1
|
Kuroda S, Lalonde RL, Mansour TA, Mosimann C, Nakamura T. Multiple embryonic sources converge to form the pectoral girdle skeleton in zebrafish. Nat Commun 2024; 15:6313. [PMID: 39060278 PMCID: PMC11282072 DOI: 10.1038/s41467-024-50734-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
The morphological transformation of the pectoral/shoulder girdle is fundamental to the water-to-land transition in vertebrate evolution. Although previous studies have resolved the embryonic origins of tetrapod shoulder girdles, those of fish pectoral girdles remain uncharacterized, creating a gap in the understanding of girdle transformation mechanisms from fish to tetrapods. Here, we identify the embryonic origins of the zebrafish pectoral girdle, including the cleithrum as an ancestral girdle element lost in extant tetrapods. Our combinatorial approach of photoconversion and genetic lineage tracing demonstrates that cleithrum development combines four adjoining embryonic populations. A comparison of these pectoral girdle progenitors with extinct and extant vertebrates highlights that cleithrum loss, indispensable for neck evolution, is associated with the disappearance of its unique developmental environment at the head/trunk interface. Overall, our study establishes an embryological framework for pectoral/shoulder girdle formation and provides evolutionary trajectories from their origin in water to diversification on land.
Collapse
Affiliation(s)
- Shunya Kuroda
- Department of Genetics, Rutgers the State University of New Jersey, Piscataway, NJ, 08854, USA.
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, 920-1164, Japan.
| | - Robert L Lalonde
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Thomas A Mansour
- Department of Genetics, Rutgers the State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Christian Mosimann
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Tetsuya Nakamura
- Department of Genetics, Rutgers the State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
2
|
Muramatsu B, Suzuki DG, Suzuki M, Higashiyama H. Gross anatomy of the Pacific hagfish, Eptatretus burgeri, with special reference to the coelomic viscera. Anat Rec (Hoboken) 2024; 307:155-171. [PMID: 36958942 DOI: 10.1002/ar.25208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/06/2023] [Accepted: 03/08/2023] [Indexed: 03/25/2023]
Abstract
Hagfish (Myxinoidea) are a deep-sea taxon of cyclostomes, the extant jawless vertebrates. Many researchers have examined the anatomy and embryology of hagfish to shed light on the early evolution of vertebrates; however, the diversity within hagfish is often overlooked. Hagfish have three lineages, Myxininae, Eptatretinae, and Rubicundinae. Usually, textbook illustrations of hagfish anatomy reflect the morphology of the Myxininae lineage, especially Myxine glutinosa, with its single pair of external branchial pores. Here, we instead report the gross anatomy of an Eptatretinae, Eptatretus burgeri, which has six pairs of branchial pores, especially focusing on the coelomic organs. Dissections were performed on fixed and unfixed specimens to provide a guide for those doing organ- or tissue-specific molecular experiments. Our dissections revealed that the ventral aorta is Y-branched in E. burgeri, which differs from the unbranched morphology of Myxine. Otherwise, there were no differences in the morphology of the lingual apparatus or heart in the pharyngeal domain. The thyroid follicles were scattered around the ventral aorta, as has been reported for adult lampreys. The hepatobiliary system more closely resembled those of jawed vertebrates than those of adult lampreys, with the liver having two lobes and a bile duct connecting the gallbladder to each lobe. Overall, the visceral morphology of E. burgeri does not differ significantly from that of the known Myxine at the level of gross anatomy, although the branchial morphology is phylogenetically ancestral compared to Myxine.
