1
|
Gilbert MA, Kalan AK. A review of great ape behavioural responses and their outcomes to anthropogenic landscapes. Primates 2025; 66:163-181. [PMID: 39903403 DOI: 10.1007/s10329-025-01180-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 01/17/2025] [Indexed: 02/06/2025]
Abstract
Industrial expansion has brought humans and wildlife into closer contact, and added novel, complex dimensions to human-wildlife relationships. The seven great apes (chimpanzee, Bornean orangutan, Sumatran orangutan, Tapanuli orangutan, Eastern gorilla, Western gorilla, bonobo), the closest extant relatives to humans, have experienced substantial population declines resulting from anthropogenic activities. The effect of human activity on great ape behavioural ecology is therefore an emerging field of inquiry in primatology which has historically been minimally considered. This review explores how wild great apes respond behaviourally to human activities and environmental changes, synthesizing current knowledge and addressing potential outcomes and risks. Using precise search criteria, we found 96 studies documenting changes in great ape behaviour in response to human activity, and despite their broad geographic distribution, we found common patterns and responses across species to increasing human influence. Literature documented shifts in existing behaviour (57), the generation of novel behaviours (53) or reported both (15). Forty-three studies (45%) included direct (23) or indirect (20) assessment of the consequences of these behaviours. Only one study modelled a widespread loss of existing behaviours. The majority of studies included chimpanzees (67), followed by orangutans (19) and gorillas (19), and only 2 included bonobos. We found that the most frequently documented drivers of behavioural responses to anthropogenic activity were wide-scale land-use conversions in ape habitats. In response, apes have adopted crop foraging, and altered nesting behaviour, range use, and social strategies. While these responses appear to allow survival in the immediate sense, they may expose individuals to more risks in the long term. Analysis revealed that under many contexts changing great ape behaviour is putting strain on the human-ape relationship, resulting in injury, harassment, and even the killing of apes. We found examples of tolerant relationships between humans and apes shifting towards conflict, potentially worsening the conservation crisis and inviting inquiry into tolerance thresholds among human communities. We emphasize the importance of community-engaged strategies for reducing competition over resources and conclude that great ape behavioural responses to human activity must be interpreted through a locally specific lens.
Collapse
Affiliation(s)
- Miranda A Gilbert
- GAB Lab, Department of Anthropology, University of Victoria, 3800 Finnerty Rd, Victoria, BC, V8P 5C2, Canada.
| | - Ammie K Kalan
- GAB Lab, Department of Anthropology, University of Victoria, 3800 Finnerty Rd, Victoria, BC, V8P 5C2, Canada
| |
Collapse
|
2
|
Espinal-Palomino R, Montes de Oca-Aguilar AC, Ibarra-López MP, Vidal-Martínez VM, Ibarra-Cerdeña CN. Bat microfilariae in the cityscape: a transmission tale between bats, mites, and bat flies. Int J Parasitol 2025; 55:79-94. [PMID: 39521164 DOI: 10.1016/j.ijpara.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/18/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Litomosoides includes filarial nematodes capable of infecting various vertebrate species. While Litomosoides has been extensively studied in rodents, research on its association with bats remains limited. The transmission dynamics of this parasite are complex, involving moving between different invertebrate hosts before reaching the final host. Most investigations concerning microfilariae have concentrated on their morphological characteristics, with scant attention paid to ecological aspects, particularly in human-altered landscapes. This study represents the first known documentation of Litomosoides in bats within an urban environment. It investigates their response to urbanization in their interaction with the synanthropic bat Artibeus jamaicensis and its ectoparasites. The objective was to explore the influence of urban landscapes on Litomosoides prevalence in synanthropic hosts. Blood samples were collected along urban-rural gradients, and parasite presence was confirmed through direct observation in blood smears and PCR. Phylogenetic analysis based on the mitochondrial cytochrome c oxidase subunit 1 gene (COX1), which exhibited robust support values, indicates that the microfilaria found in A. jamaicensis is closely related to Litomosoides chandleri. However, it also suggests the possibility of an unidentified, and therefore potentially new, species within the genus Litomosoides. Additionally, Litomosoides DNA was detected in Periglischrus iheringi (Acari: Spinturnicidae) and in the bat fly Trichobius intermedius collected from the bat. The parasite sequences obtained from these three interacting species exhibited a genetic distance as low as 0.002. The highest prevalences were recorded in forested areas (28.6%) compared with urban areas (21.2%). However, within the urban landscape, prevalence varied from 3.8% to 21.2%, being highest in densely built-up areas. Analysis of the urban landscape suggested that the prevalence of Litomosoides in A. jamaicensis is the result of a multifactorial and synergistic process involving ectoparasite load, host abundance, and the extent of impervious surfaces (NDBI).
Collapse
Affiliation(s)
- Román Espinal-Palomino
- Departamento de Ecología Humana, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Unidad Mérida. Carretera Antigua a Progreso Km. 6, 97310, Mérida, Yucatán, México
| | - Ana Celia Montes de Oca-Aguilar
- Laboratorio de Inmunología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Martha Pilar Ibarra-López
- Departamento de Ecología Humana, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Unidad Mérida. Carretera Antigua a Progreso Km. 6, 97310, Mérida, Yucatán, México; Departamento de Ecología y Recursos Naturales, Centro Universitario de la Costa Sur, Universidad de Guadalajara, Autlán, Jalisco, México
| | - Víctor M Vidal-Martínez
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Unidad Mérida. Carretera Antigua a Progreso Km. 6, 97310 Mérida, Yucatán, México
| | - Carlos N Ibarra-Cerdeña
- Departamento de Ecología Humana, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Unidad Mérida. Carretera Antigua a Progreso Km. 6, 97310, Mérida, Yucatán, México.
| |
Collapse
|
3
|
Kilgour DAV, Romero LM, Reed JM. Feather corticosterone is lower in translocated and historical populations of the endangered Laysan duck ( Anas laysanensis). Proc Biol Sci 2024; 291:20240330. [PMID: 38772417 DOI: 10.1098/rspb.2024.0330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/16/2024] [Indexed: 05/23/2024] Open
Abstract
Identifying reliable bioindicators of population status is a central goal of conservation physiology. Physiological stress measures are often used as metrics of individual health and can assist in managing endangered species if linked to fitness traits. We analysed feather corticosterone, a cumulative physiological stress metric, of individuals from historical, translocated, and source populations of an endangered endemic Hawaiian bird, the Laysan duck (Anas laysanensis). We hypothesized that feather corticosterone would reflect the improved reproduction and survival rates observed in populations translocated to Midway and Kure Atolls from Laysan Island. We also predicted less physiological stress in historical Laysan birds collected before ecological conditions deteriorated and the population bottleneck. All hypotheses were supported: we found lower feather corticosterone in the translocated populations and historical samples than in those from recent Laysan samples. This suggests that current Laysan birds are experiencing greater physiological stress than historical Laysan and recently translocated birds. Our initial analysis suggests that feather corticosterone may be an indicator of population status and could be used as a non-invasive physiological monitoring tool for this species with further validation. Furthermore, these preliminary results, combined with published demographic data, suggest that current Laysan conditions may not be optimal for this species.
