1
|
Song L, Lei Y. Forsythoside A inhibited inflammatory response by inhibiting p38 JNK/MAPK/ERK and NF-κB signaling in Staphylococcus aureus pneumonia. J Mol Histol 2025; 56:147. [PMID: 40293580 DOI: 10.1007/s10735-025-10418-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 04/05/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND S. aureus pneumonia, one of the most common S. aureus-induced diseases, is characterized by infectious inflammation in alveoli, distal airway, and lung interstitial. Forsythiaside A possesses anti-inflammatory, anti-infective, and other pharmacological properties in several diseases. The role of forsythiaside A remains unclear in S. aureus pneumonia. AIM OF THE STUDY We aimed to figure out the role of forsythiaside A in S. aureus pneumonia. METHODS RAW264.7 cells and C57BL6 mice were infected with S. aureus to construct S. aureus pneumonia cell model and animal model, respectively. A series of experiments including MTT, ELISA, Western blot, H&E staining and EBD staining were operated to figure out the role of forsythiaside A in S. aureus pneumonia. RESULTS In RAW264.7 cells, forsythiaside A did not induce cell toxicity but triggered cytokines (TNF-α, IL-6 and IL-1β) release in a dose-dependent manner. Moreover, forsythiaside A inhibited p38 JNK/MAPK/ERK and NF-κB pathways by repressing phosphorylation of p38, JNK, ERK and p65 proteins. For in vivo study, forsythiaside A improved survival rate of S. aureus pneumonia mice by alleviating lung injury. In addition, forsythiaside A protected from air-blood barrier destruction and pulmonary edema. At last, forsythiaside A inhibited neutrophils infiltration and inflammatory response in bronchoalveolar lavage fluid. CONCLUSIONS Forsythoside A inhibited inflammatory response by inhibiting p38 JNK/MAPK/ERK and NF-κB signaling in S. aureus pneumonia, which provided a novel insight for S. aureus pneumonia treatment.
Collapse
Affiliation(s)
- Liangmin Song
- Department of Respiratory and Critical Care Medicine, Wuhan Fourth Hospital (Gutian Campus), No.76 Jiefang Avenue, Qiaokou District, Wuhan City, 430034, Hubei Province, China
| | - Yu Lei
- Department of Respiratory and Critical Care Medicine, Wuhan Fourth Hospital (Gutian Campus), No.76 Jiefang Avenue, Qiaokou District, Wuhan City, 430034, Hubei Province, China.
| |
Collapse
|
2
|
Chen J, Zhang L, Han Z, Meng X, Sun X, Zhong Y, Zhi M, Huang D, Li G. Silk fibroin/chitosan-based anal fistula scaffolds loaded with curcumin and 5-aminosalicylic acid. Int J Biol Macromol 2024; 281:135927. [PMID: 39414532 DOI: 10.1016/j.ijbiomac.2024.135927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/22/2024] [Accepted: 09/20/2024] [Indexed: 10/18/2024]
Abstract
The present work describes the development of silk fibroin (SF)/chitosan (CS)-based porous composite anal fistula scaffold (SCAFS) with anti-inflammatory and healing functions. The SCAFS comprises an inner layer made from degummed silk fiber using a vertical braiding machine, and an outer layer created by freeze-drying a mixture of short SF fibers and curcumin (CUR)/5-aminosalicylic acid (5-ASA) loaded SF/CS solution. Results revealed that the SCAFS has high porosity of 42.4 %, remarkable water absorption rate of 370.5 %, robust dry/wet compression resistance of 12.28 ± 2.61 N/3.08 ± 0.43 N. The in vitro & in vivo biocompatibility and anti-inflammatory effect of SCAFS were further examined. The expression of pro-inflammatory cytokine TNF-α, anti-inflammatory cytokine IL-10, CD31 and CD68 was determined by immunohistochemistry (IHC) staining, H&E staining, Immunofluorescence (IF) staining and Masson assay. The results showed that the scaffolds possess a sustainable drug release above 400 h, better biocompatibility and anti-inflammatory effect than the control groups (p < 0.05). Thus, the SCAFS has potential application in the treatment of Crohn's disease.
Collapse
Affiliation(s)
- Jihua Chen
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Li Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Zhifen Han
- Department of Integrated Traditional Chinese and Western Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu, China
| | - Xiangyou Meng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Xuan Sun
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Yingkui Zhong
- Department of General (Coloproctology), Department of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
| | - Min Zhi
- Department of General (Coloproctology), Department of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China.
| | - Dandan Huang
- Department of General (Coloproctology), Department of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China.
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| |
Collapse
|
3
|
Qun T, Zhou T, Hao J, Wang C, Zhang K, Xu J, Wang X, Zhou W. Antibacterial activities of anthraquinones: structure-activity relationships and action mechanisms. RSC Med Chem 2023; 14:1446-1471. [PMID: 37593578 PMCID: PMC10429894 DOI: 10.1039/d3md00116d] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/24/2023] [Indexed: 08/19/2023] Open
Abstract
With the increasing prevalence of untreatable infections caused by antibiotic-resistant bacteria, the discovery of new drugs from natural products has become a hot research topic. The antibacterial activity of anthraquinones widely distributed in traditional Chinese medicine has attracted much attention. Herein, the structure and activity relationships (SARs) of anthraquinones as bacteriostatic agents are reviewed and elucidated. The substituents of anthraquinone and its derivatives are closely related to their antibacterial activities. The stronger the polarity of anthraquinone substituents is, the more potent the antibacterial effects appear. The presence of hydroxyl groups is not necessary for the antibacterial activity of hydroxyanthraquinone derivatives. Substitution of di-isopentenyl groups can improve the antibacterial activity of anthraquinone derivatives. The rigid plane structure of anthraquinone lowers its water solubility and results in the reduced activity. Meanwhile, the antibacterial mechanisms of anthraquinone and its analogs are explored, mainly including biofilm formation inhibition, destruction of the cell wall, endotoxin inhibition, inhibition of nucleic acid and protein synthesis, and blockage of energy metabolism and other substances.
Collapse
Affiliation(s)
- Tang Qun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
| | - Tiantian Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University 440113 Guangzhou China
| | - Jiongkai Hao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
| | - Chunmei Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
- Key laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences Shanghai 200241 China
| | - Keyu Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
- Key laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences Shanghai 200241 China
| | - Jing Xu
- Huanghua Agricultural and Rural Development Bureau Bohai New Area 061100 Hebei China
| | - Xiaoyang Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
- Key laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences Shanghai 200241 China
| | - Wen Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
- Key laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences Shanghai 200241 China
| |
Collapse
|
4
|
Sadeghi M, Dehnavi S, Asadirad A, Xu S, Majeed M, Jamialahmadi T, Johnston TP, Sahebkar A. Curcumin and chemokines: mechanism of action and therapeutic potential in inflammatory diseases. Inflammopharmacology 2023; 31:1069-1093. [PMID: 36997729 PMCID: PMC10062691 DOI: 10.1007/s10787-023-01136-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/09/2023] [Indexed: 04/01/2023]
Abstract
Chemokines belong to the family of cytokines with chemoattractant properties that regulate chemotaxis and leukocyte migration, as well as the induction of angiogenesis and maintenance of hemostasis. Curcumin, the major component of the Curcuma longa rhizome, has various pharmacological actions, including anti-inflammatory, immune-regulatory, anti-oxidative, and lipid-modifying properties. Chemokines and chemokine receptors are influenced/modulated by curcumin. Thus, the current review focuses on the molecular mechanisms associated with curcumin's effects on chemoattractant cytokines, as well as putting into context the many studies that have reported curcumin-mediated regulatory effects on inflammatory conditions in the organs/systems of the body (e.g., the central nervous system, liver, and cardiovascular system). Curcumin's effects on viral and bacterial infections, cancer, and adverse pregnancy outcomes are also reviewed.
Collapse
Affiliation(s)
- Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajad Dehnavi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Asadirad
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Suowen Xu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | | | - Tannaz Jamialahmadi
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Medicine, The University of Western Australia, Perth, Australia.
