1
|
Barrientos S, Piñeiro-Corbeira C, Barreiro R. Twenty-five years on: Widespread kelp forest decline revealed in a potential climatic refugium. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123734. [PMID: 39700941 DOI: 10.1016/j.jenvman.2024.123734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
Kelp forests are key temperate ecosystems that experience the combined effects of global and local stressors throughout their distribution range. Niche modelling projections identified NW Spain, a region influenced by an intense upwelling system, as one such potential refugium. However, the recent discovery that fish overgrazing has eradicated kelp forests from certain reefs calls into question the validity of these projections. To determine the actual persistence of kelp forests (Laminaria ochroleuca and Laminaria hyperborea) on a regional scale, we resurveyed 50 sites in 2023 where kelp forests had been recorded up to 25 years earlier. Kelp had either disappeared or been reduced to a few scattered individuals at two-thirds (58%) of the sites. Furthermore, where kelp forests persist, L. ochroleuca is now the dominant canopy-forming kelp, while L. hyperborea has only been recorded at two sites. Kelp forest persistence was negatively correlated with summer sea surface temperature and wave exposure. Altogether, our results indicate that kelp forest decline is widespread in NW Spain, challenging the view of this region as a climate refugium and underscoring the difficulty of accurately predicting the trajectory of such complex and fragile ecosystems. Furthermore, in line with the recommendations of the OSPAR Convention, this study lays the foundation for a long-term monitoring network along a region where kelp forests are undergoing rapid change.
Collapse
Affiliation(s)
- Sara Barrientos
- BioCost Research Group, Facultad de Ciencias, Universidad de A Coruña, 15071, A Coruña, Spain; Centro de Investigaciones en Tecnología de la Información y las Comunicaciones (CITIC), Universidad de A Coruña, 15071, A Coruña, Spain.
| | - Cristina Piñeiro-Corbeira
- BioCost Research Group, Facultad de Ciencias, Universidad de A Coruña, 15071, A Coruña, Spain; Centro Interdisciplinar de Química e Bioloxía (CICA), Universidad de A Coruña, 15071, A Coruña, Spain
| | - Rodolfo Barreiro
- BioCost Research Group, Facultad de Ciencias, Universidad de A Coruña, 15071, A Coruña, Spain; Centro Interdisciplinar de Química e Bioloxía (CICA), Universidad de A Coruña, 15071, A Coruña, Spain
| |
Collapse
|
2
|
Li H, Qu J, Zhang Z, Kang EJ, Edwards MS, Kim JH. Shrinking suitable habitat of a sub-Arctic foundation kelp under future climate scenarios. JOURNAL OF PHYCOLOGY 2024; 60:1319-1331. [PMID: 39287914 DOI: 10.1111/jpy.13493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/19/2024]
Abstract
Climate change has profound effects on the distribution of kelp forests in the Arctic and sub-Arctic. However, studies on the responses of kelps to climate change, particularly along the sub-Arctic regions of the Alaska coast, are limited. Eualaria fistulosa is a foundational kelp species in the Aleutian Islands, with an east-west distribution that extends from Japan to southern southwest Alaska. In this study, we utilized a species distribution model (SDM) to explore changes in the future habitat suitability of E. fistulosa under contrasting Shared Socioeconomic Pathway (SSP) scenarios. Our model exhibited relatively high predictive performance, validating our SDM predictions. Notably, the SDM results indicate that minimum sea surface temperature, annual range in sea surface temperatures, and annual mean current velocities are the three most important predictor variables determining E. fistulosa's distribution. Furthermore, the projected geographic distribution of Eualaria is generally consistent with its observed occurrence records. However, under high emission scenarios (SSP5-8.5), E. fistulosa is predicted to contract its distribution range by 9.0% by 2100, with widespread disappearance along the southeast Alaskan coast and limited northward migration to Kamchatka Krai in Russia and Bristol Bay in Alaska. These findings contribute valuable insights for conservation strategies via addressing climate-induced alterations in sub-Arctic kelp distribution.
Collapse
Affiliation(s)
- Huiru Li
- Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao, China
| | - Junmei Qu
- CAS Key Laboratory of Tropical Marine bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhixin Zhang
- CAS Key Laboratory of Tropical Marine bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Global Ocean and Climate Research Center, South China Sea Institute of Oceanology, Guangzhou, China
| | - Eun Ju Kang
- Department of Aquaculture and Aquatic Science, Kunsan National University, Gunsan, South Korea
| | - Matthew S Edwards
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Ju-Hyoung Kim
- Department of Aquaculture and Aquatic Science, Kunsan National University, Gunsan, South Korea
| |
Collapse
|
3
|
Earp HS, Smale DA, Almond PM, Catherall HJN, Gouraguine A, Wilding C, Moore PJ. Temporal variation in the structure, abundance, and composition of Laminaria hyperborea forests and their associated understorey assemblages over an intense storm season. MARINE ENVIRONMENTAL RESEARCH 2024; 200:106652. [PMID: 39088885 DOI: 10.1016/j.marenvres.2024.106652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/03/2024]
Abstract
Kelp species function as important foundation organisms in coastal marine ecosystems where they provide biogenic habitat and ameliorate environmental conditions, often facilitating the development of diverse understorey assemblages. The structure of kelp forests is influenced by a variety of environmental factors, changes in which can result in profound shifts in ecological structure and functioning. Intense storm-induced wave action in particular, can severely impact kelp forest ecosystems. Given that storms are anticipated to increase in frequency and intensity in response to anthropogenic climate change, it is critical to understand their potential impacts on kelp forest ecosystems. During the 2021/22 northeast Atlantic storm season, the United Kingdom (UK) was subject to several intense storms, of which the first and most severe was Storm Arwen. Due to the unusual northerly wind direction, the greatest impacts of Storm Arwen were felt along the northeast coast of the UK where wind gusts exceeded 90 km/h, and inshore significant wave heights of 7.2 m and wave periods of 9.3 s were recorded. Here, we investigated temporal and spatial variation in the structure of L. hyperborea forests and associated understorey assemblages along the northeast coast of the UK over the 2021/22 storm season. We found significant changes in the cover, density, length, biomass, and age structure of L. hyperborea populations and the composition of understorey assemblages following the storm season, particularly at our most north facing site. We suggest continuous monitoring of these systems to further our understanding of temporal variation and potential recovery trajectories, alongside enhanced management to promote resilience to future perturbations.
