1
|
Song X, Singh M, Lee KE, Vinayagam R, Kang SG. Caffeine: A Multifunctional Efficacious Molecule with Diverse Health Implications and Emerging Delivery Systems. Int J Mol Sci 2024; 25:12003. [PMID: 39596082 PMCID: PMC11593559 DOI: 10.3390/ijms252212003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Natural caffeine is found in many plants, including coffee beans, cacao beans, and tea leaves. Around the world, many beverages, including coffee, tea, energy drinks, and some soft drinks, have this natural caffeine compound. This paper reviewed the results of meta-studies on caffeine's effects on chronic diseases. Of importance, many meta-studies have shown that regularly drinking caffeine or caffeinated coffee significantly reduces the risk of developing Alzheimer's disease, epilepsy, and Parkinson's disease. Based on the health supplements of caffeine, this review summarizes various aspects related to the application of caffeine, including its pharmacokinetics, and various functional health benefits of caffeine, such as its effects on the central nervous system. The importance of caffeine and its use in alleviating or treating cancer, diabetes, eye diseases, autoimmune diseases, and cardiovascular diseases is also discussed. Overall, consuming caffeine daily in drinks containing antioxidant and neuroprotective properties, such as coffee, prevents progressive neurodegenerative diseases, such as Alzheimer's and Parkinson's. Furthermore, to effectively deliver caffeine to the body, recently developed nanoformulations using caffeine, for instance, nanoparticles, liposomes, etc., are summarized along with regulatory and safety considerations for caffeine. The U.S. Department of Agriculture (USDA) and the Food and Drug Administration (FDA) recommended that healthy adults consume up to 400 mg of caffeine per day or 5~6 mg/kg body weight. Since a cup of coffee contains, on average, 100 to 150 mg of coffee, 1 to 3 cups of coffee may help prevent chronic diseases. Furthermore, this review summarizes various interesting and important areas of research on caffeine and its applications related to human health.
Collapse
Affiliation(s)
- Xinjie Song
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China;
| | - Mahendra Singh
- Department of Biotechnology, Institute of Biotechnology, School of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Kyung Eun Lee
- Sunforce Inc., 208-31, Gumchang-ro, Yeungcheon-si 31882, Republic of Korea;
| | - Ramachandran Vinayagam
- Department of Biotechnology, Institute of Biotechnology, School of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Sang Gu Kang
- Department of Biotechnology, Institute of Biotechnology, School of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
2
|
Smee SN, Johnson R, Rush A, Davey RJ. A very low carbohydrate diet for minimising blood glucose excursions during ultra-endurance open-water swimming in type 1 diabetes: a case report. Appl Physiol Nutr Metab 2024; 49:554-559. [PMID: 38109711 DOI: 10.1139/apnm-2023-0266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Carbohydrate-restricted diets are used by people with type 1 diabetes (T1D) to help manage their condition. However, the impact of this strategy on blood glucose responses to exercise is unknown. This study describes the nutritional strategies of an athlete with T1D, who follows a very low carbohydrate diet to manage her condition during an ultra-endurance open-water swimming event. The athlete completed the 19.7 km distance in 6 h 43 min. She experienced minimal disruptions to glycaemia, reduced need for supplemental carbohydrate, and no episodes of symptomatic hypoglycaemia. This case report will hopefully encourage further experimental studies that inform and expand current clinical practice guidelines.
