1
|
Panagiotopoulos AA, Kalyvianaki K, Angelidaki A, Dellis D, Panagiotidis CA, Kampa M, Castanas E. The Sequence [RRKLPVGRS] Is a Nuclear Localization Signal for Importin 8 Binding (NLS8): A Chemical Biology and Bioinformatics Study. Int J Mol Sci 2025; 26:2814. [PMID: 40141456 PMCID: PMC11942892 DOI: 10.3390/ijms26062814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
Karyopherins, carrier proteins that recognize particular cargo protein patterns known as nuclear localization signals (NLSs), mediate the nuclear translocation of big proteins. In order to better understand the process of nuclear transport of proteins and create the groundwork for the development of innovative treatments that specifically target importins, it is imperative to clarify the intricate interactions between nuclear transporters and their cargo proteins. Until recently, very few NLSs have been documented. In the current work, an in silico method was used to identify NLSs for importin 8. It was determined that the sequence RRKLPVGRS serves as a recognition motif for importin 8 binding a karyopherin that is involved in the nuclear transportation of several important proteins like AGOs, SMADs, RPL23A, and TFE3. The sequence was validated in vitro in the breast cancer cell line T47D. This work subscribes to the effort to clarify the intricate relationships between nuclear transporters and their cargo proteins, in order to better understand the mechanism of nuclear transport of proteins and lay the groundwork for the development of novel therapeutics that target particular importins and have an immediate translational impact.
Collapse
Affiliation(s)
- Athanasios A. Panagiotopoulos
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Voutes Campus, 71013 Heraklion, Greece; (K.K.); (A.A.); (M.K.); (E.C.)
| | - Konstantina Kalyvianaki
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Voutes Campus, 71013 Heraklion, Greece; (K.K.); (A.A.); (M.K.); (E.C.)
| | - Aikaterini Angelidaki
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Voutes Campus, 71013 Heraklion, Greece; (K.K.); (A.A.); (M.K.); (E.C.)
| | - Dimitris Dellis
- National Infrastructures for Research and Technology, 11523 Athens, Greece;
| | - Christos A. Panagiotidis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Marilena Kampa
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Voutes Campus, 71013 Heraklion, Greece; (K.K.); (A.A.); (M.K.); (E.C.)
| | - Elias Castanas
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Voutes Campus, 71013 Heraklion, Greece; (K.K.); (A.A.); (M.K.); (E.C.)
| |
Collapse
|
2
|
Mansour RM, Mageed SSA, Awad FA, Sadek MM, Adel SA, Ashraf A, Alam-Eldein KM, Ahmed NE, Abdelaziz RY, Tolba EF, Mohamed HH, Rizk NI, Mohamed MO, Mohammed OA, Doghish AS. miRNAs and their multifaceted role in cutaneous wound healing. Funct Integr Genomics 2025; 25:33. [PMID: 39903291 DOI: 10.1007/s10142-025-01535-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/13/2025] [Accepted: 01/13/2025] [Indexed: 02/06/2025]
Abstract
The dynamic, complex process of cutaneous wound healing is required to restore skin integrity following an injury. This intricate process consists of four sequential and overlapping phases: hemostasis, inflammation, proliferation, and remodeling. Hemostasis immediately begins to function in response to vascular injury, forming a clot that stops the bleeding. To fight infection and remove debris, immune cells are enlisted during the inflammatory phase. Angiogenesis, re-epithelialization, and the creation of new tissue are all components of proliferation, whereas tissue maturation and scarring are the outcomes of remodeling. Chronic wounds, like those found in diabetic ulcers, frequently stay in a state of chronic inflammation because they are unable to go through these stages in a coordinated manner. The important regulatory roles that microRNAs (miRNAs) play in both normal and pathological wound healing have been highlighted by recent investigations. The miRNAs, small non-coding RNAs, modulate gene expression post-transcriptionally, profoundly impacting cellular functions. During the inflammatory phase, miRNAs control pro- and anti-inflammatory cytokines, as well as the activity of immune cells such as neutrophils and macrophages. Additionally, miRNAs are essential components of signaling networks related to inflammation, such as the toll-like receptor (TLR), nuclear factor kappa B (NF-kB), and Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathways. Some miRNAs have been discovered to either increase or alleviate inflammatory reactions, indicating their potential as therapeutic targets. Other miRNAs aid in angiogenesis by promoting the development of new blood vessels, which are essential for providing oxygen and nutrients to the healing tissue. They also affect keratinocyte migration and proliferation during the re-epithelialization phase, which involves growing new epithelial cells over the lesion. Another function of miRNAs is that they control the deposition of extracellular matrix (ECM) and the creation of scars during the remodeling phase. The abnormal expression of miRNAs in chronic wounds has led to the exploration of miRNA-based treatments. With a focus on resistant instances such as diabetic wounds, these therapeutic techniques seek to improve wound healing results by correcting the dysregulated miRNA expression.
Collapse
Affiliation(s)
- Reda M Mansour
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
- Molecular Biology and Biotechnology Department, School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Farah A Awad
- Molecular Biology and Biotechnology Department, School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Mohamed M Sadek
- Molecular Biology and Biotechnology Department, School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Shehab Ahmed Adel
- Molecular Biology and Biotechnology Department, School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Khaled M Alam-Eldein
- Molecular Biology and Biotechnology Department, School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Nada E Ahmed
- Medical Biotechnology Department, School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Rana Y Abdelaziz
- Medical Biotechnology Department, School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Esraa Farid Tolba
- Medical Biotechnology Department, School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
- Research and Development Specialist at Misr Technology for Biological Industries (MTBI), Cairo, Egypt
| | - Hend H Mohamed
- School of Biotechnology and Science Academy, Badr University in Cairo, Badr City, Cairo, 11829, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| | - Mohamed O Mohamed
- Department of Biotechnology, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| |
Collapse
|
3
|
Rai V. Transcriptomics Revealed Differentially Expressed Transcription Factors and MicroRNAs in Human Diabetic Foot Ulcers. Proteomes 2024; 12:32. [PMID: 39585119 PMCID: PMC11587442 DOI: 10.3390/proteomes12040032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/19/2024] [Accepted: 10/31/2024] [Indexed: 11/26/2024] Open
Abstract
Non-healing diabetic foot ulcers (DFUs) not only significantly increase morbidity and mortality but also cost a lot and drain healthcare resources. Persistent inflammation, decreased angiogenesis, and altered extracellular matrix remodeling contribute to delayed healing or non-healing. Recent studies suggest an increasing trend of DFUs in diabetes patients, and non-healing DFYs increase the incidence of amputation. Despite the current treatment with offloading, dressing, antibiotics use, and oxygen therapy, the risk of amputation persists. Thus, there is a need to understand the molecular and cellular factors regulating healing in DFUs. The ongoing research based on proteomics and transcriptomics has predicted multiple potential targets, but there is no definitive therapy to enhance healing in chronic DFUs. Increased or decreased expression of various proteins encoded by genes, whose expression transcriptionally and post-transcriptionally is regulated by transcription factors (TFs) and microRNAs (miRs), regulates DFU healing. For this study, RNA sequencing was conducted on 20 DFU samples of ulcer tissue and non-ulcerated nearby healthy tissues. The IPA analysis revealed various activated and inhibited transcription factors and microRNAs. Further network analysis revealed interactions between the TFs and miRs and the molecular targets of these TFs and miRs. The analysis revealed 30 differentially expressed transcription factors (21 activated and 9 inhibited), two translational regulators (RPSA and EIF4G2), and seven miRs, including mir-486, mir-324, mir-23, mir-186, mir-210, mir-199, and mir-338 in upstream regulators (p < 0.05), while causal network analysis (p < 0.05) revealed 28 differentially expressed TFs (19 activated and 9 inhibited), two translational regulators (RPSA and EIF4G2), and five miRs including mir-155, mir-486, mir-324, mir-210, and mir-1225. The protein-protein interaction analysis revealed the interaction of various novel proteins with the proteins involved in regulating DFU pathogenesis and healing. The results of this study highlight many activated and inhibited novel TFs and miRs not reported in the literature so far, as well as the targeted molecules. Since proteins are the functional units during biological processes, alteration of gene expression may result in different proteoforms and protein species, making the wound microenvironment a complex protein interaction (proteome complexity). Thus, investigating the effects of these TFs and miRs on protein expression using proteomics and combining these results with transcriptomics will help advance research on DFU healing and delineate potential therapeutic strategies.