Collapse
Affiliation(s)
- Hannah S Earp
- Department of Life Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK; The Dove Marine Laboratory, School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK; Institute of Marine Research, 4817 His, Norway.
| | - Dan A Smale
- The Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| | - Peter M Almond
- The Dove Marine Laboratory, School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Harry J N Catherall
- The Dove Marine Laboratory, School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Adam Gouraguine
- The Dove Marine Laboratory, School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Catherine Wilding
- The Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| | - Pippa J Moore
- The Dove Marine Laboratory, School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| |
Collapse
|
4
|
Salland N, Jensen A, Smale DA. The structure and diversity of macroinvertebrate assemblages associated with the understudied pseudo-kelp Saccorhiza polyschides in the Western English Channel (UK). MARINE ENVIRONMENTAL RESEARCH 2024; 198:106519. [PMID: 38678754 DOI: 10.1016/j.marenvres.2024.106519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/28/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
We examined spatiotemporal variability in the structure of faunal assemblages associated with the warm-temperate pseudo-kelp Saccorhiza polyschides towards its range centre (Western English Channel, southwest UK), to better understand its role as a habitat-former in the northeast Atlantic. A total of 180 sporophytes and their associated fauna were sampled across three months, three sites, and two depths. Assemblage abundance and biomass varied markedly between three morpho-functional sporophyte components (i.e., holdfast, stipe, blade). We recorded rich and abundant macroinvertebrate assemblages, comprising nine phyla, 28 coarse taxonomic groups, and 57 species of molluscs, which consistently dominated assemblages. We observed pronounced seasonality in faunal assemblage structure, marked variability between sites and depths, and strong positive relationships between biogenic habitat availability and faunal abundance/biomass. S. polyschides sporophytes are short-lived and offer temporary, less-stable habitat compared with dominant perennial Laminaria species, so shifts in the relative abundances of habitat-formers will likely alter local biodiversity patterns.
Collapse
Affiliation(s)
- Nora Salland
- The Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, PL1 2PB, Plymouth, UK; School of Ocean and Earth Science, University of Southampton, European Way, SO14 3ZH, Southampton, UK.
| | - Antony Jensen
- School of Ocean and Earth Science, University of Southampton, European Way, SO14 3ZH, Southampton, UK.
| | - Dan A Smale
- The Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, PL1 2PB, Plymouth, UK.
| |
Collapse
|
5
|
Krumhansl KA, Brooks CM, Lowen JB, O’Brien JM, Wong MC, DiBacco C. Loss, resilience and recovery of kelp forests in a region of rapid ocean warming. ANNALS OF BOTANY 2024; 133:73-92. [PMID: 37952103 PMCID: PMC10921841 DOI: 10.1093/aob/mcad170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND AND AIMS Changes in kelp abundances on regional scales have been highly variable over the past half-century owing to strong effects of local and regional drivers. Here, we assess patterns and dominant environmental variables causing spatial and interspecific variability in kelp persistence and resilience to change in Nova Scotia over the past 40 years. METHODS We conducted a survey of macrophyte abundance at 251 sites spanning the Atlantic coast of Nova Scotia from 2019 to 2022. We use this dataset to describe spatial variability in kelp species abundances, compare species occurrences to surveys conducted in 1982 and assess changes in kelp abundance over the past 22 years. We then relate spatial and temporal patterns in abundance and resilience to environmental metrics. KEY RESULTS Our results show losses of sea urchins and the cold-tolerant kelp species Alaria esculenta, Saccorhiza dermatodea and Agarum clathratum in Nova Scotia since 1982 in favour of the more warm-tolerant kelps Saccharina latissima and Laminaria digitata. Kelp abundances have increased slightly since 2000, and Saccharina latissima and L. digitata are widely abundant in the region today. The highest kelp cover occurs on wave-exposed shores and at sites where temperatures have remained below thresholds for growth (21 °C) and mortality (23 °C). Moreover, kelp has recovered from turf dominance following losses at some sites during a warm period from 2010 to 2012. CONCLUSIONS Our results indicate that dramatic changes in kelp community composition and a loss of sea urchin herbivory as a dominant driver of change in the system have occurred in Nova Scotia over the past 40 years. However, a broad-scale shift to turf-dominance has not occurred, as predicted, and our results suggest that resilience and persistence are still a feature of kelp forests in the region despite rapid warming over the past several decades.
Collapse
Affiliation(s)
- K A Krumhansl
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, B2Y 4A2, Canada
| | - C M Brooks
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, B2Y 4A2, Canada
| | - J B Lowen
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, B2Y 4A2, Canada
| | - J M O’Brien
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, B2Y 4A2, Canada
| | - M C Wong
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, B2Y 4A2, Canada
| | - C DiBacco
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, B2Y 4A2, Canada
| |
Collapse
|
6
|
Leathers T, King NG, Foggo A, Smale DA. Marine heatwave duration and intensity interact to reduce physiological tipping points of kelp species with contrasting thermal affinities. ANNALS OF BOTANY 2024; 133:51-60. [PMID: 37946547 PMCID: PMC10921831 DOI: 10.1093/aob/mcad172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND AND AIMS Marine heatwaves (MHWs) are widely recognized as pervasive drivers of ecosystem change, yet our understanding of how different MHW properties mediate ecological responses remains largely unexplored. Understanding MHW impacts on foundation species is particularly important, given their structural role in communities and ecosystems. METHODS We simulated a series of realistic MHWs with different levels of intensity (Control: 14 °C, Moderate: 18 °C, Extreme: 22 °C) and duration (14 or 28 d) and examined responses of two habitat-forming kelp species in the southwest UK. Here, Laminaria digitata reaches its trailing edge and is undergoing a range contraction, whereas Laminaria ochroleuca reaches its leading edge and is undergoing a range expansion. KEY RESULTS For both species, sub-lethal stress responses induced by moderate-intensity MHWs were exacerbated by longer duration. Extreme-intensity MHWs caused dramatic declines in growth and photosynthetic performance, and elevated bleaching, which were again exacerbated by longer MHW duration. Stress responses were most pronounced in L. ochroleuca, where almost complete tissue necrosis was observed by the end of the long-duration MHW. This was unexpected given the greater thermal safety margins assumed with leading edge populations. It is likely that prolonged exposure to sub-lethal thermal stress exceeded a physiological tipping point for L. ochroleuca, presumably due to depletion of internal reserves. CONCLUSIONS Overall, our study showed that exposure to MHW profiles projected to occur in the region in the coming decades can have significant deleterious effects on foundation kelp species, regardless of their thermal affinities and location within respective latitudinal ranges, which would probably have consequences for entire communities and ecosystems.