Collapse
Affiliation(s)
- Shania N Smee
- Curtin School of Allied Health, Curtin University, Whadjuk Noongar Country, Perth, Western Australia, Australia
- Rio Tinto Children's Diabetes Centre, Telethon Kids Institute, Whadjuk Noongar Country, Perth, Western Australia, Australia
| | - Rebecca Johnson
- Type 1 Diabetes Family Centre, Whadjuk Noongar Country, Perth, Western Australia, Australia
| | - Amy Rush
- Type 1 Diabetes Family Centre, Whadjuk Noongar Country, Perth, Western Australia, Australia
| | - Raymond J Davey
- Curtin School of Allied Health, Curtin University, Whadjuk Noongar Country, Perth, Western Australia, Australia
| |
Collapse
|
3
|
Cavallo M, De Fano M, Barana L, Dozzani I, Bianchini E, Pellegrino M, Cisternino L, Migliarelli S, Giulietti C, Pippi R, Fanelli CG. Nutritional Management of Athletes with Type 1 Diabetes: A Narrative Review. Nutrients 2024; 16:907. [PMID: 38542818 PMCID: PMC10975101 DOI: 10.3390/nu16060907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 11/12/2024] Open
Abstract
Type 1 diabetes mellitus (T1DM) represents a complex clinical challenge for health systems. The autoimmune destruction of pancreatic beta cells leads to a complete lack of insulin production, exposing people to a lifelong risk of acute (DKA, coma) and chronic complications (macro and microvascular). Physical activity (PA) has widely demonstrated its efficacy in helping diabetes treatment. Nutritional management of people living with T1DM is particularly difficult. Balancing macronutrients, their effects on glycemic control, and insulin treatment represents a complex clinical challenge for the diabetologist. The effects of PA on glycemic control are largely unpredictable depending on many individual factors, such as intensity, nutrient co-ingestion, and many others. Due to this clinical complexity, we have reviewed the actual scientific literature in depth to help diabetologists, sport medicine doctors, nutritionists, and all the health figures involved in diabetes care to ameliorate both glycemic control and the nutritional status of T1DM people engaging in PA. Two electronic databases (PubMed and Scopus) were searched from their inception to January 2024. The main recommendations for carbohydrate and protein ingestion before, during, and immediately after PA are explained. Glycemic management during such activity is widely reviewed. Micronutrient needs and nutritional supplement effects are also highlighted in this paper.
Collapse
Affiliation(s)
- Massimiliano Cavallo
- Department of Medicine and Surgery, University of Perugia, Unit of Internal Medicine, Terni University Hospital, Piazzale Tristano Di Joannuccio, 1, 05100 Terni, Italy
| | - Michelantonio De Fano
- Section of Endocrinology and Metabolism, Department of Medicine and Surgery, University of Perugia Medical School, 06132 Perugia, Italy; (M.D.F.); (I.D.); (E.B.); (M.P.); (L.C.); (C.G.); (C.G.F.)
| | - Luisa Barana
- Diabetology and Endocrinology, Degli Infermi New Hospital of Biella, 13875 Biella, Italy;
| | - Ivan Dozzani
- Section of Endocrinology and Metabolism, Department of Medicine and Surgery, University of Perugia Medical School, 06132 Perugia, Italy; (M.D.F.); (I.D.); (E.B.); (M.P.); (L.C.); (C.G.); (C.G.F.)
| | - Eleonora Bianchini
- Section of Endocrinology and Metabolism, Department of Medicine and Surgery, University of Perugia Medical School, 06132 Perugia, Italy; (M.D.F.); (I.D.); (E.B.); (M.P.); (L.C.); (C.G.); (C.G.F.)
| | - Marialucia Pellegrino
- Section of Endocrinology and Metabolism, Department of Medicine and Surgery, University of Perugia Medical School, 06132 Perugia, Italy; (M.D.F.); (I.D.); (E.B.); (M.P.); (L.C.); (C.G.); (C.G.F.)
| | - Linda Cisternino
- Section of Endocrinology and Metabolism, Department of Medicine and Surgery, University of Perugia Medical School, 06132 Perugia, Italy; (M.D.F.); (I.D.); (E.B.); (M.P.); (L.C.); (C.G.); (C.G.F.)
| | - Sara Migliarelli
- Section of Endocrinology and Metabolism, Department of Medicine and Surgery, University of Perugia Medical School, 06132 Perugia, Italy; (M.D.F.); (I.D.); (E.B.); (M.P.); (L.C.); (C.G.); (C.G.F.)
