpression relieved the ameliorated neurological function and protected the BBB integrity. In vitro model, miR‐92b overexpression raised the viability and lessened the permeability of OGD‐induced BMECs. miR‐92b targeted NOX4 and regulated the viability and permeability of OGD‐induced BMECs by negatively modulating NOX4 expression. The transcription factor Foxo1 bound to the miR‐92b promoter and restrained its expression. Foxo1 expression was induced by OGD‐induction and its knockdown abolished the effects of OGD on miR‐92b and NOX4 expressions, cell viability and permeability of BMECs. In general, our findings expounded that Foxo1‐induced lessening miR‐92b boosted BBB damage after ischaemic stroke by raising NOX4 expression.
Collapse
Affiliation(s)
- Jian Shen
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ganglei Li
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yu Zhu
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qingsheng Xu
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hengjun Zhou
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Kangli Xu
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Kaiyuan Huang
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Renya Zhan
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jianwei Pan
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Wolska M, Jarosz-Popek J, Junger E, Wicik Z, Porshoor T, Sharif L, Czajka P, Postula M, Mirowska-Guzel D, Czlonkowska A, Eyileten C. Long Non-coding RNAs as Promising Therapeutic Approach in Ischemic Stroke: a Comprehensive Review. Mol Neurobiol 2021; 58:1664-1682. [PMID: 33236327 PMCID: PMC7932985 DOI: 10.1007/s12035-020-02206-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
In recent years, ischemic stroke (IS) has been one of the major causes of disability and mortality worldwide. The general mechanism of IS is based on reduced blood supply to neuronal tissue, resulting in neuronal cell damage by various pathological reactions. One of the main techniques for acute IS treatment entails advanced surgical approaches for restoration of cerebral blood supply but this is often associated with secondary brain injury, also known as ischemic reperfusion injury (I/R injury). Many researches have come to emphasize the significant role of long non-coding RNAs (lncRNAs) in IS, especially in I/R injury and their potential as therapeutic approaches. LncRNAs are non-protein transcripts that are able to regulate cellular processes and gene expression. Further, lncRNAs have been shown to be involved in neuronal signaling pathways. Several lncRNAs are recognized as key factors in the physiological and pathological processes of IS. In this review, we discuss the role of lncRNAs in neuronal injury mechanisms and their association with brain neuroprotection. Moreover, we identify the lncRNAs that show the greatest potential as novel therapeutic approaches in IS, which therefore merit further investigation in preclinical research. Graphical Abstract.
Collapse
Affiliation(s)
- Marta Wolska
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B str., Warsaw, 02-097 Warsaw, Poland
| | - Joanna Jarosz-Popek
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B str., Warsaw, 02-097 Warsaw, Poland
| | - Eva Junger
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B str., Warsaw, 02-097 Warsaw, Poland
| | - Zofia Wicik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B str., Warsaw, 02-097 Warsaw, Poland
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Sao Paulo, Brazil
| | - Tahmina Porshoor
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B str., Warsaw, 02-097 Warsaw, Poland
| | - Lucia Sharif
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B str., Warsaw, 02-097 Warsaw, Poland
| | - Pamela Czajka
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B str., Warsaw, 02-097 Warsaw, Poland
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B str., Warsaw, 02-097 Warsaw, Poland
| | - Dagmara Mirowska-Guzel
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B str., Warsaw, 02-097 Warsaw, Poland
| | - Anna Czlonkowska
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B str., Warsaw, 02-097 Warsaw, Poland
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Banacha 1B str., Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
19
|
Zhang S, Chen A, Chen X. A Feedback Loop Involving MicroRNA-150 and MYB Regulates VEGF Expression in Brain Microvascular Endothelial Cells After Oxygen Glucose Deprivation. Front Physiol 2021; 12:619904. [PMID: 33815136 PMCID: PMC8010145 DOI: 10.3389/fphys.2021.619904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) plays a pivotal role in regulating cerebral angiogenesis after stroke. Meanwhile, excessive VEGF expression induces increased microvascular permeability in brain, probably leading to neurological deterioration. Therefore, the appropriate level of VEGF expression is significant to the recovery of brain exposed to stroke. In this work, we demonstrate that microRNA-150 (miR-150) and its predicted target MYB form a negative feedback loop to control the level of post-stroke VEGF expression. Repression of MYB leads to decreased expression of miR-150 in brain microvascular endothelial cells (BMVECs) exposed to oxygen glucose deprivation (OGD), thus miR-150 was predicted to be down-regulated by MYB. Moreover, MYB was confirmed to be a direct target of miR-150 by using dual luciferase reporter assay. In our previous work, we have validated VEGF as another direct target of miR-150. Therefore, MYB participates in regulation of VEGF via miR-150 under OGD, forming a feedback loop with miR-150. We also find that high levels of miR-150 inhibitors combined with MYB silence contribute to further enhancement of VEGF expression in BMVECs in response to OGD. These observations suggest that the feedback loop comprised of miR-150 and MYB, which is a pivotal endogenous epigenetic regulation to control the expression levels of VEGF in BMVECs subjected to OGD.
Collapse
Affiliation(s)
- Song Zhang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anqi Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaolu Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Sun Q, Shi P, Lin C, Ma J. Effects of Astragalus Polysaccharides Nanoparticles on Cerebral Thrombosis in SD Rats. Front Bioeng Biotechnol 2021; 8:616759. [PMID: 33425879 PMCID: PMC7785889 DOI: 10.3389/fbioe.2020.616759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/24/2020] [Indexed: 11/13/2022] Open
Abstract
Objective To investigate the efficacy and improvement of Astragalus polysaccharides (APS) and APS-nano on cerebral thrombosis in rats. Methods A total of 72 SD rats were randomly divided into NC group, Model group, APS-Nano group, and APS group. The cerebral thrombosis Model of SD rats was established by injecting compound thrombus inducer into the internal carotid artery. After 14 days of different intervention treatments, the TTC staining of brain tissue were performed, and A/left brain wet weight ratio, left brain/right brain wet weight ratio, blood rheology indexes, and coagulation function indexes of cerebral thrombosis were measured. ELISA was used to measure the contents of thromboxane 2 (TXB2), 6-keto-prostaglandin F1α (6-Keto-PGF1α), tissue factor (TF), neuron-specific enolase (NSE), S-100β, catenin (CAT), superoxide dismutase (SOD), as well as malondialdehyde (MDA). The binding specificity between miR-885-3p and TF was verified by the double-luciferin reporting experiment, and western blot was used to measure the expression level of TF protein. Results Compared with the Model group, after treatment with APS-nano or APS, the ratio of left brain/right brain wet weight decreased significantly. Whole blood low shear viscosity (WBLSV), whole blood high shear viscosity (WBHSV), plasma viscosity (PV), and erythrocyte aggregation index (Arbc) was all reduced. In addition, prothrombin time (PT) and activated partial thromboplastin time (APTT) were increased, and fibrinogen (FIB) content was decreased. The expression of TXB2, 6-Keto-PGF1α, and TF showed a downward trend. Similarly, the expression of TF protein was decreased. Furthermore, the contents of NSE and S-100β proteins were all decreased, whereas the contents of CAT and SOD were increased, and the contents of MDA was decreased. At the same dose, compared with APS treatment, APS-nano treatment had a significant inhibitory effect on cerebral thrombosis in rats. Finally, we found that TF is a target gene of miR-885-3p and specifically binds to miR-885-3p. Conclusion APS has a significant inhibitory effect on the formation of cerebral thrombosis induced by compound thrombus inducers. Moreover, APS-nano has a more significant inhibitory effect on cerebral thrombosis. Meanwhile, the regulation of miR-885-3p regulating TF expression may be related to the occurrence of cerebral thrombosis.