Collapse
Affiliation(s)
| | | | - J Michael Reed
- Department of Biology, Tufts University , , MA 02155, USA
| |
Collapse
|
4
|
Veloso-Frías J, Soto-Gamboa M, Mastromonaco G, Acosta-Jamett G. Seasonal Hair Glucocorticoid Fluctuations in Wild Mice ( Phyllotis darwini) within a Semi-Arid Landscape in North-Central Chile. Animals (Basel) 2024; 14:1260. [PMID: 38731264 PMCID: PMC11083726 DOI: 10.3390/ani14091260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Mammals in drylands face environmental challenges exacerbated by climate change. Currently, human activity significantly impacts these environments, and its effects on the energy demands experienced by individuals have not yet been determined. Energy demand in organisms is managed through elevations in glucocorticoid levels, which also vary with developmental and health states. Here, we assessed how anthropization, individual characteristics, and seasonality influence hair glucocorticoid concentration in the Darwin's leaf-eared mouse (Phyllotis darwini) inhabiting two areas with contrasting anthropogenic intervention in a semi-arid ecosystem of northern Chile. Hair samples were collected (n = 199) to quantify hair corticosterone concentration (HCC) using enzyme immunoassays; additionally, sex, body condition, and ectoparasite load were recorded. There were no differences in HCC between anthropized areas and areas protected from human disturbance; however, higher concentrations were recorded in females, and seasonal fluctuations were experienced by males. The results indicate that animals inhabiting semi-arid ecosystems are differentially stressed depending on their sex. Additionally, sex and season have a greater impact on corticosterone concentration than anthropogenic perturbation, possibly including temporal factors, precipitation, and primary production. The influence of sex and seasonality on HCC in P. darwini make it necessary to include these variables in future stress assessments of this species.
Collapse
Affiliation(s)
- Joseline Veloso-Frías
- Institute of Preventive Veterinary Medicine, Austral University of Chile, Valdivia 5090000, Chile;
| | - Mauricio Soto-Gamboa
- Institute of Environmental and Evolutionary Sciences, Austral University of Chile, Valdivia 5090000, Chile;
| | | | - Gerardo Acosta-Jamett
- Institute of Preventive Veterinary Medicine, Austral University of Chile, Valdivia 5090000, Chile;
- Center for Surveillance and Evolution of Infectious Diseases (CSEID), Austral University of Chile, Valdivia 5090000, Chile
| |
Collapse
|
5
|
Santicchia F, Tranquillo C, Wauters LA, Palme R, Panzeri M, Preatoni D, Bisi F, Martinoli A. Physiological stress response to urbanisation differs between native and invasive squirrel species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171336. [PMID: 38423339 DOI: 10.1016/j.scitotenv.2024.171336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/29/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Novel pressures derived from urbanisation can alter native habitats and ultimately impact wildlife. Coping with such human-driven changes might induce shifts in species phenotypic traits, such as physiological responses to anthropogenic stressors. Preadaptation to face those challenges has been suggested to favour settlement and spread of invasive alien species in urbanised areas which, consequently, might respond differently than ecologically similar native species to stressors posed by urbanisation. The activation of the hypothalamic-pituitary-adrenal (HPA) axis and the subsequent release of glucocorticoids (GCs) has been suggested to mediate responses to anthropogenic disturbance in vertebrates. Furthermore, intraspecific competition, in conjunction with stressors related to urbanisation, might affect invasive and native species physiological stress responses differently. Using a parallel pseudo-experimental study system we measured faecal glucocorticoid metabolite (FGM) concentrations of the native Eurasian red squirrel and the invasive alien Eastern grey squirrel along a rural-urban gradient and in relation to conspecific density. The two species responded differently to challenges posed by the synergic effect of urbanisation and intraspecific competition. Association of FGMs and conspecific density in native red squirrels varied between rural and suburban sites, potentially depending on differential HPA axis responses. In urban sites, this relationship did not differ significantly from that in rural and suburban ones. Conversely, invasive grey squirrels' FGMs did not vary in relation to conspecific density, nor differed along the rural-urban gradient. Improving knowledge about native and competing invasive species' physiological responses to anthropogenic stressors can support conservation strategies in habitats altered by man. Our findings suggested that the invasive squirrels might be preadapted to cope with these challenges in urbanised areas, potentially increasing their success under the future global change scenario.
Collapse
Affiliation(s)
- Francesca Santicchia
- Environment Analysis and Management Unit, Guido Tosi Research Group, Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, via J. H. Dunant 3, 21100 Varese, Italy.
| | - Claudia Tranquillo
- Environment Analysis and Management Unit, Guido Tosi Research Group, Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, via J. H. Dunant 3, 21100 Varese, Italy.
| | - Lucas A Wauters
- Environment Analysis and Management Unit, Guido Tosi Research Group, Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, via J. H. Dunant 3, 21100 Varese, Italy; Evolutionary Ecology Group, Department of Biology, University of Antwerp, Campus Drie Eiken Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Rupert Palme
- Unit of Physiology, Pathophysiology and Experimental Endocrinology, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| | - Mattia Panzeri
- Environment Analysis and Management Unit, Guido Tosi Research Group, Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, via J. H. Dunant 3, 21100 Varese, Italy
| | - Damiano Preatoni
- Environment Analysis and Management Unit, Guido Tosi Research Group, Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, via J. H. Dunant 3, 21100 Varese, Italy.
| | - Francesco Bisi
- Environment Analysis and Management Unit, Guido Tosi Research Group, Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, via J. H. Dunant 3, 21100 Varese, Italy.