Collapse
Affiliation(s)
- Banri Muramatsu
- Department of Biological Science, Graduate School of Science, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Daichi G Suzuki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, 305-8572, Japan
| | - Masakazu Suzuki
- Department of Biological Science, Graduate School of Science, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Hiroki Higashiyama
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
3
|
Marek RD. A surrogate forelimb: Evolution, function and development of the avian cervical spine. J Morphol 2023; 284:e21638. [PMID: 37708511 DOI: 10.1002/jmor.21638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023]
Abstract
The neck is a critical portion of the avian spine, one that works in tandem with the beak to act as a surrogate forelimb and allows birds to manipulate their surroundings despite the lack of a grasping capable hand. Birds display an incredible amount of diversity in neck morphology across multiple anatomical scales-from varying cervical counts down to intricate adaptations of individual vertebrae. Despite this morphofunctional disparity, little is known about the drivers of this enormous variation, nor how neck evolution has shaped avian macroevolution. To promote interest in this system, I review the development, function and evolution of the avian cervical spine. The musculoskeletal anatomy, basic kinematics and development of the avian neck are all documented, but focus primarily upon commercially available taxa. In addition, recent work has quantified the drivers of extant morphological variation across the avian neck, as well as patterns of integration between the neck and other skeletal elements. However, the evolutionary history of the avian cervical spine, and its contribution to the diversification and success of modern birds is currently unknown. Future work should aim to broaden our understanding of the cervical anatomy, development and kinematics to include a more diverse selection of extant birds, while also considering the macroevolutionary drivers and consequences of this important section of the avian spine.
Collapse
Affiliation(s)
- Ryan D Marek
- Department of Cell and Developmental Biology, Centre for Integrative Anatomy, University College London, London, UK
| |
Collapse
|
4
|
Mizukami K, Higashiyama H, Arima Y, Ando K, Okada N, Kose K, Yamada S, Takeuchi JK, Koshiba-Takeuchi K, Fukuhara S, Miyagawa-Tomita S, Kurihara H. Coronary artery established through amniote evolution. eLife 2023; 12:e83005. [PMID: 37605519 PMCID: PMC10444023 DOI: 10.7554/elife.83005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 07/17/2023] [Indexed: 08/23/2023] Open
Abstract
Coronary arteries are a critical part of the vascular system and provide nourishment to the heart. In humans, even minor defects in coronary arteries can be lethal, emphasizing their importance for survival. However, some teleosts survive without coronary arteries, suggesting that there may have been some evolutionary changes in the morphology and function of coronary arteries in the tetrapod lineage. Here, we propose that the true ventricular coronary arteries were newly established during amniote evolution through remodeling of the ancestral coronary vasculature. In mouse (Mus musculus) and Japanese quail (Coturnix japonica) embryos, the coronary arteries unique to amniotes are established by the reconstitution of transient vascular plexuses: aortic subepicardial vessels (ASVs) in the outflow tract and the primitive coronary plexus on the ventricle. In contrast, amphibians (Hyla japonica, Lithobates catesbeianus, Xenopus laevis, and Cynops pyrrhogaster) retain the ASV-like vasculature as truncal coronary arteries throughout their lives and have no primitive coronary plexus. The anatomy and development of zebrafish (Danio rerio) and chondrichthyans suggest that their hypobranchial arteries are ASV-like structures serving as the root of the coronary vasculature throughout their lives. Thus, the ventricular coronary artery of adult amniotes is a novel structure that has acquired a new remodeling process, while the ASVs, which occur transiently during embryonic development, are remnants of the ancestral coronary vessels. This evolutionary change may be related to the modification of branchial arteries, indicating considerable morphological changes underlying the physiological transition during amniote evolution.