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, P.O. Box, Mashhad, 91779-48564, Iran.
| |
Collapse
|
5
|
Shome S, Talukdar AD, Upadhyaya H. Antibacterial activity of curcumin and its essential nanoformulations against some clinically important bacterial pathogens: A comprehensive review. Biotechnol Appl Biochem 2022; 69:2357-2386. [PMID: 34826356 DOI: 10.1002/bab.2289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/22/2021] [Indexed: 12/27/2022]
Abstract
Multidrug-resistant bacterial infections can kill 700,000 individuals globally each year and is considered among the top 10 global health threats faced by humanity as the arsenal of antibiotics is becoming dry and alternate antibacterial molecule is in demand. Nanoparticles of curcumin exhibit appreciable broad-spectrum antibacterial activity using unique and novel mechanisms and thus the process deserves to be reviewed and further researched to clearly understand the mechanisms. Based on the antibiotic resistance, infection, and virulence potential, a list of clinically important bacteria was prepared after extensive literature survey and all recent reports on the antibacterial activity of curcumin and its nanoformulations as well as their mechanism of antibacterial action have been reviewed. Curcumin, nanocurcumin, and its nanocomposites with improved aqueous solubility and bioavailability are very potential, reliable, safe, and sustainable antibacterial molecule against clinically important bacterial species that uses multitarget mechanism such as inactivation of antioxidant enzyme, reactive oxygen species-mediated cellular damage, and inhibition of acyl-homoserine-lactone synthase necessary for quorum sensing and biofilm formation, thereby bypassing the mechanisms of bacterial antibiotic resistance. Nanoformulations of curcumin can thus be considered as a potential and sustainable antibacterial drug candidate to address the issue of antibiotic resistance.
Collapse
Affiliation(s)
- Soumitra Shome
- Ethnobotany and Medicinal Plants Research Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Anupam Das Talukdar
- Ethnobotany and Medicinal Plants Research Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | | |
Collapse
|
6
|
Meng L, Liao X, Wang Y, Chen L, Gao W, Wang M, Dai H, Yan N, Gao Y, Wu X, Wang K, Liu Q. Pharmacologic therapies of ARDS: From natural herb to nanomedicine. Front Pharmacol 2022; 13:930593. [PMID: 36386221 PMCID: PMC9651133 DOI: 10.3389/fphar.2022.930593] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/03/2022] [Indexed: 12/15/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a common critical illness in respiratory care units with a huge public health burden. Despite tremendous advances in the prevention and treatment of ARDS, it remains the main cause of intensive care unit (ICU) management, and the mortality rate of ARDS remains unacceptably high. The poor performance of ARDS is closely related to its heterogeneous clinical syndrome caused by complicated pathophysiology. Based on the different pathophysiology phases, drugs, protective mechanical ventilation, conservative fluid therapy, and other treatment have been developed to serve as the ARDS therapeutic methods. In recent years, there has been a rapid development in nanomedicine, in which nanoparticles as drug delivery vehicles have been extensively studied in the treatment of ARDS. This study provides an overview of pharmacologic therapies for ARDS, including conventional drugs, natural medicine therapy, and nanomedicine. Particularly, we discuss the unique mechanism and strength of nanomedicine which may provide great promises in treating ARDS in the future.
Collapse
Affiliation(s)
- Linlin Meng
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Ximing Liao
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Yuanyuan Wang
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Liangzhi Chen
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wei Gao
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Muyun Wang
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Huiling Dai
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Na Yan
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yixuan Gao
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xu Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Kun Wang
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
- *Correspondence: Kun Wang, ; Qinghua Liu,
| | - Qinghua Liu
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
- *Correspondence: Kun Wang, ; Qinghua Liu,
| |
Collapse
|
7
|
Alesci A, Aragona M, Cicero N, Lauriano ER. Can nutraceuticals assist treatment and improve covid-19 symptoms? Nat Prod Res 2022; 36:2672-2691. [PMID: 33949266 DOI: 10.1080/14786419.2021.1914032] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Viral diseases have always played an important role in public and individual health. Since December 2019, the world is facing a pandemic of SARS-CoV-2, a coronavirus that results in a syndrome known as COVID-19. Several studies were conducted to implement antiviral drug therapy, until the arrival of SARS-CoV-2 vaccines. Numerous scientific investigations have considered some nutraceuticals as an additional treatment of COVID-19 patients to improve their clinical picture. In this review, we would like to emphasize the studies conducted to date about this issue and try to understand whether the use of nutraceuticals as a supplementary therapy to COVID-19 may be a valid and viable avenue. Based on the results obtained so far, quercetin, astaxanthin, luteolin, glycyrrhizin, lactoferrin, hesperidin and curcumin have shown encouraging data suggesting their use to prevent and counteract the symptoms of this pandemic infection.
Collapse
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Marialuisa Aragona
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Nicola Cicero
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
8
|
Memarzia A, Saadat S, Behrouz S, Boskabady MH. Curcuma longa and curcumin affect respiratory and allergic disorders, experimental and clinical evidence: A comprehensive and updated review. Biofactors 2022; 48:521-551. [PMID: 34932258 DOI: 10.1002/biof.1818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/05/2021] [Indexed: 01/23/2023]
Abstract
Curcuma longa and its constituents, mainly curcumin, showed various of pharmacological effects in previous studies. This review article provides updated and comprehensive experimental and clinical evidence regarding the effects of C. longa and curcumin on respiratory, allergic, and immunologic disorders. Using appropriate keywords, databases including PubMed, Science Direct, and Scopus were searched until the end of October 2021. C. longa extracts and its constituent, curcumin, showed the relaxant effect on tracheal smooth muscle, which indicates their bronchodilatory effect in obstructive pulmonary diseases. The preventive effects of extracts of C. longa and curcumin were shown in experimental animal models of different respiratory diseases through antioxidant, immunomodulatory, and anti-inflammatory mechanisms. C. longa and curcumin also showed preventive effects on some lung disorders in the clinical studies. It was shown that the effects of C. longa on pulmonary diseases were mainly due to its constituent, curcumin. Pharmacological effects of C. longa extracts and curcumin on respiratory, allergic, and immunologic disorders indicate the possible therapeutic effect of the plant and curcumin on these diseases.
Collapse
Affiliation(s)
- Arghavan Memarzia
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeideh Saadat
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Sepideh Behrouz
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Wang L, Letsiou E, Wang H, Belvitch P, Meliton LN, Brown ME, Bandela M, Chen J, Garcia JGN, Dudek SM. MRSA-induced endothelial permeability and acute lung injury are attenuated by FTY720 S-phosphonate. Am J Physiol Lung Cell Mol Physiol 2022; 322:L149-L161. [PMID: 35015568 PMCID: PMC8794017 DOI: 10.1152/ajplung.00100.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Disruption of the lung endothelial barrier is a hallmark of acute respiratory distress syndrome (ARDS), for which no effective pharmacologic treatments exist. Prior work has demonstrated that FTY720 S-phosphonate (Tys), an analog of sphingosine-1-phosphate (S1P) and FTY720, exhibits potent endothelial cell (EC) barrier protective properties. In this study, we investigated the in vitro and in vivo efficacy of Tys against methicillin-resistant Staphylococcus aureus (MRSA), a frequent bacterial cause of ARDS. Tys-protected human lung EC from barrier disruption induced by heat-killed MRSA (HK-MRSA) or staphylococcal α-toxin and attenuated MRSA-induced cytoskeletal changes associated with barrier disruption, including actin stress fiber formation and loss of peripheral VE-cadherin and cortactin. Tys-inhibited Rho and myosin light chain (MLC) activation after MRSA and blocked MRSA-induced NF-κB activation and release of the proinflammatory cytokines, IL-6 and IL-8. In vivo, intratracheal administration of live MRSA in mice caused significant vascular leakage and leukocyte infiltration into the alveolar space. Pre- or posttreatment with Tys attenuated MRSA-induced lung permeability and levels of alveolar neutrophils. Posttreatment with Tys significantly reduced levels of bronchoalveolar lavage (BAL) VCAM-1 and plasma IL-6 and KC induced by MRSA. Dynamic intravital imaging of mouse lungs demonstrated Tys attenuation of HK-MRSA-induced interstitial edema and neutrophil infiltration into lung tissue. Tys did not directly inhibit MRSA growth or viability in vitro. In conclusion, Tys inhibits lung EC barrier disruption and proinflammatory signaling induced by MRSA in vitro and attenuates acute lung injury induced by MRSA in vivo. These results support the potential utility of Tys as a novel ARDS therapeutic strategy.
