1
|
Yin X, Li G, Ji F, Wang M, Gao Y, Li F, Wang Z, Han G, Gao Z. Tim-3 Deficiency Ameliorates Motor Deficits and Neuroinflammation in MPP+/MPTP-Induced Parkinson's Disease Models via the NF-κB/NLRP3 Pathway. Mol Neurobiol 2025; 62:5566-5578. [PMID: 39579278 DOI: 10.1007/s12035-024-04560-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/16/2024] [Indexed: 11/25/2024]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder, and neuroinflammation plays a pivotal role in its pathogenesis. T-cell immunoglobulin and mucin-domain-containing molecule 3 (Tim-3) is a crucial immunoregulatory mediator in various diseases; however, its roles and underlying molecular mechanisms in PD remain unclear. We established in vitro and in vivo 1-methyl-4-phenylpyridinium (MPP+)/1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD models in Tim-3-knockout BV2 cells and mice, respectively. Motor function was assessed through behavioral tests, including pole, traction, forced swimming, and open field tests. Immunofluorescence was used to examine dopaminergic neuron loss and glial activation. The expression levels of nuclear factor-kappa B (NF-κB)/nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) pathway components were evaluated by western blotting. Proinflammatory cytokines were measured via enzyme-linked immunosorbent assay (ELISA). Compared with the wild-type, Tim-3 expression was significantly increased in the PD model, and Tim-3 deficiency mitigated MPTP-induced motor deficits, dopaminergic neuron loss, and glial cell activation. Furthermore, Tim-3 deficiency suppressed neuroinflammation by negatively modulating the NF-κB/NLRP3 pathway, thereby downregulating the expression of the proinflammatory cytokines IL-1β, IL-18, IL-6, and TNF-α. These findings indicate that Tim-3 plays a proinflammatory role in PD by regulating the NF-κB/NLRP3 pathway, highlighting Tim-3 as a promising therapeutic target for PD.
Collapse
Affiliation(s)
- Xi Yin
- Department of Neurology, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Ge Li
- Department of Neuroimmune and Antibody Engineering, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Fei Ji
- Department of Otolaryngology-Head and Neck Surgery, The Six Medical Center and National Clinical Research Center for Otolaryngologic Disease, Chinese PLA General Hospital, Beijing, China
| | - Miao Wang
- Department of Neurology, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Yang Gao
- Department of Neurology, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Fengzhu Li
- Department of Neurology, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Zhenfu Wang
- Department of Neurology, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China.
| | - Gencheng Han
- Department of Neuroimmune and Antibody Engineering, Beijing Institute of Basic Medical Sciences, Beijing, China.
| | - Zhongbao Gao
- Department of Neurology, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Wu J, Yan F, Li Y, Liang M, Guo Y, Yang M. Hypoxia inducible factor-1alpha expression correlates with inflammatory injury of blood-brain barrier which influences perihaematomal edema after intracerebral hemorrhage. J Stroke Cerebrovasc Dis 2025; 34:108269. [PMID: 40044094 DOI: 10.1016/j.jstrokecerebrovasdis.2025.108269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/10/2025] Open
Abstract
BACKROUND In patients with intracerebral hemorrhage (ICH), perihematomal edema (PHE) significantly worsens the prognosis. This condition leads to the formation of a hypoxic microenvironment surrounding the blood-brain barrier (BBB), which in turn activates hypoxia-inducible factor-1 alpha (HIF-1α), a highly sensitive hypoxia-related transcription factor. Additionally, tumor necrosis factor-alpha (TNF-α) emerges as a promising biomarker for tracking inflammation in the vicinity of the BBB. The integrity of the BBB is maintained by proteins such as zonula occludens-1 (ZO-1), which is crucial for the tight junctions that regulate the barrier's permeability. Understanding these mechanisms is vital for developing targeted therapies to mitigate the effects of ICH. OBJECT Through the collection and analysis of peripheral blood and tissue samples from ICH patients and animal models at predefined time points, we established the correlation between HIF-1α expression, inflammatory damage to the BBB, and the development of PHE. METHODS Ethical approval was secured from relevant Chinese authorities and the Ethics Committee of Qinghai Provincial People's Hospital. The clinical study included 32 ICH patients, with computerized tomographic scans and blood samples taken at 1, 3, 7, and 14 days post-ICH. HIF-1α and ZO-1 expression, as well as TNF-α levels, were measured using enzyme-linked immunosorbent assay, quantitative real-time polymerase chain reaction, and western blot. In the animal study, 18 adult Sprague Dawley rats were divided into sham, ICH, and HIF-1α Inhibited groups. Lificiguat YC-1 was used to inhibit HIF-1α expression, and samples were collected at the critical change point identified clinically for similar measurements. RESULTS At 3 days after onset, the highest level of HIF-1α and TNF-α, the lowest level of ZO-1 and the most obvious development in PHE appeared in ICH patients (F ≥ 10.278, P ≤ 0.004). At that day, HIF-1α expression positively correlated with TNF-α levels (r = 0.809, P<0.001); TNF-α negatively correlated with ZO-1 expression (r=-0.840, P<0.001) which negatively correlated with PHE development (r=-0.601, p<0.001). Comparing to sham group and sole ICH group, after HIF-1α expression was inhibited, all the biological indicators level of ICH rats were the lowest (F ≥ 14.953, p ≤ 0.005). Their correlation were the same as that in ICH patients. CONCLUSION At 3 days after onset of ICH, HIF-1α expression correlated with inflammatory injury of BBB, which influenced PHE.
Collapse
Affiliation(s)
- Jian Wu
- Graduate School, Qinghai University, Xining, China
| | - Fuli Yan
- Graduate School, Qinghai University, Xining, China
| | - Yiming Li
- Graduate School, Qinghai University, Xining, China
| | | | - Yu Guo
- Department of Neurosurgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China.
| | - Mingfei Yang
- Department of Neurosurgery, Qinghai Provincial People's Hospital, Xining, Qinghai, China.
| |
Collapse
|
3
|
Liang T, Liu R, Liu J, Hong J, Gong F, Yang X. miRNA506 Activates Sphk1 Binding with Sirt1 to Inhibit Brain Injury After Intracerebral Hemorrhage via PI3K/AKT Signaling Pathway. Mol Neurobiol 2025; 62:4093-4114. [PMID: 39395147 DOI: 10.1007/s12035-024-04534-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/06/2024] [Indexed: 10/14/2024]
Abstract
Intracerebral hemorrhage (ICH) is an acute neurological disorder characterized by high mortality and disability rates. Previous studies have shown that 75% of patients who survive ICH experience varying degrees of neurological deficits. Sphk1 has been implicated in a multitude of phylogenetic processes, including innate immunity and cell proliferation. An in vivo rat model of ICH and an in vitro model of neuronal oxyhemoglobin (OxyHb) were constructed. The expression level of Sphk1 was assessed using western blotting and immunofluorescence, whereas cell death following ICH was evaluated using fluoro-Jade B and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Immunofluorescence facilitated the examination of microglial phenotypic alterations, while enzyme-linked immunosorbent assays were used to determine the concentrations of inflammatory markers. Behavioral assays were employed to assess the overall behavioral modifications of animals. Neuronal Sphk1/Sirt1 protein levels gradually increased following the induction of ICH. Elevated Sphk1 expression resulted in increased levels of anti-inflammatory microglia and reduced levels of pro-inflammatory factors. In contrast, suppression of Sphk1 expression resulted in an increased number of dead cells, thereby exacerbating neurological deficits. In vitro findings indicated that the levels of phosphorylated PI3K and AKT proteins increased in conjunction with Sphk1 expression. This study established that after ICH, Sphk1 interacts with Sirt1 to mitigate neuroinflammation, cell death, oxidative stress, and brain edema via the PI3K/AKT signaling pathway. Augmenting expression of Sphk1 significantly can ameliorate neurological impairments induced by ICH, offering novel targets and perspectives for therapeutic interventions in ICH treatment.
Collapse
Affiliation(s)
- Tianyu Liang
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Renyang Liu
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Jinquan Liu
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Jun Hong
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Fangxiao Gong
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital Bijie Hospital, Bijie, Guizhou, 551799, China
| | - Xianghong Yang
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
4
|
Zhao B, Lian X, Zeng P, Wang Y, Cai G, Chen R, Liu J, Chen L. Hippocampal Subfields Related to Cognitive Decline and Peripheral TIM-3 Levels in Elderly with Knee Osteoarthritis. J Pain Res 2025; 18:1697-1709. [PMID: 40182324 PMCID: PMC11967357 DOI: 10.2147/jpr.s496944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/12/2025] [Indexed: 04/05/2025] Open
Abstract
Purpose Knee osteoarthritis (KOA) has been linked to increased cognitive decline risk, but the specific mechanisms underlying this phenomenon remain unclear. Research suggests neuroimaging changes and chronic low-grade inflammation may play key roles as common pathways linking osteoarthritis (OA) to cognitive decline. Patients and Methods This cross-sectional study recruited 36 individuals diagnosed with KOA and 25 healthy controls (HCs). Cognition was assessed using the Montreal Cognitive Assessment (MoCA) and the Digit Cancellation Test (DCT). The gray matter volume of 12 hippocampal subfields and the serum TIM-3 levels were also measured. Results KOA patients had significantly lower MoCA scores (P < 0.01) and fewer correct responses on the DCT (P < 0.01). They also exhibited a larger volume of the right hippocampal tail (FDR-corrected P = 0.010) and a smaller volume of the right hippocampal fissure (FDR-corrected P = 0.036). Correlation analysis revealed that the volume of the right hippocampal tail was associated with the number of correct responses on the DCT (r = -0.356, P = 0.049). Additionally, a smaller volume of the left hippocampal fissure was linked to higher serum TIM-3 levels (r = -0.404, P = 0.030) in KOA patients. Conclusion The hippocampal tail and hippocampal fissure exhibited reduced volume in KOA patients, and these changes were associated with alterations in attention and serum TIM-3 levels, respectively. These findings suggest a potential link between KOA and cognitive decline through inflammation and neuroscience, offering a theoretical basis for further study. Meanwhile, serum TIM-3 and right hippocampal fissure/tail volume might be potential biomarkers for detecting cognitive decline in KOA patients. Further studies are necessary for the investigation of this possibility.
Collapse
Affiliation(s)
- Baoru Zhao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
| | - Xiaowen Lian
- Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
| | - Peiling Zeng
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
| | - Yajun Wang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
| | - Guiyan Cai
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
| | - Ruilin Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
| | - Jiao Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- National-Local Laboratory of Orthopedics & Traumatology of Traditional Chinese Medicine and Rehabilitation (Fujian University of Traditional Chinese Medicine), Ministry of Education, Fuzhou, Fujian, People’s Republic of China
| | - Lidian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- National-Local Laboratory of Orthopedics & Traumatology of Traditional Chinese Medicine and Rehabilitation (Fujian University of Traditional Chinese Medicine), Ministry of Education, Fuzhou, Fujian, People’s Republic of China
| |
Collapse
|
5
|
Gu F, Wang Z, Ding H, Tao X, Zhang J, Dai K, Li X, Shen H, Li H, Chen Z, Wang Z. Microglial mitochondrial DNA release contributes to neuroinflammation after intracerebral hemorrhage through activating AIM2 inflammasome. Exp Neurol 2024; 382:114950. [PMID: 39278588 DOI: 10.1016/j.expneurol.2024.114950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
Intracerebral hemorrhage (ICH) is a severe disease that often leads to disability and death. Neuroinflammatory response is a key causative factor of early secondary brain injury after ICH. AIM2 is a DNA-sensing protein that recognizes cytosolic double-stranded DNA and take a significant part in neuroinflammation. Mitochondrial DNA participates in the translation of proteins such as the respiratory chain in the mitochondria. Whether mtDNA is involved in forming AIM2 inflammasome after ICH remains unclear. We used mice to construct ICH model in vivo and we used BV2 microglial cells treated with oxyhemoglobin to simulate ICH in vitro. Following lentiviral transfection to overexpress AIM2 antagonist P202, a notable decrease was observed in the levels of AIM2 inflammasome-associated proteins, leading to a reduction in dead neurons surrounding the hematoma and an enhancement in long-term and short-term behavior of neurological deficits. We further explored whether mtDNA took part in the AIM2 activation after ICH. The cytosolic mtDNA level was down-regulated by the mitochondrial division protector Mdivi-1 and up-regulated by transfection of mtDNA into cytoplasm. We found the expression level of AIM2 inflammasome-related proteins and inflammatory cytokines release were regulated by the cytosolic mtDNA level. In conclusion, after ICH, the mtDNA content in the cytoplasm of microglia around the hematoma rises, causing AIM2 inflammation leading to neuronal apoptosis, which leads to neurological deficits in mice. On the other hand, P202 was able to block inflammatory vesicle activation and improve neurological function by preventing the interaction between AIM2 protein and mitochondrial DNA.
Collapse
Affiliation(s)
- Feng Gu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Haojie Ding
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Xinyu Tao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Juyi Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Kun Dai
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Zhouqing Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| |
Collapse
|
6
|
Lee C, Yu D, Kim HS, Kim KS, Chang CY, Yoon HJ, Won SB, Kim DY, Goh EA, Lee YS, Park JB, Kim SS, Park EJ. Galectin-9 Mediates the Functions of Microglia in the Hypoxic Brain Tumor Microenvironment. Cancer Res 2024; 84:3788-3802. [PMID: 39207402 DOI: 10.1158/0008-5472.can-23-3878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/25/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Galectin-9 (Gal-9) is a multifaceted regulator of various pathophysiologic processes that exerts positive or negative effects in a context-dependent manner. In this study, we elucidated the distinctive functional properties of Gal-9 on myeloid cells within the brain tumor microenvironment (TME). Gal-9-expressing cells were abundant at the hypoxic tumor edge in the tumor-bearing ipsilateral hemisphere compared with the contralateral hemisphere in an intracranial mouse brain tumor model. Gal-9 was highly expressed in microglia and macrophages in tumor-infiltrating cells. In primary glia, both the expression and secretion of Gal-9 were influenced by tumors. Analysis of a human glioblastoma bulk RNA sequencing dataset and a single-cell RNA sequencing dataset from a murine glioma model revealed a correlation between Gal-9 expression and glial cell activation. Notably, the Gal-9high microglial subset was functionally distinct from the Gal-9neg/low subset in the brain TME. Gal-9high microglia exhibited properties of inflammatory activation and higher rates of cell death, whereas Gal-9neg/low microglia displayed a superior phagocytic ability against brain tumor cells. Blockade of Gal-9 suppressed tumor growth and altered the activity of glial and T cells in a mouse glioma model. Additionally, glial Gal-9 expression was regulated by hypoxia-inducible factor-2α in the hypoxic brain TME. Myeloid-specific hypoxia-inducible factor-2α deficiency led to attenuated tumor progression. Together, these findings reveal that Gal-9 on myeloid cells is an immunoregulator and putative therapeutic target in brain tumors. Significance: Galectin-9 serves as an immune checkpoint molecule that modulates the functional properties of microglia in the brain tumor microenvironment and could potentially be targeted to effectively treat brain tumors.