Collapse
Affiliation(s)
- Tayla Leathers
- Marine Biological Association of the United Kingdom, The Laboratory, Plymouth PL1 2PB, UK
| | - Nathan G King
- Marine Biological Association of the United Kingdom, The Laboratory, Plymouth PL1 2PB, UK
| | - Andy Foggo
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Dan A Smale
- Marine Biological Association of the United Kingdom, The Laboratory, Plymouth PL1 2PB, UK
| |
Collapse
|
7
|
Salland N, Wilding C, Jensen A, Smale DA. Spatiotemporal variability in population demography and morphology of the habitat-forming macroalga Saccorhiza polyschides in the Western English Channel. ANNALS OF BOTANY 2024; 133:117-130. [PMID: 37962600 PMCID: PMC10921834 DOI: 10.1093/aob/mcad181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/13/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND AND AIMS Large brown macroalgae serve as foundation organisms along temperate and polar coastlines, providing a range of ecosystem services. Saccorhiza polyschides is a warm-temperate kelp-like species found in the northeast Atlantic, which is suggested to have proliferated in recent decades across the southern UK, possibly in response to increasing temperatures, physical disturbance and reduced competition. However, little is known about S. polyschides with regard to ecological functioning and population dynamics across its geographical range. Here we examined the population demography of S. polyschides populations in southwest UK, located within the species' range centre, to address a regional knowledge gap and to provide a baseline against which to detect future changes. METHODS Intertidal surveys were conducted during spring low tides at three sites along a gradient of wave exposure in Plymouth Sound (Western English Channel) over a period of 15 months. Density, cover, age, biomass and morphology of S. polyschides were quantified. Additionally, less frequent sampling of shallow subtidal reefs was conducted to compare intertidal and subtidal populations. KEY RESULTS We recorded pronounced seasonality, with fairly consistent demographic patterns across sites and depths. By late summer, S. polyschides was a dominant habitat-former on both intertidal and subtidal reefs, with maximum standing stock exceeding 13 000 g wet weight m-2. CONCLUSIONS Saccorhiza polyschides is a conspicuous and abundant member of rocky reef assemblages in the region, providing complex and abundant biogenic habitat for associated organisms and high rates of primary productivity. However, its short-lived pseudo-annual life strategy is in stark contrast to dominant long-lived perennial laminarian kelps. As such, any replacement or reconfiguration of habitat-forming macroalgae due to ocean warming will probably have implications for local biodiversity and community composition. More broadly, our study demonstrates the importance of high-resolution cross-habitat surveys to generate robust baselines of kelp population demography, against which the ecological impacts of climate change and other stressors can be reliably detected.
Collapse
Affiliation(s)
- Nora Salland
- The Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
- School of Ocean and Earth Science, University of Southampton, European Way, Southampton SO14 3ZH, UK
| | - Catherine Wilding
- The Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| | - Antony Jensen
- School of Ocean and Earth Science, University of Southampton, European Way, Southampton SO14 3ZH, UK
| | - Dan A Smale
- The Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| |
Collapse
|
8
|
Gonzalez‐Aragon D, Rivadeneira MM, Lara C, Torres FI, Vásquez JA, Broitman BR. A species distribution model of the giant kelp Macrocystis pyrifera: Worldwide changes and a focus on the Southeast Pacific. Ecol Evol 2024; 14:e10901. [PMID: 38435006 PMCID: PMC10905252 DOI: 10.1002/ece3.10901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 11/29/2023] [Accepted: 12/14/2023] [Indexed: 03/05/2024] Open
Abstract
Worldwide climate-driven shifts in the distribution of species is of special concern when it involves habitat-forming species. In the coastal environment, large Laminarian algae-kelps-form key coastal ecosystems that support complex and diverse food webs. Among kelps, Macrocystis pyrifera is the most widely distributed habitat-forming species and provides essential ecosystem services. This study aimed to establish the main drivers of future distributional changes on a global scale and use them to predict future habitat suitability. Using species distribution models (SDM), we examined the changes in global distribution of M. pyrifera under different emission scenarios with a focus on the Southeast Pacific shores. To constrain the drivers of our simulations to the most important factors controlling kelp forest distribution across spatial scales, we explored a suite of environmental variables and validated the predictions derived from the SDMs. Minimum sea surface temperature was the single most important variable explaining the global distribution of suitable habitat for M. pyrifera. Under different climate change scenarios, we always observed a decrease of suitable habitat at low latitudes, while an increase was detected in other regions, mostly at high latitudes. Along the Southeast Pacific, we observed an upper range contraction of -17.08° S of latitude for 2090-2100 under the RCP8.5 scenario, implying a loss of habitat suitability throughout the coast of Peru and poleward to -27.83° S in Chile. Along the area of Northern Chile where a complete habitat loss is predicted by our model, natural stands are under heavy exploitation. The loss of habitat suitability will take place worldwide: Significant impacts on marine biodiversity and ecosystem functioning are likely. Furthermore, changes in habitat suitability are a harbinger of massive impacts in the socio-ecological systems of the Southeast Pacific.