Collapse
Affiliation(s)
- Lichun Wang
- 1Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Eleftheria Letsiou
- 1Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Huashan Wang
- 1Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Patrick Belvitch
- 1Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Lucille N. Meliton
- 1Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Mary E. Brown
- 2Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Mounica Bandela
- 1Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Jiwang Chen
- 1Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | | | - Steven M. Dudek
- 1Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
10
|
Mahlooji MA, Heshmati A, Kheiripour N, Ghasemi H, Asl SS, Solgi G, Ranjbar A, Hosseini A. Evaluation of Protective Effects of Curcumin and Nanocurcumin on Aluminium Phosphide‑Induced Subacute Lung Injury in Rats: Modulation of Oxidative Stress through SIRT1/FOXO3 Signalling Pathway. Drug Res (Stuttg) 2021; 72:100-108. [PMID: 34614532 DOI: 10.1055/a-1647-2418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Aluminum phosphide (AlP) is widely used to protect stored food products and grains from pests and rodents. The availability of AlP, especially in Asian countries it has become a desirable factor to commit suicide. The phosphine produced from ALP is a very reactive radical and a respiratory inhibitor that causes oxidative damage. There is no dedicated antidote or effective drug to manage AlP-induced lung toxicity. The present study aims to evaluate and compare the protective effects of curcumin and nanocurcumin on ALP‑induced subacute lung injury and determine the underlying mechanism. METHODS Rats were exposed to AlP (2 mg/kg/day, orally)+curcumin or nanocurcumin (100 mg/kg/day, orally) for 7 days. Then rats were anesthetized and lung tissues were collected. Oxidative stress biomarkers, genes expression of antioxidant enzymes, participated genes in the SIRT1/FOXO3 pathway, and lung histopathology were assessed by biochemical and ELISA methods, Real-Time PCR analysis, and H&E staining. RESULTS Curcumin and nanocurcumin produced a remarkable improvement in AlP-induced lung damage through reduction of MDA, induction of antioxidant capacity (TAC, TTG) and antioxidant enzymes (CAT, GPx), modulation of histopathological changes, and up-regulation of genes expression of SIRT1, FOXO3, FOXO1 in lung tissue. CONCLUSION Nanocurcumin had a significantly more protective effect than curcumin to prevent AlP-induced lung injury via inhibition of oxidative stress. Nanocurcumin could be considered a suitable therapeutic choice for AlP poisoning.
Collapse
Affiliation(s)
- Mohammad Ali Mahlooji
- Department of Pharmacology and Toxicology, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Heshmati
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nejat Kheiripour
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Hassan Ghasemi
- Department of Clinical Biochemistry, Abadan University of Medical Sciences, Abadan, Iran
| | - Sara Soleimani Asl
- Department of Anatomical Sciences, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ghasem Solgi
- Department of Immunology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Akram Ranjbar
- Department of Pharmacology and Toxicology, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Asieh Hosseini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Shaukat A, Shaukat I, Rajput SA, Shukat R, Hanif S, Jiang K, Zhang T, Akhtar M, Shaukat I, Ma X, Liu J, Shaukat S, Umar T, Akhtar M, Yang L, Deng G. Ginsenoside Rb1 protects from Staphylococcus aureus-induced oxidative damage and apoptosis through endoplasmic reticulum-stress and death receptor-mediated pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 219:112353. [PMID: 34034046 DOI: 10.1016/j.ecoenv.2021.112353] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Acute lung injury (ALI) is acute uncontrolled inflammation of lung tissue that leads to high fatality both in human and animals. Staphylococcus aureus (S. aureus) could be an opportunistic, versatile bacterial etiology of ALI. Ginsenoside Rb1 (Rb1) is extracted from the Panax ginseng, which displays a wide range of biological and pharmacological effects. However, protective effects of Rb1 in S. aureus-induced ALI though endoplasmic reticulum (ER) stress and death receptor-mediated pathways have not yet been reported. Therefore, present study was planned with the aims to investigate the antioxidant and anti-apoptotic properties of Rb1 through regulation of ER stress as well as death receptor-mediated pathways in ALI induced by S. aureus in mice. In this study, four groups of healthy Kunming mice (n = 48) were used. The S. aureus (80 µl; 1 ×107 CFU/10 µl) was administered intranasally to establish mice model of ALI. After 24 h of onset of S. aureus-induced ALI, the mice were injected thrice with Rb1 (40 mg/kg) intraperitoneally six hours apart. Histopathology, enzyme linked immunosorbent assay (ELISA), real time quantitative polymerase chain reaction (RT-qPCR), Immunohistochemistry and western blotting assay were employed in the current study. Our results suggested that Rb1 administration save lungs from pulmonary injury by reducing wet to dry (W/D) ratio, protein levels, total cells, neutrophilic count, reactive oxygen species (ROS), myeloperoxidase (MPO), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (Gpx)1 depletion. Meanwhile, Rb1 therapy ameliorated histopathology alteration of lung tissue and pro-inflammatory cytokines secretion. The gene expression of ER stress marker (PERK, AFT-6, IRE1 and CHOP) were upregulated markedly (P < .05) in S. aureus-instilled groups, which was reduced by Rb1 administration that is reveled from the result findings of the RT-qPCR and immunoblot assay. The results of immunohistochemistry for CHOP indicated the increased expression in S. aureus groups which in turn ameliorated by Rb1 treatment. The mRNA expression demonstrated that death receptor-associated genes (FasL, Fas, FADD and caspase-8) showed up-regulation in S. aureus group. The similar findings were observed for the protein expression of caspase-8, FADD and Fas. Rb1 treatment markedly (P < .05) reversed protein and mRNA expression levels of these death receptor-associated genes when compared to the S. aureus group. Taken together, Rb1 attenuated S. aureus-induced oxidative damage via the ER stress-mediated pathway and apoptosis through death receptor-mediated pathway. Conclusively, our findings provide an insight into preventive mechanism of Rb1 in ALI caused by S. aureus and hence proven a scientific baseline for the therapeutic application of Rb1.
Collapse
Affiliation(s)
- Aftab Shaukat
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, China
| | - Irfan Shaukat
- Faculty of medicine, University of Lorraine, Nancy, France
| | - Shahid Ali Rajput
- College of Animal Science, South China Agricultural University Guangzhou, China
| | - Rizwan Shukat
- Faculty of Food, Nutrition & Home Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Sana Hanif
- Department of Physics, University of Gujrat, Gujrat, Pakistan
| | - Kangfeng Jiang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Tao Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Akhtar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Imran Shaukat
- Department of Physics, University of Agriculture, Faisalabad, Pakistan
| | - Xiaofei Ma
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Junfeng Liu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shadab Shaukat
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Talha Umar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Masood Akhtar
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Liguo Yang
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, China.
| | - Ganzhen Deng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
12
|
Wu Q, Ou H, Shang Y, Zhang X, Wu J, Fan F. Nanoscale Formulations: Incorporating Curcumin into Combination Strategies for the Treatment of Lung Cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:2695-2709. [PMID: 34188448 PMCID: PMC8232383 DOI: 10.2147/dddt.s311107] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022]
Abstract
Lung cancer remains the most common cancer worldwide. Although significant advances in screening have been made and early diagnosis strategies and therapeutic regimens have been developed, the overall survival rate remains bleak. Curcumin is extracted from the rhizomes of turmeric and exhibits a wide range of biological activities. In lung cancer, evidence has shown that curcumin can markedly inhibit tumor growth, invasion and metastasis, overcome resistance to therapy, and even eliminate cancer stem cells (CSCs). Herein, the underlying molecular mechanisms of curcumin were summarized by distinct biological processes. To solve the limiting factors that curtail the clinical applications of curcumin, nanoformulations encapsulating curcumin were surveyed in detail. Nanoparticles, including liposomes, micelles, carbon nanotubes (CNTs), solid lipid nanoparticles (SLNs), nanosuspensions, and nanoemulsions, were explored as proper carriers of curcumin. Moreover, it was firmly verified that curcumin has the ability to sensitize lung cancer cells to chemotherapeutic drugs, such as cisplatin and docetaxel, and to various targeted therapies. Regarding the advantages and drawbacks of curcumin, we concluded that combination therapy based on nanoparticles would be the optimal approach to broaden the application of curcumin in the clinic in the near future.