Collapse
Affiliation(s)
- Qian Sun
- Department of Neurology, Xinxiang Central Hospital, Xinxiang, China
| | - Pengqiang Shi
- Department of Neurosurgery, Xinxiang Central Hospital, Xinxiang, China
| | - Cuiling Lin
- Intensive Care Unit, Xinxiang Central Hospital, Xinxiang, China
| | - Jing Ma
- Department of Neurosurgery, Xinxiang Central Hospital, Xinxiang, China
| |
Collapse
|
21
|
Sun Y, Lin J, Huang S, Xu X, Cai Y, Yang L, Li H, Wu S. Preliminary verification of lncRNA ENST00000609755.1 potential ceRNA regulatory network in coronary heart disease. Int J Cardiol 2020; 328:165-175. [PMID: 33279591 DOI: 10.1016/j.ijcard.2020.11.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/29/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND This study aims to explore the possible ceRNA regulatory network of lncRNA ENST00000609755.1 in CHD patients based on the population; reveal the possible regulatory mechanism of lncRNA ENST00000609755.1. METHOD Microarray analysis were used to identify differentially expressed miRNA, and mRNA profiles between 5 CHD and 5 healthy controls. The lncRNA ENST00000609755.1-miRNA-mRNA ceRNA regulatory network was constructed with lncRNA ENST00000609755.1 as the core based on microarray data and related prediction software (RNAhybird, miRanda, miRWalk 2.0). Furthermore, qRT-PCR was used to verify the expression levels of miRNA and mRNA. t-test and pearson correlation analysis were used to compare the expression differences and correlations of lncRNA, miRNA and mRNA. The receiver operating characteristic (ROC) curve was used to determine the discriminative ability of lncRNA ENST00000609755.1 and its downstream targets. RESULTS Totally 25 miRNAs and 953 mRNAs were differentially expressed between CHD and healthy control. The lncRNA ENST00000609755.1- miRNA- mRNA ceRNA regulatory network was constructed (5 miRNA and 58 mRNA). qRT-PCR results suggest that the expression of lncRNA ENST00000609755.1 and ELK1 were up-regulated in CHD group and positively correlated, the expression of miR-150 was down-regulated in CHD, which was negatively correlated with lncRNA ENST00000609755.1 and ELK1. The AUC was 0.777(95%CI, 0.659-0.895) when miRNA-150 and ELK1 was added, which was higher than that of lncRNA ENST00000609755.1 single indicator. CONCLUSION LncRNA ENST00000609755.1, miR-150 and ELK1 may have a potential ceRNA regulatory network relationship which could be considered to have a good combined diagnostic value for CHD. Also, preliminarily reveal the possible mechanism of lncRNA ENST00000609755.1 involved in CHD.
Collapse
Affiliation(s)
- Yi Sun
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, China; School of Public Health, Fujian Medical University, Minhou County, Fuzhou, China
| | - Jie Lin
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shuna Huang
- Department of Clinical research and translation center office, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xingyan Xu
- School of Public Health, Fujian Medical University, Minhou County, Fuzhou, China
| | - Yingying Cai
- School of Public Health, Fujian Medical University, Minhou County, Fuzhou, China
| | - Le Yang
- School of Public Health, Fujian Medical University, Minhou County, Fuzhou, China
| | - Huangyuan Li
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, China; School of Public Health, Fujian Medical University, Minhou County, Fuzhou, China.
| | - Siying Wu
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, China; Key Lab of Environment and Health, School of Public Health, Fujian Medical University, China.
| |
Collapse
|
22
|
Propofol ameliorated diabetic peripheral neuropathic pain via modulating miR-150/EPHB2 axis. Mol Cell Toxicol 2020. [DOI: 10.1007/s13273-020-00103-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Yu F, Chapman S, Pham DL, Ko ML, Zhou B, Ko GYP. Decreased miR-150 in obesity-associated type 2 diabetic mice increases intraocular inflammation and exacerbates retinal dysfunction. BMJ Open Diabetes Res Care 2020; 8:e001446. [PMID: 32973073 PMCID: PMC7517560 DOI: 10.1136/bmjdrc-2020-001446] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/21/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Diabetic retinopathy (DR) is the leading cause of blindness among the working population in the USA. Current therapies, including anti-vascular endothelial growth factor treatments, cannot completely reverse the visual defects induced by DR. MicroRNA-150 (miR-150) is a regulator that suppresses inflammation and pathological angiogenesis. In patients with diabetes, miR-150 is downregulated. As chronic inflammation is a major contributor to the pathogenesis of DR, whether diabetes-associated decrease of miR-150 is merely associated with the disease progression or decreased miR-150 causes retinal inflammation and pathological angiogenesis is still unknown. RESEARCH DESIGN AND METHODS We used high-fat diet (HFD)-induced type 2 diabetes (T2D) in wild type (WT) and miR-150 knockout (miR-150-/-) mice for this study and compared retinal function and microvasculature morphology. RESULTS We found that WT mice fed with an HFD for only 1 month had a significant decrease of miR-150 in the blood and retina, and retinal light sensitivity also decreased. The miR-150-/- mice on the HFD developed diabetes similar to that of the WT. At 7-8 months old, miR-150-/- mice under normal diet had increased degeneration of retinal capillaries compared with WT mice, indicating that miR-150 is important in maintaining the structural integrity of retinal microvasculature. Deletion of miR-150 worsened HFD-induced retinal dysfunction as early as 1 month after the diet regimen, and it exacerbated HFD-induced T2DR by further increasing retinal inflammation and microvascular degeneration. CONCLUSION These data suggest that decreased miR-150 caused by obesity or diabetic insults is not merely correlated to the disease progression, but it contributes to the retinal dysfunction and inflammation, as well as the development of DR.