Collapse
Affiliation(s)
- Kaoru Mizukami
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of TokyoTokyoJapan
| | - Hiroki Higashiyama
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of TokyoTokyoJapan
| | - Yuichiro Arima
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of TokyoTokyoJapan
- Developmental Cardiology Laboratory, International Research Center for Medical Science, Kumamoto UniversityKumamotoJapan
| | - Koji Ando
- Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical SchoolTokyoJapan
| | | | - Katsumi Kose
- Institute of Applied Physics, University of TsukubaTsukubaJapan
| | - Shigehito Yamada
- Congenital Anomaly Research Center, Kyoto University Graduate School of MedicineKyotoJapan
| | - Jun K Takeuchi
- Molecular Craniofacial Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental UniversityTokyoJapan
| | | | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical SchoolTokyoJapan
| | - Sachiko Miyagawa-Tomita
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of TokyoTokyoJapan
- Heart Center, Department of Pediatric Cardiology, Tokyo Women’s Medical UniversityTokyoJapan
- Department of Animal Nursing Science, Yamazaki University of Animal Health TechnologyTokyoJapan
| | - Hiroki Kurihara
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of TokyoTokyoJapan
| |
Collapse
|
5
|
Sefton EM, Gallardo M, Tobin CE, Collins BC, Colasanto MP, Merrell AJ, Kardon G. Fibroblast-derived Hgf controls recruitment and expansion of muscle during morphogenesis of the mammalian diaphragm. eLife 2022; 11:e74592. [PMID: 36154712 PMCID: PMC9514848 DOI: 10.7554/elife.74592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 09/13/2022] [Indexed: 12/01/2022] Open
Abstract
The diaphragm is a domed muscle between the thorax and abdomen essential for breathing in mammals. Diaphragm development requires the coordinated development of muscle, connective tissue, and nerve, which are derived from different embryonic sources. Defects in diaphragm development cause the common and often lethal birth defect, congenital diaphragmatic hernias (CDH). HGF/MET signaling is required for diaphragm muscularization, but the source of HGF and the specific functions of this pathway in muscle progenitors and effects on phrenic nerve have not been explicitly tested. Using conditional mutagenesis in mice and pharmacological inhibition of MET, we demonstrate that the pleuroperitoneal folds (PPFs), transient embryonic structures that give rise to the connective tissue in the diaphragm, are the source of HGF critical for diaphragm muscularization. PPF-derived HGF is directly required for recruitment of MET+ muscle progenitors to the diaphragm and indirectly (via its effect on muscle development) required for phrenic nerve primary branching. In addition, HGF is continuously required for maintenance and motility of the pool of progenitors to enable full muscularization. Localization of HGF at the diaphragm's leading edges directs dorsal and ventral expansion of muscle and regulates its overall size and shape. Surprisingly, large muscleless regions in HGF and Met mutants do not lead to hernias. While these regions are likely more susceptible to CDH, muscle loss is not sufficient to cause CDH.
Collapse
Affiliation(s)
- Elizabeth M Sefton
- Department of Human Genetics, University of UtahSalt Lake CityUnited States
| | - Mirialys Gallardo
- Department of Human Genetics, University of UtahSalt Lake CityUnited States
| | - Claire E Tobin
- Department of Human Genetics, University of UtahSalt Lake CityUnited States
| | - Brittany C Collins
- Department of Human Genetics, University of UtahSalt Lake CityUnited States
| | - Mary P Colasanto
- Department of Human Genetics, University of UtahSalt Lake CityUnited States
| | | | - Gabrielle Kardon
- Department of Human Genetics, University of UtahSalt Lake CityUnited States
| |
Collapse
|
6
|
Trinajstic K, Long JA, Sanchez S, Boisvert CA, Snitting D, Tafforeau P, Dupret V, Clement AM, Currie PD, Roelofs B, Bevitt JJ, Lee MSY, Ahlberg PE. Exceptional preservation of organs in Devonian placoderms from the Gogo lagerstätte. Science 2022; 377:1311-1314. [DOI: 10.1126/science.abf3289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The origin and early diversification of jawed vertebrates involved major changes to skeletal and soft anatomy. Skeletal transformations can be examined directly by studying fossil stem gnathostomes; however, preservation of soft anatomy is rare. We describe the only known example of a three-dimensionally mineralized heart, thick-walled stomach, and bilobed liver from arthrodire placoderms, stem gnathostomes from the Late Devonian Gogo Formation in Western Australia. The application of synchrotron and neutron microtomography to this material shows evidence of a flat S-shaped heart, which is well separated from the liver and other abdominal organs, and the absence of lungs. Arthrodires thus show the earliest phylogenetic evidence for repositioning of the gnathostome heart associated with the evolution of the complex neck region in jawed vertebrates.