Collapse
Affiliation(s)
- Quhui Wu
- Department of Respiratory Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Huiping Ou
- Department of Respiratory Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Yan Shang
- Department of Respiratory Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Xi Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Junyong Wu
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Fuyuan Fan
- Department of Respiratory Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, People's Republic of China
| |
Collapse
|
13
|
Hosseini SA, Zahedipour F, Sathyapalan T, Jamialahmadi T, Sahebkar A. Pulmonary fibrosis: Therapeutic and mechanistic insights into the role of phytochemicals. Biofactors 2021; 47:250-269. [PMID: 33548106 DOI: 10.1002/biof.1713] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/21/2021] [Indexed: 12/15/2022]
Abstract
Pulmonary fibrosis (PF) is the devastating consequence of various inflammatory diseases of the lung. PF leads to a reduction of lung function, respiratory failure, and death. Several molecular pathways are involved in PF, such as inflammatory cytokines including tumor necrosis factor α (TNFα), tumor necrosis factor β1 (TNFβ1), interleukin 6 (IL-6), and interleukin 4 (IL-4), reactive oxygen species, matrix metalloproteases, and transforming growth factor-beta (TGF-β). Targeting these processes involved in the progression of PF is essential for the treatment of this disease. Natural products, including plant extracts and active compound that directly target the processes involved in PF, could be suitable therapeutic options with less adverse effects. In the present study, we reviewed the protective effects and the therapeutic role of various bioactive compounds from plants in PF management.
Collapse
Affiliation(s)
- Seyede Atefe Hosseini
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Zahedipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
- Halal Research Center of IRI, FDA, Tehran, Iran
| |
Collapse
|
14
|
Shaukat A, Hanif S, Shaukat I, Shukat R, Rajput SA, Jiang K, Akhtar M, Yang Y, Guo S, Shaukat I, Akhtar M, Shaukat S, Yang L, Deng G. Upregulated-gene expression of pro-inflammatory cytokines, oxidative stress and apoptotic markers through inflammatory, oxidative and apoptosis mediated signaling pathways in Bovine Pneumonia. Microb Pathog 2021; 155:104935. [PMID: 33945855 DOI: 10.1016/j.micpath.2021.104935] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 12/28/2022]
Abstract
Pneumonia is the acute inflammation of lung tissue and is multi-factorial in etiology. Staphylococcus aureus (S. aureus) is a harmful pathogen present as a normal flora of skin and nares of dairy cattle. In bovine pneumonia, S. aureus triggers to activates Toll-Like Receptors (TLRs), that further elicits the activation of the inflammation via NF-κB pathway, oxidative stress and apoptotic pathways. In the current study, pathogen-associated gene expression of the pro-inflammatory cytokines, oxidative stress and apoptotic markers in the lung tissue of cattle was explored in bovine pneumonia. Fifty lung samples collected from abattoir located in Wuhan city, Hubei, China. Histopathologically, thickening of alveolar wall, accumulation of inflammatory cells and neutrophils in perivascular space, hyperemia, hemorrhages and edema were observed in infected lungs as compared to non-infected lung samples. Furthermore, molecular identification and characterization were carried by amplification of S. aureus-specific nuc gene (270 base pairs) from the infected and non-infected lung samples to identify the S. aureus. Moreover, qPCR results displayed that relative mRNA levels of TLR2, TLR4, pro-inflammatory gene (IL-1β, IL-6 and TNF-α) and apoptosis-associated genes (Bax, caspase-3 and caspase-9) were up-regulated except Bcl-2, which is antiapoptotic in nature, and oxidative stress related genes (Nrf2, NQO1, HO-1 and GCLC) which was down-regulated in infected pulmonary group. The relative protein expression of NF-κB, mitochondria-mediated apoptosis gene was up-regulated while Bcl-2 and Nrf2 pathway genes were downregulated in infected cattle lungs. Our findings revealed that genes expression levels of inflammatory mediators, oxidative stress and apoptosis were associated with host immunogenic regulatory mechanisms in the lung tissue during infection. Conclusively, the present study provides insights of active immune response via TLRs-mediated inflammatory, oxidative damage, and apoptotic paradox.
Collapse
Affiliation(s)
- Aftab Shaukat
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Sana Hanif
- Department of Physics, University of Gujrat, Gujrat, Pakistan
| | - Irfan Shaukat
- Faculty of Medicine, University of Lorraine, Nancy, France
| | - Rizwan Shukat
- Faculty of Food, Nutrition & Home Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Shahid Ali Rajput
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Kangfeng Jiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Muhammad Akhtar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yaping Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shuai Guo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Imran Shaukat
- Department of Physics, University of Agriculture, Faisalabad, Pakistan
| | - Masood Akhtar
- Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Shadab Shaukat
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Liguo Yang
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, 430070, PR China.
| | - Ganzhen Deng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
15
|
Effects of Curcumin and Its Analogues on Infectious Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1291:75-101. [PMID: 34331685 DOI: 10.1007/978-3-030-56153-6_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Infectious diseases (IDs) are life-threatening illnesses, which result from the spread of pathogenic microorganisms such as bacteria, viruses, fungi, and parasites. IDs are a major challenge for the healthcare systems around the world, leading to a wide variety of clinical manifestations and complications. Despite the capability of frontline-approved medications to partially prevent or mitigate the invasion and subsequent damage of IDs to host tissues and cells, problems such as drug resistance, insufficient efficacy, unpleasant side effects, and high expenses stand in the way of their beneficial applications. One strategy is to evaluate currently explored and available bioactive compounds as possible anti-microbial agents. The natural polyphenol curcumin has been postulated to possess various properties including anti-microbial activities. Studies have shown that it possess pleiotropic effects against bacterial- and parasitic-associating IDs including drug-resistant strains. Curcumin can also potentiate the efficacy of available anti-bacterial and anti-parasitic drugs in a synergistic fashion. In this review, we summarize the findings of these studies along with reported controversies of native curcumin and its analogues, alone and in combination, toward its application in future studies as a natural anti-bacterial and anti-parasitic agent.
Collapse
|
16
|
Acetylharpagide Protects Mice from Staphylococcus Aureus-Induced Acute Lung Injury by Inhibiting NF-κB Signaling Pathway. Molecules 2020; 25:molecules25235523. [PMID: 33255656 PMCID: PMC7728067 DOI: 10.3390/molecules25235523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/15/2020] [Accepted: 11/24/2020] [Indexed: 12/30/2022] Open
Abstract
Staphylococcus aureus (S. aureus)-induced acute lung injury (ALI) is a serious disease that has a high risk of death among infants and teenagers. Acetylharpagide, a natural compound of Ajuga decumbens Thunb. (family Labiatae), has been found to have anti-tumor, anti-inflammatory and anti-viral effects. This study investigates the therapeutic effects of acetylharpagide on S. aureus-induced ALI in mice. Here, we found that acetylharpagide alleviated S. aureus-induced lung pathological morphology damage, protected the pulmonary blood-gas barrier and improved the survival of S. aureus-infected mice. Furthermore, S. aureus-induced myeloperoxidase (MPO) activity of lung homogenate and pro-inflammatory factors in bronchoalveolar lavage (BAL) fluid were suppressed by acetylharpagide. Mechanically, acetylharpagide inhibited the interaction between polyubiquitinated receptor interacting protein 1 (RIP1) and NF-κB essential modulator (NEMO), thereby suppressing NF-κB activity. In summary, these results show that acetylharpagide protects mice from S. aureus-induced ALI by suppressing the NF-κB signaling pathway. Acetylharpagide is expected to become a potential treatment for S. aureus-induced ALI.
Collapse
|
17
|
Alikiaii B, Bagherniya M, Askari G, Sathyapalan T, Sahebkar A. Evaluation of the effect of curcumin on pneumonia: A systematic review of preclinical studies. Phytother Res 2020; 35:1939-1952. [PMID: 33155336 DOI: 10.1002/ptr.6939] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/28/2020] [Accepted: 10/18/2020] [Indexed: 12/12/2022]
Abstract
Pneumonia is a major cause of morbidity and mortality worldwide and causes a significant burden on the healthcare systems. Curcumin is a natural phytochemical with anti-inflammatory and anti-neoplastic characteristics. The aim of this study was to conduct a systematic review of published studies on the effect of curcumin on preclinical models of pneumonia. A comprehensive search was conducted in PubMed/Medline, Scopus, Web of Science and Google Scholar from inception up to March 1, 2020 to recognize experimental or clinical trials assessing the effects of curcumin on pneumonia. We identified 17 primary citations that evaluated the effects of curcumin on pneumonia. Ten (58.8%) studies evaluated the effect of curcumin on mouse models of pneumonia, generated by intranasal inoculation of viruses or bacteria. Seven (41.2%) studies evaluated the inhibitory effects of curcumin on the pneumonia-inducing bacteria. Our results demonstrated that curcumin ameliorated the pneumonia-induced lung injury, mainly through a reduction of the activity and infiltration of neutrophils and the inhibition of inflammatory response in mouse models. Curcumin ameliorates the severity of pneumonia through a reduction in neutrophil infiltration and by amelioration of the exaggerated immune response in preclinical pneumonia models.