Collapse
Affiliation(s)
- Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA 91766-1854, USA
| |
Collapse
|
4
|
Pasanen A, Sliz E, Huilaja L, Reimann E, Mägi R, Laisk T, Tasanen K, Kettunen J. Identifying Atopic Dermatitis Risk Loci in 1,094,060 Individuals with Subanalysis of Disease Severity and Onset. J Invest Dermatol 2024; 144:2417-2425. [PMID: 38663478 DOI: 10.1016/j.jid.2024.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 06/07/2024]
Abstract
Atopic dermatitis (AD) is a common inflammatory skin disease highly attributable to genetic factors. In this study, we report results from a genome-wide meta-analysis of AD in 37,541 cases and 1,056,519 controls with data from the FinnGen project, the Estonian Biobank, the UK Biobank, the EAGLE Consortium, and the BioBank Japan. We detected 77 independent AD-associated loci, of which 10 were, to our knowledge, previously unreported. The associated loci showed enrichment in various immune regulatory processes. We further performed subgroup analyses of mild and severe AD and of early- and late-onset AD, with data from the FinnGen project. Fifty-five of the 79 tested variants in the associated loci showed larger effect estimates for severe than for mild AD as determined through administered treatment. The age of onset, as determined by the first hospital visit with AD diagnosis, was lower in patients with particular AD-risk alleles. Our findings add to the knowledge of the genetic background of AD and may underlie the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Anu Pasanen
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland; Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland; Department of Dermatology, Oulu University Hospital, Oulu, Finland
| | - Eeva Sliz
- Center for Life-Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Laura Huilaja
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland; Department of Dermatology, Oulu University Hospital, Oulu, Finland
| | - Ene Reimann
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Triin Laisk
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Kaisa Tasanen
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland; Department of Dermatology, Oulu University Hospital, Oulu, Finland.
| | - Johannes Kettunen
- Center for Life-Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
5
|
Tian K, Xu W, Chen M, Deng F. miR-155 promotes Th17 differentiation by targeting FOXP3 to aggravate inflammation in MRSA pneumonia. Cytokine 2024; 180:156662. [PMID: 38824863 DOI: 10.1016/j.cyto.2024.156662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/04/2024] [Accepted: 05/21/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND Previous researches have clarified that miR-155 is increased in methicillin-resistant Staphylococcus aureus (MRSA) pneumonia, and modulates Th9 differentiation. Like Th9 cells, Th17 cells were also a subset of CD4+ T cells and involved in MRSA pneumonia progression. This work aimed to investigate the role and mechanism of miR-155 in Th17 differentiation. METHODS Bronchoalveolar lavage fluid (BALF) was collected from children with MRSA pneumonia and bronchial foreign bodies. MRSA-infected murine model was established followed by collecting BALF and lung tissues. qRT-PCR, ELISA and flow cytometry were performed to examine the mRNA expression and concentration of IL-17 and the number of Th17 cells in above samples. HE and ELISA were used to evaluate inflammatory responses in lung. Furthermore, CD4+ T cells were isolated from BALF of children for in vitro experiments. After treatments with miR-155 mimic/inhibitor, the roles of miR-155 in Th17/IL-17 regulation were determined. The downstream of miR-155 was explored by qRT-PCR, western blotting, dual luciferase reporter analysis and RIP assay. RESULTS The levels of IL-17 and the proportion of Th17 cells were increased in children with MRSA pneumonia. A similar pattern was observed in MRSA-infected mice. On the contrary, IL-17 neutralization abolished the activation of Th17/IL-17 induced by MRSA infection. Furthermore, IL-17 blockade diminished the inflammation caused by MRSA. In vitro experiments demonstrated miR-155 positively regulated IL-17 expression and Th17 differentiation. Mechanistically, FOXP3 was a direct target of miR-155. miR-155 inhibited FOXP3 level via binding between FOXP3 and Argonaute 2 (AGO2), the key component of RNA-induced silencing complex (RISC). FOXP3 overexpression reversed elevated IL-17 levels and Th17 differentiation induced by miR-155. CONCLUSIONS miR-155 facilitates Th17 differentiation by reducing FOXP3 through interaction of AGO2 and FOXP3 to promote the pathogenesis of MRSA pneumonia. IL-17 blockade weakens the inflammation due to MRSA, which provides a nonantibiotic treatment strategy for MRSA pneumonia.
Collapse
Affiliation(s)
- Keyin Tian
- Children's Medical Center of Anhui Medical University, Department of Pediatric nephrology, Hefei 230051, Anhui, China; The Fifth Clinical College of Anhui Medical University, Hefei 230051, Anhui, China; Anhui Provincial Children's Hospital, Department of Pediatric emergency, Hefei 230051, Anhui, China
| | - Weihua Xu
- Anhui Provincial Children's Hospital, Department of Pediatric emergency, Hefei 230051, Anhui, China
| | - Mingxiao Chen
- Anhui Provincial Children's Hospital, Department of Pediatric emergency, Hefei 230051, Anhui, China
| | - Fang Deng
- Children's Medical Center of Anhui Medical University, Department of Pediatric nephrology, Hefei 230051, Anhui, China; The Fifth Clinical College of Anhui Medical University, Hefei 230051, Anhui, China; Anhui Provincial Children's Hospital, Department of Pediatric nephrology, Hefei 230051, Anhui, China.
| |
Collapse
|
6
|
Benchaprathanphorn K, Muangman P, Chinaroonchai K, Namviriyachote N, Ampawong S, Angkhasirisap W, Kengkoom K, Viravaidya-Pasuwat K. Translational application of human keratinocyte-fibroblast cell sheets for accelerated wound healing in a clinically relevant type 2 diabetic rat model. Cytotherapy 2024; 26:360-371. [PMID: 38363247 DOI: 10.1016/j.jcyt.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/27/2023] [Accepted: 01/20/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND AIMS Despite advancements in wound care, wound healing remains a challenge, especially in individuals with type 2 diabetes. Cell sheet technology has emerged as an efficient and promising therapy for tissue regeneration and wound repair. Among these, bilayered human keratinocyte-fibroblast cell sheets constructed using temperature-responsive culture surfaces have been shown to mimic a normal tissue-like structure and secrete essential cytokines and growth factors that regulate the wound healing process. METHODS This study aimed to evaluate the safety and therapeutic potential of human skin cell sheets to treat full-thickness skin defects in a rat model of type 2 diabetes. RESULTS Our findings demonstrate that diabetic wounds transplanted with bilayered cell sheets resulted in accelerated re-epithelialization, increased angiogenesis, enhanced macrophage polarization and regeneration of tissue that closely resembled healthy skin. In contrast, the control group that did not receive cell sheet transplantation presented characteristic symptoms of impaired and delayed wound healing associated with type 2 diabetes. CONCLUSIONS The secretory cytokines and the upregulation of Nrf2 expression in response to cell sheet transplantation are believed to have played a key role in the improved wound healing observed in diabetic rats. Our study suggests that human keratinocyte-fibroblast cell sheets hold great potential as a therapeutic alternative for diabetic ulcers.