| | - Adriano Martinoli
- Environment Analysis and Management Unit, Guido Tosi Research Group, Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, via J. H. Dunant 3, 21100 Varese, Italy.
| |
Collapse
|
6
|
Li WB, Teng Y, Zhang MY, Shen Y, Liu JW, Qi JW, Wang XC, Wu RF, Li JH, Garber PA, Li M. Human activity and climate change accelerate the extinction risk to non-human primates in China. GLOBAL CHANGE BIOLOGY 2024; 30:e17114. [PMID: 38273577 DOI: 10.1111/gcb.17114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 01/27/2024]
Abstract
Human activity and climate change affect biodiversity and cause species range shifts, contractions, and expansions. Globally, human activities and climate change have emerged as persistent threats to biodiversity, leading to approximately 68% of the ~522 primate species being threatened with extinction. Here, we used habitat suitability models and integrated data on human population density, gross domestic product (GDP), road construction, the normalized difference vegetation index (NDVI), the location of protected areas (PAs), and climate change to predict potential changes in the distributional range and richness of 26 China's primate species. Our results indicate that both PAs and NDVI have a positive impact on primate distributions. With increasing anthropogenic pressure, species' ranges were restricted to areas of high vegetation cover and in PAs surrounded by buffer zones of 2.7-4.5 km and a core area of PAs at least 0.1-0.5 km from the closest edge of the PA. Areas with a GDP below the Chinese national average of 100,000 yuan were found to be ecologically vulnerable, and this had a negative impact on primate distributions. Changes in temperature and precipitation were also significant contributors to a reduction in the range of primate species. Under the expected influence of climate change over the next 30-50 years, we found that highly suitable habitat for primates will continue to decrease and species will be restricted to smaller and more peripheral parts of their current range. Areas of high primate diversity are expected to lose from 3 to 7 species. We recommend that immediate action be taken, including expanding China's National Park Program, the Ecological Conservation Redline Program, and the Natural Forest Protection Program, along with a stronger national policy promoting alternative/sustainable livelihoods for people in the local communities adjacent to primate ranges, to offset the detrimental effects of anthropogenic activities and climate change on primate survivorship.
Collapse
Affiliation(s)
- Wen-Bo Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Hefei, Anhui, China
| | - Yang Teng
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ming-Yi Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Shen
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jia-Wen Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ji-Wei Qi
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Chen Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Rui-Feng Wu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jin-Hua Li
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Hefei, Anhui, China
- School of Life Sciences, Hefei Normal University, Hefei, Anhui, China
| | - Paul A Garber
- Department of Anthropology and Program in Ecology, Evolution, and Conservation Biology, University of Illinois, Urbana, Illinois, USA
- International Centre of Biodiversity and Primate Conservation, Dali University, Dali, Yunnan, China
| | - Ming Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Pokharel SS, Brown JL. Physiological plasticity in elephants: highly dynamic glucocorticoids in African and Asian elephants. CONSERVATION PHYSIOLOGY 2023; 11:coad088. [PMID: 39583302 PMCID: PMC10673820 DOI: 10.1093/conphys/coad088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 10/04/2023] [Accepted: 11/01/2023] [Indexed: 09/27/2024]
Abstract
Slowly reproducing and long-lived terrestrial mammals are often more at risk from challenges that influence fitness and survival. It is, therefore, important to understand how animals cope with such challenges and how coping mechanisms translate over generations and affect phenotypic plasticity. Rapidly escalating anthropogenic challenges may further diminish an animal's ability to reinstate homeostasis. Research to advance insights on elephant stress physiology has predominantly focused on relative or comparative analyses of a major stress response marker, glucocorticoids (GCs), across different ecological, anthropogenic, and reproductive contexts. This paper presents an extensive review of published findings on Asian and African elephants from 1980 to 2023 (May) and reveals that stress responses, as measured by alterations in GCs in different sample matrices, often are highly dynamic and vary within and across individuals exposed to similar stimuli, and not always in a predictable fashion. Such dynamicity in physiological reactivity may be mediated by individual differences in personality traits or coping styles, ecological conditions, and technical factors that often are not considered in study designs. We describe probable causations under the 'Physiological Dynamicity Model', which considers context-experience-individuality effects. Highly variable adrenal responses may affect physiological plasticity with potential fitness and survival consequences. This review also addresses the significance of cautious interpretations of GCs data in the context of normal adaptive stress versus distress. We emphasize the need for long-term assessments of GCs that incorporate multiple markers of 'stress' and 'well-being' to decipher the probable fitness consequences of highly dynamic physiological adrenal responses in elephants. Ultimately, we propose that assessing GC responses to current and future challenges is one of the most valuable and informative conservation tools we have for guiding conservation strategies.
Collapse
Affiliation(s)
- Sanjeeta Sharma Pokharel
- Center for Species Survival, Smithsonian National Zoo Conservation Biology Institute, 1500 Remount Road, Front Royal, VA 22630, USA
| | - Janine L Brown
- Center for Species Survival, Smithsonian National Zoo Conservation Biology Institute, 1500 Remount Road, Front Royal, VA 22630, USA
| |
Collapse
|
8
|
Pérez-Ortega B, Hendry AP. A meta-analysis of human disturbance effects on glucocorticoid hormones in free-ranging wild vertebrates. Biol Rev Camb Philos Soc 2023; 98:1459-1471. [PMID: 37095625 DOI: 10.1111/brv.12962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/26/2023]
Abstract
Free-ranging wild vertebrates need to cope with natural and anthropogenic stressors that cause short and/or long-term behavioural and physiological responses. In areas of high human disturbance, the use of glucocorticoid (GC) hormones as biomarkers to measure stress responses is an increasingly common tool for understanding how animals cope with human disturbance. We conducted a meta-analysis to investigate how human disturbances such as habitat conversion, habitat degradation, and ecotourism influence baseline GC hormones of free-ranging wild vertebrates, and we further test the role of protected areas in reducing the impact of such disturbances on these hormones. A total of 58 studies met the inclusion criteria, providing 152 data points for comparing levels of GC hormones under disturbed and undisturbed conditions. The overall effect size suggests that human disturbance does not cause a consistent increase in levels of GC hormones (Hedges' g = 0.307, 95% CI = -0.062 to 0.677). However, when the data were analysed by disturbance type, living in unprotected areas or in areas with habitat conversion were found to increase GC hormone levels compared to living in protected or undisturbed areas. By contrast, we found no evidence that ecotourism or habitat degradation generates a consistent increase in baseline GC hormone levels. Among taxonomic groups, mammals appeared more sensitive to human disturbance than birds. We advocate the use of GC hormones for inferring major human-caused contributors to the stress levels of free-ranging wild vertebrates - although such information needs to be combined with other measures of stress and interpreted in the context of an organism's life history, behaviour, and history of interactions with human disturbance.