| | - Cecilia Giulietti
- Section of Endocrinology and Metabolism, Department of Medicine and Surgery, University of Perugia Medical School, 06132 Perugia, Italy; (M.D.F.); (I.D.); (E.B.); (M.P.); (L.C.); (C.G.); (C.G.F.)
| | - Roberto Pippi
- Healthy Lifestyle Institute, C.U.R.I.A.Mo. (Centro Universitario Ricerca Interdipartimentale Attività Motoria), Department of Medicine and Surgery, University of Perugia, Via G. Bambagioni, 19, 06126 Perugia, Italy
| | - Carmine Giuseppe Fanelli
- Section of Endocrinology and Metabolism, Department of Medicine and Surgery, University of Perugia Medical School, 06132 Perugia, Italy; (M.D.F.); (I.D.); (E.B.); (M.P.); (L.C.); (C.G.); (C.G.F.)
- Healthy Lifestyle Institute, C.U.R.I.A.Mo. (Centro Universitario Ricerca Interdipartimentale Attività Motoria), Department of Medicine and Surgery, University of Perugia, Via G. Bambagioni, 19, 06126 Perugia, Italy
| |
Collapse
|
4
|
Eckstein ML, Aziz F, Aberer F, Böckel S, Zimmer RT, Erlmann MP, Sourij H, Moser O. Blood glucose response to running or cycling in individuals with type 1 diabetes: A systematic review and meta-analysis. Diabet Med 2023; 40:e14981. [PMID: 36259159 DOI: 10.1111/dme.14981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/03/2022] [Accepted: 10/17/2022] [Indexed: 01/17/2023]
Abstract
AIMS The aim of this systematic review and meta-analysis was to assess how running and cycling influence the magnitude of blood glucose (BG) excursions in individuals with type 1 diabetes. METHODS A systematic literature search was conducted in EMBASE, PubMed, Cochrane Central Register of Controlled Trials, and ISI Web of Knowledge for publications from January 1950 until February 2021. Parameters included for analysis were population (adults and adolescents), exercise type, intensity, duration and insulin preparation. The meta-analysis was performed to estimate the pooled mean with a 95% confidence interval (CI) of delta BG levels. In addition, sub-group and meta-regression analyses were performed to assess the influence of these parameters on delta BG. RESULTS The database search identified 3192 articles of which 69 articles were included in the meta-analysis. Due to crossover designs within articles, 151 different results were included for analysis. Data from 1901 exercise tests of individuals with type 1 diabetes with a mean age of 29 ± 4 years were included. Overall, exercise tests BG decreased by -3.1 mmol/L [-3.4; -2.8] within a mean duration of 46 ± 21 min. The pooled mean decrease in BG for running was -4.1 mmol/L [-4.7; -2.4], whilst the pooled mean decrease in BG for cycling was -2.7 mmol/L [-3.0; -2.4] (p < 0.0001). Overall results can be found in Table S2. CONCLUSIONS Running led to a larger decrease in BG in comparison to cycling. Active individuals with type 1 diabetes should be aware that current recommendations for glycaemic management need to be more specific to the mode of exercise.