Collapse
Affiliation(s)
- Chanju Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Republic of Korea
- Immuno-Oncology Branch, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Republic of Korea
| | - Dahee Yu
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Republic of Korea
| | - Hyung-Seok Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Republic of Korea
| | - Ki Sun Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Republic of Korea
| | - Chi Young Chang
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Republic of Korea
| | - Hee Jung Yoon
- Immuno-Oncology Branch, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Republic of Korea
| | - Su Bin Won
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Republic of Korea
| | - Dae Yeon Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Republic of Korea
| | - Eun Ah Goh
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Republic of Korea
| | - Yong Sun Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Republic of Korea
| | - Jong-Bae Park
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Republic of Korea
| | - Sang Soo Kim
- Radiological Science Branch, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Republic of Korea
| | - Eun Jung Park
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Republic of Korea
- Immuno-Oncology Branch, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Republic of Korea
| |
Collapse
|
7
|
Ausejo-Mauleon I, Martinez-Velez N, Lacalle A, de la Nava D, Cebollero J, Villanueva H, Casares N, Marco-Sanz J, Laspidea V, Becher O, Patiño-García A, Labiano S, Pastor F, Alonso MM. Combination of locoregional radiotherapy with a TIM-3 aptamer improves survival in diffuse midline glioma models. JCI Insight 2024; 9:e175257. [PMID: 39146023 PMCID: PMC11457855 DOI: 10.1172/jci.insight.175257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 08/07/2024] [Indexed: 08/17/2024] Open
Abstract
Pediatric diffuse midline gliomas (DMG) with altered H3-K27M are aggressive brain tumors that arise during childhood. Despite advances in genomic knowledge and the significant number of clinical trials testing new targeted therapies, patient outcomes are still poor. Immune checkpoint blockades with small molecules, such as aptamers, are opening new therapeutic options that represent hope for this orphan disease. Here, we demonstrated that a TIM-3 aptamer (TIM-3 Apt) as monotherapy increased the immune infiltration and elicited a strong specific immune response with a tendency to improve the overall survival of treated DMG-bearing mice. Importantly, combining TIM-3 Apt with radiotherapy increased the overall median survival and led to long-term survivor mice in 2 pediatric DMG orthotopic murine models. Interestingly, TIM-3 Apt administration increased the number of myeloid populations and the proinflammatory CD8-to-Tregs ratios in the tumor microenvironment as compared with nontreated groups after radiotherapy. Importantly, the depletion of T cells led to a major loss of the therapeutic effect achieved by the combination. This work uncovers TIM-3 targeting as an immunotherapy approach to improve the radiotherapy outcome in DMGs and offers a strong foundation for propelling a phase I clinical trial using radiotherapy and TIM-3 blockade combination as a treatment for these tumors.
Collapse
Affiliation(s)
- Iker Ausejo-Mauleon
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Naiara Martinez-Velez
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Andrea Lacalle
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Daniel de la Nava
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Javier Cebollero
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona, Spain
| | - Helena Villanueva
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona, Spain
| | - Noelia Casares
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Javier Marco-Sanz
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Virginia Laspidea
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
- Research Department of Hematology and Oncology, University College London, London, UK
| | - Oren Becher
- Jack Martin Fund Division of Pediatric Hematology-Oncology, Mount Sinai, New York, New York, USA
| | - Ana Patiño-García
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Sara Labiano
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Fernando Pastor
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona, Spain
| | - Marta M. Alonso
- Health Research Institute of Navarra (IdiSNA), Pamplona, Navarra, Spain
- Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Navarra, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
8
|
Ramírez Hernández E, Hernández Zimbrón LF, Segura Pérez E, Sánchez Salgado JL, Pereyra Morales MA, Zenteno E. Galectin-9 and Tim-3 are upregulated in response to microglial activation induced by the peptide Amyloid-β (25-35). Neuropeptides 2024; 105:102426. [PMID: 38527407 DOI: 10.1016/j.npep.2024.102426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
Galectins are a group of β-galactoside-binding lectins associated with regulating immunological response. In the brains of AD patients and 5xFAD (familial AD) mice, galectin-3 (Gal-3) was highly upregulated and found to be expressed in microglia associated with Aβ plaques. However, the participation of other galectins, specifically galectin-9 (Gal-9) and T-cell immunoglobulin and mucin domain 3 (Tim-3) receptors, are unknown in the inflammatory response. The experimental model of the Aβ25-35 peptide will allow us to study the mechanisms of neuroinflammation and describe the changes in the expression of the Gal-9 and Tim-3 receptor. This study aimed to evaluate whether Aβ25-35 peptide administration into the lateral ventricles of rats upregulated Gal-9 and Tim-3 implicated in the modulation of neuroinflammation. The vehicle or Aβ25-35 peptide (1 μg/μL) was bilaterally administered into the lateral ventricles of the rat, and control group. After the administration of the Aβ25-35 peptide, animals were tested for learning (day 29) and spatial memory (day 30) in the novel object recognition test (NOR). On day 31, hippocampus was examined for morphological changes by Nilss stain, biochemical changes by NO2 and MDA, immunohistochemical analysis by astrocytes (GFAP), microglia (Iba1), Gal-9 and Tim-3, and western blot. Our results show the administration of the Aβ25-35 peptide into the lateral ventricles of rats induce memory impairment in the NOR by increases the oxidative stress and inflammatory response. This result is associated with an upregulation of Gal-9 and Tim-3 predominantly detected in the microglia cells of Aβ25-35-treated rats with respect to the control group. Gal-9 and Tim-3 are upregulated in activated microglia that could modulate the inflammatory response and damage in neurodegenerative processes induced by the Aβ25-35 peptide. Therefore, we suggest that Gal-9 and Tim-3 participate in the inflammatory process induced by the administration of the Aβ25-35 peptide.
Collapse
Affiliation(s)
- Eleazar Ramírez Hernández
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | | | - Emmanuel Segura Pérez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Luis Sánchez Salgado
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mohamed Ali Pereyra Morales
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
9
|
Delova A, Pasc A, Monari A. Interaction of the Immune System TIM-3 Protein with a Model Cellular Membrane Containing Phosphatidyl-Serine Lipids. Chemistry 2024; 30:e202304318. [PMID: 38345892 DOI: 10.1002/chem.202304318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
T cell transmembrane, Immunoglobulin, and Mucin (TIM) are important immune system proteins which are especially present in T-cells and regulated the immune system by sensing cell engulfment and apoptotic processes. Their role is exerted by the capacity to detect the presence of phosphatidyl-serine lipid polar head in the outer leaflet of cellular membranes (correlated with apoptosis). In this contribution by using equilibrium and enhanced sampling molecular dynamics simulation we unravel the molecular bases and the thermodynamics of TIM, and in particular TIM-3, interaction with phosphatidyl serine in a lipid bilayer. Since TIM-3 deregulation is an important factor of pro-oncogenic tumor micro-environment understanding its functioning at a molecular level may pave the way to the development of original immunotherapeutic approaches.
Collapse
Affiliation(s)
| | - Andreea Pasc
- Université de Lorraine and CNRS, UMR 7053L2CM, F-54000, Nancy, France
| | - Antonio Monari
- Université Paris Cité and CNRS, ITDODYS, F-75006, Paris, France
| |
Collapse
|
10
|
Liang T, Xu S, Liu R, Xia X. Activating transcription factor 6 alleviates secondary brain injury by increasing cystathionine γ-lyase expression in a rat model of intracerebral hemorrhage. Aging (Albany NY) 2024; 16:6990-7008. [PMID: 38613810 PMCID: PMC11087128 DOI: 10.18632/aging.205737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/03/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) comprises primary and secondary injuries, the latter of which induces increased inflammation and apoptosis and is more severe. Activating transcription factor 6 (ATF6) is a type-II transmembrane protein in the endoplasmic reticulum (ER). ATF6 target genes could improve ER homeostasis, which contributes to cryoprotection. Hence, we predict that ATF6 will have a protective effect on brain tissue after ICH. METHOD The ICH rat model was generated through autologous blood injection into the right basal ganglia, the expression of ATF6 after ICH was determined by WB and IF. The expression of ATF6 was effectively controlled by means of intervention, and a series of measures was used to detect cell death, neuroinflammation, brain edema, blood-brain barrier and other indicators after ICH. Finally, the effects on long-term neural function of rats were measured by behavioral means. RESULT ATF6 was significantly increased in the ICH-induced brain tissues. Further, ATF6 was found to modulate the expression of cystathionine γ-lyase (CTH) after ICH. Upregulation of ATF6 attenuated neuronal apoptosis and inflammation in ICH rats, along with mitigation of ICH-induced brain edema, blood-brain barrier deterioration, and cognitive behavior defects. Conversely, ATF6 genetic knockdown induced effects counter to those aforementioned. CONCLUSIONS This study thereby emphasizes the crucial role of ATF6 in secondary brain injury in response to ICH, indicating that ATF6 upregulation may potentially ameliorate ICH-induced secondary brain injury. Consequently, ATF6 could serve as a promising therapeutic target to alleviate clinical ICH-induced secondary brain injuries.
Collapse
Affiliation(s)
- Tianyu Liang
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou 310014, Zhejiang, China
| | - Sen Xu
- Second Clinical Medical School, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Renyang Liu
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou 310014, Zhejiang, China
| | - Xiaoping Xia
- Department of Intensive Care Unit, Taizhou Integrated Traditional Chinese and Western Medicine Hospital, Wenling, Zhejiang Province, China
| |
Collapse
|
11
|
Elliott W, Tsung AJ, Guda MR, Velpula KK. Galectin inhibitors and nanoparticles as a novel therapeutic strategy for glioblastoma multiforme. Am J Cancer Res 2024; 14:774-795. [PMID: 38455415 PMCID: PMC10915327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/11/2024] [Indexed: 03/09/2024] Open
Abstract
Over the past two decades, the gold standard of glioblastoma multiforme (GBM) treatment is unchanged and adjunctive therapy has offered little to prolong both quality and quantity of life. To improve pharmacotherapy for GBM, galectins are being studied provided their positive correlation with the malignancy and disease severity. Despite the use of galectin inhibitors and literature displaying the ability of the lectin proteins to decrease tumor burden and decrease mortality within various malignancies, galectin inhibitors have not been studied for GBM therapy. Interestingly, anti-galectin siRNA delivered in nanoparticle capsules, assisting in blood brain barrier penetrance, is well studied for GBM, and has demonstrated a remarkable ability to attenuate both galectin and tumor count. Provided that the two therapies have an analogous anti-galectin effect, it is hypothesized that galectin inhibitors encapsuled within nanoparticles will likely have a similar anti-galectin effect in GBM cells and further correlate to a repressed tumor burden.
Collapse
Affiliation(s)
- Willie Elliott
- Department of Cancer Biology and Pharmacology, University of Illinois College of MedicinePeoria, IL, USA
| | - Andrew J Tsung
- Department of Cancer Biology and Pharmacology, University of Illinois College of MedicinePeoria, IL, USA
- Department of Neurosurgery, University of Illinois College of MedicinePeoria, IL, USA
- Illinois Neurological InstitutePeoria, IL, USA
| | - Maheedhara R Guda
- Department of Cancer Biology and Pharmacology, University of Illinois College of MedicinePeoria, IL, USA
| | - Kiran K Velpula
- Department of Cancer Biology and Pharmacology, University of Illinois College of MedicinePeoria, IL, USA
- Department of Neurosurgery, University of Illinois College of MedicinePeoria, IL, USA
- Department of Pediatrics, University of Illinois College of MedicinePeoria, IL, USA
| |
Collapse
|
12
|
Dong H, Wen X, Zhang BW, Wu Z, Zou W. Astrocytes in intracerebral hemorrhage: impact and therapeutic objectives. Front Mol Neurosci 2024; 17:1327472. [PMID: 38419793 PMCID: PMC10899346 DOI: 10.3389/fnmol.2024.1327472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/25/2024] [Indexed: 03/02/2024] Open
Abstract
Intracerebral hemorrhage (ICH) manifests precipitously and profoundly impairs the neurological function in patients who are affected. The etiology of subsequent injury post-ICH is multifaceted, characterized by the intricate interplay of various factors, rendering therapeutic interventions challenging. Astrocytes, a distinct class of glial cells, interact with neurons and microglia, and are implicated in a series of pathophysiological alterations following ICH. A comprehensive examination of the functions and mechanisms associated with astrocytic proteins may shed light on the role of astrocytes in ICH pathology and proffer innovative therapeutic avenues for ICH management.