Collapse
Affiliation(s)
- Kate Trinajstic
- School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
- Western Australian Museum, Welshpool, WA 6106, Australia
| | - John A. Long
- College of Science and Engineering, Flinders University, Adelaide, SA 5001, Australia
- Museum Victoria, Melbourne, VIC 3001, Australia
| | - Sophie Sanchez
- Department of Organismal Biology, Evolutionary Biology Center, Uppsala University, 75236 Uppsala, Sweden
- European Synchrotron Radiation Facility, 38000 Grenoble, France
| | - Catherine A. Boisvert
- School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Daniel Snitting
- Department of Organismal Biology, Evolutionary Biology Center, Uppsala University, 75236 Uppsala, Sweden
| | - Paul Tafforeau
- European Synchrotron Radiation Facility, 38000 Grenoble, France
| | - Vincent Dupret
- Department of Organismal Biology, Evolutionary Biology Center, Uppsala University, 75236 Uppsala, Sweden
| | - Alice M. Clement
- College of Science and Engineering, Flinders University, Adelaide, SA 5001, Australia
| | - Peter D. Currie
- Australian Regenerative Medicine Institute and EMBL Australia, Monash University, Clayton, VIC 3800, Australia
| | - Brett Roelofs
- School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Joseph J. Bevitt
- Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia
| | - Michael S. Y. Lee
- College of Science and Engineering, Flinders University, Adelaide, SA 5001, Australia
- Earth Sciences Section, South Australian Museum, Adelaide, SA 5000, Australia
| | - Per E. Ahlberg
- Department of Organismal Biology, Evolutionary Biology Center, Uppsala University, 75236 Uppsala, Sweden
| |
Collapse
|
7
|
Double-layered two-directional somatopleural cell migration during chicken body wall development revealed with local fluorescent tissue labeling. Anat Sci Int 2022; 97:380-390. [DOI: 10.1007/s12565-022-00652-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/05/2022] [Indexed: 11/01/2022]
|
8
|
Marek RD, Falkingham PL, Benson RBJ, Gardiner JD, Maddox TW, Bates KT. Evolutionary versatility of the avian neck. Proc Biol Sci 2021; 288:20203150. [PMID: 33653136 PMCID: PMC7934994 DOI: 10.1098/rspb.2020.3150] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bird necks display unparalleled levels of morphological diversity compared to other vertebrates, yet it is unclear what factors have structured this variation. Using three-dimensional geometric morphometrics and multivariate statistics, we show that the avian cervical column is a hierarchical morpho-functional appendage, with varying magnitudes of ecologically driven osteological variation at different scales of organization. Contrary to expectations given the widely varying ecological functions of necks in different species, we find that regional modularity of the avian neck is highly conserved, with an overall structural blueprint that is significantly altered only by the most mechanically demanding ecological functions. Nevertheless, the morphologies of vertebrae within subregions of the neck show more prominent signals of adaptation to ecological pressures. We also find that both neck length allometry and the nature of neck elongation in birds are different from other vertebrates. In contrast with mammals, neck length scales isometrically with head mass and, contrary to previous work, we show that neck elongation in birds is achieved predominantly by increasing vertebral lengths rather than counts. Birds therefore possess a cervical spine that may be unique in its versatility among extant vertebrates, one that, since the origin of flight, has adapted to function as a surrogate forelimb in varied ecological niches.
Collapse
Affiliation(s)
- Ryan D Marek
- Department of Musculoskeletal & Ageing Science, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Peter L Falkingham
- Biological and Environmental Sciences, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK
| | - Roger B J Benson
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
| | - James D Gardiner
- Department of Musculoskeletal & Ageing Science, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Thomas W Maddox
- Department of Musculoskeletal & Ageing Science, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Karl T Bates
- Department of Musculoskeletal & Ageing Science, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| |
Collapse
|
9
|
Evolution of the Mammalian Neck from Developmental, Morpho-Functional, and Paleontological Perspectives. J MAMM EVOL 2020. [DOI: 10.1007/s10914-020-09506-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AbstractThe mammalian neck adopts a variety of postures during daily life and generates numerous head trajectories. Despite its functional diversity, the neck is constrained to seven cervical vertebrae in (almost) all mammals. Given this low number, an unexpectedly high degree of modularity of the mammalian neck has more recently been uncovered. This work aims to review neck modularity in mammals from a developmental, morpho-functional, and paleontological perspective and how high functional diversity evolved in the mammalian neck after the occurrence of meristic limitations. The fixed number of cervical vertebrae and the developmental modularity of the mammalian neck are closely linked to anterior Hox genes expression and strong developmental integration between the neck and other body regions. In addition, basic neck biomechanics promote morpho-functional modularity due to preferred motion axes in the cranio-cervical and cervico-thoracic junction. These developmental and biomechanical determinants result in the characteristic and highly conserved shape variation among the vertebrae that delimits morphological modules. The step-wise acquisition of these unique cervical traits can be traced in the fossil record. The increasing functional specialization of neck modules, however, did not evolve all at once but started much earlier in the upper than in the lower neck. Overall, the strongly conserved modularity in the mammalian neck represents an evolutionary trade-off between the meristic constraints and functional diversity. Although a morpho-functional partition of the neck is common among amniotes, the degree of modularity and the way neck disparity is realized is unique in mammals.