Collapse
Affiliation(s)
- Kanokaon Benchaprathanphorn
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Pornprom Muangman
- Trauma Surgery Division, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kusuma Chinaroonchai
- Trauma Surgery Division, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nantaporn Namviriyachote
- Trauma Surgery Division, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wannee Angkhasirisap
- Research and Academic Support Office, National Laboratory Animal Center, Mahidol University, Nakorn Pathom, Thailand
| | - Kanchana Kengkoom
- Research and Academic Support Office, National Laboratory Animal Center, Mahidol University, Nakorn Pathom, Thailand
| | - Kwanchanok Viravaidya-Pasuwat
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand; Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.
| |
Collapse
|
7
|
Wu X, Chen HW, Zhao ZY, Li L, Song C, Xiong J, Yang GX, Zhu Q, Hu JF. Carbopol 940-based hydrogels loading synergistic combination of quercetin and luteolin from the herb Euphorbia humifusa to promote Staphylococcus aureus infected wound healing. RSC Med Chem 2024; 15:553-560. [PMID: 38389873 PMCID: PMC10880921 DOI: 10.1039/d3md00611e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/28/2023] [Indexed: 02/24/2024] Open
Abstract
With the increasing prevalence of Staphylococcus aureus infections, rapid emergence of drug resistance and the slow healing of infected wounds, developing an efficient antibiotic-free multifunctional wound dressing for inhibiting S. aureus and simultaneously facilitating wound healing have become a huge challenge. Due to their excellent biocompatibility and biodegradability, some carbopol hydrogels based on plant extracts or purified compounds have already been applied in wound healing treatment. In China, Euphorbia humifusa Willd. (EuH) has been traditionally used as a medicine and food homologous medicine for the treatment of furuncles and carbuncles mainly caused by S. aureus infection. In an earlier study, EuH-originated flavonoids quercetin (QU) and luteolin (LU) could serve as a potential source for anti-S. aureus drug discovery when used in synergy. However, the in vivo effects of QU and LU on S. aureus-infected wound healing are still unknown. In this study, we found a series of Carbopol 940-based hydrogels loading QU and LU in combination could disinfect S. aureus and also could promote wound healing. In the full-thickness skin defect mouse model infected with S. aureus, the wound contraction ratio, bacterial burden, skin hyperplasia and inflammation score, as well as collagen deposition and blood vessels were then investigated. The results indicate that the optimized QL2 [QU (32 μg mL-1)-LU (8 μg mL-1)] hydrogel with biocompatibility significantly promoted S. aureus-infected wound healing through anti-infection, anti-inflammation, collagen deposition, and angiogenesis, revealing it as a promising alternative for infected wound repair.
Collapse
Affiliation(s)
- Xiying Wu
- School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University Zhejiang 318000 China
- Department of Natural Medicine, School of Pharmacy, Fudan University Shanghai 201203 China
- Shanghai Skin Disease Hospital, Tongji University School of Medicine Shanghai 200443 China
| | - Hao-Wei Chen
- School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University Zhejiang 318000 China
- Department of Natural Medicine, School of Pharmacy, Fudan University Shanghai 201203 China
| | - Ze-Yu Zhao
- School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University Zhejiang 318000 China
- Department of Natural Medicine, School of Pharmacy, Fudan University Shanghai 201203 China
| | - Lisha Li
- Shanghai Skin Disease Hospital, Tongji University School of Medicine Shanghai 200443 China
| | - Chi Song
- School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University Zhejiang 318000 China
- Department of Natural Medicine, School of Pharmacy, Fudan University Shanghai 201203 China
| | - Juan Xiong
- Department of Natural Medicine, School of Pharmacy, Fudan University Shanghai 201203 China
| | - Guo-Xun Yang
- Department of Natural Medicine, School of Pharmacy, Fudan University Shanghai 201203 China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine Shanghai 200443 China
| | - Jin-Feng Hu
- School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University Zhejiang 318000 China
- Department of Natural Medicine, School of Pharmacy, Fudan University Shanghai 201203 China
| |
Collapse
|
8
|
Qin Q, Haba D, Nakagami G. Which biomarkers predict hard-to-heal diabetic foot ulcers? A scoping review. Drug Discov Ther 2024; 17:368-377. [PMID: 38143075 DOI: 10.5582/ddt.2023.01086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Diabetic foot ulcers (DFUs) often develop into hard-to-heal wounds due to complex factors. Several biomarkers capable of identifying those at risk of delayed wound healing have been reported. Controlling or targeting these biomarkers could prevent the progression of DFUs into hard-to-heal wounds. This scoping review aimed to identify the key biomarkers that can predict hard-to-heal DFUs. Studies that reported biomarkers related to hard-to-heal DFUs, from 1980 to 2023, were mapped. Studies were collected from the following databases: MEDLINE, CINAHL, EMBASE, and ICHUSHI (Japana Centra Revuo Medicina), search terms included "diabetic," "ulcer," "non-healing," and "biomarker." A total of 808 articles were mapped, and 14 (10 human and 4 animal studies) were included in this review. The ulcer characteristics in the clinical studies varied. Most studies focused on either infected wounds or neuropathic wounds, and patients with ischemia were usually excluded. Among the reported biomarkers for the prediction of hard-to-heal DFUs, the pro-inflammatory cytokine CXCL-6 in wound fluid from non-infected and non-ischemic wounds had the highest prediction accuracy (area under the curve: 0.965; sensitivity: 87.27%; specificity: 95.56%). CXCL-6 levels could be a useful predictive biomarker for hard-to-heal DFUs. However, CXCL6, a chemoattractant for neutrophilic granulocytes, elicits its chemotactic effects by combining with the chemokine receptors CXCR1 and CXCR2, and is involved in several diseases. Therefore, it's difficult to use CXCL6 as a prevention or treatment target. Targetable specific biomarkers for hard-to-heal DFUs need to be determined.
Collapse
Affiliation(s)
- Qi Qin
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daijiro Haba
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Global Nursing Research Center, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Gojiro Nakagami
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Global Nursing Research Center, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Anikina VA, Sorokina SS, Shemyakov AE, Zamyatina EA, Taskaeva IS, Teplova PO, Popova NR. An Experimental Model of Proton-Beam-Induced Radiation Dermatitis In Vivo. Int J Mol Sci 2023; 24:16373. [PMID: 38003561 PMCID: PMC10671732 DOI: 10.3390/ijms242216373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Radiation dermatitis (RD) is one of the most common side effects of radiation therapy. However, to date, there is a lack of both specific treatments for RD and validated experimental animal models with the use of various sources of ionizing radiation (IR) applied in clinical practice. The aim of this study was to develop and validate a model of acute RD induced using proton radiation in mice. Acute RD (Grade 2-4) was obtained with doses of 30, 40, and 50 Gy, either with or without depilation. The developed model of RD was characterized by typical histological changes in the skin after irradiation. Moreover, the depilation contributed to a skin histology alteration of the irradiated mice. The assessment of animal vital signs indicated that there was no effect of proton irradiation on the well-being or general condition of the animals. This model can be used to develop effective therapeutic agents and study the pathogenesis of radiation-induced skin toxicity, including that caused by proton irradiation.