Collapse
Affiliation(s)
- Betzi Pérez-Ortega
- McGill University, Redpath Museum and Department of Biology, 859 Sherbrooke Street West, Montreal, Quebec, H3A 0C4, Canada
- Smithsonian Tropical Research Institute, PO Box 0843-03092, Panama, Republic of Panama
| | - Andrew P Hendry
- McGill University, Redpath Museum and Department of Biology, 859 Sherbrooke Street West, Montreal, Quebec, H3A 0C4, Canada
| |
Collapse
|
9
|
Bertrand DA, Berman CM, Heistermann M, Agil M, Sutiah U, Engelhardt A. Effects of Tourist and Researcher Presence on Fecal Glucocorticoid Metabolite Levels in Wild, Habituated Sulawesi Crested Macaques ( Macaca nigra). Animals (Basel) 2023; 13:2842. [PMID: 37760243 PMCID: PMC10525950 DOI: 10.3390/ani13182842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Ecotourism managers and researchers often assume that apparently habituated primate groups no longer experience adverse consequences of prolonged exposure to tourists or researchers. We examined the effects of tourists and researchers on fecal glucocorticoid metabolite output (FGCM) in three critically endangered, wild crested macaque (Macaca nigra) groups in Tangkoko Nature Reserve, Sulawesi, Indonesia. We assayed FGCM from 456 fecal samples collected from thirty-three adults. Tourists can walk through and among macaque groups freely. Hence, we examined the possible effects of tourists both (1) in the reserve when away and not interacting with the study groups and (2) when they were present within the macaque groups. Generalized Linear Mixed Model (GLMM) analysis indicated that when tourists were present in the forest, but not directly among the macaques, FGCM levels in the macaque tourism groups were higher in months with more tourists. When tourists were among the macaque groups, some female macaques experienced rises and subsequent postexposure decreases in FGCM levels, consistent with predictions for acute stress. Male FGCM levels increased with tourist numbers within the group. Nevertheless, they were not significantly different from levels during undisturbed or postexposure conditions. FGCM responses related to researchers in groups varied by group, sex, and tourist presence. However, the temporal patterning of FGCM responses showed little evidence of chronic stress from tourism at this site.
Collapse
Affiliation(s)
| | - Carol M. Berman
- Department of Anthropology, University at Buffalo, Buffalo, NY 14261, USA
- Evolution, Ecology, & Behavior Program, Department of Environment and Sustainability, University at Buffalo, Buffalo, NY 14260, USA
| | - Michael Heistermann
- German Primate Centre, Endocrinology Laboratory, Leibniz Institute for Primate Research, 37077 Goettingen, Germany
| | - Muhammad Agil
- Faculty of Veterinary Medicine, Bogor Agricultural University, Bogor 16680, Indonesia
| | - Uni Sutiah
- Faculty of Veterinary Medicine, Bogor Agricultural University, Bogor 16680, Indonesia
| | - Antje Engelhardt
- School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool L3 3AF, UK
| |
Collapse
|
10
|
Macdonald KJ, Driscoll DA, Macdonald KJ, Hradsky B, Doherty TS. Meta-analysis reveals impacts of disturbance on reptile and amphibian body condition. GLOBAL CHANGE BIOLOGY 2023; 29:4949-4965. [PMID: 37401520 DOI: 10.1111/gcb.16852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023]
Abstract
Ecosystem disturbance is increasing in extent, severity and frequency across the globe. To date, research has largely focussed on the impacts of disturbance on animal population size, extinction risk and species richness. However, individual responses, such as changes in body condition, can act as more sensitive metrics and may provide early warning signs of reduced fitness and population declines. We conducted the first global systematic review and meta-analysis investigating the impacts of ecosystem disturbance on reptile and amphibian body condition. We collated 384 effect sizes representing 137 species from 133 studies. We tested how disturbance type, species traits, biome and taxon moderate the impacts of disturbance on body condition. We found an overall negative effect of disturbance on herpetofauna body condition (Hedges' g = -0.37, 95% CI: -0.57, -0.18). Disturbance type was an influential predictor of body condition response and all disturbance types had a negative mean effect. Drought, invasive species and agriculture had the largest effects. The impact of disturbance varied in strength and direction across biomes, with the largest negative effects found within Mediterranean and temperate biomes. In contrast, taxon, body size, habitat specialisation and conservation status were not influential predictors of disturbance effects. Our findings reveal the widespread effects of disturbance on herpetofauna body condition and highlight the potential role of individual-level response metrics in enhancing wildlife monitoring. The use of individual response metrics alongside population and community metrics would deepen our understanding of disturbance impacts by revealing both early impacts and chronic effects within affected populations. This could enable early and more informed conservation management.
Collapse
Affiliation(s)
- Kristina J Macdonald
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| | - Don A Driscoll
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| | - Kimberley J Macdonald
- Biodiversity Protection and Information Branch, Biodiversity Division, Department of Energy, Environment and Climate Action, East Melbourne, Victoria, Australia
| | - Bronwyn Hradsky
- School of Ecosystem and Forest Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Tim S Doherty
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
11
|
Turner SE, Fedigan LM, Joyce MM, Matthews HD, Moriarity RJ, Nobuhara H, Nobuhara T, Stewart BM, Shimizu K. Mothers of disabled infants had higher cortisol levels in a free-ranging group of Japanese macaques (Macaca fuscata). Am J Primatol 2023:e23500. [PMID: 37189289 DOI: 10.1002/ajp.23500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/15/2023] [Accepted: 04/29/2023] [Indexed: 05/17/2023]
Abstract
Glucocorticoids (GCs) are hormones released in response to stressors and can provide insight into an organism's physiological well-being. Experiencing chronic challenges to homeostasis is associated with significant deviations from baseline fecal GCs (fGCs) in many species, providing a noninvasive biomarker for assessing stress. In the group of free-ranging Japanese macaques (Macaca fuscata) at the Awajishima Monkey Center in Japan, ~17% have congenital limb malformations. We collected 646 fecal samples from 27 females over three consecutive birth seasons (May-August) and analyzed them using enzyme immunoassay to extract fGCs. We explored the relationship between fGC levels and individual (physical impairment and reproductive status), social (dominance rank and availability of kin for social support), and ecological variables (exposure to potential predators, rainfall, and wild fruit availability). A disabled infant was associated significantly with higher fGC in the mother; however, physical impairment in adult females was not significantly related to fGC levels. Females with higher dominance rank had significantly lower fGC levels than lower ranking females. Other factors did not relate significantly to fGC. These results suggest that providing care that meets the support needs of disabled infants poses a physiological challenge for mothers and suggests that physically impaired adults are able to effectively compensate for their disabilities with behavioral plasticity. Once an individual with congenital limb malformations survives infancy through their mother's care, physical impairment does not appear to influence fGC values, while social variables like dominance rank significantly influenced cortisol values in free-ranging female Japanese macaques.