Collapse
Affiliation(s)
- Hao Dong
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xin Wen
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Bai-Wen Zhang
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhe Wu
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Zou
- The Third Department of Acupuncture and Moxibustion, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
13
|
Ausejo-Mauleon I, Labiano S, de la Nava D, Laspidea V, Zalacain M, Marrodán L, García-Moure M, González-Huarriz M, Hervás-Corpión I, Dhandapani L, Vicent S, Collantes M, Peñuelas I, Becher OJ, Filbin MG, Jiang L, Labelle J, de Biagi-Junior CAO, Nazarian J, Laternser S, Phoenix TN, van der Lugt J, Kranendonk M, Hoogendijk R, Mueller S, De Andrea C, Anderson AC, Guruceaga E, Koschmann C, Yadav VN, Gállego Pérez-Larraya J, Patiño-García A, Pastor F, Alonso MM. TIM-3 blockade in diffuse intrinsic pontine glioma models promotes tumor regression and antitumor immune memory. Cancer Cell 2023; 41:1911-1926.e8. [PMID: 37802053 PMCID: PMC10644900 DOI: 10.1016/j.ccell.2023.09.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/16/2023] [Accepted: 09/05/2023] [Indexed: 10/08/2023]
Abstract
Diffuse intrinsic pontine glioma (DIPG) is an aggressive brain stem tumor and the leading cause of pediatric cancer-related death. To date, these tumors remain incurable, underscoring the need for efficacious therapies. In this study, we demonstrate that the immune checkpoint TIM-3 (HAVCR2) is highly expressed in both tumor cells and microenvironmental cells, mainly microglia and macrophages, in DIPG. We show that inhibition of TIM-3 in syngeneic models of DIPG prolongs survival and produces long-term survivors free of disease that harbor immune memory. This antitumor effect is driven by the direct effect of TIM-3 inhibition in tumor cells, the coordinated action of several immune cell populations, and the secretion of chemokines/cytokines that create a proinflammatory tumor microenvironment favoring a potent antitumor immune response. This work uncovers TIM-3 as a bona fide target in DIPG and supports its clinical translation.
Collapse
Affiliation(s)
- Iker Ausejo-Mauleon
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain; Solid Tumor Program, CIMA-Universidad de Navarra, Pamplona, Spain; Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Sara Labiano
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain; Solid Tumor Program, CIMA-Universidad de Navarra, Pamplona, Spain; Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Daniel de la Nava
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain; Solid Tumor Program, CIMA-Universidad de Navarra, Pamplona, Spain; Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Virginia Laspidea
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain; Solid Tumor Program, CIMA-Universidad de Navarra, Pamplona, Spain; Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Marta Zalacain
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain; Solid Tumor Program, CIMA-Universidad de Navarra, Pamplona, Spain; Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Lucía Marrodán
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain; Solid Tumor Program, CIMA-Universidad de Navarra, Pamplona, Spain; Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Marc García-Moure
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain; Solid Tumor Program, CIMA-Universidad de Navarra, Pamplona, Spain; Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Marisol González-Huarriz
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain; Solid Tumor Program, CIMA-Universidad de Navarra, Pamplona, Spain; Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Irati Hervás-Corpión
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain; Solid Tumor Program, CIMA-Universidad de Navarra, Pamplona, Spain; Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Laasya Dhandapani
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain; Solid Tumor Program, CIMA-Universidad de Navarra, Pamplona, Spain; Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Silvestre Vicent
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain; Solid Tumor Program, CIMA-Universidad de Navarra, Pamplona, Spain
| | - Maria Collantes
- Radiopharmacy Unit, Clínica Universidad de Navarra, Pamplona, Spain; Translational Molecular Imaging Unit, Clínica Universidad de Navarra, Pamplona, Spain
| | - Iván Peñuelas
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain; Radiopharmacy Unit, Clínica Universidad de Navarra, Pamplona, Spain; Translational Molecular Imaging Unit, Clínica Universidad de Navarra, Pamplona, Spain
| | - Oren J Becher
- Jack Martin Fund Division of Pediatric Hematology-oncology, Mount Sinai, New York, NY, USA
| | - Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Li Jiang
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jenna Labelle
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Carlos A O de Biagi-Junior
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Javad Nazarian
- Children's National Health System, Center for Genetic Medicine Research, Washington, DC, USA; Virginia Tech University, Washington, DC, USA; Division of Oncology and Children's Research Center, DIPG/DMG Research Center Zurich, University Children's Hospital Zurich, Zurich, Switzerland
| | - Sandra Laternser
- Division of Oncology and Children's Research Center, DIPG/DMG Research Center Zurich, University Children's Hospital Zurich, Zurich, Switzerland
| | - Timothy N Phoenix
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | | | | | - Raoull Hoogendijk
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Sabine Mueller
- University of California, San Francisco, San Francisco, CA, USA
| | - Carlos De Andrea
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain; Department of Pathology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Ana C Anderson
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Elizabeth Guruceaga
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain; Bioinformatics Platform, CIMA-Universidad de Navarra, Pamplona, Spain
| | - Carl Koschmann
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Viveka Nand Yadav
- Department of Pediatrics, University of Missouri Kansas City School of Medicine, Kansas City, KS, USA; Department of Pediatrics, Children's Mercy Research Institute (CMRI), Kansas City, KS, USA; Department of Cancer Biology, University of Kansas Cancer Center. Kansas City, KS, USA
| | - Jaime Gállego Pérez-Larraya
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain; Solid Tumor Program, CIMA-Universidad de Navarra, Pamplona, Spain; Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Ana Patiño-García
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain; Solid Tumor Program, CIMA-Universidad de Navarra, Pamplona, Spain; Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
| | - Fernando Pastor
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain; Molecular Therapeutics Program, CIMA-Universidad de Navarra, Pamplona, Spain
| | - Marta M Alonso
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain; Solid Tumor Program, CIMA-Universidad de Navarra, Pamplona, Spain; Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
14
|
Sauer N, Janicka N, Szlasa W, Skinderowicz B, Kołodzińska K, Dwernicka W, Oślizło M, Kulbacka J, Novickij V, Karłowicz-Bodalska K. TIM-3 as a promising target for cancer immunotherapy in a wide range of tumors. Cancer Immunol Immunother 2023; 72:3405-3425. [PMID: 37567938 PMCID: PMC10576709 DOI: 10.1007/s00262-023-03516-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023]
Abstract
T-cell immunoglobulin and mucin domain-containing protein 3 (TIM-3) expression has been a trending topic in recent years due to its differential expression in a wide range of neoplasms. TIM-3 is one of the key immune checkpoint receptors that interact with GAL-9, PtdSer, HMGB1 and CEACAM1. Initially identified on the surface of T helper 1 (Th1) lymphocytes and later on cytotoxic lymphocytes (CTLs), monocytes, macrophages, natural killer cells (NKs), and dendritic cells (DCs), TIM-3 plays a key role in immunoregulation. Recently, a growing body of evidence has shown that its differential expression in various tumor types indicates a specific prognosis for cancer patients. Here, we discuss which types of cancer TIM-3 can serve as a prognostic factor and the influence of coexpressed immune checkpoint inhibitors, such as LAG-3, PD-1, and CTLA-4 on patients' outcomes. Currently, experimental medicine involving TIM-3 has significantly enhanced the anti-tumor effect and improved patient survival. In this work, we summarized clinical trials incorporating TIM-3 targeting monoclonal and bispecific antibodies in monotherapy and combination therapy and highlighted the emerging role of cell-based therapies.
Collapse
Affiliation(s)
- Natalia Sauer
- Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Natalia Janicka
- Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Wojciech Szlasa
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | | | | | - Wioletta Dwernicka
- Faculty of Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Julita Kulbacka
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Vilnius, Lithuania.
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland.
| | - Vitalij Novickij
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Vilnius, Lithuania
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | | |
Collapse
|
15
|
Zheng J, Zhang C, Wu Y, Zhang C, Che Y, Zhang W, Yang Y, Zhu J, Yang L, Wang Y. Controlled Decompression Alleviates Motor Dysfunction by Regulating Microglial Polarization via the HIF-1α Signaling Pathway in Intracranial Hypertension. Mol Neurobiol 2023; 60:5607-5623. [PMID: 37328678 DOI: 10.1007/s12035-023-03416-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/24/2023] [Indexed: 06/18/2023]
Abstract
Decompressive craniectomy (DC) is a major form of surgery that is used to reduce intracranial hypertension (IH), the most frequent cause of death and disability following severe traumatic brain injury (sTBI) and stroke. Our previous research showed that controlled decompression (CDC) was more effective than rapid decompression (RDC) with regard to reducing the incidence of complications and improving outcomes after sTBI; however, the specific mechanisms involved have yet to be elucidated. In the present study, we investigated the effects of CDC in regulating inflammation after IH and attempted to identify the mechanisms involved. Analysis showed that CDC was more effective than RDC in alleviating motor dysfunction and neuronal death in a rat model of traumatic intracranial hypertension (TIH) created by epidural balloon pressurization. Moreover, RDC induced M1 microglia polarization and the release of pro-inflammatory cytokines. However, CDC treatment resulted in microglia primarily polarizing into the M2 phenotype and induced the significant release of anti-inflammatory cytokines. Mechanistically, the establishment of the TIH model led to the increased expression of hypoxia-inducible factor-1α (HIF-1α); CDC ameliorated cerebral hypoxia and reduced the expression of HIF-1α. In addition, 2-methoxyestradiol (2-ME2), a specific inhibitor of HIF-1α, significantly attenuated RDC-induced inflammation and improved motor function by promoting M1 to M2 phenotype transformation in microglial and enhancing the release of anti-inflammatory cytokines. However, dimethyloxaloylglycine (DMOG), an agonist of HIF-1α, abrogated the protective effects of CDC treatment by suppressing M2 microglia polarization and the release of anti-inflammatory cytokines. Collectively, our results indicated that CDC effectively alleviated IH-induced inflammation, neuronal death, and motor dysfunction by regulating HIF-1α-mediated microglial phenotype polarization. Our findings provide a better understanding of the mechanisms that underlie the protective effects of CDC and promote clinical translational research for HIF-1α in IH.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, 214044, Jiangsu, China
| | - Chenxu Zhang
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, 214044, Jiangsu, China
| | - Yonghui Wu
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, 214044, Jiangsu, China
| | - Chonghui Zhang
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, 214044, Jiangsu, China
| | - Yuanyuan Che
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, 214044, Jiangsu, China
| | - Wang Zhang
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, 214044, Jiangsu, China
| | - Yang Yang
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, 214044, Jiangsu, China
| | - Jie Zhu
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, 214044, Jiangsu, China.
| | - Likun Yang
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, 214044, Jiangsu, China.
| | - Yuhai Wang
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, 214044, Jiangsu, China.
| |
Collapse
|
16
|
Cao D, Li B, Cao C, Zhang J, Li X, Li H, Yu Z, Shen H, Ye M. Caveolin-1 aggravates neurological deficits by activating neuroinflammation following experimental intracerebral hemorrhage in rats. Exp Neurol 2023; 368:114508. [PMID: 37598879 DOI: 10.1016/j.expneurol.2023.114508] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/30/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is one of the stroke subtypes with the highest mortality. Secondary brain injury is associated with neurological dysfunction and poor prognosis after ICH. Caveolin-1 (CAV1) is the key protein of Caveolae. Previous studies have shown that CAV1 plays an important role in central nervous system diseases, and pointed out that in a collagenase-induced ICH model in vivo, CAV1 is associated with neuroinflammatory activation and poor neurological prognosis. In this study, we explore the role and the molecular mechanism of CAV1 in brain injury via a rat autologous whole blood injection model and an in vitro model of ICH. METHODS Adult male Sprague-Dawley rats ICH model was induced through autologous whole blood injecting into the right basal ganglia. The changes in protein levels of CAV1 in brain tissues of ICH rats were detected by western blot analysis. The immunofluorescent staining was used to explore the changes of CAV1 in microglia/macrophages (Iba1+ cells). Lentivirus vectors were administered by intracerebroventricular injection to induce CAV1 overexpression and knockdown respectively. The western blot analysis, immunofluorescence staining, enzyme-linked immunosorbent assay, terminal deoxynucleotidyl transferase dUTP nick end labeling and Nissl staining were performed to explore the role of CAV1 in secondary brain injury after ICH. Meanwhile, the rotarod test, foot fault test, adhesive-removal test, and Modified Garcia Test, as well as Morris Water Maze test, were performed to evaluate the behavioral cognitive impairment of ICH rats after genetic intervention. Additionally, BV-2 cells treated with oxygen hemoglobin for 24 h, were used as an in vitro model of ICH in this study to explore the molecular mechanism of CAV1 in brain injury; we performed western blot analysis after precise regulation of CAV1 in BV2 cells to observe changes in protein levels and phosphorylated levels of C-Src, IKK-β, and NF-κB. RESULTS The expression of CAV1 in microglia/macrophages (Iba1+ cells) was elevated and reached the peak at 24 h after ICH. CAV1 knockdown ameliorated ICH-induced neurological deficits, while CAV1 overexpression significantly worsened neurological dysfunction of ICH rats. CAV1 knockdown attenuated cellular apoptosis and promoted neuronal survival in brain tissues of ICH rats, while the ICH rats with CAV1 overexpression presented more cellular apoptosis and neuronal loss. Meanwhile, CAV1 knockdown inhibited the microglia activation and neuroinflammatory response, while CAV1 overexpression abolished these effects and aggravated neuroinflammation in brain tissues of ICH rats. Additionally, by inducing to CAV1 knockdown in BV2 cells in an in vitro model of ICH, the levels of p-C-Src, CAV-1, p-CAV-1, and p-IKK-β in cytoplasm and the level of NF-κB p65 in nucleus of BV2 cells were significantly decreased, while they were increased by inducing to CAV1 overexpression. CONCLUSIONS Our research revealed CAV1 aggravated neurological dysfunction in a rat ICH model. CAV1 knockdown exerted neuroprotective effect by suppressing microglia activation and neuroinflammation after ICH might via the C-Src/CAV1/IKK-β/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Demao Cao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China; Department of neurosurgery, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Bing Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China; Department of Neurosurgery, Yancheng City No.1 People's Hospital, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng 224006, Jiangsu Province, China
| | - Cheng Cao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China; Department of Neurocritical Intensive Care Unit, Jiangyin Clinical College of Xuzhou Medical College, Jiangyin, Jiangsu Province, China
| | - Juyi Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Zhengquan Yu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China.
| | - Ming Ye
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China.
| |
Collapse
|
17
|
Kim HW, Yong H, Shea GKH. Blood-spinal cord barrier disruption in degenerative cervical myelopathy. Fluids Barriers CNS 2023; 20:68. [PMID: 37743487 PMCID: PMC10519090 DOI: 10.1186/s12987-023-00463-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/12/2023] [Indexed: 09/26/2023] Open
Abstract
Degenerative cervical myelopathy (DCM) is the most prevalent cause of spinal cord dysfunction in the aging population. Significant neurological deficits may result from a delayed diagnosis as well as inadequate neurological recovery following surgical decompression. Here, we review the pathophysiology of DCM with an emphasis on how blood-spinal cord barrier (BSCB) disruption is a critical yet neglected pathological feature affecting prognosis. In patients suffering from DCM, compromise of the BSCB is evidenced by elevated cerebrospinal fluid (CSF) to serum protein ratios and abnormal contrast-enhancement upon magnetic resonance imaging (MRI). In animal model correlates, there is histological evidence of increased extravasation of tissue dyes and serum contents, and pathological changes to the neurovascular unit. BSCB dysfunction is the likely culprit for ischemia-reperfusion injury following surgical decompression, which can result in devastating neurological sequelae. As there are currently no therapeutic approaches specifically targeting BSCB reconstitution, we conclude the review by discussing potential interventions harnessed for this purpose.