Collapse
Affiliation(s)
- Daniel Gonzalez‐Aragon
- Doctorado en Ciencias, mención en Biodiversidad y Biorecursos, Facultad de CienciasUniversidad Católica de la Santísima ConcepciónConcepcionChile
- Instituto Milenio en Socio‐Ecología Costera (SECOS)SantiagoChile
- Núcleo Milenio UPWELL
| | - Marcelo M. Rivadeneira
- Centro de Estudios Avanzados en Zonas ÁridasCoquimboChile
- Departamento de Biología Marina, Facultad de Ciencias del MarUniversidad Católica del NorteCoquimboChile
| | - Carlos Lara
- Departamento de Ecología, Facultad de CienciasUniversidad Católica de la Santísima ConcepciónConcepcionChile
- Centro de Investigación en Recursos Naturales y SustentabilidadUniversidad Bernardo O'HigginsSantiagoChile
| | - Felipe I. Torres
- Doctorado en Ciencias, mención en Biodiversidad y Biorecursos, Facultad de CienciasUniversidad Católica de la Santísima ConcepciónConcepcionChile
- Instituto Milenio en Socio‐Ecología Costera (SECOS)SantiagoChile
- Data Observatory Foundation, ANID Technology Center No. DO210001SantiagoChile
| | - Julio A. Vásquez
- Instituto Milenio en Socio‐Ecología Costera (SECOS)SantiagoChile
- Departamento de Biología Marina, Facultad de Ciencias del MarUniversidad Católica del NorteCoquimboChile
- Centro de Investigación y Desarrollo Tecnológico en Algas y Otros Recursos Biológicos (CIDTA)CoquimboChile
| | - Bernardo R. Broitman
- Instituto Milenio en Socio‐Ecología Costera (SECOS)SantiagoChile
- Núcleo Milenio UPWELL
- Facultad de Artes LiberalesUniversidad Adolfo IbañezViña Del MarChile
| |
Collapse
|
9
|
Wernberg T, Thomsen MS, Baum JK, Bishop MJ, Bruno JF, Coleman MA, Filbee-Dexter K, Gagnon K, He Q, Murdiyarso D, Rogers K, Silliman BR, Smale DA, Starko S, Vanderklift MA. Impacts of Climate Change on Marine Foundation Species. ANNUAL REVIEW OF MARINE SCIENCE 2024; 16:247-282. [PMID: 37683273 DOI: 10.1146/annurev-marine-042023-093037] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Marine foundation species are the biotic basis for many of the world's coastal ecosystems, providing structural habitat, food, and protection for myriad plants and animals as well as many ecosystem services. However, climate change poses a significant threat to foundation species and the ecosystems they support. We review the impacts of climate change on common marine foundation species, including corals, kelps, seagrasses, salt marsh plants, mangroves, and bivalves. It is evident that marine foundation species have already been severely impacted by several climate change drivers, often through interactive effects with other human stressors, such as pollution, overfishing, and coastal development. Despite considerable variation in geographical, environmental, and ecological contexts, direct and indirect effects of gradual warming and subsequent heatwaves have emerged as the most pervasive drivers of observed impact and potent threat across all marine foundation species, but effects from sea level rise, ocean acidification, and increased storminess are expected to increase. Documented impacts include changes in the genetic structures, physiology, abundance, and distribution of the foundation species themselves and changes to their interactions with other species, with flow-on effects to associated communities, biodiversity, and ecosystem functioning. We discuss strategies to support marine foundation species into the Anthropocene, in order to increase their resilience and ensure the persistence of the ecosystem services they provide.
Collapse
Affiliation(s)
- Thomas Wernberg
- Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia;
- Flødevigen Research Station, Institute of Marine Research, His, Norway
| | - Mads S Thomsen
- Marine Ecology Research Group, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Department of Ecoscience, Aarhus University, Roskilde, Denmark
| | - Julia K Baum
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Melanie J Bishop
- School of Natural Sciences, Macquarie University, Macquarie Park, New South Wales, Australia
| | - John F Bruno
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Melinda A Coleman
- National Marine Science Centre, New South Wales Department of Primary Industries, Coffs Harbour, New South Wales, Australia
| | - Karen Filbee-Dexter
- Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia;
- Flødevigen Research Station, Institute of Marine Research, His, Norway
| | - Karine Gagnon
- Flødevigen Research Station, Institute of Marine Research, His, Norway
| | - Qiang He
- Coastal Ecology Lab, MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Daniel Murdiyarso
- Center for International Forestry Research-World Agroforestry (CIFOR-ICRAF), Bogor, Indonesia
- Department of Geophysics and Meteorology, IPB University, Bogor, Indonesia
| | - Kerrylee Rogers
- School of Earth, Atmospheric, and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Brian R Silliman
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Dan A Smale
- Marine Biological Association of the United Kingdom, Plymouth, United Kingdom
| | - Samuel Starko
- Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia;
| | - Mathew A Vanderklift
- Indian Ocean Marine Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Crawley, Western Australia, Australia
| |
Collapse
|
10
|
Bass AV, Smith KE, Smale DA. Marine heatwaves and decreased light availability interact to erode the ecophysiological performance of habitat-forming kelp species. JOURNAL OF PHYCOLOGY 2023; 59:481-495. [PMID: 36964952 DOI: 10.1111/jpy.13332] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/20/2023] [Accepted: 03/12/2023] [Indexed: 06/15/2023]
Abstract
Coastal marine ecosystems are threatened by a range of anthropogenic stressors, operating at global, local, and temporal scales. We investigated the impact of marine heatwaves (MHWs) combined with decreased light availability over two seasons on the ecophysiological responses of three kelp species (Laminaria digitata, L. hyperborea, and L. ochroleuca). These species function as important habitat-forming foundation organisms in the northeast Atlantic and have distinct but overlapping latitudinal distributions and thermal niches. Under low-light conditions, summertime MHWs induced significant declines in biomass, blade surface area, and Fv/Fm values (a measure of photosynthetic efficiency) in the cool-water kelps L. digitata and L. hyperborea, albeit to varying degrees. Under high-light conditions, all species were largely resistant to simulated MHW activity. In springtime, MHWs had minimal impacts and in some cases promoted kelp performance, while reduced light availability resulted in lower growth rates. While some species were negatively affected by summer MHWs under low-light conditions (particularly L. digitata), they were generally resilient to MHWs under high-light conditions. As such, maintaining good environmental quality and water clarity may increase resilience of populations to summertime MHWs. Our study informs predictions of how habitat-forming foundation kelp species will be affected by interacting, concurrent stressors, typical of compound events that are intensifying under anthropogenic climate change.
Collapse
Affiliation(s)
- Alissa V Bass
- Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, UK
| | - Kathryn E Smith
- Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, UK
| | - Dan A Smale
- Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, UK
| |
Collapse
|
11
|
Fernández C, Piñeiro-Corbeira C, Barrientos S, Barreiro R. Could the annual Saccorhiza polyschides replace a sympatric perennial kelp (Laminaria ochroleuca) when it comes to supporting the holdfast-associated fauna? MARINE ENVIRONMENTAL RESEARCH 2022; 182:105772. [PMID: 36279675 DOI: 10.1016/j.marenvres.2022.105772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/20/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Kelp forests dominate temperate rocky shores worldwide but are declining globally with consequences for organisms that depend on them. In NW Iberia, the golden kelp (Laminaria ochroleuca) commonly occurs alongside a fast-growing annual that, unlike the golden kelp, does not seem to have receded in recent times (Saccorhiza polyschides). Here, we assessed whether the bulbous holdfast of S. polyschides could replace the intricate holdfast of L. ochroleuca as epifaunal habitat provider. Richness, diversity and total abundance of epifauna was similar in both seaweeds, while colonial/encrusting fauna was more abundant in L. ochroleuca. More importantly, each host supported a distinctive assemblage structure, indicating that S. polyschides seems an unsuitable replacement for L. ochroleuca as habitat provider for holdfast epifauna. Therefore, while S. polyschides may contribute substantially to the kelp forest canopy in some seasons, a regional decline of L. ochroleuca will likely alter the patterns of biodiversity within kelp stands.