Collapse
Affiliation(s)
- Sarah E Turner
- Department of Geography, Planning and Environment, Concordia University, Montreal, Quebec, Canada
| | - Linda M Fedigan
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada
| | - Megan M Joyce
- Department of Geography, Planning and Environment, Concordia University, Montreal, Quebec, Canada
| | - H Damon Matthews
- Department of Geography, Planning and Environment, Concordia University, Montreal, Quebec, Canada
| | - Robert J Moriarity
- School of Occupational and Public Health, Toronto Metropolitan University, Toronto, Ontario, Canada
| | | | | | - Brogan M Stewart
- Department of Geography, Planning and Environment, Concordia University, Montreal, Quebec, Canada
| | - Keiko Shimizu
- Department of Zoology, Faculty of Science, Okayama University of Science, Okayama, Japan
| |
Collapse
|
12
|
Kaisin O, Bufalo F, Amaral R, Palme R, Poncin P, Brotcorne F, Culot L. Linking glucocorticoid variations to monthly and daily behavior in a wild endangered neotropical primate. Am J Primatol 2023:e23503. [PMID: 37157182 DOI: 10.1002/ajp.23503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 04/09/2023] [Accepted: 04/29/2023] [Indexed: 05/10/2023]
Abstract
Identifying the factors swaying physiological stress levels in wild animals can help depict how they cope with environmental and social stressors, shedding light on their feeding ecology, behavioral plasticity, and adaptability. Here, we used noninvasive methods to explore the link between glucocorticoid levels and behavior in an endangered neotropical primate facing habitat fragmentation pressure, the black lion tamarin (Leontopithecus chrysopygus). We investigated monthly and day-to-day glucocorticoid variations independently to attempt to disentangle the complex nature of the adrenocortical activity. Between May 2019 to March 2020, we followed two groups of black lion tamarins in two different areas, a continuous forest and a small fragment, and gathered behavioral data (over 95 days in total; 8.6 ± 3.9 days/month) and fecal samples (Nsamples = 468; 4.93 ± 3.5 samples/day) simultaneously. Preliminary analyses enabled us to identify circadian variations linked to the biological rhythm, which were taken into account in subsequent models. Monthly analyses revealed that black lion tamarin fecal glucocorticoid metabolite levels vary according to changes in activity budget associated with the fruit consumption, movement, and resting time of the groups. At a day-to-day level, while intergroup encounters led to increases in fecal glucocorticoid metabolite concentrations, we found that changes in food intake or activity level did not trigger physiological stress responses. These findings suggest that diet and ranging patterns, driven by food availability and distribution, influence physiological stress at a seasonal scale, while acute stressors such as interspecific competition trigger short-term stress responses. Exploring fecal glucocorticoid metabolite variations over different timescales can help uncover the predictive and reactive facets of physiological stress in wild species. Moreover, having a comprehensive understanding of the physiological state of species is a valuable conservation tool for evaluating how they cope in changing environments.
Collapse
Affiliation(s)
- Olivier Kaisin
- Laboratório de Primatologia, Departamento de Biodiversidade, Universidade Estadual Paulista (UNESP), Rio Claro, São Paulo, Brazil
- Department of Biology, Ecology and Evolution, Research Unit SPHERES, University of Liège, Arlon, Belgium
- Departamento de Biodiversidade, Programa de Pós-Graduação em Ecologia, Evolução e Biodiversidade, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Rio Claro, São Paulo, Brazil
| | - Felipe Bufalo
- Laboratório de Primatologia, Departamento de Biodiversidade, Universidade Estadual Paulista (UNESP), Rio Claro, São Paulo, Brazil
- Departamento de Biodiversidade, Programa de Pós-Graduação em Ecologia, Evolução e Biodiversidade, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Rio Claro, São Paulo, Brazil
| | - Rodrigo Amaral
- Laboratório de Primatologia, Departamento de Biodiversidade, Universidade Estadual Paulista (UNESP), Rio Claro, São Paulo, Brazil
- Departamento de Biodiversidade, Programa de Pós-Graduação em Zoologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Rio Claro, São Paulo, Brazil
| | - Rupert Palme
- Department of Biomedical Sciences, Unit of Physiology, Pathophysiology and Experimental Endocrinology, University of Veterinary Medicine, Vienna, Austria
| | - Pascal Poncin
- Department of Biology, Ecology and Evolution, Research Unit FOCUS, University of Liège, Liège, Belgium
| | - Fany Brotcorne
- Department of Biology, Ecology and Evolution, Research Unit SPHERES, University of Liège, Arlon, Belgium
| | - Laurence Culot
- Laboratório de Primatologia, Departamento de Biodiversidade, Universidade Estadual Paulista (UNESP), Rio Claro, São Paulo, Brazil
| |
Collapse
|
13
|
Manes C, Carthy RR, Hull V. A Coupled Human and Natural Systems Framework to Characterize Emerging Infectious Diseases-The Case of Fibropapillomatosis in Marine Turtles. Animals (Basel) 2023; 13:ani13091441. [PMID: 37174478 PMCID: PMC10177368 DOI: 10.3390/ani13091441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Emerging infectious diseases of wildlife have markedly increased in the last few decades. Unsustainable, continuous, and rapid alterations within and between coupled human and natural systems have significantly disrupted wildlife disease dynamics. Direct and indirect anthropogenic effects, such as climate change, pollution, encroachment, urbanization, travel, and trade, can promote outbreaks of infectious diseases in wildlife. We constructed a coupled human and natural systems framework identifying three main wildlife disease risk factors behind these anthropogenic effects: (i) immune suppression, (ii) viral spillover, and (iii) disease propagation. Through complex and convoluted dynamics, each of the anthropogenic effects and activities listed in our framework can lead, to some extent, to one or more of the identified risk factors accelerating disease outbreaks in wildlife. In this review, we present a novel framework to study anthropogenic effects within coupled human and natural systems that facilitate the emergence of infectious disease involving wildlife. We demonstrate the utility of the framework by applying it to Fibropapillomatosis disease of marine turtles. We aim to articulate the intricate and complex nature of anthropogenically exacerbated wildlife infectious diseases as multifactorial. This paper supports the adoption of a One Health approach and invites the integration of multiple disciplines for the achievement of effective and long-lasting conservation and the mitigation of wildlife emerging diseases.