Collapse
Affiliation(s)
- Hyun Woo Kim
- Department of Orthopaedics and Traumatology, LKS Faulty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hu Yong
- Department of Orthopaedics and Traumatology, LKS Faulty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Graham Ka Hon Shea
- Department of Orthopaedics and Traumatology, LKS Faulty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
18
|
Zheng L, Xia J, Ge P, Meng Y, Li W, Li M, Wang M, Song C, Fan Y, Zhou Y. The interrelation of galectins and autophagy. Int Immunopharmacol 2023; 120:110336. [PMID: 37262957 DOI: 10.1016/j.intimp.2023.110336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 06/03/2023]
Abstract
Autophagy is a vital physiological process that maintains intracellular homeostasis by removing damaged organelles and senescent or misfolded molecules. However, excessive autophagy results in cell death and apoptosis, which will lead to a variety of diseases. Galectins are a type of animal lectin that binds to β-galactosides and can bind to the cell surface or extracellular matrix glycans, affecting a variety of immune processes in vivo and being linked to the development of many diseases. In many cases, galectins and autophagy both play important regulatory roles in the cellular life course, yet our understanding of the relationship between them is still incomplete. Galectins and autophagy may share common etiological cofactors for some diseases. Hence, we summarize the relationship between galectins and autophagy, aiming to draw attention to the existence of multiple associations between galectins and autophagy in a variety of physiological and pathological processes, which provide new ideas for etiological diagnosis, drug development, and therapeutic targets for related diseases.
Collapse
Affiliation(s)
- Lujuan Zheng
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Jing Xia
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Pengyu Ge
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Yuhan Meng
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Weili Li
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Mingming Li
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Min Wang
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Chengcheng Song
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Yuying Fan
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
19
|
Liu Y, Chen S, Liu S, Wallace KL, Zille M, Zhang J, Wang J, Jiang C. T-cell receptor signaling modulated by the co-receptors: Potential targets for stroke treatment. Pharmacol Res 2023; 192:106797. [PMID: 37211238 DOI: 10.1016/j.phrs.2023.106797] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/02/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
Stroke is a severe and life-threatening disease, necessitating more research on new treatment strategies. Infiltrated T lymphocytes, an essential adaptive immune cell with extensive effector function, are crucially involved in post-stroke inflammation. Immediately after the initiation of the innate immune response triggered by microglia/macrophages, the adaptive immune response associated with T lymphocytes also participates in the complex pathophysiology of stroke and partially informs the outcome of stroke. Preclinical and clinical studies have revealed the conflicting roles of T cells in post-stroke inflammation and as potential therapeutic targets. Therefore, exploring the mechanisms that underlie the adaptive immune response associated with T lymphocytes in stroke is essential. The T-cell receptor (TCR) and its downstream signaling regulate T lymphocyte differentiation and activation. This review comprehensively summarizes the various molecules that regulate TCR signaling and the T-cell response. It covers both the co-stimulatory and co-inhibitory molecules and their roles in stroke. Because immunoregulatory therapies targeting TCR and its mediators have achieved great success in some proliferative diseases, this article also summarizes the advances in therapeutic strategies related to TCR signaling in lymphocytes after stroke, which can facilitate translation. DATA AVAILABILITY: No data was used for the research described in the article.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
| | - Shuai Chen
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
| | - Simon Liu
- Medical Genomics Unit, National Human Genome Research Institute, Bethesda, MD, 20814, USA
| | - Kevin L Wallace
- College of Mathematical and Natural Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Marietta Zille
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, A-1090 Vienna, Austria
| | - Jiewen Zhang
- Department of Neurology, People's Hospital of Zhengzhou University, 450000, Zhengzhou, P. R. China.
| | - Jian Wang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China; Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, 450001, Zhengzhou, P. R. China.
| | - Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China.
| |
Collapse
|
20
|
Lv J, Zhu J, Wang P, Liu T, Yuan J, Yin H, Lan Y, Sun Q, Zhang Z, Ding G, Zhou C, Wang H, Wang Z, Wang Y. Artemisinin exerts a protective effect in the MPTP mouse model of Parkinson's disease by inhibiting microglial activation via the TLR4/Myd88/NF-KB pathway. CNS Neurosci Ther 2023; 29:1012-1023. [PMID: 36691817 PMCID: PMC10018080 DOI: 10.1111/cns.14063] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 01/25/2023] Open
Abstract
AIMS We performed cell and animal experiments to explore the therapeutic effect of artemisinin on Parkinson's disease (PD) and the TLR4/Myd88 signaling pathway. METHODS C57 mice were randomly divided into the blank, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced and artemisinin-treated groups. Clinical symptoms, the number of dopaminergic (DAergic) neurons in the substantia nigra, and microglial cell activation were compared among the three groups. Subsequently, BV-2 cell activation and TLR4/Myd88 pathway component expression were compared among the blank, MPP+ -treated, artemisinin-treated, and TLR4 activator-treated groups. RESULTS Behavioral symptoms were improved, the number of DAergic neurons in the substantia nigra of the midbrain was increased, and microglial cell activation was decreased in artemisinin-treated MPTP-induced PD model mice compared with control-treated MPTP-induced PD model mice (p < 0.05). The cell experiments revealed that artemisinin treatment reduced MPP+ -induced BV-2 cell activation and inhibited the TLR4/Myd88 signaling pathway. Moreover, the effect of artemisinin on the BV-2 cell model was inhibited by the TLR4 activator LPS (p < 0.05). CONCLUSION Artemisinin may reduce damage to DAergic neurons in a PD mouse model by decreasing microglial activation through the TLR4-mediated MyD88-dependent signaling pathway. However, this finding cannot explain the relationship between microglia and DAergic neurons.
Collapse
Affiliation(s)
- Jing Lv
- Department of Neurology, Graduate Training Base of Jinzhou Medical University, Affiliated Hospital of Hubei Medical College, Taihe Hospital, Shiyan, China.,Institute of Neuroscience, Hubei University of Medicine, Shiyan, China
| | - Jing Zhu
- Institute of Neuroscience, Hubei University of Medicine, Shiyan, China
| | - Peihan Wang
- Institute of Neuroscience, Hubei University of Medicine, Shiyan, China.,Department of Neurology, Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Tongyu Liu
- Institute of Neuroscience, Hubei University of Medicine, Shiyan, China.,Department of Neurology, Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Jiang Yuan
- Department of Neurology, Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Huan Yin
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, China
| | - Yiran Lan
- Institute of Neuroscience, Hubei University of Medicine, Shiyan, China.,Department of Neurology, Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Qiang Sun
- Department of Neurology, Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Zhifeng Zhang
- Institute of Neuroscience, Hubei University of Medicine, Shiyan, China
| | - Guoda Ding
- Department of Neurology, Graduate Training Base of Jinzhou Medical University, Affiliated Hospital of Hubei Medical College, Taihe Hospital, Shiyan, China
| | - Chenxi Zhou
- Department of Neurology, Graduate Training Base of Jinzhou Medical University, Affiliated Hospital of Hubei Medical College, Taihe Hospital, Shiyan, China
| | - Huajie Wang
- Institute of Neuroscience, Hubei University of Medicine, Shiyan, China.,Department of Neurology, Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Zihan Wang
- Institute of Neuroscience, Hubei University of Medicine, Shiyan, China.,Department of Neurology, Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Yunfu Wang
- Department of Neurology, Graduate Training Base of Jinzhou Medical University, Affiliated Hospital of Hubei Medical College, Taihe Hospital, Shiyan, China.,Institute of Neuroscience, Hubei University of Medicine, Shiyan, China.,Department of Neurology, Taihe Hospital of Hubei University of Medicine, Shiyan, China
| |
Collapse
|
21
|
Xiong H, Xue G, Zhang Y, Wu S, Zhao Q, Zhao R, Zhou N, Xie Y. Effect of exogenous galectin-9, a natural TIM-3 ligand, on the severity of TNBS- and DSS-induced colitis in mice. Int Immunopharmacol 2023; 115:109645. [PMID: 36610329 DOI: 10.1016/j.intimp.2022.109645] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 01/06/2023]
Abstract
Inflammatory bowel disease (IBD) have a complex pathogenesis that is yet to be completely understood. However, a strong correlation between Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling and IBD has been observed. T-cell immunoglobulin and mucin domain-containing-3 (Tim-3) has been reported to regulate TLR4/NF-κB by interacting with Galectin-9 (Gal-9), and recombinant Gal-9 can activate Tim-3; however, its potential properties in IBD and the underlying mechanism remain unclear. This study aimed to determine how Gal-9 affects experimental colitis in mice. Dextran sodium sulfate (DSS) and 2,4,6-trinitrobenzene sulfonic acid (TNBS) were used to establish colitis in mice, and the severity of the illness was assessed based on body weight, colon length, and histology. Therefore, we explored the effects of Gal-9 treatment on colitis. Furthermore, we analyzed the effect of Gal-9 on the expression of Tim-3 and TLR4/NF-κB pathway in colonic tissues and the serum levels of interferon-gamma (IFN-γ), interleukin (IL)-1β, and IL-6. Tim-3 expression in the colon was notably decreased in mice with TNBS-induced colitis, whereas TLR4/NF-kB expression was significantly increased. Intraperitoneal injection of Gal-9 dramatically decreased the disease activity index and attenuated the level of intestinal mucosal inflammation in TNBS-induced colitis mice (p < 0.05). Intraperitoneal administration of Gal-9 significantly increased Tim-3 expression in the colon and decreased the serum concentrations of IFN-γ, IL-1β, and IL-6. Additionally, Gal-9 treatment significantly downregulated the expression of TLR4 signaling pathway-related proteins. In contrast, Gal-9 did not reduce the severity of DSS-induced colitis. In summary, exogenous Gal-9 increased Tim-3 expression, inhibited the TLR4/NF-κB pathway, and alleviated TNBS-induced colitis in mice but not DSS-induced colitis in mice, revealing its potential therapeutic ramifications for IBD.
Collapse
Affiliation(s)
- Huifang Xiong
- Department of Gastroenterology, Digestive disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi Province 330006, China; Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi 330006, China; JiangXi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi 330006, China
| | - Guohui Xue
- Department of Clinical Laboratory, Jiujiang NO.1 People's Hospital, Jiujiang, Jiangxi 332000, China
| | - Yuting Zhang
- Department of Gastroenterology, Digestive disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi Province 330006, China; Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi 330006, China; JiangXi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi 330006, China
| | - Shuang Wu
- Department of Gastroenterology, Digestive disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi Province 330006, China; Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi 330006, China; JiangXi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi 330006, China
| | - Qiaoyun Zhao
- Department of Gastroenterology, Digestive disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi Province 330006, China; Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi 330006, China; JiangXi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi 330006, China
| | - Rulin Zhao
- Department of Gastroenterology, Digestive disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi Province 330006, China; Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi 330006, China; JiangXi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi 330006, China
| | - Nanjin Zhou
- Jiangxi Provincial Academy of Medical Science, Nanchang, Jiangxi 330006, China
| | - Yong Xie
- Department of Gastroenterology, Digestive disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi Province 330006, China; Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, Jiangxi 330006, China; JiangXi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
22
|
Phosphatidylserine in the Nervous System: Cytoplasmic Regulator of the AKT and PKC Signaling Pathways and Extracellular "Eat-Me" Signal in Microglial Phagocytosis. Mol Neurobiol 2023; 60:1050-1066. [PMID: 36401705 DOI: 10.1007/s12035-022-03133-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022]
Abstract
Phosphatidylserine (PtdSer) is an important anionic phospholipid found in eukaryotic cells and has been proven to serve as a beneficial factor in the treatment of neurodegenerative diseases. PtdSer resides in the inner leaflet of the plasma membrane, where it is involved in regulating the AKT and PKC signaling pathways; however, it becomes exposed to the extracellular leaflet during neurodevelopmental processes and neurodegenerative diseases, participating in microglia-mediated synaptic and neuronal phagocytosis. In this paper, we review several characteristics of PtdSer, including the synthesis and translocation of PtdSer, the functions of cytoplasmic and exposed PtdSer, and different PtdSer-detection materials used to further understand the role of PtdSer in the nervous system.