Collapse
Affiliation(s)
- Viktoriia A. Anikina
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 3 Institutskaya St., Pushchino 142290, Russia; (V.A.A.); (S.S.S.); (A.E.S.); (E.A.Z.)
| | - Svetlana S. Sorokina
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 3 Institutskaya St., Pushchino 142290, Russia; (V.A.A.); (S.S.S.); (A.E.S.); (E.A.Z.)
| | - Alexander E. Shemyakov
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 3 Institutskaya St., Pushchino 142290, Russia; (V.A.A.); (S.S.S.); (A.E.S.); (E.A.Z.)
- Branch “Physical-Technical Center” of P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 2 Akademichesky Proezd, Protvino 142281, Russia
| | - Elizaveta A. Zamyatina
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 3 Institutskaya St., Pushchino 142290, Russia; (V.A.A.); (S.S.S.); (A.E.S.); (E.A.Z.)
| | - Iuliia S. Taskaeva
- Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2 Timakova St., Novosibirsk 630060, Russia;
| | - Polina O. Teplova
- Institute of Cell Biophysics of the Russian Academy of Sciences, 3 Institutskaya St., Pushchino 142290, Russia;
| | - Nelli R. Popova
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 3 Institutskaya St., Pushchino 142290, Russia; (V.A.A.); (S.S.S.); (A.E.S.); (E.A.Z.)
| |
Collapse
|
10
|
Suo L, Cheng J, Yuan H, Jiang Z, Tash D, Wang L, Cheng H, Zhang Z, Zhang F, Zhang M, Cao Z, Zhao R, Guan D. miR-26a/30d/152 are reliable reference genes for miRNA quantification in skin wound age estimation. Forensic Sci Res 2023; 8:230-240. [PMID: 38221964 PMCID: PMC10785593 DOI: 10.1093/fsr/owad037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/23/2023] [Indexed: 01/16/2024] Open
Abstract
UNLABELLED MicroRNAs (miRNAs) are a class of small non-coding RNAs that exert their biological functions as negative regulators of gene expression. They are involved in the skin wound healing process with a dynamic expression pattern and can therefore potentially serve as biomarkers for skin wound age estimation. However, no reports have described any miRNAs as suitable reference genes (RGs) for miRNA quantification in wounded skin or samples with post-mortem changes. Here, we aimed to identify specific miRNAs as RGs for miRNA quantification to support further studies of skin wound age estimation. Overall, nine miRNAs stably expressed in mouse skin at certain posttraumatic intervals (PTIs) were preselected by next-generation sequencing as candidate RGs. These nine miRNAs and the commonly used reference genes (comRGs: U6, GAPDH, ACTB, 18S, 5S, LC-Ogdh) were quantitatively examined using quantitative real-time reverse-transcription polymerase chain reaction at different PTIs during skin wound healing in mice. The stabilities of these genes were evaluated using four independent algorithms: GeNorm, NormFinder, BestKeeper, and comparative Delta Ct. Stability was further evaluated in mice with different post-mortem intervals (PMIs). Overall, mmu-miR-26a-5p, mmu-miR-30d-5p, and mmu-miR-152-3p were identified as the most stable genes at both different PTIs and PMIs. These three miRNA RGs were additionally validated and compared with the comRGs in human samples. After assessing using one, two, or three miRNAs in combination for stability at different PTIs, PMIs, or in human samples, the set of miR-26a/30d/152 was approved as the best normalizer. In conclusion, our data suggest that the combination of miR-26a/30d/152 is recommended as the normalization strategy for miRNA qRT-PCR quantification in skin wound age estimation. KEY POINTS The small size of miRNAs makes them less susceptible to post-mortem autolysis or putrefaction, leading to their potential use in wound age estimation.Studying miRNAs as biological indicators of skin wound age estimation requires the selection and validation of stable reference genes because commonly used reference genes, such as U6, ACTB, GAPDH, 5S, 18S, and LC-Ogdh, are not stable.miR-26a/30d/152 are stable and reliable as reference genes and their use in combination is a recommended normalization strategy for miRNA quantitative analysis in wounded skin.
Collapse
Affiliation(s)
- Longlong Suo
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Jian Cheng
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Haomiao Yuan
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Zhenfei Jiang
- Department of Road Traffic Accident Investigation, Academy of Forensic Science, Shanghai, China
| | - Dilichati Tash
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
- Autonomous Prefecture Public Security Bureau, Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Linlin Wang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
- Collaborative Laboratory of Intelligentized Forensic Science, Shenyang, China
- Laboratory of Forensic Biochemistry, China Medical University School of Forensic Medicine, Shenyang, China
| | - Hao Cheng
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Zhongduo Zhang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Fuyuan Zhang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Miao Zhang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
- Collaborative Laboratory of Intelligentized Forensic Science, Shenyang, China
- Laboratory of Forensic Biochemistry, China Medical University School of Forensic Medicine, Shenyang, China
| | - Zhipeng Cao
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
- Collaborative Laboratory of Intelligentized Forensic Science, Shenyang, China
- Laboratory of Forensic Biochemistry, China Medical University School of Forensic Medicine, Shenyang, China
| | - Rui Zhao
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
- Collaborative Laboratory of Intelligentized Forensic Science, Shenyang, China
- Laboratory of Forensic Biochemistry, China Medical University School of Forensic Medicine, Shenyang, China
| | - Dawei Guan
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
- Collaborative Laboratory of Intelligentized Forensic Science, Shenyang, China
- Laboratory of Forensic Biochemistry, China Medical University School of Forensic Medicine, Shenyang, China
| |
Collapse
|
11
|
Wu W, Chen X, Liu X, Bao HJ, Li QH, Xian JY, Lu BF, Zhao Y, Chen S. SNORD60 promotes the tumorigenesis and progression of endometrial cancer through binding PIK3CA and regulating PI3K/AKT/mTOR signaling pathway. Mol Carcinog 2023; 62:413-426. [PMID: 36562475 DOI: 10.1002/mc.23495] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/17/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Endometrial carcinoma is a common gynecological malignant tumor, small nucleolar RNAs (snoRNAs) are involved in cancer development. However, researches on the roles of snoRNAs in endometrial carcinoma are limited. The expression levels of snoRNAs in endometrial cancer tissues were analyzed using The Cancer Genome Atlas (TCGA) database. Antisense oligonucleotides (ASOs) and plasmids were used for transfection. Moreover, CCK-8, EdU, wound-healing assay, transwell, cell apoptosis, western blotting, and xenograft model were employed to examine the biological functions of related molecules. real-time reverse transcription polymerase chain reaction and western blotting were performed to detect messenger RNA (mRNA) and protein levels. Including bioinformatics, fluorescence in situ hybridization, RNA pulldown, actinomycin D and RTL-P assays were also carried out to explore the molecular mechanism. Analysis of data from TCGA showed that the expression level of small nucleolar RNA, C/D box 60 (SNORD60) in endometrial cancer tissues is observably higher than that in normal endometrial tissues. Further research suggested that SNORD60 played a carcinogenic role both in vitro and in vivo, and significantly upregulated the expression of PIK3CA. However, the carcinogenic effects can be reversed by knocking down fibrillarin (FBL) or PIK3CA. SNORD60 forms complexes by binding with 2'-O-methyltransferase fibrillarin, thus catalyzes the 2'-O-methylation (Nm) modification of PIK3CA mRNA and modulates the PI3K/AKT/mTOR signaling pathway, so as to promote the development of endometrial cancer. In short, SNORD60 might become a new biomarker for the therapy of endometrial cancer in the future and provide new strategies for diagnosis and treatment.