Collapse
|
10
|
Sefton EM, Kardon G. Connecting muscle development, birth defects, and evolution: An essential role for muscle connective tissue. Curr Top Dev Biol 2019; 132:137-176. [PMID: 30797508 DOI: 10.1016/bs.ctdb.2018.12.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Skeletal muscle powers all movement of the vertebrate body and is distributed in multiple regions that have evolved distinct functions. Axial muscles are ancestral muscles essential for support and locomotion of the whole body. The evolution of the head was accompanied by development of cranial muscles essential for eye movement, feeding, vocalization, and facial expression. With the evolution of paired fins and limbs and their associated muscles, vertebrates gained increased locomotor agility, populated the land, and acquired fine motor skills. Finally, unique muscles with specialized functions have evolved in some groups, and the diaphragm which solely evolved in mammals to increase respiratory capacity is one such example. The function of all these muscles requires their integration with the other components of the musculoskeletal system: muscle connective tissue (MCT), tendons, bones as well as nerves and vasculature. MCT is muscle's closest anatomical and functional partner. Not only is MCT critical in the adult for muscle structure and function, but recently MCT in the embryo has been found to be crucial for muscle development. In this review, we examine the important role of the MCT in axial, head, limb, and diaphragm muscles for regulating normal muscle development, discuss how defects in MCT-muscle interactions during development underlie the etiology of a range of birth defects, and explore how changes in MCT development or communication with muscle may have led to the modification and acquisition of new muscles during vertebrate evolution.
Collapse
Affiliation(s)
- Elizabeth M Sefton
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States
| | - Gabrielle Kardon
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
11
|
Sefton EM, Gallardo M, Kardon G. Developmental origin and morphogenesis of the diaphragm, an essential mammalian muscle. Dev Biol 2018; 440:64-73. [PMID: 29679560 DOI: 10.1016/j.ydbio.2018.04.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/14/2018] [Accepted: 04/14/2018] [Indexed: 11/17/2022]
Abstract
The diaphragm is a mammalian skeletal muscle essential for respiration and for separating the thoracic and abdominal cavities. Development of the diaphragm requires the coordinated development of muscle, muscle connective tissue, tendon, nerves, and vasculature that derive from different embryonic sources. However, defects in diaphragm development are common and the cause of an often deadly birth defect, Congenital Diaphragmatic Hernia (CDH). Here we comprehensively describe the normal developmental origin and complex spatial-temporal relationship between the different developing tissues to form a functional diaphragm using a developmental series of mouse embryos genetically and immunofluorescently labeled and analyzed in whole mount. We find that the earliest developmental events are the emigration of muscle progenitors from cervical somites followed by the projection of phrenic nerve axons from the cervical neural tube. Muscle progenitors and phrenic nerve target the pleuroperitoneal folds (PPFs), transient pyramidal-shaped structures that form between the thoracic and abdominal cavities. Subsequently, the PPFs expand across the surface of the liver to give rise to the muscle connective tissue and central tendon, and the leading edge of their expansion precedes muscle morphogenesis, formation of the vascular network, and outgrowth and branching of the phrenic nerve. Thus development and morphogenesis of the PPFs is critical for diaphragm formation. In addition, our data indicate that the earliest events in diaphragm development are critical for the etiology of CDH and instrumental to the evolution of the diaphragm. CDH initiates prior to E12.5 in mouse and suggests that defects in the early PPF formation or their ability to recruit muscle are an important source of CDH. Also, the recruitment of muscle progenitors from cervical somites to the nascent PPFs is uniquely mammalian and a key developmental innovation essential for the evolution of the muscularized diaphragm.