Collapse
Affiliation(s)
- Babak Alikiaii
- Department of Anesthesiology and Critical Care, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.,Halal Research Center of IRI, FDA, Tehran, Iran
| |
Collapse
|
18
|
Babaei F, Nassiri‐Asl M, Hosseinzadeh H. Curcumin (a constituent of turmeric): New treatment option against COVID-19. Food Sci Nutr 2020; 8:5215-5227. [PMID: 33133525 PMCID: PMC7590269 DOI: 10.1002/fsn3.1858] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
In late December 2019, the outbreak of respiratory illness emerged in Wuhan, China, and spreads worldwide. World Health Organization (WHO) named this disease severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused by a new member of beta coronaviruses. Several medications are prescribed to patients, and some clinical trials are underway. Scientists are trying to find a specific drug against this virus. In this review, we summarize the pathogenesis, clinical features, and current treatments of coronavirus disease 2019 (COVID-19). Then, we describe the possible therapeutic effects of curcumin and its molecular mechanism against coronavirus-19. Curcumin, as an active constituent of Curcuma longa (turmeric), has been studied in several experimental and clinical trial studies. Curcumin has some useful clinical effects such as antiviral, antinociceptive, anti-inflammatory, antipyretic, and antifatigue effects that could be effective to manage the symptoms of the infected patient with COVID-19. It has several molecular mechanisms including antioxidant, antiapoptotic, and antifibrotic properties with inhibitory effects on Toll-like receptors, NF-κB, inflammatory cytokines and chemokines, and bradykinin. Scientific evidence suggests that curcumin could have a potential role to treat COVID-19. Thus, the use of curcumin in the clinical trial, as a new treatment option, should be considered.
Collapse
Affiliation(s)
- Fatemeh Babaei
- Department of Clinical BiochemistrySchool of Medicine, Student Research CommitteeShahid Beheshti University of Medical SciencesTehranIran
| | - Marjan Nassiri‐Asl
- Department of Pharmacology and Neurobiology Research CenterSchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and ToxicologySchool of PharmacyMashhad University of Medical SciencesMashhadIran
- Pharmaceutical Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
19
|
Liu Z, Ying Y. The Inhibitory Effect of Curcumin on Virus-Induced Cytokine Storm and Its Potential Use in the Associated Severe Pneumonia. Front Cell Dev Biol 2020; 8:479. [PMID: 32596244 PMCID: PMC7303286 DOI: 10.3389/fcell.2020.00479] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 05/22/2020] [Indexed: 12/18/2022] Open
Abstract
Coronavirus infection, including SARS-CoV, MERS-CoV, and SARS-CoV2, causes daunting diseases that can be fatal because of lung failure and systemic cytokine storm. The development of coronavirus-evoked pneumonia is associated with excessive inflammatory responses in the lung, known as "cytokine storms," which results in pulmonary edema, atelectasis, and acute lung injury (ALI) or fatal acute respiratory distress syndrome (ARDS). No drugs are available to suppress overly immune response-mediated lung injury effectively. In light of the low toxicity and its antioxidant, anti-inflammatory, and antiviral activity, it is plausible to speculate that curcumin could be used as a therapeutic drug for viral pneumonia and ALI/ARDS. Therefore, in this review, we summarize the mounting evidence obtained from preclinical studies using animal models of lethal pneumonia where curcumin exerts protective effects by regulating the expression of both pro- and anti-inflammatory factors such as IL-6, IL-8, IL-10, and COX-2, promoting the apoptosis of PMN cells, and scavenging the reactive oxygen species (ROS), which exacerbates the inflammatory response. These studies provide a rationale that curcumin can be used as a therapeutic agent against pneumonia and ALI/ARDS in humans resulting from coronaviral infection.
Collapse
Affiliation(s)
- Ziteng Liu
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, School of Basic Medical Sciences, Nanchang University, Nanchang, China.,Nanchang Joint Program, Queen Mary School, Nanchang University, Nanchang, China
| | - Ying Ying
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, School of Basic Medical Sciences, Nanchang University, Nanchang, China.,Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| |
Collapse
|
20
|
Dai C, Wang Y, Sharma G, Shen J, Velkov T, Xiao X. Polymyxins-Curcumin Combination Antimicrobial Therapy: Safety Implications and Efficacy for Infection Treatment. Antioxidants (Basel) 2020; 9:antiox9060506. [PMID: 32526966 PMCID: PMC7346118 DOI: 10.3390/antiox9060506] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/31/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023] Open
Abstract
The emergence of antimicrobial resistance in Gram-negative bacteria poses a huge health challenge. The therapeutic use of polymyxins (i.e., colistin and polymyxin B) is commonplace due to high efficacy and limiting treatment options for multidrug-resistant Gram-negative bacterial infections. Nephrotoxicity and neurotoxicity are the major dose-limiting factors that limit the therapeutic window of polymyxins; nephrotoxicity is a complication in up to ~60% of patients. The emergence of polymyxin-resistant strains or polymyxin heteroresistance is also a limiting factor. These caveats have catalyzed the search for polymyxin combinations that synergistically kill polymyxin-susceptible and resistant organisms and/or minimize the unwanted side effects. Curcumin—an FDA-approved natural product—exerts many pharmacological activities. Recent studies showed that polymyxins–curcumin combinations showed a synergistically inhibitory effect on the growth of bacteria (e.g., Gram-positive and Gram-negative bacteria) in vitro. Moreover, curcumin co-administration ameliorated colistin-induced nephrotoxicity and neurotoxicity by inhibiting oxidative stress, mitochondrial dysfunction, inflammation and apoptosis. In this review, we summarize the current knowledge-base of polymyxins–curcumin combination therapy and discuss the underlying mechanisms. For the clinical translation of this combination to become a reality, further research is required to develop novel polymyxins–curcumin formulations with optimized pharmacokinetics and dosage regimens.
Collapse
Affiliation(s)
- Chongshan Dai
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China; (Y.W.); (J.S.)
- Correspondence: (C.D.); (X.X.); Tel.: +86-156-5282-6026 (C.D.); +86-010-6273-3377 (X.X.)
| | - Yang Wang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China; (Y.W.); (J.S.)
| | - Gaurav Sharma
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Jianzhong Shen
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China; (Y.W.); (J.S.)
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, Faculty of Medicine, School of Biomedical Sciences, Dentistry and Health Sciences, the University of Melbourne, Parkville 3052, Australia;
| | - Xilong Xiao
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China; (Y.W.); (J.S.)
- Correspondence: (C.D.); (X.X.); Tel.: +86-156-5282-6026 (C.D.); +86-010-6273-3377 (X.X.)
| |
Collapse
|
21
|
Johnson S, Shaikh SB, Muneesa F, Rashmi B, Bhandary YP. Radiation induced apoptosis and pulmonary fibrosis: curcumin an effective intervention? Int J Radiat Biol 2020; 96:709-717. [PMID: 32149561 DOI: 10.1080/09553002.2020.1739773] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease characterized by interstitial remodeling, leading to compromised lung function. Extra vascular fibrin deposition and abnormalities in the fibrinolysis are the major clinical manifestations of lung diseases such as acute lung injury (ALI) and its most severe form, acute respiratory distress syndrome (ARDS). ALI progresses to pulmonary fibrosis (PF) and makes patient's life miserable. Anti-fibrinolysis and apoptosis are involved in the progression of PF. Apoptotic markers are detectable within IPF lung tissue and senescent cell deletion can rejuvenate pulmonary health. Enhanced expression of p53 due to DNA damage is seen in irradiated lung tissue. The role of fibrinolytic components such as Urokinase Plasminogen activator (uPA), uPA receptor (uPAR) and Plasminogen activator inhibitor-1 (PAI-1) has been detailed in I. Curcumin is known to possess anti-inflammatory and anti-fibrotic effects. Radioprotective effect of curcumin enables it to attenuate radiation-induced inflammation and fibrosis. Understanding the mechanism of radioprotective effect of curcumin in radiation-induced PF and apoptosis can lead to the development of an effective therapeutic to combat acute lung injury and fibrosis.