Collapse
Affiliation(s)
- Wu Wu
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xi Chen
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xin Liu
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hai-Juan Bao
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qian-Hui Li
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jing-Yuan Xian
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bing-Feng Lu
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yang Zhao
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuo Chen
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
12
|
Huo J, Hu X, Bai J, Lv A. Multiomics analysis revealed miRNAs as potential regulators of the immune response in Carassius auratus gills to Aeromonas hydrophila infection. Front Immunol 2023; 14:1098455. [PMID: 36820086 PMCID: PMC9938762 DOI: 10.3389/fimmu.2023.1098455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/11/2023] [Indexed: 02/06/2023] Open
Abstract
The gill of fish is an important immune organ for pathogen defense, but its microRNA (miRNA) expression and regulatory mechanism remain unclear. In this study, we report on the histopathological and immunohistochemical features of the gills of the crucian carp Carassius auratus challenged with Aeromonas hydrophila. Small RNA libraries of the gills were constructed and sequenced on the Illumina HiSeq 2000 platform. A total of 1,165 differentially expressed miRNAs (DEMs) were identified in gills, of which 539 known and 7 unknown DEMs were significantly screened (p < 0.05). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that the potential target genes/proteins were primarily involved in 33 immune-related pathways, in which the inflammatory responses were focused on the Toll-like receptor (TLR), mitogen-activated protein kinase (MAPK), and nuclear factor kappa B (NF-κB) signaling pathways. Moreover, the expression levels of 14 key miRNAs (e.g., miR-10, miR-17, miR-26a, miR-144, miR-145, and miR-146a) and their target genes (e.g., TNFα, TLR4, NF-κB, TAB1, PI3K, and IRAK1) were verified. In addition, the protein levels based on isobaric tags for relative and absolute quantification (iTRAQ) were significantly associated with the results of the quantitative real-time PCR (qRT-PCR) analysis (p < 0.01). miR-17/pre-miR-17 were identified in the regulation expression of the NF-κB target gene, and the phylogenetic tree analysis showed that the pre-miR-17 of C. auratus with the closest similarity to the zebrafish Danio rerio is highly conserved in teleosts. This is the first report of the multi-omics analysis of the miRNAs and proteins in the gills of C. auratus infected with A. hydrophila, thus enriching knowledge on the regulation mechanism of the local immune response in Cyprinidae fish.
Collapse
Affiliation(s)
- Jiaxin Huo
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Xiucai Hu
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Jie Bai
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Aijun Lv
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, China
| |
Collapse
|
13
|
Anti-Inflammatory microRNAs for Treating Inflammatory Skin Diseases. Biomolecules 2022; 12:biom12081072. [PMID: 36008966 PMCID: PMC9405611 DOI: 10.3390/biom12081072] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 02/07/2023] Open
Abstract
Skin inflammation occurs due to immune dysregulation because of internal disorders, infections, and allergic reactions. The inflammation of the skin is a major sign of chronic autoimmune inflammatory diseases, such as psoriasis, atopic dermatitis (AD), and lupus erythematosus. Although there are many therapies for treating these cutaneous inflammation diseases, their recurrence rates are high due to incomplete resolution. MicroRNA (miRNA) plays a critical role in skin inflammation by regulating the expression of protein-coding genes at the posttranscriptional level during pathogenesis and homeostasis maintenance. Some miRNAs possess anti-inflammatory features, which are beneficial for mitigating the inflammatory response. miRNAs that are reduced in inflammatory skin diseases can be supplied transiently using miRNA mimics and agomir. miRNA-based therapies that can target multiple genes in a given pathway are potential candidates for the treatment of skin inflammation. This review article offers an overview of the function of miRNA in skin inflammation regulation, with a focus on psoriasis, AD, and cutaneous wounds. Some bioactive molecules can target and modulate miRNAs to achieve the objective of inflammation suppression. This review also reports the anti-inflammatory efficacy of these molecules through modulating miRNA expression. The main limitations of miRNA-based therapies are rapid biodegradation and poor skin and cell penetration. Consideration was given to improving these drawbacks using the approaches of cell-penetrating peptides (CPPs), nanocarriers, exosomes, and low-frequency ultrasound. A formulation design for successful miRNA delivery into skin and target cells is also described in this review. The possible use of miRNAs as biomarkers and therapeutic modalities could open a novel opportunity for the diagnosis and treatment of inflammation-associated skin diseases.
Collapse
|
14
|
Abstract
Chronic wounds are characterized by their inability to heal within an expected time frame and have emerged as an increasingly important clinical problem over the past several decades, owing to their increasing incidence and greater recognition of associated morbidity and socio-economic burden. Even up to a few years ago, the management of chronic wounds relied on standards of care that were outdated. However, the approach to these chronic conditions has improved, with better prevention, diagnosis and treatment. Such improvements are due to major advances in understanding of cellular and molecular aspects of basic science, in innovative and technological breakthroughs in treatment modalities from biomedical engineering, and in our ability to conduct well-controlled and reliable clinical research. The evidence-based approaches resulting from these advances have become the new standard of care. At the same time, these improvements are tempered by the recognition that persistent gaps exist in scientific knowledge of impaired healing and the ability of clinicians to reduce morbidity, loss of limb and mortality. Therefore, taking stock of what is known and what is needed to improve understanding of chronic wounds and their associated failure to heal is crucial to ensuring better treatments and outcomes.
Collapse
|
15
|
Jiang Y, Xu X, Xiao L, Wang L, Qiang S. The Role of microRNA in the Inflammatory Response of Wound Healing. Front Immunol 2022; 13:852419. [PMID: 35386721 PMCID: PMC8977525 DOI: 10.3389/fimmu.2022.852419] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/02/2022] [Indexed: 12/20/2022] Open
Abstract
Wound healing, a highly complex pathophysiological response to injury, includes four overlapping phases of hemostasis, inflammation, proliferation, and remodeling. Initiation and resolution of the inflammatory response are the primary requirements for wound healing, and are also key events that determines wound quality and healing time. Currently, the number of patients with persistent chronic wounds has generally increased, which imposes health and economic burden on patients and society. Recent studies have found that microRNA(miRNA) plays an essential role in the inflammation involved in wound healing and may provide a new therapeutic direction for wound treatment. Therefore, this review focused on the role and significance of miRNA in the inflammation phase of wound healing.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Xiang Xu
- Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Long Xiao
- Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Lihong Wang
- Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Sheng Qiang
- Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| |
Collapse
|
16
|
He X, Jia L, Zhang X. The Effect of Different Preoperative Depilation Ways on the Healing of Wounded Skin in Mice. Animals (Basel) 2022; 12:581. [PMID: 35268149 PMCID: PMC8909386 DOI: 10.3390/ani12050581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 02/01/2023] Open
Abstract
Hair removal is necessary before operating on animals with dense hair layers. To provide an appropriate hair removal method and maintain animal welfare, we introduced four commonly used depilation methods-namely, scissors shearing, electric shaving, depilatory cream, and sodium sulfide, and made systematic comparisons, instead of only examining one or two methods, as reported in the past. To further assess convenience and possible effects on skin wound healing, we performed a skin trauma model after depilation in C57BL/6J mice and recorded wound healing time. Meanwhile, the skin tissues around the wound were stained with H&E and Masson. The results showed that the wound contraction rate of the sodium sulfide group was significantly lower than other groups at different points in time. Furthermore, depilatory cream and sodium sulfide methods could induce a topical inflammatory response on the third day after the operation and delay the regeneration of collagen fibers. We concluded that sodium sulfide depilatory has a significant negative effect on wound healing. Depilatory cream is gentler, with mild skin irritation and symptoms of inflammation. The electric shaving method is more convenient and safer, and thus could be the best choice for preoperative depilation.