Collapse
Affiliation(s)
- Elizabeth M Sefton
- Department of Human Genetics University of Utah, Salt Lake City, UT 84112, USA
| | - Mirialys Gallardo
- Department of Human Genetics University of Utah, Salt Lake City, UT 84112, USA
| | - Gabrielle Kardon
- Department of Human Genetics University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
12
|
The neural crest and evolution of the head/trunk interface in vertebrates. Dev Biol 2018; 444 Suppl 1:S60-S66. [PMID: 29408469 DOI: 10.1016/j.ydbio.2018.01.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 12/31/2022]
Abstract
The migration and distribution patterns of neural crest (NC) cells reflect the distinct embryonic environments of the head and trunk: cephalic NC cells migrate predominantly along the dorsolateral pathway to populate the craniofacial and pharyngeal regions, whereas trunk crest cells migrate along the ventrolateral pathways to form the dorsal root ganglia. These two patterns thus reflect the branchiomeric and somitomeric architecture, respectively, of the vertebrate body plan. The so-called vagal NC occupies a postotic, intermediate level between the head and trunk NC. This level of NC gives rise to both trunk- and cephalic-type (circumpharyngeal) NC cells. The anatomical pattern of the amphioxus, a basal chordate, suggests that somites and pharyngeal gills coexist along an extensive length of the body axis, indicating that the embryonic environment is similar to that of vertebrate vagal NC cells and may have been ancestral for vertebrates. The amniote-like condition in which the cephalic and trunk domains are distinctly separated would have been brought about, in part, by anteroposterior reduction of the pharyngeal domain.
Collapse
|
13
|
Hirasawa T, Kuratani S. Evolution of the muscular system in tetrapod limbs. ZOOLOGICAL LETTERS 2018; 4:27. [PMID: 30258652 PMCID: PMC6148784 DOI: 10.1186/s40851-018-0110-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/04/2018] [Indexed: 05/16/2023]
Abstract
While skeletal evolution has been extensively studied, the evolution of limb muscles and brachial plexus has received less attention. In this review, we focus on the tempo and mode of evolution of forelimb muscles in the vertebrate history, and on the developmental mechanisms that have affected the evolution of their morphology. Tetrapod limb muscles develop from diffuse migrating cells derived from dermomyotomes, and the limb-innervating nerves lose their segmental patterns to form the brachial plexus distally. Despite such seemingly disorganized developmental processes, limb muscle homology has been highly conserved in tetrapod evolution, with the apparent exception of the mammalian diaphragm. The limb mesenchyme of lateral plate mesoderm likely plays a pivotal role in the subdivision of the myogenic cell population into individual muscles through the formation of interstitial muscle connective tissues. Interactions with tendons and motoneuron axons are involved in the early and late phases of limb muscle morphogenesis, respectively. The mechanism underlying the recurrent generation of limb muscle homology likely resides in these developmental processes, which should be studied from an evolutionary perspective in the future.
Collapse
Affiliation(s)
- Tatsuya Hirasawa
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047 Japan
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| |
Collapse
|
14
|
Arnold P, Esteve-Altava B, Fischer MS. Musculoskeletal networks reveal topological disparity in mammalian neck evolution. BMC Evol Biol 2017; 17:251. [PMID: 29237396 PMCID: PMC5729486 DOI: 10.1186/s12862-017-1101-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/30/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The increase in locomotor and metabolic performance during mammalian evolution was accompanied by the limitation of the number of cervical vertebrae to only seven. In turn, nuchal muscles underwent a reorganization while forelimb muscles expanded into the neck region. As variation in the cervical spine is low, the variation in the arrangement of the neck muscles and their attachment sites (i.e., the variability of the neck's musculoskeletal organization) is thus proposed to be an important source of neck disparity across mammals. Anatomical network analysis provides a novel framework to study the organization of the anatomical arrangement, or connectivity pattern, of the bones and muscles that constitute the mammalian neck in an evolutionary context. RESULTS Neck organization in mammals is characterized by a combination of conserved and highly variable network properties. We uncovered a conserved regionalization of the musculoskeletal organization of the neck into upper, mid and lower cervical modules. In contrast, there is a varying degree of complexity or specialization and of the integration of the pectoral elements. The musculoskeletal organization of the monotreme neck is distinctively different from that of therian mammals. CONCLUSIONS Our findings reveal that the limited number of vertebrae in the mammalian neck does not result in a low musculoskeletal disparity when examined in an evolutionary context. However, this disparity evolved late in mammalian history in parallel with the radiation of certain lineages (e.g., cetartiodactyls, xenarthrans). Disparity is further facilitated by the enhanced incorporation of forelimb muscles into the neck and their variability in attachment sites.