Collapse
|
23
|
Ohashi SN, DeLong JH, Kozberg MG, Mazur-Hart DJ, van Veluw SJ, Alkayed NJ, Sansing LH. Role of Inflammatory Processes in Hemorrhagic Stroke. Stroke 2023; 54:605-619. [PMID: 36601948 DOI: 10.1161/strokeaha.122.037155] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hemorrhagic stroke is the deadliest form of stroke and includes the subtypes of intracerebral hemorrhage and subarachnoid hemorrhage. A common cause of hemorrhagic stroke in older individuals is cerebral amyloid angiopathy. Intracerebral hemorrhage and subarachnoid hemorrhage both lead to the rapid collection of blood in the central nervous system and generate inflammatory immune responses that involve both brain resident and infiltrating immune cells. These responses are complex and can contribute to both tissue recovery and tissue injury. Despite the interconnectedness of these major subtypes of hemorrhagic stroke, few reviews have discussed them collectively. The present review provides an update on inflammatory processes that occur in response to intracerebral hemorrhage and subarachnoid hemorrhage, and the role of inflammation in the pathophysiology of cerebral amyloid angiopathy-related hemorrhage. The goal is to highlight inflammatory processes that underlie disease pathology and recovery. We aim to discuss recent advances in our understanding of these conditions and identify gaps in knowledge with the potential to develop effective therapeutic strategies.
Collapse
Affiliation(s)
- Sarah N Ohashi
- Department of Neurology (S.N.O., J.H.D., L.H.S.), Yale School of Medicine, New Haven, CT
- Department of Immunobiology (S.N.O., J.H.D., L.H.S.), Yale School of Medicine, New Haven, CT
| | - Jonathan H DeLong
- Department of Neurology (S.N.O., J.H.D., L.H.S.), Yale School of Medicine, New Haven, CT
- Department of Immunobiology (S.N.O., J.H.D., L.H.S.), Yale School of Medicine, New Haven, CT
| | - Mariel G Kozberg
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital/ Harvard Medical School, Boston (M.G.K., S.J.v.V.)
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown (M.G.K., S.J.v.V.)
| | - David J Mazur-Hart
- Department of Neurological Surgery (D.J.M.-H.), Oregon Health and Science University (OHSU), Portland
| | - Susanne J van Veluw
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital/ Harvard Medical School, Boston (M.G.K., S.J.v.V.)
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown (M.G.K., S.J.v.V.)
| | - Nabil J Alkayed
- Department of Anesthesiology & Perioperative Medicine and Knight Cardiovascular Institute (N.J.A.), Oregon Health and Science University (OHSU), Portland
| | - Lauren H Sansing
- Department of Neurology (S.N.O., J.H.D., L.H.S.), Yale School of Medicine, New Haven, CT
- Department of Immunobiology (S.N.O., J.H.D., L.H.S.), Yale School of Medicine, New Haven, CT
| |
Collapse
|
24
|
Almarghalani DA, Shah ZA. Progress on siRNA-based gene therapy targeting secondary injury after intracerebral hemorrhage. Gene Ther 2023; 30:1-7. [PMID: 34754099 PMCID: PMC10927018 DOI: 10.1038/s41434-021-00304-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022]
Abstract
Intracerebral hemorrhage (ICH) is a life-threatening condition with a high mortality rate. For survivors, quality of life is determined by primary and secondary phases of injury. The prospects for injury repair and recovery after ICH are highly dependent on the extent of secondary injury. Currently, no effective treatments are available to prevent secondary injury or its long-term effects. One promising strategy that has recently garnered attention is gene therapy, in particular, small interfering RNAs (siRNA), which silence specific genes responsible for destructive effects after hemorrhage. Gene therapy as a potential treatment for ICH is being actively researched in animal studies. However, there are many barriers to the systemic delivery of siRNA-based therapy, as the use of naked siRNA has limitations. Recently, the Food and Drug Administration approved two siRNA-based therapies, and several are undergoing Phase 3 clinical trials. In this review, we describe the advancements in siRNA-based gene therapy for ICH and also summarize its advantages and disadvantages.
Collapse
Affiliation(s)
- Daniyah A Almarghalani
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH, 43614, USA
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, 43614, USA
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, 43614, USA.
| |
Collapse
|
25
|
Abstract
Stroke is a sudden and rapidly progressing ischemic or hemorrhagic cerebrovascular disease. When stroke damages the brain, the immune system becomes hyperactive, leading to systemic inflammatory response and immunomodulatory disorders, which could significantly impact brain damage, recovery, and prognosis of stroke. Emerging researches suggest that ischemic stroke-induced spleen contraction could activate a peripheral immune response, which may further aggravate brain injury. This review focuses on hemorrhagic strokes including intracerebral hemorrhage (ICH) and subarachnoid hemorrhage (SAH) and discusses the central nervous system-peripheral immune interactions after hemorrhagic stroke induction. First, inflammatory progression after ICH and SAH is investigated. As a part of this review, we summarize the various kinds of inflammatory cell infiltration to aggravate brain injury after blood-brain barrier interruption induced by hemorrhagic stroke. Then, we explore hemorrhagic stroke-induced systemic inflammatory response syndrome (SIRS) and discuss the interactions of CNS and peripheral inflammatory response. In addition, potential targets related to inflammatory response for ICH and SAH are discussed in this review, which may lead to novel therapeutic strategies for hemorrhagic stroke.
Collapse
Affiliation(s)
- Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Stroke Research, Soochow University, Suzhou, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Stroke Research, Soochow University, Suzhou, China
| |
Collapse
|
26
|
Peng Q, Zhang G, Guo X, Dai L, Xiong M, Zhang Z, Chen L, Zhang Z. Galectin-9/Tim-3 pathway mediates dopaminergic neurodegeneration in MPTP-induced mouse model of Parkinson's disease. Front Mol Neurosci 2022; 15:1046992. [PMID: 36479526 PMCID: PMC9719949 DOI: 10.3389/fnmol.2022.1046992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/03/2022] [Indexed: 09/10/2024] Open
Abstract
Galectin-9 (Gal-9) is a crucial immunoregulatory mediator in the central nervous system. Microglial activation and neuroinflammation play a key role in the degeneration of dopaminergic neurons in the substantia nigra (SN) in Parkinson's disease (PD). However, it remains unknown whether Gal-9 is involved in the pathogenesis of PD. We found that MPP+ treatment promoted the expression of Gal-9 and pro-inflammatory cytokines (IL-6, IL-1β, TNF-α, and MIP-1α) in a concentration-dependent manner in BV2 cells. Gal-9 enhanced neurodegeneration and oxidative stress induced by MPP+ in SH-SY5Y cells and primary neurons. Importantly, deletion of Gal-9 or blockade of Tim-3 ameliorated microglial activation, reduced dopaminergic neuronal loss, and improved motor performance in an MPTP-induced mouse model of PD. These observations demonstrate a pathogenic role of the Gal-9/Tim-3 pathway in exacerbating microglial activation, neuroinflammation, oxidative stress, and dopaminergic neurodegeneration in the pathogenesis of PD.
Collapse
Affiliation(s)
- Qinyu Peng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guoxin Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaodi Guo
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijun Dai
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Min Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liam Chen
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
27
|
Xia S, Zheng Y, Yan F, Chen G. MicroRNAs modulate neuroinflammation after intracerebral hemorrhage: Prospects for new therapy. Front Immunol 2022; 13:945860. [PMID: 36389834 PMCID: PMC9665326 DOI: 10.3389/fimmu.2022.945860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/13/2022] [Indexed: 12/03/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is the most common subtype of hemorrhagic stroke. After ICH, blood components extravasate from vessels into the brain, activating immune cells and causing them to release a series of inflammatory mediators. Immune cells, together with inflammatory mediators, lead to neuroinflammation in the perihematomal region and the whole brain, and neuroinflammation is closely related to secondary brain injury as well as functional recovery of the brain. Despite recent progress in understanding the pathophysiology of ICH, there is still no effective treatment for this disease. MicroRNAs (miRNAs) are non-coding RNAs 17-25 nucleotides in length that are generated naturally in the human body. They bind complementarily to messenger RNAs and suppress translation, thus regulating gene expression at the post-transcriptional level. They have been found to regulate the pathophysiological process of ICH, particularly the neuroinflammatory cascade. Multiple preclinical studies have shown that manipulating the expression and activity of miRNAs can modulate immune cell activities, influence neuroinflammatory responses, and ultimately affect neurological functions after ICH. This implicates the potentially crucial roles of miRNAs in post-ICH neuroinflammation and indicates the possibility of applying miRNA-based therapeutics for this disease. Thus, this review aims to address the pathophysiological roles and molecular underpinnings of miRNAs in the regulation of neuroinflammation after ICH. With a more sophisticated understanding of ICH and miRNAs, it is possible to translate these findings into new pharmacological therapies for ICH.
Collapse
Affiliation(s)
- Siqi Xia
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yonghe Zheng
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Zhejiang University, Hangzhou, Zhejiang, China
| | - Feng Yan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Zhejiang University, Hangzhou, Zhejiang, China
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
28
|
Yang J, Jing J, Chen S, Liu X, Tang Y, Pan C, Tang Z. Changes in Cerebral Blood Flow and Diffusion-Weighted Imaging Lesions After Intracerebral Hemorrhage. Transl Stroke Res 2022; 13:686-706. [PMID: 35305264 DOI: 10.1007/s12975-022-00998-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 11/25/2022]
Abstract
Intracerebral hemorrhage (ICH) is a common subtype of stroke and places a great burden on the family and society with a high mortality and disability rate and a poor prognosis. Many findings from imaging and pathologic studies have suggested that cerebral ischemic lesions visualized on diffusion-weighted imaging (DWI) in patients with ICH are not rare and are generally considered to be associated with poor outcome, increased risk of recurrent (ischemic and hemorrhagic) stroke, cognitive impairment, and death. In this review, we describe the changes in cerebral blood flow (CBF) and DWI lesions after ICH and discuss the risk factors and possible mechanisms related to the occurrence of DWI lesions, such as cerebral microangiopathy, cerebral atherosclerosis, aggressive early blood pressure lowering, hyperglycemia, and inflammatory response. We also point out that a better understanding of cerebral DWI lesions will be a key step toward potential therapeutic interventions to improve long-term recovery for patients with ICH.
Collapse
Affiliation(s)
- Jingfei Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, NO, China
| | - Jie Jing
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, NO, China
| | - Shiling Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, NO, China
| | - Xia Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, NO, China
| | - Yingxin Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, NO, China
| | - Chao Pan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, NO, China.
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, NO, China.
| |
Collapse
|
29
|
Wang Q, Lu M, Zhu X, Gu X, Zhang T, Xia C, Yang L, Xu Y, Zhou M. The role of microglia immunometabolism in neurodegeneration: Focus on molecular determinants and metabolic intermediates of metabolic reprogramming. Biomed Pharmacother 2022; 153:113412. [DOI: 10.1016/j.biopha.2022.113412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
|
30
|
Chen S, Li L, Peng C, Bian C, Ocak PE, Zhang JH, Yang Y, Zhou D, Chen G, Luo Y. Targeting Oxidative Stress and Inflammatory Response for Blood-Brain Barrier Protection in Intracerebral Hemorrhage. Antioxid Redox Signal 2022; 37:115-134. [PMID: 35383484 DOI: 10.1089/ars.2021.0072] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Blood-brain barrier (BBB) disruption is a major pathological change after intracerebral hemorrhage (ICH) and is both the cause and result of oxidative stress and of the immune response post-ICH. These processes contribute to ICH-induced brain injury. Recent Advances: After the breakdown of cerebral vessels, blood components, including erythrocytes and their metabolites, thrombin, and fibrinogen, can access the cerebral parenchyma through the compromised BBB, triggering oxidative stress and inflammatory cascades. These aggravate BBB disruption and contribute to further infiltration of blood components, resulting in a vicious cycle that exacerbates brain edema and neurological injury after ICH. Experimental and clinical studies have highlighted the role of BBB disruption in ICH-induced brain injury. Critical Issues: In this review, we focus on the strategies to protect the BBB in ICH. Specifically, we summarize the evidence and the underlying mechanisms, including the ICH-induced process of oxidative stress and inflammatory response, and we highlight the potential therapeutic targets to protect BBB integrity after ICH. Future Directions: Future studies should probe the mechanism of ferroptosis as well as oxidative stress-inflammation coupling in BBB disruption after ICH and investigate the effects of antioxidants and immunomodulatory agents in more ICH clinical trials. Antioxid. Redox Signal. 37, 115-134.
Collapse
Affiliation(s)
- Shengpan Chen
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Institute of Neuroscience, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lingzhi Li
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Chao Peng
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Institute of Neuroscience, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chunjing Bian
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Pinar Eser Ocak
- Department of Neurosurgery, Uludag University School of Medicine, Bursa, Turkey
| | - John H Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, California, USA
- Department of Neurosurgery, Loma Linda University, Loma Linda, California, USA
| | - Yong Yang
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Institute of Neuroscience, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Dong Zhou
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Institute of Neuroscience, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guangzhong Chen
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Institute of Neuroscience, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| |
Collapse
|
31
|
Deng S, Chen X, Lei Q, Lu W. AQP2 Promotes Astrocyte Activation by Modulating the TLR4/NFκB-p65 Pathway Following Intracerebral Hemorrhage. Front Immunol 2022; 13:847360. [PMID: 35386692 PMCID: PMC8978957 DOI: 10.3389/fimmu.2022.847360] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/02/2022] [Indexed: 11/25/2022] Open
Abstract
Microglial and astrocyte activation and related cytokine secretion play key roles in secondary brain injury following intracerebral hemorrhage (ICH). We assessed the role of aquaporin (AQP)2 in immune response after ICH. We prospectively collected data from 33 patients with ICH and analyzed the serum AQP2 levels in these patients and age-matched healthy controls. A correlation analysis was also performed between patient serum AQP2 levels and clinical factors. In the rat ICH model, double-fluorescence staining for glial fibrillary acidic protein (GFAP) and AQP2 was performed to investigate the relationship between astrocytes and AQP2. Relative mRNA expression levels of GFAP and AQP2 were also measured. In the rat astrocyte cell line CTX-TNA2, toll-like receptor (TLR)4/nuclear factor kappa B (NFκB)-p65 pathway activation and GFAP levels were measured. The indirect influence of AQP2 on microglial polarization was assessed following exposure to the medium of astrocytes treated with AQP2-overexpression plasmid or silencing RNA. We found that the serum AQP2 expression was lower in patients with ICH. Sex and blood neutrophil count influenced serum AQP2 concentrations in patients with ICH on admission. Lower serum AQP2 levels were inversely correlated with 90-day Modified Rankin Scale scores after ICH, but were not correlated with National Institute of Health stroke scale (NIHSS) scores on admission. AQP2 overexpression and localization in GFAP-labeled astrocytes were observed in rats. AQP2 overexpression induced astrocyte activation with GFAP upregulation via TLR/NFκB-p65 signaling pathway activation in the rat astrocyte cell line CTX-TNA2. Astrocyte activation promoted interleukin-1β secretion. The medium of AQP2-overexpression astrocytes promoted the pro-inflammatory M1 phenotype in the immortal rat (HAPI) microglial cell line. Therefore, serum AQP2 is negatively correlated with post-ICH prognosis and may be a marker of inflammation in early-stage ICH. AQP2 overexpression promotes astrocyte activation and pro-inflammatory secretion, affects astrocyte-microglia crosstalk, and indirectly induces microglial polarization, which may augment inflammation after ICH.