Collapse
Affiliation(s)
| | | | - Xiao Zhang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 169 West Changle Road, Xi’an 710032, China; (X.H.); (L.J.)
| |
Collapse
|
17
|
Sheng X, Yang Y, Liu J, Yu J, Guo Q, Guan W, Liu F. Down-regulation of miR-18b-5p protects against splenic hemorrhagic shock by directly targeting HIF-1α/iNOS pathway. Immunobiology 2022; 227:152188. [DOI: 10.1016/j.imbio.2022.152188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/14/2022] [Accepted: 02/05/2022] [Indexed: 01/15/2023]
|
18
|
Cui X, Huang X, Huang M, Zhou S, Guo L, Yu W, Duan M, Jiang B, Zeng J, Zhou J, Huang X, Liang P, Zhang P. miR-24-3p obstructs the proliferation and migration of HSFs after thermal injury by targeting PPAR-β and positively regulated by NF-κB. Exp Dermatol 2021; 31:841-853. [PMID: 34932851 DOI: 10.1111/exd.14517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 12/03/2021] [Accepted: 12/19/2021] [Indexed: 11/30/2022]
Abstract
Thermal injury repair is a complex process during which the maintenance of the proliferation and migration of human skin fibroblasts (HSFs) exert a crucial role. MicroRNAs have been proven to exert an essential function in repairing skin burns. This study delves into the regulatory effects of miR-24-3p on the migration and proliferation of HSFs that have sustained a thermal injury; thereby, providing deeper insight into thermal injury repair pathogenesis. The PPAR-β protein expression level progressively increased in a time-dependent manner on the 12th , 24th , and 48th hour following the thermal injury of the HSFs. The knockdown of PPAR-β markedly suppressed the proliferation of and migration of HSF. Following thermal injury, the knockdown also promoted the inflammatory cytokine IL-6, TNF-, PTGS-2, and P65 expression. PPAR-β contrastingly exhibited an opposite trend. A targeted relationship between PPAR-β and miR-24-3p was predicted and verified. miR-24-3p inhibited thermal injured-HSFs proliferation and migration and facilitated inflammatory cytokine expression through the regulation of PPAR-β. p65 directly targeted the transcriptional precursor of miR-24 and promoted miR-24 expression. A negative correlation between miR-24-3p expression level and PPAR-β expression level in rats burnt dermal tissues was observed. Our findings reveal that miR-24-3p is conducive to rehabilitating the denatured dermis, which may be beneficial in providing effective therapy of skin burns.
Collapse
Affiliation(s)
- Xu Cui
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Xu Huang
- Department of Hyperbaric Oxygen, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Mitao Huang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Situo Zhou
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Le Guo
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Wenchang Yu
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Mengting Duan
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Bimei Jiang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Jizhang Zeng
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Jie Zhou
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Xiaoyuan Huang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Pihong Zhang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| |
Collapse
|
19
|
Zheng T, Shao W, Tian J. Exosomes derived from ADSCs containing miR-378 promotes wound healing by targeting caspase-3. J Biochem Mol Toxicol 2021; 35:e22881. [PMID: 34392575 DOI: 10.1002/jbt.22881] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 04/02/2021] [Accepted: 08/02/2021] [Indexed: 12/16/2022]
Abstract
Pathological scars and chronic wounds caused by injury, aging, or surgery have always been important public health problems, and there is an urgent need to study the driving forces to find more effective treatments. In this study, we extracted and identified ADSCs exosomes and found that they have the ability to protect HaCat cells from oxidative damage, including promoting proliferation and migration and reducing apoptosis. Further studies determined that the expression of miR-378 was significantly enriched in exosomes. Studies have found that miR-378 mimic can produce protection similar to ADSCs-exo. However, when miR-378 inhibitors are used on ADSCs, the damage protection of the secreted exosomes disappears. This proves that miR-378 enriched in exosomes can improve HaCat's oxidative stress damage. Luciferase experiments show that this effect is achieved by targeting caspase-3. These results indicate that ADSCs play a protective role in wound healing by secreting miR-378-rich exosomes.
Collapse
Affiliation(s)
- Tianfeng Zheng
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Wenjun Shao
- Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Jun Tian
- Department of Dermatology, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
20
|
Versey Z, da Cruz Nizer WS, Russell E, Zigic S, DeZeeuw KG, Marek JE, Overhage J, Cassol E. Biofilm-Innate Immune Interface: Contribution to Chronic Wound Formation. Front Immunol 2021; 12:648554. [PMID: 33897696 PMCID: PMC8062706 DOI: 10.3389/fimmu.2021.648554] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/17/2021] [Indexed: 12/19/2022] Open
Abstract
Delayed wound healing can cause significant issues for immobile and ageing individuals as well as those living with co-morbid conditions such as diabetes, cardiovascular disease, and cancer. These delays increase a patient’s risk for infection and, in severe cases, can result in the formation of chronic, non-healing ulcers (e.g., diabetic foot ulcers, surgical site infections, pressure ulcers and venous leg ulcers). Chronic wounds are very difficult and expensive to treat and there is an urgent need to develop more effective therapeutics that restore healing processes. Sustained innate immune activation and inflammation are common features observed across most chronic wound types. However, the factors driving this activation remain incompletely understood. Emerging evidence suggests that the composition and structure of the wound microbiome may play a central role in driving this dysregulated activation but the cellular and molecular mechanisms underlying these processes require further investigation. In this review, we will discuss the current literature on: 1) how bacterial populations and biofilms contribute to chronic wound formation, 2) the role of bacteria and biofilms in driving dysfunctional innate immune responses in chronic wounds, and 3) therapeutics currently available (or underdevelopment) that target bacteria-innate immune interactions to improve healing. We will also discuss potential issues in studying the complexity of immune-biofilm interactions in chronic wounds and explore future areas of investigation for the field.