Collapse
Affiliation(s)
- Patrick Arnold
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Borja Esteve-Altava
- Structure & Motion Lab, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, UK
| | - Martin S. Fischer
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
15
|
Similowski T. Early evolution of the diaphragm in caseids: The diaphragm as an adaptation to mixed aquatic-terrestrial lifestyle. Respir Physiol Neurobiol 2017; 243:115-116. [DOI: 10.1016/j.resp.2017.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 03/24/2017] [Indexed: 11/28/2022]
|
16
|
Arnold P, Amson E, Fischer MS. Differential scaling patterns of vertebrae and the evolution of neck length in mammals. Evolution 2017; 71:1587-1599. [PMID: 28323340 DOI: 10.1111/evo.13232] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 03/06/2017] [Indexed: 12/13/2022]
Abstract
Almost all mammals have seven vertebrae in their cervical spines. This consistency represents one of the most prominent examples of morphological stasis in vertebrae evolution. Hence, the requirements associated with evolutionary modifications of neck length have to be met with a fixed number of vertebrae. It has not been clear whether body size influences the overall length of the cervical spine and its inner organization (i.e., if the mammalian neck is subject to allometry). Here, we provide the first large-scale analysis of the scaling patterns of the cervical spine and its constituting cervical vertebrae. Our findings reveal that the opposite allometric scaling of C1 and C2-C7 accommodate the increase of neck bending moment with body size. The internal organization of the neck skeleton exhibits surprisingly uniformity in the vast majority of mammals. Deviations from this general pattern only occur under extreme loading regimes associated with particular functional and allometric demands. Our results indicate that the main source of variation in the mammalian neck stems from the disparity of overall cervical spine length. The mammalian neck reveals how evolutionary disparity manifests itself in a structure that is otherwise highly restricted by meristic constraints.
Collapse
Affiliation(s)
- Patrick Arnold
- Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universität Jena, Erbert-Straße 1, D-07743, Jena, Germany.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103, Leipzig, Germany
| | - Eli Amson
- AG Morphologie und Formengeschichte, Bild Wissen Gestaltung-ein interdisziplinäres Labor & Institut für Biologie, Humboldt-Universität zu Berlin, Philippstraße 12/13, D-10115, Berlin, Germany
| | - Martin S Fischer
- Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universität Jena, Erbert-Straße 1, D-07743, Jena, Germany
| |
Collapse
|
17
|
Higashiyama H, Hirasawa T, Oisi Y, Sugahara F, Hyodo S, Kanai Y, Kuratani S. On the vagal cardiac nerves, with special reference to the early evolution of the head-trunk interface. J Morphol 2016; 277:1146-58. [PMID: 27216138 DOI: 10.1002/jmor.20563] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 04/28/2016] [Accepted: 05/02/2016] [Indexed: 12/11/2022]
Abstract
The vagus nerve, or the tenth cranial nerve, innervates the heart in addition to other visceral organs, including the posterior visceral arches. In amniotes, the anterior and posterior cardiac branches arise from the branchial and intestinal portions of the vagus nerve to innervate the arterial and venous poles of the heart, respectively. The evolution of this innervation pattern has yet to be elucidated, due mainly to the lack of morphological data on the vagus in basal vertebrates. To investigate this topic, we observed the vagus nerves of the lamprey (Lethenteron japonicum), elephant shark (Callorhinchus milii), and mouse (Mus musculus), focusing on the embryonic patterns of the vagal branches in the venous pole. In the lamprey, no vagus branch was found in the venous pole throughout development, whereas the arterial pole was innervated by a branch from the branchial portion. In contrast, the vagus innervated the arterial and venous poles in the mouse and elephant shark. Based on the morphological patterns of these branches, the venous vagal branches of the mouse and elephant shark appear to belong to the intestinal part of the vagus, implying that the cardiac nerve pattern is conserved among crown gnathostomes. Furthermore, we found a topographical shift of the structures adjacent to the venous pole (i.e., the hypoglossal nerve and pronephros) between the extant gnathostomes and lamprey. Phylogenetically, the lamprey morphology is likely to be the ancestral condition for vertebrates, suggesting that the evolution of the venous branch occurred early in the gnathostome lineage, in parallel with the remodeling of the head-trunk interfacial domain during the acquisition of the neck. J. Morphol. 277:1146-1158, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hiroki Higashiyama