Collapse
Affiliation(s)
- Fei Yu
- Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Samantha Chapman
- Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Dylan Luc Pham
- Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Michael Lee Ko
- Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
- Biology, Blinn College, Bryan, Texas, USA
| | - Beiyan Zhou
- Immunology, UConn Health, Farmington, Connecticut, USA
| | - Gladys Y-P Ko
- Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
24
|
Qiao P, Yan H, Wang J. EGb761 Protects Brain Microvascular Endothelial Cells Against Oxygen–Glucose Deprivation-Induced Injury Through lncRNA Rmst/miR-150 Axis. Neurochem Res 2020; 45:2398-2408. [DOI: 10.1007/s11064-020-03099-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/22/2020] [Accepted: 07/14/2020] [Indexed: 12/20/2022]
|
25
|
Sun P, Zhang K, Hassan SH, Zhang X, Tang X, Pu H, Stetler RA, Chen J, Yin KJ. Endothelium-Targeted Deletion of microRNA-15a/16-1 Promotes Poststroke Angiogenesis and Improves Long-Term Neurological Recovery. Circ Res 2020; 126:1040-1057. [PMID: 32131693 DOI: 10.1161/circresaha.119.315886] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
RATIONALE Angiogenesis promotes neurological recovery after stroke and is associated with longer survival of stroke patients. Cerebral angiogenesis is tightly controlled by certain microRNAs (miRs), such as the miR-15a/16-1 cluster, among others. However, the function of the miR-15a/16-1 cluster in endothelium on postischemic cerebral angiogenesis is not known. OBJECTIVE To investigate the functional significance and molecular mechanism of endothelial miR-15a/16-1 cluster on angiogenesis in the ischemic brain. METHODS AND RESULTS Endothelial cell-selective miR-15a/16-1 conditional knockout (EC-miR-15a/16-1 cKO) mice and wild-type littermate controls were subjected to 1 hour middle cerebral artery occlusion followed by 28-day reperfusion. Deletion of miR-15a/16-1 cluster in endothelium attenuates post-stroke brain infarction and atrophy and improves the long-term sensorimotor and cognitive recovery against ischemic stroke. Endothelium-targeted deletion of the miR-15a/16-1 cluster also enhances post-stroke angiogenesis by promoting vascular remodeling and stimulating the generation of newly formed functional vessels, and increases the ipsilateral cerebral blood flow. Endothelial cell-selective deletion of the miR-15a/16-1 cluster up-regulated the protein expression of pro-angiogenic factors VEGFA (vascular endothelial growth factor), FGF2 (fibroblast growth factor 2), and their receptors VEGFR2 (vascular endothelial growth factor receptor 2) and FGFR1 (fibroblast growth factor receptor 1) after ischemic stroke. Consistently, lentiviral knockdown of the miR-15a/16-1 cluster in primary mouse or human brain microvascular endothelial cell cultures enhanced in vitro angiogenesis and up-regulated pro-angiogenic proteins expression after oxygen-glucose deprivation, whereas lentiviral overexpression of the miR-15a/16-1 cluster suppressed in vitro angiogenesis and down-regulated pro-angiogenic proteins expression. Mechanistically, miR-15a/16-1 translationally represses pro-angiogenic factors VEGFA, FGF2, and their receptors VEGFR2 and FGFR1, respectively, by directly binding to the complementary sequences within 3'-untranslated regions of those messenger RNAs. CONCLUSIONS Endothelial miR-15a/16-1 cluster is a negative regulator for postischemic cerebral angiogenesis and long-term neurological recovery. Inhibition of miR-15a/16-1 function in cerebrovascular endothelium may be a legitimate therapeutic approach for stroke recovery.
Collapse
Affiliation(s)
- Ping Sun
- From the Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, PA (P.S., K.Z., S.H.H., X.Z., X.T., H.P., R.A.S., J.C., K.-J.Y.)
| | - Kai Zhang
- From the Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, PA (P.S., K.Z., S.H.H., X.Z., X.T., H.P., R.A.S., J.C., K.-J.Y.)
| | - Sulaiman H Hassan
- From the Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, PA (P.S., K.Z., S.H.H., X.Z., X.T., H.P., R.A.S., J.C., K.-J.Y.)
| | - Xuejing Zhang
- From the Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, PA (P.S., K.Z., S.H.H., X.Z., X.T., H.P., R.A.S., J.C., K.-J.Y.)
| | - Xuelian Tang
- From the Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, PA (P.S., K.Z., S.H.H., X.Z., X.T., H.P., R.A.S., J.C., K.-J.Y.)
| | - Hongjian Pu
- From the Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, PA (P.S., K.Z., S.H.H., X.Z., X.T., H.P., R.A.S., J.C., K.-J.Y.)
| | - R Anne Stetler
- From the Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, PA (P.S., K.Z., S.H.H., X.Z., X.T., H.P., R.A.S., J.C., K.-J.Y.)
| | - Jun Chen
- From the Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, PA (P.S., K.Z., S.H.H., X.Z., X.T., H.P., R.A.S., J.C., K.-J.Y.).,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, PA (J.C., K.-J.Y.)
| | - Ke-Jie Yin
- From the Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, PA (P.S., K.Z., S.H.H., X.Z., X.T., H.P., R.A.S., J.C., K.-J.Y.).,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, PA (J.C., K.-J.Y.)
| |
Collapse
|
26
|
Non-coding RNAs in Cardiac Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:163-180. [PMID: 32285411 DOI: 10.1007/978-981-15-1671-9_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease is a leading cause of death worldwide, and with the dramatically increasing numbers of heart failure patients in the next 10 years, mortality will only increase [1]. For patients with end-stage heart failure, heart transplantation is the sole option. Regrettably, the number of available donor hearts is drastically lower than the number of patients waiting for heart transplantation. Despite evidence of cardiomyocyte renewal in adult human hearts, regeneration of functional myocardium after injury can be neglected. The limited regenerative capacity due to inadequate proliferation of existing cardiomyocytes is insufficient to repopulate areas of lost myocardium [2]. As a solution, the hypothesis that adult stem cells could be employed to generate functional cardiomyocytes was proposed. One of the early studies that supported this hypothesis involved direct injection of hematopoietic c-kit-positive cells derived from bone marrow into the infarcted heart [3]. However, in sharp contrast, more recent evidence emerged demonstrating that these hematopoietic stem cells only differentiate into cells down the hematopoietic lineage rather than into cardiomyocytes [4, 5], and the focus shifted towards stem cells residing in the heart, called cardiac progenitor cells. These CPCs were extracted and injected into the myocardium to regenerate the heart [6]. In recent years, over 80 pre-clinical studies employing cardiac stem cells in vivo in large and small animals to evaluate the effect on functional parameters were systematically reviewed, identifying differences between large and small animals [7]. Despite the positive outcome of these stem cell therapies on functional parameters, c-kit-positive cardiac progenitor cells were shown to contribute minimally to the generation of functional cardiomyocytes [8, 9]. This heavily debated topic is summarized concisely by van Berlo and Molkentin [10]. Recently, single-cell sequencing and genetic lineage tracing of proliferative cells in the murine heart in both homeostatic and regenerating conditions did not yield a quiescent cardiac stem cell population or other cell types that support transdifferentiation into cardiomyocytes, nor did it support proliferation of cardiac myocytes [11, 12]. Now, the focus is shifting towards exploiting the limited regenerative capacity of the cardiomyocytes themselves, by re-activating proliferation of existing cardiomyocytes through dedifferentiation, reentry into the cell cycle, and cytokinesis. This process is the new focus of research to promote cardiac regeneration, and can be controlled on multiple levels, including cell-cycle manipulation, reprogramming, small molecules, extra-cellular matrix (ECM), proteins, and RNA regulation [13].
Collapse
|
27
|
Heydari E, Alishahi M, Ghaedrahmati F, Winlow W, Khoshnam SE, Anbiyaiee A. The role of non-coding RNAs in neuroprotection and angiogenesis following ischemic stroke. Metab Brain Dis 2020; 35:31-43. [PMID: 31446548 DOI: 10.1007/s11011-019-00485-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/19/2019] [Indexed: 12/24/2022]
Abstract
Stroke is the leading cause of death and physical disability worldwide. Non-coding RNAs (ncRNAs) are endogenous molecules that play key roles in the pathophysiology and retrieval processes following ischemic stroke. The potential of ncRNAs, especially microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in neuroprotection and angiogenesis highlights their potential as targets for therapeutic intervention. In this review, we document the miRNAs and lncRNAs that have been reported to exert regulatory actions in neuroprotective and angiogenic processes through different mechanisms involving their interaction with target coding genes. We believe that exploration of the expression profiles and the possible functions of ncRNAs during the recovery processes will help comprehension of the molecular mechanisms responsible for neuroprotection and angiogenesis, and may also contribute to find biomarkers and targets for future stroke intervention.