Collapse
Affiliation(s)
- Cristina Fernández
- BioCost Research Group, Facultad de Ciencias and Centro de Investigaciones Científicas Avanzadas (CICA), Universidad de A Coruña, 15071, A Coruña, Spain
| | - Cristina Piñeiro-Corbeira
- BioCost Research Group, Facultad de Ciencias and Centro de Investigaciones Científicas Avanzadas (CICA), Universidad de A Coruña, 15071, A Coruña, Spain
| | - Sara Barrientos
- BioCost Research Group, Facultad de Ciencias and Centro de Investigaciones Científicas Avanzadas (CICA), Universidad de A Coruña, 15071, A Coruña, Spain
| | - Rodolfo Barreiro
- BioCost Research Group, Facultad de Ciencias and Centro de Investigaciones Científicas Avanzadas (CICA), Universidad de A Coruña, 15071, A Coruña, Spain.
| |
Collapse
|
12
|
Wright LS, Pessarrodona A, Foggo A. Climate-driven shifts in kelp forest composition reduce carbon sequestration potential. GLOBAL CHANGE BIOLOGY 2022; 28:5514-5531. [PMID: 35694894 PMCID: PMC9545355 DOI: 10.1111/gcb.16299] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/31/2022] [Accepted: 06/05/2022] [Indexed: 05/27/2023]
Abstract
The potential contribution of kelp forests to blue carbon sinks is currently of great interest but interspecific variance has received no attention. In the temperate Northeast Atlantic, kelp forest composition is changing due to climate-driven poleward range shifts of cold temperate Laminaria digitata and Laminaria hyperborea and warm temperate Laminaria ochroleuca. To understand how this might affect the carbon sequestration potential (CSP) of this ecosystem, we quantified interspecific differences in carbon export and decomposition alongside changes in detrital photosynthesis and biochemistry. We found that while warm temperate kelp exports up to 71% more carbon per plant, it decomposes up to 155% faster than its boreal congeners. Elemental stoichiometry and polyphenolic content cannot fully explain faster carbon turnover, which may be attributable to contrasting tissue toughness or unknown biochemical and structural defenses. Faster decomposition causes the detrital photosynthetic apparatus of L. ochroleuca to be overwhelmed 20 days after export and lose integrity after 36 days, while detritus of cold temperate species maintains carbon assimilation. Depending on the photoenvironment, detrital photosynthesis could further exacerbate interspecific differences in decomposition via a potential positive feedback loop. Through compositional change such as the predicted prevalence of L. ochroleuca, ocean warming may therefore reduce the CSP of such temperate marine forests.
Collapse
Affiliation(s)
- Luka Seamus Wright
- Marine Biology and Ecology Research CentreUniversity of PlymouthPlymouthUK
- Oceans InstituteUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Albert Pessarrodona
- Oceans InstituteUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Andy Foggo
- Marine Biology and Ecology Research CentreUniversity of PlymouthPlymouthUK
| |
Collapse
|
13
|
El-Khaled YC, Daraghmeh N, Tilstra A, Roth F, Huettel M, Rossbach FI, Casoli E, Koester A, Beck M, Meyer R, Plewka J, Schmidt N, Winkelgrund L, Merk B, Wild C. Fleshy red algae mats act as temporary reservoirs for sessile invertebrate biodiversity. Commun Biol 2022; 5:579. [PMID: 35697788 PMCID: PMC9192683 DOI: 10.1038/s42003-022-03523-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 05/23/2022] [Indexed: 11/23/2022] Open
Abstract
Many coastal ecosystems, such as coral reefs and seagrass meadows, currently experience overgrowth by fleshy algae due to the interplay of local and global stressors. This is usually accompanied by strong decreases in habitat complexity and biodiversity. Recently, persistent, mat-forming fleshy red algae, previously described for the Black Sea and several Atlantic locations, have also been observed in the Mediterranean. These several centimetre high mats may displace seagrass meadows and invertebrate communities, potentially causing a substantial loss of associated biodiversity. We show that the sessile invertebrate biodiversity in these red algae mats is high and exceeds that of neighbouring seagrass meadows. Comparative biodiversity indices were similar to or higher than those recently described for calcifying green algae habitats and biodiversity hotspots like coral reefs or mangrove forests. Our findings suggest that fleshy red algae mats can act as alternative habitats and temporary sessile invertebrate biodiversity reservoirs in times of environmental change. Comparative analyses of fleshy red algae mats and seagrass meadows highlight their value in fostering sessile invertebrate biodiversity.
Collapse
Affiliation(s)
- Yusuf C El-Khaled
- Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen, 28359, Bremen, Germany.