Collapse
Affiliation(s)
- Costanza Manes
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA
- One Health Center of Excellence, University of Florida, Gainesville, FL 32611, USA
| | - Raymond R Carthy
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA
- U.S. Geological Survey, Florida Cooperative Fish and Wildlife Research Unit, University of Florida, Gainesville, FL 32611, USA
| | - Vanessa Hull
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
14
|
Rangel-Negrín A, Gómez-Espinosa EE, Chavira-Ramírez DR, Dias PAD. Dog barks influence the physiological stress and behavior of a wild primate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163585. [PMID: 37088396 DOI: 10.1016/j.scitotenv.2023.163585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
Non-lethal impacts of dogs on primates have seldom been assessed. We used an experimental approach to determine if mantled howler monkeys (Alouatta palliata) perceive dog barks as an aversive stimulus and thus display physiological and behavioral responses toward simulated barks. For one year (1754 h of observations) we studied 16 adult males belonging to five groups in Los Tuxtlas (Mexico), and recorded the occurrence of naturally occurring dog barks, their sound pressure level (SPL), and the behavioral responses of howler monkeys to barks. We then exposed males to bark playbacks at two SPL treatments, 40 and 80 dB in a total of 50 experiments. We assayed glucocorticoid metabolite concentrations in fecal samples (fGCM) as a marker of the physiological stress response of males. We also recorded the duration of vigilance, vocalizations, and flight in relation to playbacks. Naturally occurring barks were frequent and usually elicited behavioral responses by males. fGCM concentrations increased after bark playbacks and with stimuli intensity. Time spent vigilant increased following playbacks independently of stimuli intensity but both vocalizations and flight were linked to stimuli intensity: vocalizations were the longest after barks played-back at 80 dB, but males spent more time fleeing in response to 40 dB bark playbacks. These results provide evidence that dog barks are pervasive in the habitat of mantled howler monkeys living at Los Tuxtlas and disturb males, both physiologically and behaviorally. Although the potential costs of physiological and behavioral responses could not be determined, there is sufficient evidence to assume that they do have negative impacts on individuals. Therefore, our study provides avenues for future research on dog-wildlife interactions and valuable information for the design of conservation actions aimed at mitigating the impact of dogs on mantled howler monkeys.
Collapse
Affiliation(s)
- Ariadna Rangel-Negrín
- Primate Behavioral Ecology Lab, Instituto de Neuro-etología, Universidad Veracruzana, Xalapa, Mexico.
| | | | - David Roberto Chavira-Ramírez
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Pedro A D Dias
- Primate Behavioral Ecology Lab, Instituto de Neuro-etología, Universidad Veracruzana, Xalapa, Mexico.
| |
Collapse
|
15
|
Santicchia F, Wauters LA, Dantzer B, Palme R, Tranquillo C, Preatoni D, Martinoli A. Native species exhibit physiological habituation to invaders: a reason for hope. Proc Biol Sci 2022; 289:20221022. [PMID: 36168765 PMCID: PMC9515632 DOI: 10.1098/rspb.2022.1022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/05/2022] [Indexed: 11/12/2022] Open
Abstract
Animals cope with environmental perturbations through the stress response, a set of behavioural and physiological responses aimed to maintain and/or return to homeostasis and enhance fitness. Vertebrate neuroendocrine axis activation in response to environmental stressors can result in the secretion of glucocorticoids (GCs), whose acute increases may be adaptive, while chronic elevation may be detrimental. Invasive grey squirrels (Sciurus carolinensis) act as a stressor eliciting elevation of GCs in native red squirrels (Sciurus vulgaris). Here we used 6-year data of variation in faecal glucocorticoid metabolite (FGM) concentrations following invasion by grey squirrels in three red squirrel populations, to identify if red squirrels showed physiological habituation to this stressor. The decrease in FGMs over time was more pronounced shortly after invasion and at high densities of grey squirrels while it decreased less strongly and was no longer influenced by the invader density as time since invasion elapsed. At the individual level, FGMs also decreased more markedly as each red squirrel experienced prolonged contact with the invader. Our study provides compelling new data suggesting that native species in the wild can habituate to prolonged contact with invasive species, showing that they may avoid the potentially harmful effects of chronic elevations in GCs.