Collapse
Affiliation(s)
- Elaheh Heydari
- Department of Biology, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Masoumeh Alishahi
- Department of Biology, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Farhoodeh Ghaedrahmati
- Immunology Department, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - William Winlow
- Dipartimento di Biologia, Università degli Studi di Napoli, Federico II, Via Cintia 26, 80126, Napoli, Italy
- Honorary Research Fellow, Institute of Ageing and Chronic Diseases, University of Liverpool, The APEX building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Seyed Esmaeil Khoshnam
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, 6135715794, Iran.
| | - Amir Anbiyaiee
- Department of Obstetrics & Gynecology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, 61357-15794, Iran.
| |
Collapse
|
28
|
Long non-coding RNA H19 promotes corneal neovascularization by targeting microRNA-29c. Biosci Rep 2019; 39:BSR20182394. [PMID: 30948500 PMCID: PMC6499455 DOI: 10.1042/bsr20182394] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/17/2019] [Accepted: 03/26/2019] [Indexed: 12/31/2022] Open
Abstract
Long non-coding RNA (lncRNA) H19 has been implicated in tumor angiogenesis. However, whether H19 regulates the progression of corneal neovascularization (CNV) is unclear. The present study aimed to determine the function of H19 in CNV and its possible molecular mechanism. Here, we found that the H19 levels were remarkably increased in vascularized corneas and basic fibroblast growth factor (bFGF)-treated human umbilical vein endothelial cells (HUVECs). In vitro, H19 up-regulation promoted proliferation, migration, tube formation and vascular endothelial growth factor A (VEGFA) expression in HUVECs, and it was found to down-regulate microRNA-29c (miR-29c) expression. Bioinformatics analysis revealed that H19 mediated the above effects by binding directly to miR-29c. In addition, miR-29c expression was markedly reduced in vascularized corneas and its expression also decreased in bFGF-treated HUVECs in vitro. MiR-29c targeted the 3′ untranslated region (3′-UTR) of VEGFA and decreased its expression. These data suggest that H19 can enhance CNV progression by inhibiting miR-29c, which negatively regulates VEGFA. This novel regulatory axis may serve as a potential therapeutic target for CNV.
Collapse
|
29
|
Roitbak T. MicroRNAs and Regeneration in Animal Models of CNS Disorders. Neurochem Res 2019; 45:188-203. [PMID: 30877519 DOI: 10.1007/s11064-019-02777-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/10/2019] [Accepted: 03/11/2019] [Indexed: 12/20/2022]
Abstract
microRNAs (miRNAs) are recently identified small RNA molecules that regulate gene expression and significantly influence the essential cellular processes associated with CNS repair after trauma and neuropathological conditions including stroke and neurodegenerative disorders. A number of specific miRNAs are implicated in regulating the development and propagation of CNS injury, as well as its subsequent regeneration. The review focuses on the functions of the miRNAs and their role in brain recovery following CNS damage. The article introduces a brief description of miRNA biogenesis and mechanisms of miRNA-induced gene suppression, followed by an overview of miRNAs involved in the processes associated with CNS repair, including neuroprotection, neuronal plasticity and axonal regeneration, vascular reorganization, neuroinflammation, and endogenous stem cell activation. Specific emphasis is placed on the role of multifunctional miRNA miR-155, as it appears to be involved in multiple neurorestorative processes during different CNS pathologies. In association with our own studies on miR-155, I introduce a new and unexplored approach to cerebral regeneration: regulation of brain tissue repair through a direct modulation of specific miRNA activity. The review concludes with discussion on the challenges and the future potential of miRNA-based therapeutic approaches to CNS repair.
Collapse
Affiliation(s)
- Tamara Roitbak
- Department of Neurosurgery, University of New Mexico Health Sciences Center, 1101 Yale Blvd, Albuquerque, NM, 87106-3834, USA.
| |
Collapse
|
30
|
Ma Q, Zhang L, Pearce WJ. MicroRNAs in brain development and cerebrovascular pathophysiology. Am J Physiol Cell Physiol 2019; 317:C3-C19. [PMID: 30840494 DOI: 10.1152/ajpcell.00022.2019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
MicroRNAs (miRNAs) are a class of highly conserved non-coding RNAs with 21-25 nucleotides in length and play an important role in regulating gene expression at the posttranscriptional level via base-paring with complementary sequences of the 3'-untranslated region of the target gene mRNA, leading to either transcript degradation or translation inhibition. Brain-enriched miRNAs act as versatile regulators of brain development and function, including neural lineage and subtype determination, neurogenesis, synapse formation and plasticity, neural stem cell proliferation and differentiation, and responses to insults. Herein, we summarize the current knowledge regarding the role of miRNAs in brain development and cerebrovascular pathophysiology. We review recent progress of the miRNA-based mechanisms in neuronal and cerebrovascular development as well as their role in hypoxic-ischemic brain injury. These findings hold great promise, not just for deeper understanding of basic brain biology but also for building new therapeutic strategies for prevention and treatment of pathologies such as cerebral ischemia.
Collapse
Affiliation(s)
- Qingyi Ma
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine , Loma Linda, California
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine , Loma Linda, California
| | - William J Pearce
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine , Loma Linda, California
| |
Collapse
|
31
|
Dual Roles of Astrocyte-Derived Factors in Regulation of Blood-Brain Barrier Function after Brain Damage. Int J Mol Sci 2019; 20:ijms20030571. [PMID: 30699952 PMCID: PMC6387062 DOI: 10.3390/ijms20030571] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/23/2019] [Accepted: 01/27/2019] [Indexed: 12/13/2022] Open
Abstract
The blood-brain barrier (BBB) is a major functional barrier in the central nervous system (CNS), and inhibits the extravasation of intravascular contents and transports various essential nutrients between the blood and the brain. After brain damage by traumatic brain injury, cerebral ischemia and several other CNS disorders, the functions of the BBB are disrupted, resulting in severe secondary damage including brain edema and inflammatory injury. Therefore, BBB protection and recovery are considered novel therapeutic strategies for reducing brain damage. Emerging evidence suggests key roles of astrocyte-derived factors in BBB disruption and recovery after brain damage. The astrocyte-derived vascular permeability factors include vascular endothelial growth factors, matrix metalloproteinases, nitric oxide, glutamate and endothelin-1, which enhance BBB permeability leading to BBB disruption. By contrast, the astrocyte-derived protective factors include angiopoietin-1, sonic hedgehog, glial-derived neurotrophic factor, retinoic acid and insulin-like growth factor-1 and apolipoprotein E which attenuate BBB permeability resulting in recovery of BBB function. In this review, the roles of these astrocyte-derived factors in BBB function are summarized, and their significance as therapeutic targets for BBB protection and recovery after brain damage are discussed.