| | - Nauras Daraghmeh
- Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen, 28359, Bremen, Germany.,Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Kingdom of Saudi Arabia
| | - Arjen Tilstra
- Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen, 28359, Bremen, Germany
| | - Florian Roth
- Baltic Sea Centre, Stockholm University, 10691, Stockholm, Sweden.,Faculty of Biological and Environmental Sciences, Tvärminne Zoological Station, University of Helsinki, 00014, Helsinki, Finland
| | - Markus Huettel
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL, 32306-4520, USA
| | - Felix I Rossbach
- Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen, 28359, Bremen, Germany
| | - Edoardo Casoli
- Department of Environmental Biology, Sapienza University of Rome, 00185, Rome, Italy
| | - Anna Koester
- Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen, 28359, Bremen, Germany
| | - Milan Beck
- Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen, 28359, Bremen, Germany
| | - Raïssa Meyer
- Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen, 28359, Bremen, Germany
| | - Julia Plewka
- Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen, 28359, Bremen, Germany
| | - Neele Schmidt
- Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen, 28359, Bremen, Germany
| | - Lisa Winkelgrund
- Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen, 28359, Bremen, Germany
| | - Benedikt Merk
- Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen, 28359, Bremen, Germany
| | - Christian Wild
- Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen, 28359, Bremen, Germany
| |
Collapse
|
14
|
Li Y, Ma S, Fu C, Li J, Tian Y, Sun P, Ju P, Liu S. Seasonal differences in the relationship between biodiversity and ecosystem functioning in an overexploited shelf sea ecosystem. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Yuru Li
- Key Laboratory of Mariculture Ministry of Education Ocean University of China Qingdao China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System Ocean University of China Qingdao China
| | - Shuyang Ma
- Key Laboratory of Mariculture Ministry of Education Ocean University of China Qingdao China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System Ocean University of China Qingdao China
| | - Caihong Fu
- Pacific Biological Station, Fisheries and Oceans Canada Nanaimo British Columbia Canada
| | - Jianchao Li
- Key Laboratory of Mariculture Ministry of Education Ocean University of China Qingdao China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System Ocean University of China Qingdao China
| | - Yongjun Tian
- Key Laboratory of Mariculture Ministry of Education Ocean University of China Qingdao China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System Ocean University of China Qingdao China
- Laboratory for Marine Fisheries Science and Food Production Processes Pilot National Laboratory for Marine Science and Technology Qingdao China
| | - Peng Sun
- Key Laboratory of Mariculture Ministry of Education Ocean University of China Qingdao China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System Ocean University of China Qingdao China
| | - Peilong Ju
- Key Laboratory of Mariculture Ministry of Education Ocean University of China Qingdao China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System Ocean University of China Qingdao China
| | - Shude Liu
- Shandong Hydrobios Resources Conservation and Management Center Yantai China
| |
Collapse
|
15
|
Kroeker KJ, Sanford E. Ecological Leverage Points: Species Interactions Amplify the Physiological Effects of Global Environmental Change in the Ocean. ANNUAL REVIEW OF MARINE SCIENCE 2022; 14:75-103. [PMID: 34416127 DOI: 10.1146/annurev-marine-042021-051211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Marine ecosystems are increasingly impacted by global environmental changes, including warming temperatures, deoxygenation, and ocean acidification. Marine scientists recognize intuitively that these environmental changes are translated into community changes via organismal physiology. However, physiology remains a black box in many ecological studies, and coexisting species in a community are often assumed to respond similarly to environmental stressors. Here, we emphasize how greater attention to physiology can improve our ability to predict the emergent effects of ocean change. In particular, understanding shifts in the intensity and outcome of species interactions such as competition and predation requires a sharpened focus on physiological variation among community members and the energetic demands and trophic mismatches generated by environmental changes. Our review also highlights how key species interactions that are sensitive to environmental change can operate as ecological leverage points through which small changes in abiotic conditions are amplified into large changes in marine ecosystems.
Collapse
Affiliation(s)
- Kristy J Kroeker
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California 95064, USA;
| | - Eric Sanford
- Bodega Marine Laboratory, University of California, Davis, Bodega Bay, California 94923, USA;
- Department of Evolution and Ecology, University of California, Davis, California 95616, USA
| |
Collapse
|
16
|
Frontier N, Mulas M, Foggo A, Smale DA. The influence of light and temperature on detritus degradation rates for kelp species with contrasting thermal affinities. MARINE ENVIRONMENTAL RESEARCH 2022; 173:105529. [PMID: 34800869 DOI: 10.1016/j.marenvres.2021.105529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 05/06/2023]
Abstract
Kelp detritus fuels coastal food webs and may play an important role as a source of organic matter for natural carbon sequestration. Here, we conducted ex situ and in situ manipulations to evaluate the role of temperature and light availability in the breakdown of detrital material. We examined degradation rates of two North Atlantic species with contrasting thermal affinities: the 'warm water' kelp Laminaria ochroleuca and the 'cool water' Laminaria hyperborea. Detrital fragments were exposed to different temperatures in controlled conditions and across an in situ gradient of depth, corresponding to light availability. Overall, degradation rates (i.e. changes in Fv/Fm and biomass) were faster under lower light conditions and at higher temperatures, although responses were highly variable between plants and fragments. Crucially, as L. ochroleuca degraded faster than L. hyperborea under some conditions, a climate-driven substitution of the 'cool' for the 'warm' kelp, which has been observed at some locations, will likely increase detritus turnover rates and alter detrital pathways in certain environments. More importantly, ocean warming combined with decreased coastal water quality will likely accelerate kelp detritus decomposition, with potential implications for coastal food webs and carbon cycles.
Collapse
Affiliation(s)
- Nadia Frontier
- Marine Biological Association of the United Kingdom, The laboratory, Citadel Hill, Plymouth, PL1 2PB, UK; Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Martina Mulas
- Marine Biological Association of the United Kingdom, The laboratory, Citadel Hill, Plymouth, PL1 2PB, UK; Israel Oceanographic & Limnological Research, The National Institute of Oceanography, P.O.BOX 8030, 31080, Haifa, Israel; The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa, Israel
| | - Andrew Foggo
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Dan A Smale
- Marine Biological Association of the United Kingdom, The laboratory, Citadel Hill, Plymouth, PL1 2PB, UK.
| |
Collapse
|
17
|
Thomson AI, Archer FI, Coleman MA, Gajardo G, Goodall‐Copestake WP, Hoban S, Laikre L, Miller AD, O’Brien D, Pérez‐Espona S, Segelbacher G, Serrão EA, Sjøtun K, Stanley MS. Charting a course for genetic diversity in the UN Decade of Ocean Science. Evol Appl 2021; 14:1497-1518. [PMID: 34178100 PMCID: PMC8210796 DOI: 10.1111/eva.13224] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
The health of the world's oceans is intrinsically linked to the biodiversity of the ecosystems they sustain. The importance of protecting and maintaining ocean biodiversity has been affirmed through the setting of the UN Sustainable Development Goal 14 to conserve and sustainably use the ocean for society's continuing needs. The decade beginning 2021-2030 has additionally been declared as the UN Decade of Ocean Science for Sustainable Development. This program aims to maximize the benefits of ocean science to the management, conservation, and sustainable development of the marine environment by facilitating communication and cooperation at the science-policy interface. A central principle of the program is the conservation of species and ecosystem components of biodiversity. However, a significant omission from the draft version of the Decade of Ocean Science Implementation Plan is the acknowledgment of the importance of monitoring and maintaining genetic biodiversity within species. In this paper, we emphasize the importance of genetic diversity to adaptive capacity, evolutionary potential, community function, and resilience within populations, as well as highlighting some of the major threats to genetic diversity in the marine environment from direct human impacts and the effects of global climate change. We then highlight the significance of ocean genetic diversity to a diverse range of socioeconomic factors in the marine environment, including marine industries, welfare and leisure pursuits, coastal communities, and wider society. Genetic biodiversity in the ocean, and its monitoring and maintenance, is then discussed with respect to its integral role in the successful realization of the 2030 vision for the Decade of Ocean Science. Finally, we suggest how ocean genetic diversity might be better integrated into biodiversity management practices through the continued interaction between environmental managers and scientists, as well as through key leverage points in industry requirements for Blue Capital financing and social responsibility.