Collapse
Affiliation(s)
- Francesca Santicchia
- Environment Analysis and Management Unit - Guido Tosi Research Group - Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, via J. H. Dunant 3, 21100 Varese, Italy
| | - Lucas Armand Wauters
- Environment Analysis and Management Unit - Guido Tosi Research Group - Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, via J. H. Dunant 3, 21100 Varese, Italy
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Campus Drie Eiken Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Ben Dantzer
- Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI, 48109, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, 830 North University, Ann Arbor, MI 48109, USA
| | - Rupert Palme
- Unit of Physiology, Pathophysiology and Experimental Endocrinology, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Claudia Tranquillo
- Environment Analysis and Management Unit - Guido Tosi Research Group - Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, via J. H. Dunant 3, 21100 Varese, Italy
| | - Damiano Preatoni
- Environment Analysis and Management Unit - Guido Tosi Research Group - Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, via J. H. Dunant 3, 21100 Varese, Italy
| | - Adriano Martinoli
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Campus Drie Eiken Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
16
|
Edwards MJ, Stanley CR, Hosie CA, Richdon S, Price E, Wormell D, Smith TE. Social roles influence cortisol levels in captive Livingstone's fruit bats (Pteropus livingstonii). Horm Behav 2022; 144:105228. [PMID: 35772196 DOI: 10.1016/j.yhbeh.2022.105228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/03/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022]
Abstract
A critical component of conserving and housing species ex situ is an explicit scientific understanding of the physiological underpinnings of their welfare. Cortisol has been repeatedly linked to stress, and therefore used as an indicator of welfare for many species. In order to measure cortisol in the Livingstone's fruit bat (Pteropus livingstonii; a critically endangered keystone species) without disturbing the captive population, we have developed and validated a non-invasive, novel hormone extraction procedure and faecal glucocorticoid assay. A total of 92 faecal samples, 73 from the P. livingstonii breeding colony at Jersey Zoo, Channel Islands and 19 samples from P. livingstonii housed at Bristol Zoological Gardens, UK, have been collected and analyzed. Mixed-effect modelling of the influence of physiological state variables on cortisol concentration revealed that lactating females had higher cortisol levels than non-lactating females, indicating that our assay is measuring biologically relevant hormone concentrations. Males and older bats also had higher cortisol than non-lactating females and younger individuals. Further analysis applied social network methodology to compare the cortisol levels of bats with different social roles. We found that individuals that linked social groups possessed higher than average cortisol levels and conversely, individuals with high-quality, positive relationships had lower cortisol levels. These results demonstrate, for the first time in a bat species, social mediation of stress hormones. Lastly, the frequency of vocalisation was found to positively correlate with cortisol concentration in males, suggesting that this behaviour may be used by animal management as a visual indicator of a bat's hormonal status. Hence, this research has provided unique insights and empirical scientific knowledge regarding the relationship between the physiology and social behaviour of P. livingstonii, therefore allowing for recommendations to be made to optimise bat welfare at the individual level.
Collapse
Affiliation(s)
- Morgan J Edwards
- Animal Behaviour and Welfare Research Group, Department of Biological Sciences, University of Chester, Chester CH1 4BJ, UK.
| | - Christina R Stanley
- Animal Behaviour and Welfare Research Group, Department of Biological Sciences, University of Chester, Chester CH1 4BJ, UK.
| | - Charlotte A Hosie
- Animal Behaviour and Welfare Research Group, Department of Biological Sciences, University of Chester, Chester CH1 4BJ, UK.
| | - Sarah Richdon
- Institute of Conservation Science & Learning, Bristol Zoological Society, Clifton, Bristol BS8 3HA, UK.
| | - Eluned Price
- Durrell Wildlife Conservation Trust, Trinity, Jersey JE3 6AP, UK.
| | - Dominic Wormell
- Durrell Wildlife Conservation Trust, Trinity, Jersey JE3 6AP, UK.
| | - Tessa E Smith
- Animal Behaviour and Welfare Research Group, Department of Biological Sciences, University of Chester, Chester CH1 4BJ, UK.
| |
Collapse
|
17
|
Christensen C, Bracken AM, Justin O'Riain M, Heistermann M, King AJ, Fürtbauer I. Simultaneous investigation of urinary and faecal glucocorticoid metabolite concentrations reveals short- versus long-term drivers of HPA-axis activity in a wild primate (Papio ursinus). Gen Comp Endocrinol 2022; 318:113985. [PMID: 35093315 DOI: 10.1016/j.ygcen.2022.113985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 01/07/2022] [Accepted: 01/24/2022] [Indexed: 12/24/2022]
Abstract
Glucocorticoids (GCs), a class of steroid hormones released through activation of the hypothalamic-pituitary-adrenal (HPA) axis, perform many vital functions essential for survival, including orchestrating an organism's response to stressors by modulating physiological and behavioural responses. Assessing changes and variation in GC metabolites from faecal or urine samples allows for the non-invasive monitoring of HPA-axis activity across vertebrates. The time lag of hormone excretion differs between these sample matrices, which has implications for their suitability for studying effects of different temporal nature on HPA-axis activity. However, simultaneous comparisons of predictors of faecal and urinary GC metabolites (fGCs and uGCs, respectively) are lacking. To address this gap, we employ frequent non-invasive sampling to investigate correlates of fGCs and uGCs in wild chacma baboons (Papio ursinus) (n = 17), including long-term (dominance rank, season, female reproductive state) and short-term (time of day, daily weather conditions) factors. Correlated with increasing day length, fGCs gradually decreased from winter to summer. No seasonal effect on uGCs was found but 'rain days' were associated with increased uGCs. Pregnant females had significantly higher fGCs compared to cycling and lactating females, whereas uGCs were not statistically different across reproductive states. A circadian effect was observed in uGCs but not in fGCs. Dominance rank did not affect either fGCs or uGCs. Our study highlights the difference in inherent fluctuation between uGCs and fGCs and its potential consequences for HPA-axis activity monitoring. While uGCs offer the opportunity to study short-term effects, they undergo more pronounced fluctuations, reducing their ability to capture long-term effects. Given the increasing use of urine for biological monitoring, knowledge of this potential limitation is crucial. Where possible, uGCs and fGCs should be monitored in tandem to obtain a comprehensive understanding of short- and long-term drivers of HPA-axis activity.
Collapse
Affiliation(s)
- Charlotte Christensen
- Biosciences, School of Biosciences, Geography and Physics, Faculty of Science and Engineering, Swansea University, SA2 8PP Swansea, UK.