Collapse
|
32
|
Wang SW, Liu Z, Shi ZS. Non-Coding RNA in Acute Ischemic Stroke: Mechanisms, Biomarkers and Therapeutic Targets. Cell Transplant 2018; 27:1763-1777. [PMID: 30362372 PMCID: PMC6300774 DOI: 10.1177/0963689718806818] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are a class of functional RNAs that regulate gene expression in a post-transcriptional manner. NcRNAs include microRNAs, long non-coding RNAs and circular RNAs. They are highly expressed in the brain and are involved in the regulation of physiological and pathophysiological processes, including cerebral ischemic injury, neurodegeneration, neural development, and plasticity. Stroke is one of the leading causes of death and physical disability worldwide. Acute ischemic stroke (AIS) occurs when brain blood flow stops, and that stoppage results in reduced oxygen and glucose supply to cells in the brain. In this article, we review the latest progress on ncRNAs in relation to their implications in AIS, as well as their potential as diagnostic and prognostic biomarkers. We also review ncRNAs acting as possible therapeutic targets in future precision medicine. Finally, we conclude with a brief discussion of current challenges and future directions for ncRNAs studies in AIS, which may facilitate the translation of ncRNAs research into clinical practice to improve clinical outcome of AIS.
Collapse
Affiliation(s)
- Sheng-Wen Wang
- 1 Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhong Liu
- 2 Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhong-Song Shi
- 1 Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,3 RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,4 Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
33
|
Wang X, Xuan W, Zhu ZY, Li Y, Zhu H, Zhu L, Fu DY, Yang LQ, Li PY, Yu WF. The evolving role of neuro-immune interaction in brain repair after cerebral ischemic stroke. CNS Neurosci Ther 2018; 24:1100-1114. [PMID: 30350341 DOI: 10.1111/cns.13077] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/23/2018] [Accepted: 09/25/2018] [Indexed: 12/13/2022] Open
Abstract
Stroke is the world's leading cause of disability with limited brain repair treatments which effectively improve long-term neurological deficits. The neuroinflammatory responses persist into the late repair phase of stroke and participate in all brain repair elements, including neurogenesis, angiogenesis, synaptogenesis, remyelination and axonal sprouting, shedding new light on post-stroke brain recovery. Resident brain glial cells, such as astrocytes not only contribute to neuroinflammation after stroke, but also secrete a wide range of trophic factors that can promote post-stroke brain repair. Alternatively, activated microglia, monocytes, and neutrophils in the innate immune system, traditionally considered as major damaging factors after stroke, have been suggested to be extensively involved in brain repair after stroke. The adaptive immune system may also have its bright side during the late regenerative phase, affecting the immune suppressive regulatory T cells and B cells. This review summarizes the recent findings in the evolving role of neuroinflammation in multiple post-stroke brain repair mechanisms and poses unanswered questions that may generate new directions for future research and give rise to novel therapeutic targets to improve stroke recovery.
Collapse
Affiliation(s)
- Xin Wang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wei Xuan
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zi-Yu Zhu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yan Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hao Zhu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ling Zhu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Dan-Yun Fu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Li-Qun Yang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Pei-Ying Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wei-Feng Yu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
34
|
Sun L, Li W, Lei F, Li X. The regulatory role of microRNAs in angiogenesis-related diseases. J Cell Mol Med 2018; 22:4568-4587. [PMID: 29956461 PMCID: PMC6156236 DOI: 10.1111/jcmm.13700] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/17/2018] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at a post-transcriptional level via either the degradation or translational repression of a target mRNA. They play an irreplaceable role in angiogenesis by regulating the proliferation, differentiation, apoptosis, migration and tube formation of angiogenesis-related cells, which are indispensable for multitudinous physiological and pathological processes, especially for the occurrence and development of vascular diseases. Imbalance between the regulation of miRNAs and angiogenesis may cause many diseases such as cancer, cardiovascular disease, aneurysm, Kawasaki disease, aortic dissection, phlebothrombosis and diabetic microvascular complication. Therefore, it is important to explore the essential role of miRNAs in angiogenesis, which might help to uncover new and effective therapeutic strategies for vascular diseases. This review focuses on the interactions between miRNAs and angiogenesis, and miRNA-based biomarkers in the diagnosis, treatment and prognosis of angiogenesis-related diseases, providing an update on the understanding of the clinical value of miRNAs in targeting angiogenesis.
Collapse
Affiliation(s)
- Li‐Li Sun
- Department of Vascular Surgerythe Affiliated Drum Tower HospitalNanjing University Medical SchoolNanjingChina
- Department of Vascular Surgerythe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Wen‐Dong Li
- Department of Vascular Surgerythe Affiliated Drum Tower HospitalNanjing University Medical SchoolNanjingChina
| | - Feng‐Rui Lei
- Department of Vascular Surgerythe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xiao‐Qiang Li
- Department of Vascular Surgerythe Affiliated Drum Tower HospitalNanjing University Medical SchoolNanjingChina
| |
Collapse
|
35
|
Zhao M, Wang J, Xi X, Tan N, Zhang L. SNHG12 Promotes Angiogenesis Following Ischemic Stroke via Regulating miR-150/VEGF Pathway. Neuroscience 2018; 390:231-240. [PMID: 30193860 DOI: 10.1016/j.neuroscience.2018.08.029] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/21/2018] [Accepted: 08/26/2018] [Indexed: 12/21/2022]
Abstract
The promotion of angiogenesis is a promising therapeutic strategy for ischemic stroke. Many long noncoding RNAs (lncRNAs) are related to angiogenesis following ischemic stroke. LncRNA small nucleolar RNA host gene 12 (SNHG12) was upregulated in oxygen-glucose deprivation (OGD)-exposed primary brain microvascular endothelial cells and in microvessel from middle cerebral artery occlusion (MCAO) animal brains. However, the role and underlying mechanism of SNHG12 in ischemic stroke especially associated with angiogenesis process remain unknown. The expression of SNHG12 and miR-150 was determined in OGD-stimulated mouse brain microvascular endothelial (bEnd.3) cells. The role and mechanism of SNHG12 in the angiogenesis after ischemic stroke were investigated using gain- and loss-of function approaches both in OGD-exposed bEnd.3 cells and in MCAO mouse models. We found SNHG12 expression was elevated, whereas miR-150 reduced in OGD-exposed bEnd.3 cells. Upregulation of SNHG12 elevated, and SNHG12 knockdown suppressed the capillary-like tube formation, viability, migration, and VEGF expression in OGD-injured bEnd.3 cells. miR-150 mimic reversed, whereas anti-miR-150 further strengthened the effect of SNHG12 upregulation on the angiogenesis in bEnd.3 cells. Furthermore, we found that SNHG12 functioned as a competing endogenous RNA for miR-150 to regulate VEGF expression. Additionally, overexpression of SNHG12 improved the recovery of neurological function, reduced infarct volume and miR-150 expression, increased vascular density and VEGF expression in the infarct border zone of MCAO mice. In conclusion, SNHG12 promotes the angiogenesis following ischemic stroke via miR-150/VEGF pathway, which further clarified the mechanism of angiogenesis after ischemic stroke and provides a target for the treatment of this disease.