Collapse
Affiliation(s)
- Zoya Versey
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| | | | - Emily Russell
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| | - Sandra Zigic
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| | - Katrina G DeZeeuw
- Department of Complex Continuing Care, Saint Vincent Hospital, Ottawa, ON, Canada
| | - Jonah E Marek
- Department of Complex Continuing Care, Saint Vincent Hospital, Ottawa, ON, Canada
| | - Joerg Overhage
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada.,Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
21
|
Bagnicka E, Kawecka-Grochocka E, Pawlina-Tyszko K, Zalewska M, Kapusta A, Kościuczuk E, Marczak S, Ząbek T. MicroRNA expression profile in bovine mammary gland parenchyma infected by coagulase-positive or coagulase-negative staphylococci. Vet Res 2021; 52:41. [PMID: 33676576 PMCID: PMC7937231 DOI: 10.1186/s13567-021-00912-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 02/12/2021] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are short, non-coding RNAs, 21-23 nucleotides in length which are known to regulate biological processes that greatly impact immune system activity. The aim of the study was to compare the miRNA expression in non-infected (H) mammary gland parenchyma samples with that of glands infected with coagulase-positive staphylococci (CoPS) or coagulase-negative staphylococci (CoNS) using next-generation sequencing. The miRNA profile of the parenchyma was found to change during mastitis, with its profile depending on the type of pathogen. Comparing the CoPS and H groups, 256 known and 260 potentially new miRNAs were identified, including 32 that were differentially expressed (p ≤ 0.05), of which 27 were upregulated and 5 downregulated. Comparing the CoNS and H groups, 242 known and 171 new unique miRNAs were identified: 10 were upregulated (p ≤ 0.05), and 2 downregulated (p ≤ 0.05). In addition, comparing CoPS with H and CoNS with H, 5 Kyoto Encyclopedia of Genes and Genomes pathways were identified; in both comparisons, differentially-expressed miRNAs were associated with the bacterial invasion of epithelial cells and focal adhesion pathways. Four gene ontology terms were identified in each comparison, with 2 being common to both immune system processes and signal transduction. Our results indicate that miRNAs, especially miR-99 and miR-182, play an essential role in the epigenetic regulation of a range of cellular processes, including immunological systems bacterial growth in dendritic cells and disease pathogenesis (miR-99), DNA repair and tumor progression (miR-182).
Collapse
Affiliation(s)
- Emilia Bagnicka
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology Polish Academy of Sciences, ul Postepu 36A, 05-552, Jastrzębiec, Poland.
| | - Ewelina Kawecka-Grochocka
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology Polish Academy of Sciences, ul Postepu 36A, 05-552, Jastrzębiec, Poland
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, ul Ciszewskiego 8, 02-786, Warsaw, Poland
| | - Klaudia Pawlina-Tyszko
- Department of Animal Molecular Biology, The National Research Institute of Animal Production, ul Krakowska 1., 32-083, Balice near Krakow, Poland
| | - Magdalena Zalewska
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology Polish Academy of Sciences, ul Postepu 36A, 05-552, Jastrzębiec, Poland
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, ul Miecznikowa 1, 02-096, Warsaw, Poland
| | - Aleksandra Kapusta
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology Polish Academy of Sciences, ul Postepu 36A, 05-552, Jastrzębiec, Poland
| | - Ewa Kościuczuk
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology Polish Academy of Sciences, ul Postepu 36A, 05-552, Jastrzębiec, Poland
| | - Sylwester Marczak
- Experimental Farm, Institute of Genetics and Animal Biotechnology Polish Academy of Sciences, ul Postepu 36A, 05-552, Jastrzębiec, Poland
| | - Tomasz Ząbek
- Department of Animal Molecular Biology, The National Research Institute of Animal Production, ul Krakowska 1., 32-083, Balice near Krakow, Poland
| |
Collapse
|
22
|
Serra F, Aielli L, Costantini E. The role of miRNAs in the inflammatory phase of skin wound healing. AIMS ALLERGY AND IMMUNOLOGY 2021. [DOI: 10.3934/allergy.2021020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
<abstract>
<p>Wound healing (WH) is a fundamental physiological process to keep the integrity of the skin, therefore impaired and chronic WH is a common and severe medical problem and represent one of the biggest challenges of public health. The resolution of the WH inflammatory phase is characterized by a complex series of events that involves many cellular types, especially neutrophils, macrophages and inflammatory mediators, which are crucial for a correct wound closure. MicroRNAs (miRNAs) play essential roles in wound repair. In fact, miR-142 is linked to inflammation modulating neutrophils' chemotaxis and polarization, while the polarization of M1 toward the M2 phenotype is driven by miR-223 and miR-132 is linked to chemokines and cytokines that activate endothelial cells and attract leukocytes and peripheral cells to the damage site. Thus, understanding the dysregulation of miRNAs in WH will be decisive for the development of new and more effective therapies for the management of chronic wounds.</p>
</abstract>
Collapse
|
23
|
MicroRNAs: An Update of Applications in Forensic Science. Diagnostics (Basel) 2020; 11:diagnostics11010032. [PMID: 33375374 PMCID: PMC7823886 DOI: 10.3390/diagnostics11010032] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNAs containing 18–24 nucleotides that are involved in the regulation of many biochemical mechanisms in the human body. The level of miRNAs in body fluids and tissues increases because of altered pathophysiological mechanisms, thus they are employed as biomarkers for various diseases and conditions. In recent years, miRNAs obtained a great interest in many fields of forensic medicine given their stability and specificity. Several specific miRNAs have been studied in body fluid identification, in wound vitality in time of death determination, in drowning, in the anti-doping field, and other forensic fields. However, the major problems are (1) lack of universal protocols for diagnostic expression testing and (2) low reproducibility of independent studies. This review is an update on the application of these molecular markers in forensic biology.
Collapse
|
24
|
Bai J, Hu X, Wang R, Lü A, Sun J. MicroRNA expression profile analysis of skin immune response in crucian carp (Carassius auratus) infected by Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2020; 104:673-685. [PMID: 32505719 DOI: 10.1016/j.fsi.2020.05.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
MicroRNAs (miRNAs) are non-coding RNA molecules that regulate gene expression in fish, but its regulatory mechanism of the skin mucosal immune response remains poorly understood. In order to investigate the immunological role of miRNAs, three sRNA libraries (mSC, mST1, mST2) from skin samples of crucian carp (Carassiusauratus) infected with Aeromonas hydrophila at three time points (0, 6 and 12 hpi) were constructed and examined using Illumina Hiseq 2000 platform. All of the identified miRNA, rRNA and tRNA were 69444 (13.39%), 29550 (5.70%) and 10704 (2.06%) in skin, respectively. At 6 and 12 hpi, 829 and 856 miRNAs were differentially expressed, respectively. Among these DEMs, 53 known and 10 novel miRNAs were all significantly differentially expressed during early infection (p < 0.01). GO and KEGG enrichment analyses revealed that 118111 target-genes were primarily involved in cellular process, metabolic process, biological regulation and stress response, such as antigen processing and presentation, complement and coagulation cascades, phagosome, MAPK, TLR, NF-κB and JAK-STAT signaling pathways. These results will help to elucidate the mechanism of miRNAs involved in the skin mucosal immune response of crucian carp against Aeromonas hydrophila infection.
Collapse
Affiliation(s)
- Jie Bai
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| | - Xiucai Hu
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| | - Ruixia Wang
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| | - Aijun Lü
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Jingfeng Sun
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| |
Collapse
|
25
|
Kim SE, Mori R, Shimokawa I. Does Calorie Restriction Modulate Inflammaging via FoxO Transcription Factors? Nutrients 2020; 12:nu12071959. [PMID: 32630045 PMCID: PMC7399912 DOI: 10.3390/nu12071959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/11/2022] Open
Abstract
Calorie restriction (CR) has been shown to extend lifespan and retard aging-related functional decline in animals. Previously, we found that the anti-neoplastic and lifespan-extending effects of CR in mice are regulated by forkhead box O transcription factors (FoxO1 and FoxO3), located downstream of growth hormone (GH)–insulin-like growth factor (IGF)-1 signaling, in an isoform-specific manner. Inflammaging is a term coined to represent that persistent low-level of inflammation underlies the progression of aging and related diseases. Attenuation of inflammaging in the body may underlie the effects of CR. Recent studies have also identified cellular senescence and activation of the nucleotide-binding domain, leucine-rich-containing family, pyrin-domain-containing-3 (NLRP3) inflammasome as causative factors of inflammaging. In this paper, we reviewed the current knowledge of the molecular mechanisms linking the effects of CR with the formation of inflammasomes, particularly focusing on possible relations with FoxO3. Inflammation in the brain that affects adult neurogenesis and lifespan was also reviewed as evidence of inflammaging. A recent progress of microRNA research was described as regulatory circuits of initiation and propagation of inflammaging. Finally, we briefly introduced our preliminary results obtained from the mouse models, in which Foxo1 and Foxo3 genes were conditionally knocked out in the myeloid cell lineage.