Collapse
Affiliation(s)
- Max L Eckstein
- BaySpo - Bayreuth Center of Sport Science, Research Group Exercise Physiology and Metabolism, University Bayreuth, Bayreuth, Germany
| | - Faisal Aziz
- Interdisciplinary Metabolic Medicine Trials Unit, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Felix Aberer
- BaySpo - Bayreuth Center of Sport Science, Research Group Exercise Physiology and Metabolism, University Bayreuth, Bayreuth, Germany
- Interdisciplinary Metabolic Medicine Trials Unit, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Sina Böckel
- BaySpo - Bayreuth Center of Sport Science, Research Group Exercise Physiology and Metabolism, University Bayreuth, Bayreuth, Germany
| | - Rebecca T Zimmer
- BaySpo - Bayreuth Center of Sport Science, Research Group Exercise Physiology and Metabolism, University Bayreuth, Bayreuth, Germany
| | - Maximilian P Erlmann
- BaySpo - Bayreuth Center of Sport Science, Research Group Exercise Physiology and Metabolism, University Bayreuth, Bayreuth, Germany
| | - Harald Sourij
- Interdisciplinary Metabolic Medicine Trials Unit, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Othmar Moser
- BaySpo - Bayreuth Center of Sport Science, Research Group Exercise Physiology and Metabolism, University Bayreuth, Bayreuth, Germany
- Interdisciplinary Metabolic Medicine Trials Unit, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| |
Collapse
|
5
|
Annan SF, Higgins LA, Jelleryd E, Hannon T, Rose S, Salis S, Baptista J, Chinchilla P, Marcovecchio ML. ISPAD Clinical Practice Consensus Guidelines 2022: Nutritional management in children and adolescents with diabetes. Pediatr Diabetes 2022; 23:1297-1321. [PMID: 36468223 DOI: 10.1111/pedi.13429] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 12/07/2022] Open
Affiliation(s)
- S Francesca Annan
- Paediatric Division, University College London Hospitals, London, UK
| | - Laurie A Higgins
- Pediatric, Adolescent and Young Adult Section, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Elisabeth Jelleryd
- Medical Unit Clinical Nutrition, Karolinska University Hospital, Stockholm, Sweden
| | - Tamara Hannon
- School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Shelley Rose
- Diabetes & Endocrinology Service, MidCentral District Health Board, Palmerston North, New Zealand
| | - Sheryl Salis
- Department of Nutrition, Nurture Health Solutions, Mumbai, India
| | | | - Paula Chinchilla
- Women's and Children's Department, London North West Healthcare NHS Trust, London, UK
| | - Maria Loredana Marcovecchio
- Department of Paediatrics, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
6
|
Association of HbA1c with VO 2max in Individuals with Type 1 Diabetes: A Systematic Review and Meta-Analysis. Metabolites 2022; 12:metabo12111017. [PMID: 36355100 PMCID: PMC9697838 DOI: 10.3390/metabo12111017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of this systematic review and meta-analysis was to evaluate the association between glycemic control (HbA1c) and functional capacity (VO2max) in individuals with type 1 diabetes (T1DM). A systematic literature search was conducted in EMBASE, PubMed, Cochrane Central Register of Controlled Trials, and ISI Web of Knowledge for publications from January 1950 until July 2020. Randomized and observational controlled trials with a minimum number of three participants were included if cardio-pulmonary exercise tests to determine VO2max and HbA1c measurement has been performed. Pooled mean values were estimated for VO2max and HbA1c and weighted Pearson correlation and meta-regression were performed to assess the association between these parameters. We included 187 studies with a total of 3278 individuals with T1DM. The pooled mean HbA1c value was 8.1% (95%CI; 7.9−8.3%), and relative VO2max was 38.5 mL/min/kg (37.3−39.6). The pooled mean VO2max was significantly lower (36.9 vs. 40.7, p = 0.001) in studies reporting a mean HbA1c > 7.5% compared to studies with a mean HbA1c ≤ 7.5%. Weighted Pearson correlation coefficient was r = −0.19 (p < 0.001) between VO2max and HbA1c. Meta-regression adjusted for age and sex showed a significant decrease of −0.94 mL/min/kg in VO2max per HbA1c increase of 1% (p = 0.024). In conclusion, we were able to determine a statistically significant correlation between HbA1c and VO2max in individuals with T1DM. However, as the correlation was only weak, the association of HbA1c and VO2max might not be of clinical relevance in individuals with T1DM.