Collapse
Affiliation(s)
- Mian Zhao
- The Clinical Laboratory of Xi'an No.1 Hospital, Xi'an 710002, Shaanxi, China
| | - Jun Wang
- The Clinical Laboratory of Xi'an No.1 Hospital, Xi'an 710002, Shaanxi, China
| | - Xinlong Xi
- The Cardiac Intervention Room of Xi'an No.1 Hospital, Xi'an 710002, Shaanxi, China
| | - Nan Tan
- Department of Cadre's Ward of Xi'an No.1 Hospital, Xi'an 710002, Shaanxi, China
| | - Li Zhang
- Department of Clinical Laboratory, Shaanxi Friendship Hospital, Xi'an 710068, Shaanxi, China.
| |
Collapse
|
36
|
Lv H, Li J, Che YQ. MicroRNA-150 contributes to ischemic stroke through its effect on cerebral cortical neuron survival and function by inhibiting ERK1/2 axis via Mal. J Cell Physiol 2018; 234:1477-1490. [PMID: 30144062 DOI: 10.1002/jcp.26960] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/13/2018] [Indexed: 12/11/2022]
Abstract
Ischemic stroke, caused by the blockage of blood supply, is a major cause of death worldwide. For identifying potential candidates, we explored the effects microRNA-150 (miR-150) has on ischemic stroke and its underlying mechanism by developing a stable middle cerebral artery occlusion (MCAO) rat model. Gene expression microarray analysis was performed to screen differentially expressed genes associated with MCAO. We evaluated the expression of miR-150 and Mal and the status of ERK1/2 axis in the brain tissues of MCAO rats. Then the cerebral cortical neurons (CCNs) were obtained and introduced with elevated or suppressed miR-150 or silenced Mal to validate regulatory mechanisms for miR-150 governing Mal in vitro. The relationship between miR-150 and Mal was verified by dual luciferase reporter gene assay. Besides, cell growth and apoptosis of CCNs were detected by means of MTT assay and flow cytometry analyses. We identified Mal as a downregulated gene in MCAO, based on the microarray data of GSE16561. MiR-150 was over-expressed and negatively targeted Mal in the brain tissues obtained from MCAO rats and their CCNs. Increasing miR-150 blocked the ERK1/2 axis, resulting in an inhibited cell growth of CNNs but an enhanced apoptosis. Furthermore, MiR-150 inhibition was observed to have effects on CNNs as opposed to those inhibited by miR-150 promotion. The key findings of this study support the notion that miR-150 under-expression-mediated direct promotion of Mal protects CNN functions through the activation of the ERK1/2 axis, and underscore the concept that miR-150 may represent a novel pharmacological target for ischemic stroke intervention.
Collapse
Affiliation(s)
- Hui Lv
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jie Li
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yu-Qin Che
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
37
|
Shi FP, Wang XH, Zhang HX, Shang MM, Liu XX, Sun HM, Song YP. MiR-103 regulates the angiogenesis of ischemic stroke rats by targeting vascular endothelial growth factor (VEGF). IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2018; 21:318-324. [PMID: 29511499 PMCID: PMC5817176 DOI: 10.22038/ijbms.2018.27267.6657] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 09/28/2017] [Indexed: 11/24/2022]
Abstract
OBJECTIVES To investigate the effect of miR-103 on the angiogenesis of ischemic stroke rats via targeting vascular endothelial growth factor (VEGF) at the molecular level. MATERIALS AND METHODS Rat models had received the middle cerebral artery occlusion (MCAO) or sham operation before grouping, and cell models of oxygen-glucose deprivation (OGD) were performed. FITC-dextran, matrigel, and Trans-well assays were used to evaluate the vascular density, tube formation, and cell migration respectively. The expression levels of miR-103 and VEGF were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. Dual-luciferase assay was used for analyzing the targeting relationship between miR-103 and VEGF. RESULTS We found the reduced miR-103 in rats after MCAO. Down-regulating miR-103 with the miR-103 inhibitor enhanced VEGF, ameliorated the neurological scores, decreased infarct volume, and increased vascular density in rats after MCAO. Besides, in OGD human umbilical vein endothelial cells (HUVECs), inhibition of miR-103 could promote the increase of tube length and the migration of cells. Additionally, we found that miR-103 could directly target VEGF and thereby lead to the down-expression of VEGF. Meanwhile, si-VEGF could reverse the effect of miR-103 inhibitor on angiogenesis in rats subjected to MCAO. CONCLUSION Inhibition of miR-103 could promote ischemic stroke angiogenesis and reduce infarction volume via enhancing VEGF, which provides a new target for the clinical treatment of ischemic stroke.
Collapse
Affiliation(s)
- Fu-Ping Shi
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding 071000, Hebei Province, China
| | - Xue-Hong Wang
- Department of Neurology, the Traditional Chinese Medicine Hospital of Yixian, Baoding 074200, Hebei Province, China
| | - Hong-Xin Zhang
- Laboratory Animal Center of Hebei University, Hebei University, Baoding 071000, Hebei Province, China
| | - Meng-Meng Shang
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding 071000, Hebei Province, China
| | - Xiao-Xi Liu
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding 071000, Hebei Province, China
| | - Hai-Min Sun
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding 071000, Hebei Province, China
| | - Yue-Ping Song
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding 071000, Hebei Province, China
| |
Collapse
|
38
|
Scherrer N, Fays F, Mueller B, Luft A, Fluri F, Christ-Crain M, Devaux Y, Katan M. MicroRNA 150-5p Improves Risk Classification for Mortality within 90 Days after Acute Ischemic Stroke. J Stroke 2017; 19:323-332. [PMID: 29037006 PMCID: PMC5647633 DOI: 10.5853/jos.2017.00423] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/12/2017] [Accepted: 07/12/2017] [Indexed: 11/29/2022] Open
Abstract
Background and Purpose Micro ribonucleic acid-150-5p (miR-150-5p) regulates proinflammatory cytokines as well as vessel integrity. We evaluated the incremental prognostic value of logarithm (log) of miR-150-5p plasma levels after ischemic stroke. Methods In a prospective cohort study, levels of miR-150-5p were measured within 72 hours of symptom onset in 329 ischemic stroke patients. The outcome measures were unfavorable functional outcome (assessed by the modified Rankin Scale score >2) and mortality within 90 days. Logistic regression and Cox proportional hazards models were fitted to estimate odds ratio (OR), respectively hazard ratio (HR) and 95% confidence interval (CI) for the association between log-miR-150-5p and the outcome measures. The discriminatory accuracy was assessed with the area under the receiver-operating-characteristic curve (AUC) and the incremental prognostic value was estimated with the net reclassification index. Results After adjusting for demographic and vascular risk factors, lower log-miR-150-5p levels were independently associated with mortality (HR 0.21 [95% CI, 0.08–0.51], P=0.001) but not functional outcome (OR 1.10 [95% CI, 0.54–2.25], P=0.79). Adding log-miR-150-5p improved the discriminatory accuracy of the best multivariate model to predict mortality from an AUC of 0.91 (95% CI, 0.88–0.95) to 0.92 (95% CI, 0.88–0.96 Likelihood-ratio test-P<0.001), and resulted in a net reclassification index of 37.3% (95% CI, 0.28–0.52). Conclusions In patients with ischemic stroke, log-miR-150-5p is a novel prognostic biomarker, highly associated with mortality within 90 days, improving risk classification beyond traditional risk factors.