Collapse
Affiliation(s)
- Shilpa Johnson
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Sadiya B Shaikh
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Fatheema Muneesa
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Barki Rashmi
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | | |
Collapse
|
22
|
The effects of Curcuma Longa L. and its constituents in respiratory disorders and molecular mechanisms of their action. BIOACTIVE NATURAL PRODUCTS 2020. [DOI: 10.1016/b978-0-12-817905-5.00007-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Liu Y, Hong Z, Qian J, Wang Y, Wang S. Protective effect of Jie-Geng-Tang against Staphylococcus aureus induced acute lung injury in mice and discovery of its effective constituents. JOURNAL OF ETHNOPHARMACOLOGY 2019; 243:112076. [PMID: 31295516 DOI: 10.1016/j.jep.2019.112076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 06/21/2019] [Accepted: 07/07/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jie-Geng-Tang (JGT), a famous traditional Chinese medicine prescription, consists of Platycodonis Radix and Glycyrrhizae Radix et Rhizoma. According to traditional medicinal theory, JGT exerts various effects, including apocenosis, detoxifying, moisturizing the lung and relieving sore throat. It is often used to treat throat inflammation and lung diseases. AIM OF THE STUDY To determine the protective effect of JGT on Staphylococcus aureus (S. aureus)-induced acute lung injury (ALI) in mice and to identify the compounds in the prescription that may be responsible for antibacterial activity. MATERIALS AND METHODS The protective effect of JGT was assessed using S. aureus-induced ALI mice (i.g., 2.7 g/kg/day). Bacterial burden, pathological morphology, cytokine levels of TNF-α, IL-1β, KC, and MIP-2 were evaluated in the lung and bronchoalveolar lavage fluid at 24 h post-infection, respectively. Twenty three compounds in the prescription were evaluated for their minimum inhibitory concentration (MIC) in vitro by means of microbroth dilution method against S. aureus. The antibacterial effects in vitro of licochalcone A and isoliquiritigenin were also investigated by transmission electron microscopy. In vivo antibacterial activities of licochalcone A and isoliquiritigenin were evaluated by survival rates, bacterial burden, and pathological morphology of lung tissues on S. aureus-induced ALI in mice (i.p., 160 mg/kg/day). RESULTS Pretreatment with JGT significantly improved the pathological morphology of lung tissues on S. aureus-induced ALI in mice, accompanied with the reduced bacterial burden in the lungs and inhibited expression of inflammatory cytokine levels at 24 h post-infection. Five compounds, namely licochalcone A, licoisoflavone B, glyasperin A, isoliquiritigenin, and licochalcone B from Jie-Geng-Tang displayed good antibacterial activities against S. aureus (MIC < 128 μg/mL). Furthermore, applications of licochalcone A and isoliquiritigenin resulted in the increased survival rates, reduced bacterial burden in the lungs, and improved pathological morphology of lung tissues in S. aureus infected mice. CONCLUSION The study demonstrated that Jie-Geng-Tang presented protective role of acute lung injury, which supported its traditional use for the treatment of lung diseases. Licochalcone A, isoliquiritigenin, licoisoflavone B, glyasperin A, and licochalcone B might contribute to the antibacterial activity of JGT on S. aureus-induced acute lung injury. The anti-S. aureus activity of licoisoflavone B, glyasperin A, and licochalcone B in vitro, as well as the anti-S. aureus activity of licochalcone A in vivo, were first reported in this study.
Collapse
Affiliation(s)
- Yining Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; Zhoushan Hospital, Zhejiang University School of Medicine, Zhoushan, China
| | - Zhuping Hong
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jing Qian
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yi Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Shufang Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
24
|
Hosseini A, Rasaie D, Soleymani Asl S, Nili Ahmadabadi A, Ranjbar A. Evaluation of the protective effects of curcumin and nanocurcumin against lung injury induced by sub-acute exposure to paraquat in rats. TOXIN REV 2019. [DOI: 10.1080/15569543.2019.1675707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Asieh Hosseini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Danyal Rasaie
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sara Soleymani Asl
- Anatomy Department, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Nili Ahmadabadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Akram Ranjbar
- Department of Pharmacology and Toxicology, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
25
|
Jiang L, Yi T, Shen Z, Teng Z, Wang J. Aloe-emodin Attenuates Staphylococcus aureus Pathogenicity by Interfering With the Oligomerization of α-Toxin. Front Cell Infect Microbiol 2019; 9:157. [PMID: 31157174 PMCID: PMC6530610 DOI: 10.3389/fcimb.2019.00157] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/26/2019] [Indexed: 01/30/2023] Open
Abstract
α-toxin, an essential virulence factor secreted by Staphylococcus aureus (S. aureus), is a critical exotoxin in multiple infections. In this study, we found that aloe-emodin (AE), a natural compound lacking anti-S. aureus activity, could inhibit the hemolytic activity of α-toxin. Oligomerization assays, molecular dynamics simulations, and fluorescence-quenching analyses were used to determine the mechanism of this inhibition. The oligomerization of α-toxin was restricted by the engagement of AE with K110, T112, and M113 of the toxin, which eventually resulted in inhibition of the hemolytic activity. Lactate dehydrogenase and live/dead assays demonstrated that AE decreased the injury of human lung epithelial cells (A549) and mouse lung macrophages (MH-S) mediated by S. aureus. Furthermore, treatment with AE showed robust protective effects in mice infected by S. aureus. These findings suggest that AE effectively inhibited the pore-forming activity of α-toxin and showed a protective effect against S. aureus virulence in vitro and in vivo, which may provide a new strategy and new antibacterial agent for clinical treatment of S. aureus infections.
Collapse
Affiliation(s)
- Lanxiang Jiang
- Department of Dermatology, Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Tian Yi
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Animal Science, Jilin University, Changchun, China
| | - Ziying Shen
- Laboratory Animal Center, College of Animal Sciences, Jilin University, Changchun, China
| | - Zihao Teng
- Department of Dermatology, Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Jianfeng Wang
- Department of Dermatology, Second Hospital of Jilin University, Jilin University, Changchun, China.,Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
26
|
Tang C, Liu C, Han Y, Guo Q, Ouyang W, Feng H, Wang M, Xu F. Nontoxic Carbon Quantum Dots/g-C 3 N 4 for Efficient Photocatalytic Inactivation of Staphylococcus aureus under Visible Light. Adv Healthc Mater 2019; 8:e1801534. [PMID: 30941911 DOI: 10.1002/adhm.201801534] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/15/2019] [Indexed: 01/08/2023]
Abstract
The widespread use of antibiotics has caused the rapid emergence of antibiotic-resistant bacterial strains and antibiotic resistance genes in the past few decades. Photocatalytic inactivation, a promising approach for the killing of pathogens, efficiently avoids the problems induced by antimicrobial drugs. However, traditional photocatalysts usually have some disadvantages, such as high costs of raw materials, ultraviolet ray excitation, and potential leaching of toxic metals. Here, a metal-free heterojunction photocatalyst, denoted as CQDs/g-C3 N4 , is synthesized through incorporating carbon quantum dots (CQDs) on graphitic carbon nitride (g-C3 N4 ), which significantly enhances photocatalytic inactivation of Staphylococcus aureus (S. aureus) compared with pure g-C3 N4 in vitro. CQDs/g-C3 N4 causes a rapid increase of intracellular reactive oxygen species levels and destruction of cell membranes under visible light, eventually leading to death of bacteria. The efficacy of CQDs/g-C3 N4 is further examined by a mouse cutaneous infection model of S. aureus. CQDs/g-C3 N4 markedly reduces the bacterial loads and prompts lesion recovery in mice, as compared with g-C3 N4 -treated group. In vivo and in vitro toxicity analyses show that the side effects of CQDs/g-C3 N4 are negligible. Considering the efficient photocatalytic inactivation and nontoxicity of CQDs/g-C3 N4 , this visible-light-driven photocatalyst paves a brand new avenue for the treatment of S. aureus infection.