Collapse
Affiliation(s)
| | | | - Isao Shimokawa
- Correspondence: ; Tel.: +81-95-819-7050; Fax: +81-95-819-7051
| |
Collapse
|
26
|
Liu CS, Schmezer P, Popanda O. Diacylglycerol Kinase Alpha in Radiation-Induced Fibrosis: Potential as a Predictive Marker or Therapeutic Target. Front Oncol 2020; 10:737. [PMID: 32477950 PMCID: PMC7235333 DOI: 10.3389/fonc.2020.00737] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022] Open
Abstract
Radiotherapy is an efficient tool in cancer treatment, but it brings along the risk of side effects such as fibrosis in the irradiated healthy tissue thus limiting tumor control and impairing quality of life of cancer survivors. Knowledge on radiation-related fibrosis risk and therapeutic options is still limited and requires further research. Recent studies demonstrated that epigenetic regulation of diacylglycerol kinase alpha (DGKA) is associated with radiation-induced fibrosis. However, the specific mechanisms are still unknown. In this review, we scrutinized the role of DGKA in the radiation response and in further cellular functions to show the potential of DGKA as a predictive marker or a novel target in fibrosis treatment. DGKA was reported to participate in immune response, lipid signaling, exosome production, and migration as well as cell proliferation, all processes which are suggested to be critical steps in fibrogenesis. Most of these functions are based on the conversion of diacylglycerol (DAG) to phosphatidic acid (PA) at plasma membranes, but DGKA might have also other, yet not well-known functions in the nucleus. Current evidence summarized here underlines that DGKA activation may play a central role in fibrosis formation post-irradiation and shows a potential of direct DGKA inhibitors or epigenetic modulators to attenuate pro-fibrotic reactions, thus providing novel therapeutic choices.
Collapse
Affiliation(s)
- Chun-Shan Liu
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Schmezer
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Odilia Popanda
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
27
|
Rong HT, Liu DW. Identification of differentially expressed miRNAs associated with thermal injury in epidermal stem cells based on RNA-sequencing. Exp Ther Med 2020; 19:2218-2228. [PMID: 32104287 PMCID: PMC7027234 DOI: 10.3892/etm.2020.8448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 11/06/2019] [Indexed: 12/27/2022] Open
Abstract
Current research indicates that epidermal stem cells (EpSCs) play an important role in promoting wound healing, but the mechanism of action of these cells during wound repair following thermal damage remains unclear. In the present study, the trypsin digestion method was used to isolate human EpSCs and the cells were incubated in a 51.5°C water tank for 35 sec to construct a thermal injury model. The differentially expressed miRNAs were identified using high-throughput sequencing technology, and bioinformatic methods were used to predict their target genes and signaling pathways that may be involved in wound repair. A total of 33 miRNAs including, hsa-miR-1973, hsa-miR-4485-3p, hsa-miR-548-5p, hsa-miR-212-3p and hsa-miR-4461 were upregulated, whereas 21 miRNAs including, hsa-miR-4520-5p, hsa-miR-4661-5p, hsa-miR-191-3p, hsa-miR-129-5p, hsa-miR-147b and hsa-miR-6868-3p were downregulated following thermal injury of the human EpSCs. The bioinformatic analysis indicated that the differentially expressed miRNAs are involved in biological processes such as cell proliferation and differentiation, cell growth apoptosis, cell adhesion and migration. The results showed that there is a differential expression pattern of miRNAs after thermal injury of human EpSCs and these differences are involved in the regulation of the wound healing process. These findings provide new clues for further study of the wound healing mechanism and targeted therapy.
Collapse
Affiliation(s)
- Hao-Tian Rong
- Burns Institute, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- First Clinical Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - De-Wu Liu
- Burns Institute, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
28
|
Wang X, Kong Y, Zhao H, Yan X. Dependence of the
Bacillus subtilis
biofilm expansion rate on phenotypes and the morphology under different growing conditions. Dev Growth Differ 2019; 61:431-443. [DOI: 10.1111/dgd.12627] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaoling Wang
- School of Mechanical Engineering University of Science and Technology Beijing Beijing China
- School of Engineering and Applied Sciences Harvard University Cambridge MA USA
| | - Yuhao Kong
- School of Mechanical Engineering University of Science and Technology Beijing Beijing China
| | - Hui Zhao
- State Key Laboratory of Computer Science Institute of Software Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Huairou China
| | - Xiaoqiang Yan
- School of Mechanical Engineering University of Science and Technology Beijing Beijing China
| |
Collapse
|
29
|
Shukla SK, Sharma AK, Gupta V, Yashavarddhan MH. Pharmacological control of inflammation in wound healing. J Tissue Viability 2019; 28:218-222. [PMID: 31542301 DOI: 10.1016/j.jtv.2019.09.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 08/02/2019] [Accepted: 09/13/2019] [Indexed: 12/11/2022]
Abstract
Wound inflammation is a rapid and highly orchestrated process that significantly impacts the wound healing cascade. Consequent to injury, a series of events set off that include inflammatory, proliferation and maturation phases leading to wound closure and restoration of normal skin integrity. Stimuli causing stress to host immune system or induce inflammatory response include tissue damage and pathogenic microbial infection.Several evidences points towards the positive role of inflammation as it essential to fight against the attack of invading pathogens and to remove dead tissues from the site of injury. Besides its positive role, prolonged inflammation is injurious and may result in deregulated stages of the wound healing which may lead to excessive scarring. Achieving balance in inflammatory cascade is one of the challenging tasks for development of a wound healing drug. This review mainly focuses on the pharmacological control of inflammation by agents which critically balance the inflammatory cascade. However, none of the agent is available in the healthcare market which exclusively plays a role in wound repair. In this review we shall explore different factors or agents affecting inflammation in wound healing. This information might be helpful in designing and development new process, technologies or drugs for better management of wound care. In addition, understanding the effect of inflammation on the outcome of the healing process will serve as a significant milestone in the area of pathological tissue repair.
Collapse
Affiliation(s)
| | - Ajay Kumar Sharma
- Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi, India
| | - Vanya Gupta
- Graphic Era Deemed to be University, Uttarakhand, India
| | - M H Yashavarddhan
- Defence Institute of Physiology and Allied Sciences, DRDO, Delhi, India
| |
Collapse
|
30
|
Bando T, Yokoyama H, Nakamura H. Wound repair, remodeling, and regeneration. Dev Growth Differ 2019; 60:303-305. [PMID: 30133712 DOI: 10.1111/dgd.12566] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Tetsuya Bando
- Department of Cytology and Histology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hitoshi Yokoyama
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Harukazu Nakamura
- Laboratory of Organ Morphogenesis, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|