Collapse
|
7
|
Lijing W, Sujie K, Linxi W, Lishan H, Liqin Q, Zhidong Z, Kejun W, Mengjun Z, Xiaoying L, Xiaohong L, Libin L. Altered Caffeine Metabolism Is Associated With Recurrent Hypoglycemia in Type 2 Diabetes Mellitus: A UPLC-MS-Based Untargeted Metabolomics Study. Front Endocrinol (Lausanne) 2022; 13:843556. [PMID: 35784552 PMCID: PMC9248032 DOI: 10.3389/fendo.2022.843556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 05/02/2022] [Indexed: 11/18/2022] Open
Abstract
Background Recurrent hypoglycemia (RH) is well known to impair awareness of hypoglycemia and increase the risk of severe hypoglycemia; the underlying mechanism requires further understanding. We aimed to investigate the metabolic characteristic profile for RH in type 2 diabetes mellitus (T2DM) patients and explore the potential metabolic mechanism and prevention strategies. Methods We screened 553 community-based T2DM patients. T2DM with RH (DH group, n=40) and T2DM without hypoglycemia (DC group, n=40) were assigned in the case-control study, matched by propensity score matching. Non-targeted, global metabolite profiling was conducted using ultra-high performance liquid chromatography-mass spectrometry. Principal component analysis and supervised projections to latent structures-discriminant analysis were constructed to evaluate the potential biomarkers. Metabolites with a fold change of >2.0 or <0.5, a t-test q-value <0.05, and variable importance in projection value of >1 were identified as significantly differential metabolites. MetaboAnalyst was performed to analyze the related metabolic pathways. Results We identified 12 significantly distinct metabolites as potential biomarkers of RH, which were enriched in five pathways; the caffeine metabolic pathway was the most dominant related one. Caffeine and its main downstream metabolites (theophylline and paraxanthine, all q <0.05) were significantly lower during RH. The combination of these metabolites can serve as a reliable predictor biomarker for RH (area under the curve = 0.88). Regarding lipid metabolism, triglyceride was upregulated (P=0.003) and the O-Acylcarnitine was downregulated (q < 0.001). Besides, RH was accompanied by lower phenylalanine (q=0.003) and higher cortisone (q=0.005) levels. Conclusions RH in T2DM is accompanied by caffeine, lipolysis, phenylalanine, and cortisone metabolism abnormalities. Caffeine might be a reliable candidate biomarker and potential prevention strategy for RH, but further validation studies are needed. Clinical Trial Registry Chi CTR 1900026361, 2019-10-3.
Collapse
Affiliation(s)
- Wang Lijing
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Ke Sujie
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Wang Linxi
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Huang Lishan
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Qi Liqin
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhan Zhidong
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Wu Kejun
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhang Mengjun
- The School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Liu Xiaoying
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Liu Xiaohong
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Liu Libin
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
8
|
Schönenberger KA, Cossu L, Prendin F, Cappon G, Wu J, Fuchs KL, Mayer S, Herzig D, Facchinetti A, Bally L. Digital Solutions to Diagnose and Manage Postbariatric Hypoglycemia. Front Nutr 2022; 9:855223. [PMID: 35464035 PMCID: PMC9021863 DOI: 10.3389/fnut.2022.855223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/14/2022] [Indexed: 11/29/2022] Open
Abstract
Postbariatric hypoglycemia (PBH) is an increasingly recognized late metabolic complication of bariatric surgery, characterized by low blood glucose levels 1-3 h after a meal, particularly if the meal contains rapid-acting carbohydrates. PBH can often be effectively managed through appropriate nutritional measures, which remain the cornerstone treatment today. However, their implementation in daily life continues to challenge both patients and health care providers. Emerging digital technologies may allow for more informed and improved decision-making through better access to relevant data to manage glucose levels in PBH. Examples include applications for automated food analysis from meal images, digital receipts of purchased food items or integrated platforms allowing the connection of continuously measured glucose with food and other health-related data. The resulting multi-dimensional data can be processed with artificial intelligence systems to develop prediction algorithms and decision support systems with the aim of improving glucose control, safety, and quality of life of PBH patients. Digital innovations, however, face trade-offs between user burden vs. amount and quality of data. Further challenges to their development are regulatory non-compliance regarding data ownership of the platforms acquiring the required data, as well as user privacy concerns and compliance with regulatory requirements. Through navigating these trade-offs, digital solutions could significantly contribute to improving the management of PBH.