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501, Japan.,Evolutionary Morphology Laboratory, RIKEN, Kobe, 650-0047, Japan.,Laboratory of Veterinary Anatomy, the University of Tokyo, Tokyo, 113-8657, Japan
| | - Tatsuya Hirasawa
- Evolutionary Morphology Laboratory, RIKEN, Kobe, 650-0047, Japan
| | - Yasuhiro Oisi
- Evolutionary Morphology Laboratory, RIKEN, Kobe, 650-0047, Japan.,Development and Function of Inhibitory Neural Circuits, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458, USA
| | - Fumiaki Sugahara
- Evolutionary Morphology Laboratory, RIKEN, Kobe, 650-0047, Japan.,Division of Biology, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan
| | - Susumu Hyodo
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, the University of Tokyo, Chiba, 277-8564, Japan
| | - Yoshiakira Kanai
- Laboratory of Veterinary Anatomy, the University of Tokyo, Tokyo, 113-8657, Japan
| | - Shigeru Kuratani
- Evolutionary Morphology Laboratory, RIKEN, Kobe, 650-0047, Japan
| |
Collapse
|
18
|
Sefton EM, Bhullar BAS, Mohaddes Z, Hanken J. Evolution of the head-trunk interface in tetrapod vertebrates. eLife 2016; 5:e09972. [PMID: 27090084 PMCID: PMC4841772 DOI: 10.7554/elife.09972] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 03/16/2016] [Indexed: 12/15/2022] Open
Abstract
Vertebrate neck musculature spans the transition zone between head and trunk. The extent to which the cucullaris muscle is a cranial muscle allied with the gill levators of anamniotes or is instead a trunk muscle is an ongoing debate. Novel computed tomography datasets reveal broad conservation of the cucullaris in gnathostomes, including coelacanth and caecilian, two sarcopterygians previously thought to lack it. In chicken, lateral plate mesoderm (LPM) adjacent to occipital somites is a recently identified embryonic source of cervical musculature. We fate-map this mesoderm in the axolotl (Ambystoma mexicanum), which retains external gills, and demonstrate its contribution to posterior gill-levator muscles and the cucullaris. Accordingly, LPM adjacent to the occipital somites should be regarded as posterior cranial mesoderm. The axial position of the head-trunk border in axolotl is congruent between LPM and somitic mesoderm, unlike in chicken and possibly other amniotes.
Collapse
Affiliation(s)
- Elizabeth M Sefton
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States.,Museum of Comparative Zoology, Harvard University, Cambridge, United States
| | - Bhart-Anjan S Bhullar
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States.,Museum of Comparative Zoology, Harvard University, Cambridge, United States.,Department of Organismal Biology and Anatomy, University of Chicago, Chicago, United States.,Department of Geology and Geophysics, Yale University, New Haven, United States.,Yale Peabody Museum of Natural History, Yale University, New Haven, United States
| | - Zahra Mohaddes
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States.,Museum of Comparative Zoology, Harvard University, Cambridge, United States
| | - James Hanken
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States.,Museum of Comparative Zoology, Harvard University, Cambridge, United States
| |
Collapse
|
19
|
Hanashima C, Nishimura T, Nakamura H, Stern CD. Time in Development. Preface. Dev Growth Differ 2016; 58:3-5. [PMID: 26818823 DOI: 10.1111/dgd.12265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Carina Hanashima
- Laboratory for Neocortical Development, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan.,Department of Biology, Graduate School of Science, Kobe University, Rokkodai-cho, Nada-ku, 657-8501, Kobe, Japan
| | - Takashi Nishimura
- Laboratory for Growth Control Signaling, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan.,Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0101, Nara, Japan
| | - Harukazu Nakamura
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Aoba-ku, 980-8578, Sendai, Japan
| | - Claudio D Stern
- Department of Cell and Developmental Biology, University College London, Gower Street (Anatomy building), London, WC1E 6BT, UK
| |
Collapse
|