Collapse
Affiliation(s)
- Natalie Scherrer
- Department of Neurology, University Hospital of Zurich, Zurich, Switzerland
| | - Francois Fays
- Competence Center in Methodology and Statistics, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Beat Mueller
- Medical University Clinic, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Andreas Luft
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Felix Fluri
- Medical University Clinic, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Mirjam Christ-Crain
- Department of Endocrinology, University Hospital of Basel, Basel, Switzerland
| | - Yvan Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Mira Katan
- Department of Neurology, University Hospital of Zurich, Zurich, Switzerland
| |
Collapse
|
39
|
Wu KW, Mo JL, Kou ZW, Liu Q, Lv LL, Lei Y, Sun FY. Neurovascular Interaction Promotes the Morphological and Functional Maturation of Cortical Neurons. Front Cell Neurosci 2017; 11:290. [PMID: 28966577 PMCID: PMC5605567 DOI: 10.3389/fncel.2017.00290] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/04/2017] [Indexed: 01/19/2023] Open
Abstract
Brain microvascular endothelial cells (BMEC) have been found to guide the migration, promote the survival and regulate the differentiation of neural cells. However, whether BMEC promote development and maturation of immature neurons is still unknown. Therefore, in this study, we used a direct endothelium-neuron co-culture system combined with patch clamp recordings and confocal imaging analysis, to investigate the effects of endothelial cells on neuronal morphology and function during development. We found that endothelial cells co-culture or BMEC-conditioned medium (B-CM) promoted neurite outgrowth and spine formation, accelerated electrophysiological development and enhanced synapse function. Moreover, B-CM treatment induced vascular endothelial growth factor (VEGF) expression and p38 phosphorylation in the cortical neurons. Through pharmacological analysis, we found that incubation with SU1498, an inhibitor of VEGF receptor, abolished B-CM-induced p-p38 upregulation and suppressed the enhancement of synapse formation and transmission. SB203580, an inhibitor of p38 MAPK also blocked B-CM-mediated synaptic regulation. Together these results clearly reveal that the endothelium-neuron interactions promote morphological and functional maturation of neurons. In addition, neurovascular interaction-mediated promotion of neural network maturation relies on activation of VEGF/Flk-1/p38 MAPK signaling. This study provides novel aspects of endothelium-neuron interactions and novel mechanism of neurovascular crosstalk.
Collapse
Affiliation(s)
- Kun-Wei Wu
- Institute of Biomedical Sciences and Department of Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan UniversityShanghai, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Research Center on Aging and Medicine, Shanghai Medical College, Fudan UniversityShanghai, China
| | - Jia-Lin Mo
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Research Center on Aging and Medicine, Shanghai Medical College, Fudan UniversityShanghai, China.,State Key Laboratory of Medical Neurobiology, Fudan UniversityShanghai, China
| | - Zeng-Wei Kou
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Research Center on Aging and Medicine, Shanghai Medical College, Fudan UniversityShanghai, China.,State Key Laboratory of Medical Neurobiology, Fudan UniversityShanghai, China
| | - Qi Liu
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Research Center on Aging and Medicine, Shanghai Medical College, Fudan UniversityShanghai, China.,State Key Laboratory of Medical Neurobiology, Fudan UniversityShanghai, China
| | - Ling-Ling Lv
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Research Center on Aging and Medicine, Shanghai Medical College, Fudan UniversityShanghai, China.,State Key Laboratory of Medical Neurobiology, Fudan UniversityShanghai, China
| | - Yu Lei
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Research Center on Aging and Medicine, Shanghai Medical College, Fudan UniversityShanghai, China.,State Key Laboratory of Medical Neurobiology, Fudan UniversityShanghai, China
| | - Feng-Yan Sun
- Institute of Biomedical Sciences and Department of Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan UniversityShanghai, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Research Center on Aging and Medicine, Shanghai Medical College, Fudan UniversityShanghai, China.,State Key Laboratory of Medical Neurobiology, Fudan UniversityShanghai, China
| |
Collapse
|
40
|
Chamnanchanunt S, Fucharoen S, Umemura T. Circulating microRNAs in malaria infection: bench to bedside. Malar J 2017; 16:334. [PMID: 28807026 PMCID: PMC5557074 DOI: 10.1186/s12936-017-1990-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/10/2017] [Indexed: 02/06/2023] Open
Abstract
Severe malaria has a poor prognosis with a morbidity rate of 80% in tropical areas. The early parasite detection is one of the effective means to prevent severe malaria of which specific treatment strategies are limited. Many clinical characteristics and laboratory testings have been used for the early diagnosis and prediction of severe disease. However, a few of these factors could be applied to clinical practice. MicroRNAs (miRNAs) were demonstrated as useful biomarkers in many diseases such as malignant diseases and cardiovascular diseases. Recently it was found that plasma miR-451 and miR-16 were downregulated in malaria infection at parasitic stages or with multi-organ failure involvement. MiR-125b, -27a, -23a, -150, 17-92 and -24 are deregulated in malaria patients with multiple organ failures. Here, the current findings of miRNAs were reviewed in relation to clinical severity of malaria infection and emphasized that miRNAs are potential biomarkers for severe malaria infection.
Collapse
Affiliation(s)
- Supat Chamnanchanunt
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand
| | - Tsukuru Umemura
- Department of Medical Technology and Sciences, International University of Health and Welfare, Ohkawa, Japan.,Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
41
|
Desjarlais M, Dussault S, Dhahri W, Mathieu R, Rivard A. MicroRNA-150 Modulates Ischemia-Induced Neovascularization in Atherosclerotic Conditions. Arterioscler Thromb Vasc Biol 2017; 37:900-908. [PMID: 28254813 DOI: 10.1161/atvbaha.117.309189] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 02/20/2017] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Hypercholesterolemia is an atherosclerotic condition that is associated with impaired neovascularization in response to ischemia. This study sought to define the role of microRNAs in that pathophysiology. APPROACH AND RESULTS Next-generation sequencing and quantitative reverse transcription polymerase chain reaction analyses identified miR-150 as a proangiogenic microRNA, which expression is significantly reduced in the ischemic muscles of hypercholesterolemic apolipoprotein E-deficient (ApoE-/-) mice, and in human umbilical vein endothelial cells exposed to oxidized low-density lipoprotein. Forced expression of miR-150 using a miR mimic could rescue oxidized low-density lipoprotein-mediated impairment of endothelial cell migration and tubule formation in vitro. In a mouse model of hindlimb ischemia, intramuscular injection of miR-150 mimic restored blood flow recuperation, vascular densities in ischemic muscles, and functional mobility in ApoE-/- mice. Treatment of ApoE-/- mice with miR-150 also increased the number and the activities of proangiogenic cells. miR-150 targets SRC kinase signaling inhibitor 1, an important regulator of Src (proto-oncogene tyrosine-protein kinase Src) activity. Here we found that hypercholesterolemia and oxidized low-density lipoprotein exposure are associated with increased SRC kinase signaling inhibitor 1 expression and decreased Src activity. However, treatment with miR-150 mimic reduces SRC kinase signaling inhibitor 1 expression and restores Src and downstream endothelial nitric oxide synthase and Akt (protein kinase B) activities both in vitro and in vivo. We also demonstrate the interrelation between miR-150 and SRC kinase signaling inhibitor 1 and their importance for endothelial cell angiogenic activities. CONCLUSIONS Hypercholesterolemia is associated with reduced expression of miR-150, impaired Src signaling, and inefficient neovascularization in response to ischemia. Forced expression of miR-150 using a miR mimic could constitute a novel therapeutic strategy to improve ischemia-induced neovascularization in atherosclerotic conditions.