Collapse
Affiliation(s)
| | | | - Melinda A. Coleman
- New South Wales FisheriesNational Marine Science CentreCoffs HarbourNSWAustralia
- National Marine Science CentreSouthern Cross UniversityCoffs HarbourNSWAustralia
- Oceans Institute and School of Biological SciencesUniversity of Western AustraliaCrawleyWAAustralia
| | - Gonzalo Gajardo
- Laboratory of Genetics, Aquaculture & BiodiversityUniversidad de Los LagosOsornoChile
| | | | - Sean Hoban
- Centre for Tree ScienceThe Morton ArboretumLisleILUSA
| | - Linda Laikre
- Centre for Tree ScienceThe Morton ArboretumLisleILUSA
- The Wildlife Analysis UnitThe Swedish Environmental Protection AgencyStockholmSweden
| | - Adam D. Miller
- School of Life and Environmental SciencesCentre for Integrative EcologyDeakin UniversityGeelongVicAustralia
- Deakin Genomics CentreDeakin UniversityGeelongVic.Australia
| | | | - Sílvia Pérez‐Espona
- The Royal (Dick) School of Veterinary Studies and The Roslin InstituteMidlothianUK
| | - Gernot Segelbacher
- Chair of Wildlife Ecology and ManagementUniversity FreiburgFreiburgGermany
| | - Ester A. Serrão
- CCMARCentre of Marine SciencesFaculty of Sciences and TechnologyUniversity of AlgarveFaroPortugal
| | - Kjersti Sjøtun
- Department of Biological SciencesUniversity of BergenBergenNorway
| | | |
Collapse
|
18
|
Leclerc JC, de Bettignies T, de Bettignies F, Christie H, Franco JN, Leroux C, Davoult D, Pedersen MF, Filbee-Dexter K, Wernberg T. Local flexibility in feeding behaviour and contrasting microhabitat use of an omnivore across latitudes. Oecologia 2021; 196:441-453. [PMID: 34009471 DOI: 10.1007/s00442-021-04936-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
As the environment is getting warmer and species are redistributed, consumers can be forced to adjust their interactions with available prey, and this could have cascading effects within food webs. To better understand the capacity for foraging flexibility, our study aimed to determine the diet variability of an ectotherm omnivore inhabiting kelp forests, the sea urchin Echinus esculentus, along its entire latitudinal distribution in the northeast Atlantic. Using a combination of gut content and stable isotope analyses, we determined the diet and trophic position of sea urchins at sites in Portugal (42° N), France (49° N), southern Norway (63° N), and northern Norway (70° N), and related these results to the local abundance and distribution of putative food items. With mean estimated trophic levels ranging from 2.4 to 4.6, omnivory and diet varied substantially within and between sites but not across latitudes. Diet composition generally reflected prey availability within epiphyte or understorey assemblages, with local affinities demonstrating that the sea urchin adjusts its foraging to match the small-scale distribution of food items. A net "preference" for epiphytic food sources was found in northern Norway, where understorey food was limited compared to other regions. We conclude that diet change may occur in response to food source redistribution at multiple spatial scales (microhabitats, sites, regions). Across these scales, the way that key consumers alter their foraging in response to food availability can have important implication for food web dynamics and ecosystem functions along current and future environmental gradients.
Collapse
Affiliation(s)
- Jean-Charles Leclerc
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France. .,Departamento de Ecología, Facultad de Ciencias, Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile.
| | - Thibaut de Bettignies
- UMS Patrimoine Naturel (PATRINAT), AFB-CNRS-MNHN, CP41, 36 rue Geoffroy Saint-Hilaire, 75005, Paris, France.,School of Biological Sciences and UWA Oceans Institute, University of Western Australia, 39 Fairway, Crawley, WA, 6009, Australia
| | - Florian de Bettignies
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France
| | - Hartvig Christie
- Marine Biology Section, Norwegian Institute for Water Research, Oslo, Norway
| | - João N Franco
- CIIMAR, Terminal de Cruzeiros de Leixões. Av. General Norton de Matos, 4450-208, Matosinhos, Portugal.,MARE-Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, Peniche, Portugal
| | - Cédric Leroux
- Sorbonne Université, CNRS, FR 2424, Station Biologique, Place Georges Teissier, 29680, Roscoff, France
| | - Dominique Davoult
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France
| | - Morten F Pedersen
- Department for Science and Environment (DSE), Roskilde University, PO Box 260, 4000, Roskilde, Denmark
| | - Karen Filbee-Dexter
- School of Biological Sciences and UWA Oceans Institute, University of Western Australia, 39 Fairway, Crawley, WA, 6009, Australia.,Benthic Communities Research Group, Institute of Marine Research, His, Norway
| | - Thomas Wernberg
- School of Biological Sciences and UWA Oceans Institute, University of Western Australia, 39 Fairway, Crawley, WA, 6009, Australia.,Department for Science and Environment (DSE), Roskilde University, PO Box 260, 4000, Roskilde, Denmark.,Benthic Communities Research Group, Institute of Marine Research, His, Norway
| |
Collapse
|
19
|
Gilson AR, Smale DA, O’Connor N. Ocean warming and species range shifts affect rates of ecosystem functioning by altering consumer-resource interactions. Ecology 2021; 102:e03341. [PMID: 33709407 PMCID: PMC11475527 DOI: 10.1002/ecy.3341] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/19/2020] [Accepted: 12/06/2020] [Indexed: 11/10/2022]
Abstract
Recent warming trends have driven widespread changes in the performance and distribution of species in many regions, with consequent shifts in assemblage structure and ecosystem functioning. However, as responses to warming vary across species and regions, novel communities are emerging, particularly where warm-affinity range-expanding species have rapidly colonized communities still dominated by cold-affinity species. Such community reconfiguration may alter core ecosystem processes, such as productivity or nutrient cycling, yet it remains unclear whether novel communities function similarly to those they have replaced, and how continued warming will alter functioning in the near future. Using simplified kelp forest communities as a model system, we compared rates of respiration, consumption and secondary productivity between current cold-affinity and future warm-affinity kelp assemblages under both present-day temperatures and near-future warming in a series of mesocosm experiments. Overall, respiration rates of gastropods and amphipods increased with warming but did not differ between cold and warm affinity kelp assemblages. Consumption rates of three consumers (urchin, gastropod and amphipod) differed between kelp assemblages but only amphipod consumption rates increased with warming. A diet derived from warm-affinity kelp assemblages led to a decrease in growth and biomass of urchins, whereas the response of other consumers was variable depending on temperature treatment. These results suggest that climate-driven changes in assemblage structure of primary producers will alter per capita rates of ecosystem functioning, and that specific responses may vary in complex and unpredictable ways, with some mediated by warming more than others. Understanding how differences in life history and functional traits of dominant species will affect ecological interactions and, in turn, important ecosystem processes is crucial to understanding the wider implications of climate-driven community reconfiguration.