Collapse
Affiliation(s)
- Shuwen Deng
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiqian Chen
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiang Lei
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Lu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
32
|
You M, Long C, Wan Y, Guo H, Shen J, Li M, He Q, Hu B. Neuron derived fractalkine promotes microglia to absorb hematoma via CD163/HO-1 after intracerebral hemorrhage. Cell Mol Life Sci 2022; 79:224. [PMID: 35389112 PMCID: PMC11072118 DOI: 10.1007/s00018-022-04212-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/31/2022] [Accepted: 02/16/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Hematoma leads to progressive neurological deficits and poor outcomes after intracerebral hemorrhage (ICH). Early clearance of hematoma is widely recognized as an essential treatment to limit the damage and improve the clinical prognosis. CD163, alias hemoglobin (Hb) scavenger receptor on microglia, plays a pivotal role in hematoma absorption, but CD163 on neurons permits Hb uptake and results in neurotoxicity. In this study, we focus on how to specially promote microglial but not neuronal CD163 mediated-Hb uptake and hematoma absorption. METHODS RNA sequencing was used to explore the potential molecules involved in ICH progression, and hematoma was detected by magnetic resonance imaging (MRI). Western blot and immunofluorescence were used to evaluate the expression and location of fractalkine (FKN) after ICH. Erythrophagocytosis assay was performed to study the specific mechanism of action of FKN in hematoma clearance. Small interfering RNA (siRNA) transfection was used to explore the effect of peroxisome proliferator-activated receptor-γ (PPAR-γ) on hematoma absorption. Enzyme-linked immunosorbent assay (ELISA) was used to determine the serum FKN concentration in ICH patients. RESULTS FKN was found to be significantly increased around the hematoma in a mouse model after ICH. With its unique receptor CX3CR1 in microglia, FKN significantly decreased the hematoma size and Hb content, and improved neurological deficits in vivo. Further, FKN could enhance erythrophagocytosis of microglia in vitro via the CD163/ hemeoxygenase-1 (HO-1) axis, while AZD8797 (a specific CX3CR1 inhibitor) reversed this effect. Moreover, PPAR-γ was found to mediate the increase in the CD163/HO-1 axis expression and erythrophagocytosis induced by FKN in microglia. Of note, a higher serum FKN level was found to be associated with better hematoma resolution in ICH patients. CONCLUSIONS We systematically identified that FKN may be a potential therapeutic target to improve hematoma absorption and we shed light on ICH treatment.
Collapse
Affiliation(s)
- Mingfeng You
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunnan Long
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Wan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongxiu Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Shen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Man Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quanwei He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
33
|
Jure I, De Nicola AF, Encinas JM, Labombarda F. Spinal Cord Injury Leads to Hippocampal Glial Alterations and Neural Stem Cell Inactivation. Cell Mol Neurobiol 2022; 42:197-215. [PMID: 32537668 PMCID: PMC11441270 DOI: 10.1007/s10571-020-00900-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/06/2020] [Indexed: 12/12/2022]
Abstract
The hippocampus encodes spatial and contextual information involved in memory and learning. The incorporation of new neurons into hippocampal networks increases neuroplasticity and enhances hippocampal-dependent learning performances. Only few studies have described hippocampal abnormalities after spinal cord injury (SCI) although cognitive deficits related to hippocampal function have been reported in rodents and even humans. The aim of this study was to characterize in further detail hippocampal changes in the acute and chronic SCI. Our data suggested that neurogenesis reduction in the acute phase after SCI could be due to enhanced death of amplifying neural progenitors (ANPs). In addition, astrocytes became reactive and microglial cells increased their number in almost all hippocampal regions studied. Glial changes resulted in a non-inflammatory response as the mRNAs of the major pro-inflammatory cytokines (IL-1β, TNFα, IL-18) remained unaltered, but CD200R mRNA levels were downregulated. Long-term after SCI, astrocytes remained reactive but on the other hand, microglial cell density decreased. Also, glial cells induced a neuroinflammatory environment with the upregulation of IL-1β, TNFα and IL-18 mRNA expression and the decrease of CD200R mRNA. Neurogenesis reduction may be ascribed at later time points to inactivation of neural stem cells (NSCs) and inhibition of ANP proliferation. The number of granular cells and CA1 pyramidal neurons decreased only in the chronic phase. The release of pro-inflammatory cytokines at the chronic phase might involve neurogenesis reduction and neurodegeneration of hippocampal neurons. Therefore, SCI led to hippocampal changes that could be implicated in cognitive deficits observed in rodents and humans.
Collapse
Affiliation(s)
- Ignacio Jure
- Laboratory of Neuroendocrine Biochemistry, IBYME-CONICET., Instituto de Biologia Y Medicina Experimental, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina
| | - Alejandro F De Nicola
- Laboratory of Neuroendocrine Biochemistry, IBYME-CONICET., Instituto de Biologia Y Medicina Experimental, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina
- Department of Human Biochemistry, School of Medicine, Buenos Aires University, Paraguay 2155, C1121A6B, Buenos Aires, Argentina
| | - Juan Manuel Encinas
- Laboratory of Neural Stem Cells and Neurogenesis, Achucarro Basque Center for Neuroscience. Sede Bldg. Campus, UPV/EHU, Barrio Sarriena S/N, 48940, Leioa, Spain
| | - Florencia Labombarda
- Laboratory of Neuroendocrine Biochemistry, IBYME-CONICET., Instituto de Biologia Y Medicina Experimental, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina.
- Department of Human Biochemistry, School of Medicine, Buenos Aires University, Paraguay 2155, C1121A6B, Buenos Aires, Argentina.
| |
Collapse
|
34
|
Pan Z, Ma G, Kong L, Du G. Hypoxia-inducible factor-1: Regulatory mechanisms and drug development in stroke. Pharmacol Res 2021; 170:105742. [PMID: 34182129 DOI: 10.1016/j.phrs.2021.105742] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/13/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022]
Abstract
Stroke is an acute cerebrovascular disease caused by sudden rupture of blood vessels in the brain or blockage of blood vessels, which has now become one of the main causes of adult death. During stroke, hypoxia-inducible factor-1 (HIF-1), as an important regulator under hypoxia conditions, is involved in the pathological process of stroke by regulating multi-pathways, such as glucose metabolism, angiogenesis, erythropoiesis, cell survival. However, the roles of HIF-1 in stroke are still controversial, which are related with ischemic time and degree of ischemia. The regulatory mechanisms of HIF-1 in stroke include inflammation, autophagy, oxidative stress, apoptosis and energy metabolism. The potential drugs targeting HIF-1 have attracted more attention, such as HIF-1 inhibitors, HIF-1 stabilizers and natural products. Based on the role of HIF-1 in stroke, HIF-1 is expected to be a potential target for stroke treatment. Resolving when and what interventions for HIF-1 to take during stroke will provide novel strategies for stroke treatment.
Collapse
Affiliation(s)
- Zirong Pan
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Guodong Ma
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Linglei Kong
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| | - Guanhua Du
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
35
|
Saad MAE, Fahmy MIM, Sayed RH, El-Yamany MF, El-Naggar R, Hegazy AAE, Al-Shorbagy M. Eprosartan: A closer insight into its neuroprotective activity in rats with focal cerebral ischemia-reperfusion injury. J Biochem Mol Toxicol 2021; 35:e22796. [PMID: 33942446 DOI: 10.1002/jbt.22796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 12/16/2022]
Abstract
Eprosartan (EPRO), an angiotensin receptor type-1 (AT-1) blocker, exhibited neuroprotective activities in ischemic stroke resulting from focal cerebral ischemia in rats. The current study aimed to clarify the neuroprotective role of EPRO in middle carotid artery occlusion (MCAO)-induced ischemic stroke in rats. Fifty-six male Wistar rats were divided into four groups (n = 14 per group): sham-operated group, sham receiving EPRO (60 mg/kg/day, po) group, ischemia-reperfusion (IR) group, and IR receiving EPRO (60 mg/kg/day, po) group. MCAO led to a remarkable impairment in motor function together with stimulation of inflammatory and apoptotic pathways in the hippocampus of rats. After MCAO, the AT1 receptor in the brain was stimulated, resulting in activation of Janus kinase 2/signal transducers and activators of transcription 3 signaling generating more neuroinflammatory milieu and destructive actions on the hippocampus. Augmentation of caspase-3 level by MCAO enhanced neuronal apoptosis synchronized with neurodegenerative effects of oxidative stress biomarkers. Pretreatment with EPRO opposed motor impairment and decreased oxidative and apoptotic mediators in the hippocampus of rats. The anti-inflammatory activity of EPRO was revealed by downregulation of nuclear factor-kappa B and tumor necrosis factor-β levels and (C-X-C motif) ligand 1 messenger RNA (mRNA) expression. Moreover, the study confirmed the role of EPRO against a unique pathway of hypoxia-inducible factor-1α and its subsequent inflammatory mediators. Furthermore, upregulation of caveolin-1 mRNA level was also observed along with decreased oxidative stress marker levels and brain edema. Therefore, EPRO showed neuroprotective effects in MCAO-induced cerebral ischemia in rats via attenuation of oxidative, apoptotic, and inflammatory pathways.
Collapse
Affiliation(s)
- Muhammad A E Saad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt.,School of Pharmacy, New Giza University, Giza, Egypt
| | - Mohamed I M Fahmy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Muhammad F El-Yamany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Reham El-Naggar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr University for Science and Technology (MUST), Giza, Egypt
| | - Ahmed A E Hegazy
- Department of Neurosurgery, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Muhammad Al-Shorbagy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt.,School of Pharmacy, New Giza University, Giza, Egypt
| |
Collapse
|
36
|
Xu D, Gao Q, Wang F, Peng Q, Wang G, Wei Q, Lei S, Zhao S, Zhang L, Guo F. Sphingosine-1-phosphate receptor 3 is implicated in BBB injury via the CCL2-CCR2 axis following acute intracerebral hemorrhage. CNS Neurosci Ther 2021; 27:674-686. [PMID: 33645008 PMCID: PMC8111497 DOI: 10.1111/cns.13626] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/28/2021] [Accepted: 01/31/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is a catastrophic cerebrovascular disease with high morbidity and mortality. Evidence demonstrated that sphingosine-1-phosphate receptor (S1PR) plays a vital role in inflammatory damage via the upregulation of CCL2 expression. However, whether S1PR3 is involved in blood-brain barrier (BBB) breakdown via CCL2 activation after ICH has not been described. METHODS We investigated the expression profiles of all S1PRs using high-throughput RNA-seq analysis and RT-PCR. The potential role of S1PR3 and interaction between S1PR3 and CCL2 were evaluated via Western blotting, immunofluorescence, and flow cytometry. BBB disruption was examined via magnetic resonance imaging, transmission electron microscopy, and Evans blue extravasation. Microglial activation, proliferation, and polarization were assessed via histopathological analysis. The expression levels of CCL2, p-p38 MAPK, ICAM-1, and ZO-1 were examined in vitro and in vivo. RESULTS The present results showed that the levels of S1PR3 and its ligand, sphingosine 1-phosphate (S1P), were dramatically increased following ICH, which regulated the expression of CCL2 and p38MAPK. Moreover, reductions in brain edema volume, amelioration of BBB integrity, and improvements in behavioral deficits were achieved after the administration of CAY10444, an S1PR3 antagonist, to rats. Remarkably increased CCL2, p-p38MAPK, and ICAM-1 expression and decreased ZO-1 expression were observed in cocultured human astrocytes (HAs) and hCMEC/D3 cells after S1P stimulation. However, the expression levels of CCL2, p-p38 MAPK, and ICAM-1 were decreased and ZO-1 expression was increased after S1PR3 inhibition. In addition, microglial proliferation and M1 polarization were attenuated after CAY10444 administration. CONCLUSION To the best of our knowledge, this is the first demonstration of the neuroprotective role of S1PR3 modulation in maintaining BBB integrity by inhibiting the S1PR3-CCL2 axis after ICH, providing a novel treatment for ICH by targeting S1PR3.
Collapse
Affiliation(s)
- Dingkang Xu
- Department of Neurosurgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Qiang Gao
- Department of Neurosurgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Fang Wang
- Department of Neurosurgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Qianrui Peng
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Guoqing Wang
- Department of Neurosurgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Qingjie Wei
- Department of Neurosurgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Shixiong Lei
- Department of Neurosurgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Shengqi Zhao
- Department of Neurosurgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Longxiao Zhang
- Department of Neurosurgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Fuyou Guo
- Department of Neurosurgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| |
Collapse
|
37
|
Sun Q, Xu X, Wang T, Xu Z, Lu X, Li X, Chen G. Neurovascular Units and Neural-Glia Networks in Intracerebral Hemorrhage: from Mechanisms to Translation. Transl Stroke Res 2021; 12:447-460. [PMID: 33629275 DOI: 10.1007/s12975-021-00897-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/20/2022]
Abstract
Intracerebral hemorrhage (ICH), the most lethal type of stroke, often leads to poor outcomes in the clinic. Due to the complex mechanisms and cell-cell crosstalk during ICH, the neurovascular unit (NVU) was proposed to serve as a promising therapeutic target for ICH research. This review aims to summarize the development of pathophysiological shifts in the NVU and neural-glia networks after ICH. In addition, potential targets for ICH therapy are discussed in this review. Beyond cerebral blood flow, the NVU also plays an important role in protecting neurons, maintaining central nervous system (CNS) homeostasis, coordinating neuronal activity among supporting cells, forming and maintaining the blood-brain barrier (BBB), and regulating neuroimmune responses. During ICH, NVU dysfunction is induced, along with neuronal cell death, microglia and astrocyte activation, endothelial cell (EC) and tight junction (TJ) protein damage, and BBB disruption. In addition, it has been shown that certain targets and candidates can improve ICH-induced secondary brain injury based on an NVU and neural-glia framework. Moreover, therapeutic approaches and strategies for ICH are discussed.