Collapse
Affiliation(s)
- Chenyi Tang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and RecyclingSchool of Environmental Science and EngineeringZhejiang Gongshang University Hangzhou 310012 Zhejiang China
| | - Chao Liu
- Department of Infectious DiseasesThe Second Affiliated HospitalZhejiang University School of Medicine Hangzhou 310009 Zhejiang China
| | - Yu Han
- Department of Infectious DiseasesThe Second Affiliated HospitalZhejiang University School of Medicine Hangzhou 310009 Zhejiang China
| | - Qiaoqi Guo
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and RecyclingSchool of Environmental Science and EngineeringZhejiang Gongshang University Hangzhou 310012 Zhejiang China
| | - Wei Ouyang
- Department of Infectious DiseasesThe Second Affiliated HospitalZhejiang University School of Medicine Hangzhou 310009 Zhejiang China
| | - Huajun Feng
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and RecyclingSchool of Environmental Science and EngineeringZhejiang Gongshang University Hangzhou 310012 Zhejiang China
| | - Meizhen Wang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and RecyclingSchool of Environmental Science and EngineeringZhejiang Gongshang University Hangzhou 310012 Zhejiang China
| | - Feng Xu
- Department of Infectious DiseasesThe Second Affiliated HospitalZhejiang University School of Medicine Hangzhou 310009 Zhejiang China
| |
Collapse
|
27
|
Non‑canonical Wnt signaling contributes to ventilator‑induced lung injury through upregulation of WISP1 expression. Int J Mol Med 2019; 43:1217-1228. [PMID: 30664165 PMCID: PMC6365043 DOI: 10.3892/ijmm.2019.4067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 12/17/2018] [Indexed: 12/25/2022] Open
Abstract
Mechanical ventilation may cause ventilator-induced lung injury (VILI). Canonical Wnt signaling has been reported to serve an important role in the pathogenesis of VILI. Bioinformatics analysis revealed that canonical and non-canonical Wnt signaling pathways were activated in VILI. However, the role of non-canonical Wnt signaling in the pathogenesis of VILI remains unclear. The present study aimed to analyze the potential role of non-canonical Wnt signaling in VILI pathogenesis. Lung injury was assessed via Evans blue albumin permeability and histological scoring, as well as by inflammatory cytokine expression and total protein concentration in bronchoalveolar lavage fluid. The relative protein expression of canonical and non-canonical Wnt signaling pathway components were examined via western blotting and immunohistochemistry. The results demonstrated that 6 h of mechanical ventilation at low tidal volume (LTV; 6 ml/kg) or moderate tidal volume (MTV; 12 ml/kg) induced lung injury in sensitive A/J mice. Ventilation with MTV increased the protein levels of Wnt-induced secreted protein 1 (WISP1), Rho-associated protein kinase 1 (ROCK1), phosphorylated (p)-Ras homolog gene family, member A and p-C-Jun N-terminal kinase (JNK). Inhibition of ROCK1 by Y27632 and JNK by SP600125 attenuated MTV-induced lung injury and decreased the expression of proteins involved in non-canonical Wnt signaling, including WISP1. In conclusion, non-canonical Wnt signaling participates in VILI by modulating WISP1 expression, which has been previously noted as critical for VILI development. Therefore, the non-canonical Wnt signaling pathway may provide a preventive and therapeutic target in VILI.
Collapse
|
28
|
Patel SS, Acharya A, Ray RS, Agrawal R, Raghuwanshi R, Jain P. Cellular and molecular mechanisms of curcumin in prevention and treatment of disease. Crit Rev Food Sci Nutr 2019; 60:887-939. [PMID: 30632782 DOI: 10.1080/10408398.2018.1552244] [Citation(s) in RCA: 263] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Curcumin is a naturally occurring polyphenolic compound present in rhizome of Curcuma longa belonging to the family zingiberaceae. Growing experimental evidence revealed that curcumin exhibit multitarget biological implications signifying its crucial role in health and disease. The current review highlights the recent progress and mechanisms underlying the wide range of pharmacological effects of curcumin against numerous diseases like neuronal, cardiovascular, metabolic, kidney, endocrine, skin, respiratory, infectious, gastrointestinal diseases and cancer. The ability of curcumin to modulate the functions of multiple signal transductions are linked with attenuation of acute and chronic diseases. Numerous preclinical and clinical studies have revealed that curcumin modulates several molecules in cell signal transduction pathway including PI3K, Akt, mTOR, ERK5, AP-1, TGF-β, Wnt, β-catenin, Shh, PAK1, Rac1, STAT3, PPARγ, EBPα, NLRP3 inflammasome, p38MAPK, Nrf2, Notch-1, AMPK, TLR-4 and MyD-88. Curcumin has a potential to prevent and/or manage various diseases due to its anti-inflammatory, anti-oxidant and anti-apoptotic properties with an excellent safety profile. In contrast, the anti-cancer effects of curcumin are reflected due to induction of growth arrest and apoptosis in various premalignant and malignant cells. This review also carefully emphasized the pharmacokinetics of curcumin and its interaction with other drugs. Clinical studies have shown that curcumin is safe at the doses of 12 g/day but exhibits poor systemic bioavailability. The use of adjuvant like piperine, liposomal curcumin, curcumin nanoparticles and curcumin phospholipid complex has shown enhanced bioavailability and therapeutic potential. Further studies are warranted to prove the potential of curcumin against various ailments.
Collapse
Affiliation(s)
- Sita Sharan Patel
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Ashish Acharya
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - R S Ray
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Ritesh Agrawal
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Ramsaneh Raghuwanshi
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Priyal Jain
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| |
Collapse
|
29
|
Ouyang W, Zhou H, Liu C, Wang S, Han Y, Xia J, Xu F. 25-Hydroxycholesterol protects against acute lung injury via targeting MD-2. J Cell Mol Med 2018; 22:5494-5503. [PMID: 30091835 PMCID: PMC6201372 DOI: 10.1111/jcmm.13820] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/02/2018] [Accepted: 07/05/2018] [Indexed: 12/20/2022] Open
Abstract
Acute lung injury (ALI) is mainly caused by uncontrolled inflammatory response, and it remains without effective therapeutic options. 25‐hydroxycholesterol (25HC) has been reported to be a potent regulator of inflammation. The aim of this study was to investigate the effects of 25HC on lipopolysaccharide (LPS)‐induced ALI. C57BL/6 mice were pretreated with 25HC intraperitoneally before intratracheal exposure to LPS. Our results showed that 25HC pretreatment improved survival rate, attenuated the pathological changes of the lung and decreased the release of inflammatory cytokines in mice. Consistently, 25HC reduced expression of Toll‐like receptor (TLR4)‐mediated inflammatory cytokines in vitro. These effects of 25HC were obtained by preventing LPS binding to TLR4 via interaction with myeloid differentiation protein 2 (MD‐2). Crystal structure analysis suggested that 25HC could bind MD‐2 with high affinity into its hydrophobic pocket. Furthermore, LPS‐induced activation of Akt/NF‐κB pathway was partially down‐regulated by 25HC pretreatment. In summary, this study demonstrates that 25HC could inhibit the overwhelming inflammatory response through MD‐2 interaction, which suppresses Akt/NF‐κB signalling pathway. These findings suggest 25HC may be a promising candidate for ALI prevention.
Collapse
Affiliation(s)
- Wei Ouyang
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Zhou
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Experimental Medical Class 1102, Chu Kochen Honor College, Zhejiang University, Hangzhou, China
| | - Chao Liu
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shiwei Wang
- School of Life Sciences, Peking University, Beijing, China
| | - Yu Han
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingyan Xia
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Xu
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
30
|
Lelli D, Sahebkar A, Johnston TP, Pedone C. Curcumin use in pulmonary diseases: State of the art and future perspectives. Pharmacol Res 2016; 115:133-148. [PMID: 27888157 DOI: 10.1016/j.phrs.2016.11.017] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/13/2016] [Accepted: 11/19/2016] [Indexed: 01/18/2023]
Abstract
Curcumin (diferuloylmethane) is a yellow pigment present in the spice turmeric (Curcuma longa). It has been used for centuries in Ayurveda (Indian traditional medicine) for the treatment of several diseases. Over the last several decades, the therapeutic properties of curcumin have slowly been elucidated. It has been shown that curcumin has pleiotropic effects, regulating transcription factors (e.g., NF-kB), cytokines (e.g., IL6, TNF-alpha), adhesion molecules (e.g., ICAM-1), and enzymes (e.g., MMPs) that play a major role in inflammation and cancerogenesis. These effects may be relevant for several pulmonary diseases that are characterized by abnormal inflammatory responses, such as asthma or chronic obstructive pulmonary disease, acute respiratory distress syndrome, pulmonary fibrosis, and acute lung injury. Furthermore, some preliminary evidence suggests that curcumin may have a role in the treatment of lung cancer. The evidence for the use of curcumin in pulmonary disease is still sparse and has mostly been obtained using either in vitro or animal models. The most important issue with the use of curcumin in humans is its poor bioavailability, which makes it necessary to use adjuvants or curcumin nanoparticles or liposomes. The aim of this review is to summarize the available evidence on curcumin's effectiveness in pulmonary diseases, including lung cancer, and to provide our perspective on future research with curcumin so as to improve its pharmacological effects, as well as provide additional evidence of curcumin's efficacy in the treatment of pulmonary diseases.