Collapse
Affiliation(s)
- Abby R. Gilson
- School of Biological SciencesInstitute of Global Food SecurityQueen’s University Belfast1‐33 Chlorine GardensBelfastBT9 5AJUK
- Present address:
Department of Zoology and EntomologyRhodes UniversityPO Box 94Grahamstown6140South Africa.
| | - Dan A. Smale
- Marine Biological Association of the UKCitadel HillPlymouthPL1 2PBUK
| | - Nessa O’Connor
- School of Biological SciencesInstitute of Global Food SecurityQueen’s University Belfast1‐33 Chlorine GardensBelfastBT9 5AJUK
- School of Natural SciencesTrinity College DublinDublin 2Ireland
| |
Collapse
|
20
|
Frontier N, de Bettignies F, Foggo A, Davoult D. Sustained productivity and respiration of degrading kelp detritus in the shallow benthos: Detached or broken, but not dead. MARINE ENVIRONMENTAL RESEARCH 2021; 166:105277. [PMID: 33592375 DOI: 10.1016/j.marenvres.2021.105277] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/28/2021] [Accepted: 02/04/2021] [Indexed: 05/06/2023]
Abstract
Temperate kelp forests contribute significantly to marine primary productivity and fuel many benthic and pelagic food chains. A large proportion of biomass is exported from kelp forests as detritus into recipient marine ecosystems, potentially contributing to Blue Carbon sequestration. The degradation of this organic material is slow and recent research has revealed the preservation of photosynthetic functions over time. However, the physiological correlates of detrital breakdown in Laminaria spp. have not yet been studied. The warming climate threatens to reshuffle the species composition of kelp forests and perturb the dynamics of these highly productive ecosystems. The present study compares the physiological response of degrading detritus from two competing North East Atlantic species; the native Boreal Laminaria hyperborea and the thermally tolerant Boreal-Lusitanian L. ochroleuca. Detrital fragment degradation was measured by a mesocosm experiment across a gradient of spectral attenuation (a proxy for depth) to investigate the changes in physiological performance under different environmental conditions. Degradation of fragments was quantified over 108 days by measuring the biomass, production and respiration (by respirometry) and efficiency of Photosystem II (by PAM fluorometry). Data indicated that whilst degrading, the photosynthetic performance of the species responded differently to simulated depths, but fragments of both species continued to produce oxygen for up to 56 days and sustained positive net primary production. This study reveals the potential for ostensibly detrital kelp to contribute to Blue Carbon fixation through sustained primary production which should be factored into Blue Carbon management. Furthermore, the physiological response of kelp detritus is likely dependent upon the range of habitats to which it is exported. In the context of climate change, shifts in species composition of kelp forests and their detritus are likely to have wide-reaching effects upon the cycling of organic matter in benthic ecosystems.
Collapse
Affiliation(s)
- Nadia Frontier
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, F-29680, Roscoff, France; Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK.
| | - Florian de Bettignies
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, F-29680, Roscoff, France
| | - Andy Foggo
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Dominique Davoult
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, F-29680, Roscoff, France
| |
Collapse
|
21
|
Smale DA. Impacts of ocean warming on kelp forest ecosystems. THE NEW PHYTOLOGIST 2020; 225:1447-1454. [PMID: 31400287 DOI: 10.1111/nph.16107] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/28/2019] [Indexed: 05/22/2023]
Abstract
Kelp forests represent some of the most diverse and productive habitats on Earth, and provide a range of ecosystem goods and services on which human populations depend. As the distribution and ecophysiology of kelp species is strongly influenced by temperature, recent warming trends in many regions have been linked with concurrent changes in kelp populations, communities and ecosystems. Over the past decade, the number of reports of ocean warming impacts on kelp forests has risen sharply. Here, I synthesise recent studies to highlight general patterns and trends. While kelp responses to climate change vary greatly between ocean basins, regions and species, there is compelling evidence to show that ocean warming poses an unequivocal threat to the persistence and integrity of kelp forest ecosystems in coming decades.
Collapse
Affiliation(s)
- Dan A Smale
- The Laboratory, Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth, PL1 2PB, UK
| |
Collapse
|
22
|
Sudo K, Watanabe K, Yotsukura N, Nakaoka M. Predictions of kelp distribution shifts along the northern coast of Japan. Ecol Res 2019. [DOI: 10.1111/1440-1703.12053] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Kenji Sudo
- Akkeshi Marine Station, Field Science Center for Northern Biosphere Hokkaido University Akkeshi Japan
- Graduate School of Environmental Science Hokkaido University Akkeshi Japan
| | - Kentaro Watanabe
- Akkeshi Marine Station, Field Science Center for Northern Biosphere Hokkaido University Akkeshi Japan
| | - Norishige Yotsukura
- Field Science Center for Northern Biosphere Hokkaido University Sapporo Japan
| | - Masahiro Nakaoka
- Akkeshi Marine Station, Field Science Center for Northern Biosphere Hokkaido University Akkeshi Japan
| |
Collapse
|