Collapse
Affiliation(s)
- Michel Desjarlais
- From the Department of Cardiovascular Research, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Sylvie Dussault
- From the Department of Cardiovascular Research, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Wahiba Dhahri
- From the Department of Cardiovascular Research, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Raphael Mathieu
- From the Department of Cardiovascular Research, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Alain Rivard
- From the Department of Cardiovascular Research, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
42
|
Vimalraj S, Sumantran VN, Chatterjee S. MicroRNAs: Impaired vasculogenesis in metal induced teratogenicity. Reprod Toxicol 2017; 70:30-48. [PMID: 28249814 DOI: 10.1016/j.reprotox.2017.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 02/14/2017] [Accepted: 02/21/2017] [Indexed: 02/07/2023]
Abstract
Certain metals have been known for their toxic effects on embryos and fetal development. The vasculature in early pregnancy is extremely dynamic and plays an important role in organogenesis. Nascent blood vessels in early embryonic life are considered to be a primary and delicate target for many teratogens since the nascent blood islands follow a tightly controlled program to form vascular plexus around and inside the embryo for resourcing optimal ingredients for its development. The state of the distribution of toxic metals, their transport mechanisms and the molecular events by which they notch extra-embryonic and embryonic vasculatures are illustrated. In addition, pharmacological aspects of toxic metal induced teratogenicity have also been portrayed. The work reviewed state of the current knowledge of specific role of microRNAs (miRNAs) that are differentially expressed in response to toxic metals, and how they interfere with the vasculogenesis that manifests into embryonic anomalies.
Collapse
Affiliation(s)
- Selvaraj Vimalraj
- Vascular Biology Lab, AU-KBC Research Centre, Anna University, Chennai, India.
| | | | - Suvro Chatterjee
- Vascular Biology Lab, AU-KBC Research Centre, Anna University, Chennai, India; Department of Biotechnology, Anna University, Chennai, India.
| |
Collapse
|
43
|
Qin B, Shu Y, Xiao L, Lu T, Lin Y, Yang H, Lu Z. MicroRNA-150 targets ELK1 and modulates the apoptosis induced by ox-LDL in endothelial cells. Mol Cell Biochem 2017; 429:45-58. [PMID: 28110404 DOI: 10.1007/s11010-016-2935-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 12/23/2016] [Indexed: 12/23/2022]
Abstract
Atherosclerosis, a chronic inflammatory disease, is the major cause of life-threatening complications such as myocardial infarction and stroke. Endothelial cells (ECs) apoptosis plays a vital role in the initiation and progression of atherosclerosis. Although a subset of microRNAs (miRNAs) have been identified as critical regulators of atherosclerosis, studies on their participation in endothelial apoptosis in atherosclerosis have been limited. In the current study, we show that miRNA-150 (miR-150) expression was substantially up-regulated during the oxidized low-density lipoprotein (ox-LDL)-induced apoptosis in human umbilical cord vein endothelial cells (HUVECs). Forced expression of miR-150 enhanced apoptosis in ECs, whereas inhibition of miR-150 could partly alleviate apoptotic cell death mediated by ox-LDL. Further analysis identified ELK1 as a direct target of miR-150, and ELK1 knockdown abolished the anti-apoptotic effect of miR-150 inhibitor. These findings reveal a novel role of miR-150 in endothelial apoptosis and indicate a therapeutic potential of miR-150 for endothelial dysfunction and atherosclerosis.
Collapse
Affiliation(s)
- Bing Qin
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Yaqing Shu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Li Xiao
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Tingting Lu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Yinyao Lin
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Zhengqi Lu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, People's Republic of China.
| |
Collapse
|
44
|
Grimes JA, Prasad N, Levy S, Cattley R, Lindley S, Boothe HW, Henderson RA, Smith BF. A comparison of microRNA expression profiles from splenic hemangiosarcoma, splenic nodular hyperplasia, and normal spleens of dogs. BMC Vet Res 2016; 12:272. [PMID: 27912752 PMCID: PMC5135805 DOI: 10.1186/s12917-016-0903-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/22/2016] [Indexed: 12/28/2022] Open
Abstract
Background Splenic masses are common in older dogs; yet diagnosis preceding splenectomy and histopathology remains elusive. MicroRNAs (miRNAs) are short, non-coding RNAs that play a role in post-transcriptional regulation, and differential expression of miRNAs between normal and tumor tissue has been used to diagnose neoplastic diseases. The objective of this study was to determine differential expression of miRNAs by use of RNA-sequencing in canine spleens that were histologically confirmed as hemangiosarcoma, nodular hyperplasia, or normal. Results Twenty-two miRNAs were found to be differentially expressed in hemangiosarcoma samples (4 between hemangiosarcoma and both nodular hyperplasia and normal spleen and 18 between hemangiosarcoma and normal spleen only). In particular, mir-26a, mir-126, mir-139, mir-140, mir-150, mir-203, mir-424, mir-503, mir-505, mir-542, mir-30e, mir-33b, mir-365, mir-758, mir-22, and mir-452 are of interest in the pathogenesis of hemangiosarcoma. Conclusions Findings of this study confirm the hypothesis that miRNA expression profiles are different between canine splenic hemangiosarcoma, nodular hyperplasia, and normal spleens. A large portion of the differentially expressed miRNAs have roles in angiogenesis, with an additional group of miRNAs being dysregulated in vascular disease processes. Two other miRNAs have been implicated in cancer pathways such as PTEN and cell cycle checkpoints. The finding of multiple miRNAs with roles in angiogenesis and vascular disease is important, as hemangiosarcoma is a tumor of endothelial cells, which are driven by angiogenic stimuli. This study shows that miRNA dysregulation is a potential player in the pathogenesis of canine splenic hemangiosarcoma.
Collapse
Affiliation(s)
- Janet A Grimes
- Department of Clinical Sciences, Auburn University College of Veterinary Medicine, Auburn University, Auburn, AL, USA. .,Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, 2200 College Station Road, Athens, GA, 30602, USA.
| | - Nripesh Prasad
- Genomics Services Laboratory, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Shawn Levy
- Genomics Services Laboratory, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Russell Cattley
- Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Stephanie Lindley
- Department of Clinical Sciences, Auburn University College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Harry W Boothe
- Department of Clinical Sciences, Auburn University College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Ralph A Henderson
- Department of Clinical Sciences, Auburn University College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Bruce F Smith
- Scott Ritchey Research Center, Auburn University College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| |
Collapse
|
45
|
Angiogenesis in Ischemic Stroke and Angiogenic Effects of Chinese Herbal Medicine. J Clin Med 2016; 5:jcm5060056. [PMID: 27275837 PMCID: PMC4929411 DOI: 10.3390/jcm5060056] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 01/06/2023] Open
Abstract
Stroke is one of the major causes of death and adult disability worldwide. The underlying pathophysiology of stroke is highly complicated, consisting of impairments of multiple signalling pathways, and numerous pathological processes such as acidosis, glutamate excitotoxicity, calcium overload, cerebral inflammation and reactive oxygen species (ROS) generation. The current treatment for ischemic stroke is limited to thromolytics such as recombinant tissue plasminogen activator (tPA). tPA has a very narrow therapeutic window, making it suitable to only a minority of stroke patients. Hence, there is great urgency to develop new therapies that can protect brain tissue from ischemic damage. Recent studies have shown that new vessel formation after stroke not only replenishes blood flow to the ischemic area of the brain, but also promotes neurogenesis and improves neurological functions in both animal models and patients. Therefore, drugs that can promote angiogenesis after ischemic stroke can provide therapeutic benefits in stroke management. In this regard, Chinese herbal medicine (CHM) has a long history in treating stroke and the associated diseases. A number of studies have demonstrated the pro-angiogenic effects of various Chinese herbs and herbal formulations in both in vitro and in vivo settings. In this article, we present a comprehensive review of the current knowledge on angiogenesis in the context of ischemic stroke and discuss the potential use of CHM in stroke management through modulation of angiogenesis.
Collapse
|