Collapse
Affiliation(s)
- Diana Lelli
- Area di Geriatria, Università Campus Bio-Medico di Roma, via Alvaro del Portillo 21, 00128 Roma, Italy.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, BuAli Square, Mashhad, 9196773117 Iran.
| | - Thomas P Johnston
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108,USA.
| | - Claudio Pedone
- Area di Geriatria, Università Campus Bio-Medico di Roma, via Alvaro del Portillo 21, 00128 Roma, Italy.
| |
Collapse
|
31
|
Wang J, Zhou X, Li W, Deng X, Deng Y, Niu X. Curcumin protects mice from Staphylococcus aureus pneumonia by interfering with the self-assembly process of α-hemolysin. Sci Rep 2016; 6:28254. [PMID: 27345357 PMCID: PMC4921848 DOI: 10.1038/srep28254] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/01/2016] [Indexed: 02/07/2023] Open
Abstract
α-hemolysin (Hla) is a self-assembling extracellular protein secreted as a soluble monomer by most Staphylococcus aureus strains and is an essential virulence factor for the pathogenesis of various S. aureus infections. Here, we show that curcumin (CUR), a natural compound with weak anti-S. aureus activity, can inhibit the hemolysis induced by Hla. Molecular dynamics simulations, free energy calculations, and mutagenesis assays were further employed for the Hla-CUR complex to determine the mechanism of such inhibition. The analysis of this combined approach indicated that the direct binding CUR to Hla blocks the conformational transition of Hla from the monomer to the oligomer, leading to an inhibition of Hla hemolytic activity. We also found that the addition of CUR significantly attenuated Hla-mediated injury of human alveolar cell (A549) co-cultured with S. aureus. The in vivo data further demonstrated that treatment with CUR protects mice from pneumonia caused by S. aureus, including methicillin-resistant strains (MRSA). These findings suggest that CUR inhibits the pore-forming activity of Hla through a novel mechanism, which would pave the way for the development of new and more effective antibacterial agents to combat S. aureus pneumonia.
Collapse
Affiliation(s)
- Jianfeng Wang
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, and Department of Food Quality and Safety, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuan Zhou
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, and Department of Food Quality and Safety, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenhua Li
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, and Department of Food Quality and Safety, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuming Deng
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, and Department of Food Quality and Safety, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yanhong Deng
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, and Department of Food Quality and Safety, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaodi Niu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, and Department of Food Quality and Safety, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
32
|
Qian J, Hu Y, Zhao L, Xia J, Li C, Shi L, Xu F. Protective Role of Adipose-Derived Stem Cells in Staphylococcus aureus-Induced Lung Injury is Mediated by RegIIIγ Secretion. Stem Cells 2016; 34:1947-56. [PMID: 26866937 DOI: 10.1002/stem.2337] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/11/2016] [Accepted: 01/19/2016] [Indexed: 12/12/2022]
Abstract
Effective and specific therapeutic approaches are still needed for treating acute lung injury caused by severe pneumonia. Adipose-derived stem cells (ADSCs) are well-characterized adult stem cells that have antibacterial and anti-inflammatory effects. In this study, we evaluated the therapeutic effect of ADSCs on Staphylococcus aureus-induced acute lung injury in mice. Our results showed that intratracheal injection of ADSCs could attenuate the severity of lung inflammation, and reduce the bacterial load as well as mortality among infected mice. Our experiments also revealed that the secretion of regenerating islet-derived IIIγ (RegIIIγ) is responsible for the protective effect of ADSCs. Moreover, the expression of RegIIIγ requires TLR2, MyD88, and JAK2/STAT3 activation. In conclusion, ADSCs exhibit a direct antimicrobial activity that is mediated primarily by the TLR2-MyD88-JAK2/STAT3-dependent secretion of RegIIIγ. Stem Cells 2016;34:1947-1956.
Collapse
Affiliation(s)
- Jing Qian
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yue Hu
- Department of Respiratory Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Department of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Lifang Zhao
- Department of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingyan Xia
- Department of Radiation Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Changwei Li
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Liyun Shi
- Division of Immunology, Hangzhou Normal University, Hangzhou, China
| | - Feng Xu
- Department of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
33
|
Zhang F, Yang F, Zhao H, An Y. Curcumin alleviates lung injury in diabetic rats by inhibiting nuclear factor-κB pathway. Clin Exp Pharmacol Physiol 2015; 42:956-963. [PMID: 26111829 DOI: 10.1111/1440-1681.12438] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/26/2015] [Accepted: 06/08/2015] [Indexed: 11/29/2022]
Abstract
Curcumin is a polyphenolic compound that is extracted from Curcuma longa. It has broad anti-inflammation and anti-tumor activities. Curcumin was previously reported to exert beneficial effects on diabetes. However, the effect of curcumin on diabetes-induced lung injury is not yet clear. In this study, the effects of curcumin on lung injury induced by diabetes was explored using quantitative real time polymerase chain reaction (PCR), enzyme-linked immunosorbent assay (ELISA), immunohistochemistry and electrophoretic mobility shift assay. The results of this study showed that curcumin reduced oxidative stress level, inhibited the synthesis of nitric oxide and prostaglandin E2, and reduced inflammatory responses in the lungs of diabetic rats, thereby alleviating diabetes-induced lung injury. Further study of the mechanism revealed that curcumin inhibited the activation of nuclear factor (NF)-κB which is a key player in inflammatory responses. In summary, our study demonstrated that curcumin inhibited the activation of NF-κB in the lungs of diabetic rats, thus reducing pulmonary inflammatory responses and oxidative stress, and ultimately relieving diabetes-induced lung injury. This study suggests that curcumin may be a promising agent to alleviate diabetic lung injury and also provides theoretical foundation for the development of diabetes therapy.
Collapse
Affiliation(s)
- Fang Zhang
- Department of Respiratory Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Fei Yang
- Departments of Geratology, Shenyang Chest Hospital, Shenyang, China
| | - Hongmei Zhao
- Tuberculosis, Shenyang Chest Hospital, Shenyang, China
| | - Yunxia An
- Department of Allergy, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
34
|
Wu X, Xu F. Dendritic cells during Staphylococcus aureus infection: subsets and roles. J Transl Med 2014; 12:358. [PMID: 25519813 PMCID: PMC4279898 DOI: 10.1186/s12967-014-0358-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/10/2014] [Indexed: 12/22/2022] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells (APCs) that play a crucial role in both innate and adaptive immune responses. DCs orient the immune responses by modulating the balance between protective immunity to pathogens and tolerance to self-antigens. Staphylococcus aureus (S. aureus) is a common member of human skin microbiota and can cause severe infections with significant morbidity and mortality. Protective immunity to pathogens by DCs is required for clearance of S. aureus. DCs sense the presence of the staphylococcal components using pattern recognition receptors (PRRs) and then orchestrate immune systems to resolve infections. This review summarizes the possible roles of DCs, in particular their Toll-like receptors (TLRs) involved in S. aureus infection and strategies by which the pathogen affects activation and function of DCs.
Collapse
Affiliation(s)
- Xuejie Wu
- Department of Infectious Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Feng Xu
- Department of Infectious Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
35
|
Howells LM, Mahale J, Sale S, McVeigh L, Steward WP, Thomas A, Brown K. Translating curcumin to the clinic for lung cancer prevention: evaluation of the preclinical evidence for its utility in primary, secondary, and tertiary prevention strategies. J Pharmacol Exp Ther 2014; 350:483-94. [PMID: 24939419 DOI: 10.1124/jpet.114.216333] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
Lung cancer is responsible for over one million deaths worldwide each year. Smoking cessation for lung cancer prevention remains key, but it is increasingly acknowledged that prevention strategies also need to focus on high-risk groups, including ex-smokers, and patients who have undergone resection of a primary tumor. Models for chemoprevention of lung cancer often present conflicting results, making rational design of lung cancer chemoprevention trials challenging. There has been much focus on use of dietary bioactive compounds in lung cancer prevention strategies, primarily due to their favorable toxicity profile and long history of use within the human populace. One such compound is curcumin, derived from the spice turmeric. This review summarizes and stratifies preclinical evidence for chemopreventive efficacy of curcumin in models of lung cancer, and adjudges the weight of evidence for use of curcumin in lung cancer chemoprevention strategies.
Collapse
Affiliation(s)
- Lynne M Howells
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Jagdish Mahale
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Stewart Sale
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Laura McVeigh
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester Royal Infirmary, Leicester, United Kingdom
| | - William P Steward
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Anne Thomas
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Karen Brown
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester Royal Infirmary, Leicester, United Kingdom
| |
Collapse
|