Collapse
Affiliation(s)
- Qing Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Xiang Xu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Tianyi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Zhongmou Xu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Xiaocheng Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China.
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| |
Collapse
|
38
|
Saad MAEL, Fahmy MIM, Al-Shorbagy M, Assaf N, Hegazy AAEA, El-Yamany MF. Nateglinide Exerts Neuroprotective Effects via Downregulation of HIF-1α/TIM-3 Inflammatory Pathway and Promotion of Caveolin-1 Expression in the Rat's Hippocampus Subjected to Focal Cerebral Ischemia/Reperfusion Injury. Inflammation 2021; 43:401-416. [PMID: 31863220 DOI: 10.1007/s10753-019-01154-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ischemic stroke is a major cause of death and motor disabilities all over the world. It is a muti-factorial disorder associated with inflammatory, apoptotic, and oxidative responses. Nateglinide (NAT), an insulinotropic agent used for the treatment of type 2 diabetes mellitus, recently showed potential anti-inflammatory and anti-apoptotic effects. The aim of our study was to elucidate the unique neuroprotective role of NAT in the middle cerebral artery occlusion (MCAO)-induced stroke in rats. Fifty-six male rats were divided to 4 groups (n = 14 in each group): the sham-operated group, sham receiving NAT (50 mg/kg/day, p.o) group, ischemia/reperfusion (IR) group, and IR receiving NAT group (50 mg/kg/day, p.o). MCAO caused potent deficits in motor and behavioral functions of the rats. Significant increase in inflammatory and apoptotic biomarkers has been observed in rats' hippocampi. Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway was significantly stimulated causing activation of series inflammatory biomarkers ending up neuro-inflammatory milieu. Pretreatment with NAT preserved rats' normal behavioral and motor functions. Moreover, NAT opposed the expression of hypoxia-inducible factor-1α (HIF-1α) resulting in downregulation of more inflammatory mediators namely, NF-κB, tumor necrosis factor-β (TNF-β), and the anti-survival gene PMAIP-1. NAT stimulated caveolin-1 (Cav-1) which prevented expression of oxidative biomarkers, nitric oxide (NO), and myeloperoxidase (MPO) and hamper the activation of apoptotic biomarker caspase-3. In conclusion, our work postulated that NAT exhibited its neuroprotective effects in rats with ischemic stroke via attenuation of different unique oxidative, apoptotic, and inflammatory pathways.
Collapse
Affiliation(s)
- Muhammad Abd El-Latif Saad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt.,School of Pharmacy, NewGiza University, Giza, Egypt
| | - Mohamed Ibrahim Mohamed Fahmy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Drug Technology, Heliopolis University for Sustainable Development, Cairo, Egypt.
| | - Muhammad Al-Shorbagy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt.,School of Pharmacy, NewGiza University, Giza, Egypt
| | - Naglaa Assaf
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr University for Science and Technology (MUST), Giza, Egypt
| | | | | |
Collapse
|
39
|
Kim JE, Patel K, Jackson CM. The potential for immune checkpoint modulators in cerebrovascular injury and inflammation. Expert Opin Ther Targets 2021; 25:101-113. [PMID: 33356658 DOI: 10.1080/14728222.2021.1869213] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Introduction: Neuroinflammation has been linked to poor neurologic and functional outcomes in many cerebrovascular disorders. Immune checkpoints are upregulated in the setting of traumatic brain injury, intracerebral hemorrhage, ischemic stroke, central nervous systems vasculitis, and post-hemorrhagic vasospasm, and are potential mediators of pathologic inflammation. Burgeoning evidence suggests that immune checkpoint modulation is a promising treatment strategy to decrease immune cell recruitment, cytokine secretion, brain edema, and neurodegeneration.Areas covered: This review discusses the role of immune checkpoints in neuroinflammation, and the potential for therapeutic immune checkpoint modulation in inflammatory cerebrovascular disorders. A search of Pubmed and clinicaltrials.gov was performed to find relevant literature published within the last 50 years.Expert opinion: The clinical success of immune-activating checkpoint modulators in human cancers has shown the immense clinical potential of checkpoint-based immunotherapy. Given that checkpoint blockade can also precipitate a pathologic pro-inflammatory or autoimmune response, it is plausible that these pathways may also be targeted to quell aberrant inflammation. A limited but growing number of studies suggest that immune checkpoints play a critical role in regulating the immune response in the central nervous system in a variety of contexts, and that immune-deactivating checkpoint modulators may be a promising treatment strategy for acute and chronic neuroinflammation in cerebrovascular disorders.
Collapse
Affiliation(s)
- Jennifer E Kim
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kisha Patel
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher M Jackson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
40
|
Guo S, Li Y, Wei B, Liu W, Li R, Cheng W, Zhang X, He X, Li X, Duan C. Tim-3 deteriorates neuroinflammatory and neurocyte apoptosis after subarachnoid hemorrhage through the Nrf2/HMGB1 signaling pathway in rats. Aging (Albany NY) 2020; 12:21161-21185. [PMID: 33168786 PMCID: PMC7695377 DOI: 10.18632/aging.103796] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 07/06/2020] [Indexed: 12/17/2022]
Abstract
Inflammation is known to play an important role in early brain injury (EBI) after subarachnoid hemorrhage (SAH). T cell immunoglobulin and mucin domain-3 (Tim-3) has emerged as a critical regulator of adaptive and innate immune responses, and has been identified to play a vital role in certain inflammatory diseases; The present study explored the effect of Tim-3 on inflammatory responses and detailed mechanism in EBI following SAH. We investigated the effects of Tim-3 on SAH models established by endovascular puncture method in Sprague–Dawley rats. The present studies revealed that SAH induced a significant inflammatory response and significantly increased Tim-3 expression. Tim-3-AAV administration aggravated neurocyte apoptosis, brain edema, blood-brain barrier permeability, and neurological dysfunction; significantly inhibited Nrf2 expression; and increased HMGB1 expression and secretion of pro-inflammatory cytokines, such as tumor necrosis factor alpha, interleukin (IL)-1 beta, IL-17, and IL-18. However, Tim-3 siRNA or NK252 administration abolished the pro-inflammatory effects of Tim-3. Our results indicate a function for Tim-3 as a molecular player that links neuroinflammation and brain damage after SAH. We reveal that Tim-3 overexpression deteriorates neuroinflammatory and neurocyte apoptosis after subarachnoid hemorrhage through the Nrf2/HMGB1 signaling pathway in rats.
Collapse
Affiliation(s)
- Shenquan Guo
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuanzhi Li
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, Affiliated Hengyang Hospital, Southern Medical University (Hengyang Central Hospital), Hengyang, China
| | - Boyang Wei
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wenchao Liu
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ran Li
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wenping Cheng
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Zhang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xuying He
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xifeng Li
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chuanzhi Duan
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
41
|
Lyu J, Jiang X, Leak RK, Shi Y, Hu X, Chen J. Microglial Responses to Brain Injury and Disease: Functional Diversity and New Opportunities. Transl Stroke Res 2020; 12:474-495. [PMID: 33128703 DOI: 10.1007/s12975-020-00857-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/27/2022]
Abstract
As an integral part of the innate immune system of the brain, resident microglia must react rapidly to the onset of brain injury and neurological disease. These dynamic cells then continue to shift their phenotype along a multidimensional continuum with overlapping pro- and anti-inflammatory states, allowing them to adapt to microenvironmental changes during the progression of brain disorders. However, the ability of microglia to shift phenotype through nimble molecular, structural, and functional changes comes at a cost, as the extreme pro-inflammatory states may prevent these professional phagocytes from clearing toxic debris and secreting tissue-repairing neurotrophic factors. Evolution has strongly favored heterogeneity in microglia in both the spatial and temporal dimensions-they can assume diverse roles in different brain regions, throughout the course of brain development and aging, and during the spatiotemporal progression of brain injuries and neurological diseases. Age and sex differences add further diversity to microglia functional status under physiological and pathological conditions. This article reviews recent advances in our knowledge of microglia with emphases on molecular mediators of phenotype shifts and functional diversity. We describe microglia-targeted therapeutic opportunities, including pharmacologic modulation of phenotype and repopulation of the brain with fresh microglia. With the advent of powerful new tools, research on microglia has recently accelerated in pace and may translate into potential therapeutics against brain injury and neurological disease.
Collapse
Affiliation(s)
- Junxuan Lyu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Xiaoyan Jiang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, 15282, USA
| | - Yejie Shi
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA
| | - Xiaoming Hu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA. .,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
42
|
Liang T, Ma C, Wang T, Deng R, Ding J, Wang W, Xu Z, Li X, Li H, Sun Q, Shen H, Wang Z, Chen G. Galectin-9 Promotes Neuronal Restoration via Binding TLR-4 in a Rat Intracerebral Hemorrhage Model. Neuromolecular Med 2020; 23:267-284. [PMID: 32865657 DOI: 10.1007/s12017-020-08611-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022]
Abstract
Intracerebral hemorrhage (ICH) is a devastating disease with high rates of mortality and morbidity. Galactose lectin-9 (Gal-9) belongs to the family of β-galactoside-binding lectins, which has been shown to play a vital role in immune tolerance and inflammation. However, the function of Gal-9 in ICH has not been fully studied in details. Several experiments were carried out to explore the role of Gal-9 in the late period of ICH. Primarily, ICH models were established in male adult Sprague Dawley (SD) rats. Next, the relative protein levels of Gal-9 at different time points after ICH were examined and the result showed that the level of Gal-9 increased and peaked at the 7th day after ICH. Then we found that when the content of Gal-9 increased, both the number of M2-type microglia and the corresponding anti-inflammatory factors also increased. Through co-immunoprecipitation (CO-IP) analysis, it was found that Gal-9 combines with Toll-like receptor-4 (TLR-4) during the period of the recovery after ICH. TUNEL staining and Fluoro-Jade B staining (FJB) proved that the amount of cell death decreased with the increase of Gal-9 content. Additionally, several behavioral experiments also demonstrated that when the level of Gal-9 increased, the motor, sensory, learning, and memory abilities of the rats recovered better compared to the ICH group. In short, this study illustrated that Gal-9 takes a crucial role after ICH. Enhancing Gal-9 could alleviate brain injury and promote the recovery of ICH-induced injury, so that Gal-9 may exploit a new pathway for clinical treatment of ICH.
Collapse
Affiliation(s)
- Tianyu Liang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Cheng Ma
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Tianyi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Ruming Deng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Jiasheng Ding
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Wenjie Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Zhongmou Xu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Qing Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| |
Collapse
|
43
|
Targeting CCL20 inhibits subarachnoid hemorrhage-related neuroinflammation in mice. Aging (Albany NY) 2020; 12:14849-14862. [PMID: 32575072 PMCID: PMC7425437 DOI: 10.18632/aging.103548] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/04/2020] [Indexed: 12/18/2022]
Abstract
Recent evidence suggests that CC chemokine ligand 20 (CCL20) is upregulated after subarachnoid hemorrhage (SAH). Here, we investigated the functions of CCL20 in SAH injury and its underlying mechanisms of action. We found that CCL20 is upregulated in an SAH mouse model and in cultured primary microglia and neurons. CCL20-neutralizing antibody alleviated SAH-induced neurological deficits, decreased brain water content and neuronal apoptosis, and repressed microglial activation. We observed increased levels of CCL20, CC chemokine receptor 6 (CCR6), interleukin 1 beta (IL-1β), and tumor necrosis factor alpha (TNF-α), as well as of microglial activation in microglia treated with oxyhemoglobin (OxyHb). CCL20 or CCR6 knockdown reversed the effects of OxyHb on microglia. Conditioned medium from OxyHb-treated microglia induced neuronal apoptosis, while the percentage of apoptotic neurons in the conditioned medium from microglia transfected with CCL20 siRNA or CCR6 siRNA was decreased. We observed no decrease in OxyHb-induced apoptosis in CCL20-knockdown neurons. Conditioned medium from OxyHb-treated neurons led to microglial activation and induced CCR6, IL-1β and TNF-α expression, while CCL20 knockdown in neurons or CCR6 knockdown in microglia reversed those effects. Our results thus suggest CCL20 may be targeted to elicit therapeutic benefits after SAH injury.
Collapse
|
44
|
Li J, Xu Y, Chen Y, Fan W, Xu X, Cai J, Tong L, Gao F. Early elevated neutrophil-to-lymphocyte ratio associated with remote diffusion-weighted imaging lesions in acute intracerebral hemorrhage. CNS Neurosci Ther 2020; 26:430-437. [PMID: 31651093 PMCID: PMC7080428 DOI: 10.1111/cns.13249] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 10/06/2019] [Accepted: 10/08/2019] [Indexed: 12/20/2022] Open
Abstract
AIMS To explore the relationship between the circulating neutrophil-to-lymphocyte ratio (NLR) and the remote diffusion-weighted imaging lesions (R-DWILs) after spontaneous intracerebral hemorrhage (ICH). METHODS Consecutive patients with spontaneous ICH were prospectively collected from November 2016 to May 2018 and retrospectively analyzed. We included subjects who presented within 24 hours after symptom onset and were free of detectable infections on admission or in hospital. Blood samples were obtained at 24-48 hours after ICH ictus, while all complete MRI scans were performed at 5-8 days. R-DWILs were defined as focal hyperintensities remote from the site of the ICH or the peri-hematoma regions. NLR was calculated by dividing the absolute neutrophil counts by the absolute lymphocyte counts. Multivariate binary logistic regression models were generated to evaluate the relationship between NLR and R-DWILs. RESULTS One hundred sixty-three subjects met eligibility criteria (age 62.3 ± 13.6 years, 60.7% males), of whom 31(19.0%) experienced R-DWILs. Higher circulating NLR was documented in patients with R-DWILs. With the best cutoff value of 6.01, elevated NLR was independently associated with the presence of R-DWILs (OR = 3.170, 95% CI 1.306-7.697, P = .011) in the bivariate logistic regression analysis with adjustment for age, sex, atrial fibrillation, previous ischemic stroke/TIA, SBP on admission, hematoma volume, and IVH. CONCLUSIONS This study provides significant evidence of the association between circulating NLR and R-DWILs in spontaneous ICH patients. Patients with NLR > 6.01 at 24-48 hours after ICH ictus should be paid more attention to when evaluating R-DWILs.