| | - Anna M Bracken
- Biosciences, School of Biosciences, Geography and Physics, Faculty of Science and Engineering, Swansea University, SA2 8PP Swansea, UK
| | - M Justin O'Riain
- Institute for Communities and Wildlife in Africa, Department of Biological Sciences, University of Cape Town, Rondebosch 7701, South Africa
| | | | - Andrew J King
- Biosciences, School of Biosciences, Geography and Physics, Faculty of Science and Engineering, Swansea University, SA2 8PP Swansea, UK
| | - Ines Fürtbauer
- Biosciences, School of Biosciences, Geography and Physics, Faculty of Science and Engineering, Swansea University, SA2 8PP Swansea, UK
| |
Collapse
|
18
|
Bista D, Baxter GS, Hudson NJ, Lama ST, Murray PJ. Effect of disturbances and habitat fragmentation on an arboreal habitat specialist mammal using GPS telemetry: a case of the red panda. LANDSCAPE ECOLOGY 2021; 37:795-809. [PMID: 34720409 PMCID: PMC8542365 DOI: 10.1007/s10980-021-01357-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
CONTEXT Habitat specialists residing in human-modified landscapes are likely to be more vulnerable to disturbance because of a functional reliance on very particular habitat features. However, there have been few studies designed to specifically address that issue. OBJECTIVES This study aimed to explore how the red panda, an iconic endangered habitat specialist, behaves when faced with disturbances and habitat fragmentation. In particular, we attempted to examine the effect of anthropogenic disturbances and fragmentation on home-range size, activity patterns, and recursion. METHODS Using GPS telemetry we monitored 10 red pandas and documented disturbances using camera trapping for one year in eastern Nepal. We performed spatial analysis, analysed activity patterns and evaluated the effect of habitat fragmentation and disturbances on home-range size and residence time using Linear Mixed Models. RESULTS Home-range size increased in areas with low availability of forest cover whilst home ranges were smaller in areas with a high road density. Red pandas spent more time in large habitat patches away from roads and cattle stations. Crossing rates suggested that roads acted as a barrier for movement across their habitat. Red pandas also partitioned their activity to minimize interactions with disturbances. CONCLUSIONS Red pandas seem to make a trade-off to co-exist in human-dominated landscapes which may have adverse long-term effects on their survival. This indicates that current patterns of habitat fragmentation and forest exploitation may be adversely affecting red panda conservation efforts and that landscape-scale effects should be considered when planning conservation actions. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10980-021-01357-w.
Collapse
Affiliation(s)
- Damber Bista
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD 4343 Australia
| | - Greg S. Baxter
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD 4343 Australia
| | - Nicholas J. Hudson
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD 4343 Australia
| | | | - Peter John Murray
- School of Sciences, University of Southern Queensland, West St., Darling Heights, Toowoomba, QLD 4350 Australia
| |
Collapse
|
19
|
Dinsmore MP, Strier KB, Louis EE. The influence of seasonality, anthropogenic disturbances, and cyclonic activity on the behavior of northern sportive lemurs (Lepilemur septentrionalis) at Montagne des Français, Madagascar. Am J Primatol 2021; 83:e23333. [PMID: 34679194 DOI: 10.1002/ajp.23333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/20/2021] [Accepted: 09/25/2021] [Indexed: 11/07/2022]
Abstract
Anthropogenic tropical deforestation and degradation imminently threaten primates today. Primates living in these disturbed habitats may also be subjected to increasingly severe tropical storms such as cyclones or hurricanes. These disturbances pose an immediate risk to their livelihood and can dramatically alter their habitats, in turn potentially shifting behavioral patterns. We had the unique opportunity to study the effects of seasonality, anthropogenic disturbances, and the immediate effects of a cyclone on the behavior of the critically endangered northern sportive lemur (NSL) in an anthropogenically disturbed forest in Madagascar. Cyclone Enawo made landfall on March 7, 2017 in northeast Madagascar with sustained wind speeds of 230 km/h. We collected behavioral data on nine individual NSLs during both wet and dry seasons, before and after Cyclone Enawo, and in areas of differing human activity, using scan sampling at 5-min intervals. We ran generalized linear mixed models to test the effects of seasonality and disturbances on behavior. We found that NSLs spent more time feeding in dry months compared with wet (Z = -4.21, p < 0.001). More specifically, they spent more time-consuming leaves and vine species in the dry season (Z = -2.26, p = 0.02; Z = -2.3; p = 0.02). We also found that NSLs were observed at lower heights in trees after the cyclone (Z = -2.45; p = 0.016) and spent more time in the interior portions of trees (Z = 3.44; p < 0.001), perhaps due to extensive limb damage of emergent trees documented after the cyclone. Our analyses show that seasonality affected most aspects of NSL behavior, followed by the effects of Cyclone Enawo, with anthropogenic disturbances having little effect. Our data suggest that the behavioral flexibility of NSLs in response to predictable seasonality may enable them to respond similarly to stochastic climatic disturbances. However, their generalist diet may allow them to persist in anthropogenically disturbed landscapes without the need to greatly alter their behavior.
Collapse
Affiliation(s)
- Mary P Dinsmore
- School of Environmental Sustainability, Loyola University Chicago, Chicago, Illinois, USA.,Department of Environment and Resources, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Karen B Strier
- Department of Anthropology, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Edward E Louis
- Center for Conservation and Research, Omaha's Henry Doorly Zoo and Aquarium, Omaha, Nebraska, USA.,Madagascar Biodiversity Partnership, Antananarivo, Madagascar
| |
Collapse
|
20
|
Thatcher HR, Downs CT, Koyama NF. The costs of urban living: human–wildlife interactions increase parasite risk and self-directed behaviour in urban vervet monkeys. JOURNAL OF URBAN ECOLOGY 2021. [DOI: 10.1093/jue/juab031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
The urban landscape is a complex mosaic of costs and benefits for urban wildlife. Although many species may adapt and thrive in the urban mosaic, the complexity of this landscape can be stressful and have health implications for urban wildlife, raising concerns for zoonosis and biodiversity. In this study, we assessed how human–primate interactions influenced parasite risk and anxiety-related behaviour of urban vervet monkeys in KwaZulu-Natal, South Africa. Over 1 year, we collected and analysed faecal samples, assessing eggs per gram, species richness, and Shannon’s diversity index. In addition, using behavioural sampling, we recorded self-directed scratching behaviour, as an indicator of anxiety, and human–primate interactions, both positive (human-food consumption) and negative (human–monkey aggression). To assess parasite risk in the urban mosaic, we ran three models with our parasite measures as dependent variables. Results showed that negative human interactions significantly increased with eggs per gram, species richness, and Shannon’s diversity index and positive human interactions increased with both eggs per gram and species richness. Furthermore, eggs per gram significantly increased with higher scratching rate. We also tested the relationship between scratching and human interactions, finding that scratching significantly increased under higher rates of negative human incidents. Overall, results suggest that there are costs to urban living that increase anxiety-related behaviour and parasite risk despite increased food availability. Our findings are important for developing effective management strategies that focus on cohabitation rather than conflict, for the benefit of human and wildlife health.
Collapse
Affiliation(s)
- Harriet R Thatcher
- Department of Biomedical Sciences, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, UK
| | - Colleen T Downs
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, P/Bag X01, Scottsville, Pietermaritzburg, KwaZulu-Natal 3209, South Africa
| | - Nicola F Koyama
- Research Centre in Evolutionary Anthropology & Palaeoecology, School of Biological and Environmental Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| |
Collapse
|