Collapse
Affiliation(s)
- Jia‐Wen Li
- Department of NeurologyThe Second Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Yu‐Yu Xu
- Department of NeurologyThe Second Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Ye‐Jun Chen
- Department of NeurologyThe Second Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Wei‐Wei Fan
- Department of NeurologyThe Second Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Xu‐Hua Xu
- Department of NeurologyThe Fourth Affiliated HospitalSchool of MedicineZhejiang UniversityYiwuChina
| | - Jin‐Song Cai
- Department of RadiologyThe Second Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Lu‐Sha Tong
- Department of NeurologyThe Second Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Feng Gao
- Department of NeurologyThe Second Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| |
Collapse
|
45
|
Kawakita F, Kanamaru H, Asada R, Suzuki H. Potential roles of matricellular proteins in stroke. Exp Neurol 2019; 322:113057. [DOI: 10.1016/j.expneurol.2019.113057] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/26/2019] [Accepted: 09/05/2019] [Indexed: 12/16/2022]
|
46
|
Peng W, Li Q, Tang J, Reis C, Araujo C, Feng R, Yuan M, Jin L, Cheng Y, Jia Y, Luo Y, Zhang J, Yang J. The risk factors and prognosis of delayed perihematomal edema in patients with spontaneous intracerebral hemorrhage. CNS Neurosci Ther 2019; 25:1189-1194. [PMID: 31542897 PMCID: PMC6776736 DOI: 10.1111/cns.13219] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 08/25/2019] [Accepted: 08/26/2019] [Indexed: 12/15/2022] Open
Abstract
PURPOSE We hypothesize delayed perihematomal edema (DHE) leads to secondary injury after spontaneous intracerebral hemorrhage (sICH) with a poor prognosis. Hence, we need to investigate the risk factors of DHE and identify whether DHE will predict the poor outcome of sICH. METHODS We retrospectively recruited 121 patients with sICH admitted to the Department of Neurology from January 2014 to August 2018. After dividing all these patients into DHE group and non-DHE group, we analyzed the potential risk factors and outcome of DHE using a multivariate logistic regression model. RESULTS We conclude DHE after sICH associates with age, hospitalization time, hematoma shape, blood pressure upon admission, alcohol consumption, blood sodium level, and baseline hematoma volume within 24 hours after symptom onset, among which differences were statistically significant (P < .05). Logistic regression analysis finally identified that age (OR = 0.958, 95% CI = 0.923-0.995) and the baseline hematoma volume (OR = 1.161, 95% CI = 1.089-1.238) were the most significant risk factors for DHE, and moreover, the DHE (OR = 3.062, 95% CI = 1.196-7.839) was also a risk factor for poor prognosis in sICH patients. CONCLUSION We suggest DHE is a clinical predictor of secondary injury following sICH and poor prognosis. In addition, age and baseline hematoma volume are considered significant high-risk factors for DHE in patients with sICH.
Collapse
Affiliation(s)
- Wen‐jie Peng
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Qian Li
- Department of PediatricsThe Third Affiliated Hospital & Field Surgery InstitutionArmy Medical UniversityChongqingChina
| | - Jin‐hua Tang
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Cesar Reis
- Department of Physiology and PharmacologyLoma Linda University School of MedicineLoma LindaCAUSA
| | - Camila Araujo
- Department of Physiology and PharmacologyLoma Linda University School of MedicineLoma LindaCAUSA
| | - Rui Feng
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Ming‐hao Yuan
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Lin‐yan Jin
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Ya‐li Cheng
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Yan‐jie Jia
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Ye‐tao Luo
- Department of BiostatisticsSchool of Public Health and ManagementChongqing Medical UniversityChongqingChina
| | - John Zhang
- Department of Physiology and PharmacologyLoma Linda University School of MedicineLoma LindaCAUSA
| | - Jun Yang
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
47
|
Yang H, Gao XJ, Li YJ, Su JB, E TZ, Zhang X, Ni W, Gu YX. Minocycline reduces intracerebral hemorrhage-induced white matter injury in piglets. CNS Neurosci Ther 2019; 25:1195-1206. [PMID: 31556245 PMCID: PMC6776747 DOI: 10.1111/cns.13220] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 08/11/2019] [Accepted: 08/28/2019] [Indexed: 12/21/2022] Open
Abstract
Aims White matter (WM) injury after intracerebral hemorrhage (ICH) results in poor or even fatal outcomes. As an anti‐inflammatory drug, minocycline has been considered a promising choice to treat brain injury after ICH. However, whether minocycline can reduce WM injury after ICH is still controversial. In the present study, we investigate the effect and underlying mechanism of minocycline on WM injury after ICH. Methods An ICH model was induced by an injection of autologous blood into the right frontal lobe of piglets. First, transcriptional analysis was performed at day 1 or 3 to investigate the dynamic changes in neuroinflammatory gene expression in WM after ICH. Second, ICH piglets were treated either with minocycline or with vehicle alone. All piglets then underwent magnetic resonance imaging to measure brain swelling. Brain tissue was used for real‐time polymerase chain reaction (RT‐PCR), immunohistochemistry, Western blot, and electron microscopy. Results Transcriptional analysis demonstrated that transforming growth factor‐β (TGF‐β)/mitogen‐activated protein kinase (MAPK) signaling is associated with microglia/macrophage‐mediated inflammation activation after ICH and is then involved in WM injury after ICH in piglets. Minocycline treatment results in less ICH‐induced brain swelling, fewer neurological deficits, and less WM injury in comparison with the vehicle alone. In addition, minocycline reduces microglial activation and alleviates demyelination in white matter after ICH. Finally, we found that minocycline attenuates WM injury by increasing the expression of TGF‐β and suppressing MAPK activation after ICH. Conclusion These results indicate that TGF‐β–mediated MAPK signaling contributes to WM injury after ICH, which can be altered by minocycline treatment.
Collapse
Affiliation(s)
- Heng Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xin-Jie Gao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan-Jiang Li
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jia-Bin Su
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Tong-Zhou E
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xin Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei Ni
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu-Xiang Gu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
48
|
Hu L, Zhang H, Wang B, Ao Q, Shi J, He Z. MicroRNA-23b alleviates neuroinflammation and brain injury in intracerebral hemorrhage by targeting inositol polyphosphate multikinase. Int Immunopharmacol 2019; 76:105887. [PMID: 31536904 DOI: 10.1016/j.intimp.2019.105887] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/21/2019] [Accepted: 09/05/2019] [Indexed: 12/27/2022]
Abstract
Neuroinflammation plays a critical role in the pathogenesis of intracerebral hemorrhage (ICH), contributing to detrimental brain injury and neurological function deficits. MicroRNA-23b (miR-23b) exerts anti-inflammatory effects in many diseases and is downregulated in patients with ICH. This study aimed to evaluate the involvement of miR-23b in ICH models in vivo and in vitro, using basal ganglia injection of collagenase type VII in rats and hemin stimulation for cells, respectively. Exogenous overexpression of miR-23b by transfection with lentivirus-miR-23b (LV-miR-23b) or miR-23b mimics was evaluated by RT-qPCR. In this study, we found miR-23b was downregulated in the ICH models and its overexpression effectively alleviated neurological deficits, brain edema, hematoma area, and neuronal apoptosis in ICH rats. Western blotting for neuroinflammation markers and immunofluorescence staining for microglial activation demonstrated that miR-23b could alleviate neuroinflammation in ICH in vivo. We also performed an in vitro mechanism study using BV2 microglial cells and HT22 neuronal cell lines to explore how miR-23b modulates neuroinflammation and neuronal protection after ICH. We found that miR-23b significantly decreased hemin-stimulated inflammation response in BV2 cells and attenuated co-cultured HT22 neuronal cell death. Additionally, we verified that miR-23b suppressed inflammation in BV2 cells by targeting inositol polyphosphate multikinase (IPMK) and that autophagy regulation through the Akt/mTOR pathway was involved in miR-23b-regulated inflammation after ICH. Our study illustrated that miR-23b played a protective role in ICH through inhibiting neuroinflammation by targeting IPMK; this mechanism may be related to the regulation of the Akt/mTOR autophagy pathway, making it a potential target for ICH treatment.
Collapse
Affiliation(s)
- Liuting Hu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, 110000,People's Republic of China
| | - Heyu Zhang
- Dapartment of Neurology, The First Affiliated Hospital Sun Yat-sen University,Guangzhou 510080,People's Republic of China
| | - Bingyang Wang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, 110000,People's Republic of China
| | - Qiang Ao
- Department of Tissue Engineering, China Medical University, Shenyang 110122, People's Republic of China
| | - Jing Shi
- Department of Neurology, Dandong Central Hospital, Dandong 118002,People's Republic of China
| | - Zhiyi He
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, 110000,People's Republic of China.
| |
Collapse
|
49
|
Wei CJ, Li YL, Zhu ZL, Jia DM, Fan ML, Li T, Wang XJ, Li ZG, Ma HS. Inhibition of activator protein 1 attenuates neuroinflammation and brain injury after experimental intracerebral hemorrhage. CNS Neurosci Ther 2019; 25:1182-1188. [PMID: 31392841 PMCID: PMC6776742 DOI: 10.1111/cns.13206] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/25/2019] [Accepted: 07/27/2019] [Indexed: 12/23/2022] Open
Abstract
Aims Intracerebral hemorrhage (ICH) is a devastating type of stroke without specific treatment. Activator protein 1 (AP‐1), as a gene regulator, initiates cytokine expression in response to environmental stimuli. In this study, we investigated the relationship between AP‐1 and neuroinflammation‐associated brain injury triggered by ICH. Methods Intracerebral hemorrhage mice were developed by autologous blood or collagenase infusion. We measured the dynamics of AP‐1 in mouse brain tissues during neuroinflammation formation after ICH. The effects of the AP‐1 inhibitor SR11302 on brain injury and neuroinflammation as well as the underlying mechanisms were investigated in vivo and in vitro. Results AP‐1 was significantly upregulated in mouse brain tissue as early as 6 hours after ICH, accompanied by elevations in proinflammatory factors, including interleukin (IL)‐6, IL‐1β, and tumor necrosis factor (TNF)‐α. Inhibition of AP‐1 using SR11302 reduced neurodeficits and brain edema at day 3 after ICH. SR11302 ablated microglial IL‐6 and TNF‐α production and brain‐infiltrating leukocytes in ICH mice. In addition, SR11302 treatment diminished thrombin‐induced production of IL‐6 and TNF‐α in cultured microglia. Conclusions Inhibition of AP‐1 curbs neuroinflammation and reduces brain injury following ICH.
Collapse
Affiliation(s)
- Chang-Juan Wei
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Center for Neuroinflammation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu-Lin Li
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zi-Long Zhu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Dong-Mei Jia
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Mo-Li Fan
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Ting Li
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xue-Jiao Wang
- Center for Neurological Diseases, The Third People's Hospital of Datong, Datong, China
| | - Zhi-Guo Li
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hong-Shan Ma
- Center for Neurological Diseases, The Third People's Hospital of Datong, Datong, China
| |
Collapse
|
50
|
Chen ZQ, Yu H, Li HY, Shen HT, Li X, Zhang JY, Zhang ZW, Wang Z, Chen G. Negative regulation of glial Tim-3 inhibits the secretion of inflammatory factors and modulates microglia to antiinflammatory phenotype after experimental intracerebral hemorrhage in rats. CNS Neurosci Ther 2019; 25:674-684. [PMID: 30677253 PMCID: PMC6515709 DOI: 10.1111/cns.13100] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/19/2018] [Accepted: 12/14/2018] [Indexed: 12/13/2022] Open
Abstract
AIMS To investigate the critical role of Tim-3 in the polarization of microglia in intracerebral hemorrhage (ICH)-induced secondary brain injury (SBI). METHODS An in vivo ICH model was established by autologous whole blood injection into the right basal ganglia in rats. The primary cultured microglia were treated with oxygen-hemoglobin (OxyHb) to mimic ICH in vitro. In this experiment, specific siRNA for Tim-3 and recombinant human TIM-3 were exploited both in vivo and in vitro. RESULTS Tim-3 was increased in the brain after ICH, which mainly distributed in microglia, but not neurons and astrocytes. However, the blockade of Tim-3 by siRNA markedly reduced secretion of inflammatory factors, neuronal degeneration, neuronal cell death, and brain edema. Meanwhile, downregulation of Tim-3 promoted the transformation of microglia phenotype from M1 to M2 after ICH. Furthermore, upregulation of Tim-3 can increase the interaction between Tim-3 and Galectin-9 (Gal-9) and activate Toll-like receptor 4 (TLR-4) pathway after ICH. Increasing the expression of Tim-3 may be related to the activation of HIF-1α. CONCLUSION Tim-3 may be an important link between neuroinflammation and microglia polarization through Tim-3/Gal-9 and TLR-4 signaling pathways which induced SBI after ICH.
Collapse
Affiliation(s)
- Zhou-Qing Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hao Yu
- Department of Neurosurgery, Nantong No.1 People Hospital, Nantong, China
| | - Hai-Ying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hai-Tao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ju-Yi Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhu-Wei Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|