Collapse
Affiliation(s)
- Katja A. Schönenberger
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Division of Clinical Pharmacy and Epidemiology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Luca Cossu
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Francesco Prendin
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Giacomo Cappon
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Jing Wu
- Institute of Computer Science, University of St. Gallen, St. Gallen, Switzerland
| | - Klaus L. Fuchs
- ETH AI Center, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
- Technology Studies, School of Humanities and Social Sciences, University of St. Gallen, St. Gallen, Switzerland
| | - Simon Mayer
- Institute of Computer Science, University of St. Gallen, St. Gallen, Switzerland
| | - David Herzig
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andrea Facchinetti
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Lia Bally
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
9
|
Rilstone S, Spurway P, Oliver N, Hill NE. Nutritional support for a person with type 1 diabetes undertaking endurance swimming. Front Endocrinol (Lausanne) 2022; 13:1038294. [PMID: 36425473 PMCID: PMC9679002 DOI: 10.3389/fendo.2022.1038294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
Long distance and open water swimming have increased in popularity over recent years. Swimming a long distance in lakes, rivers and the sea present numerous challenges, including cold water exposure and maintaining adequate nutritional intake to fuel exercising muscles. Guidelines exist outlining issues to consider and potential solutions to overcome the difficulties in feeding athletes. Exercising with type 1 diabetes adds further complexity, mostly around matching insulin to the recommended high carbohydrate intake, but also because of the way in which higher circulating insulin levels affect glucose utilisation and fat oxidation. This paper describes the nutritional considerations for people with type 1 diabetes intending to undertake long distance open water events, and insulin management suggestions to trial alongside. In addition, we include personal testimony from a swimmer with type 1 diabetes describing the challenges and considerations he faced when undertaking marathon swimming.
Collapse
Affiliation(s)
- Siân Rilstone
- Department of Nutrition & Dietetics, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- *Correspondence: Siân Rilstone,
| | | | - Nick Oliver
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Neil E. Hill
- Department of Endocrinology & Diabetes, Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
10
|
Scott SN, Fontana FY, Cocks M, Morton JP, Jeukendrup A, Dragulin R, Wojtaszewski JFP, Jensen J, Castol R, Riddell MC, Stettler C. Post-exercise recovery for the endurance athlete with type 1 diabetes: a consensus statement. Lancet Diabetes Endocrinol 2021; 9:304-317. [PMID: 33864810 DOI: 10.1016/s2213-8587(21)00054-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
There has been substantial progress in the knowledge of exercise and type 1 diabetes, with the development of guidelines for optimal glucose management. In addition, an increasing number of people living with type 1 diabetes are pushing their physical limits to compete at the highest level of sport. However, the post-exercise recovery routine, particularly with a focus on sporting performance, has received little attention within the scientific literature, with most of the focus being placed on insulin or nutritional adaptations to manage glycaemia before and during the exercise bout. The post-exercise recovery period presents an opportunity for maximising training adaption and recovery, and the clinical management of glycaemia through the rest of the day and overnight. The absence of clear guidance for the post-exercise period means that people with type 1 diabetes should either develop their own recovery strategies on the basis of individual trial and error, or adhere to guidelines that have been developed for people without diabetes. This Review provides an up-to-date consensus on post-exercise recovery and glucose management for individuals living with type 1 diabetes. We aim to: (1) outline the principles and time course of post-exercise recovery, highlighting the implications and challenges for endurance athletes living with type 1 diabetes; (2) provide an overview of potential strategies for post-exercise recovery that could be used by athletes with type 1 diabetes to optimise recovery and adaptation, alongside improved glycaemic monitoring and management; and (3) highlight the potential for technology to ease the burden of managing glycaemia in the post-exercise recovery period.
Collapse
Affiliation(s)
- Sam N Scott
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Bern University Hospital, University of Bern, Bern, Switzerland; Team Novo Nordisk Professional Cycling Team, Atlanta, GA, USA
| | - Federico Y Fontana
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Bern University Hospital, University of Bern, Bern, Switzerland; Team Novo Nordisk Professional Cycling Team, Atlanta, GA, USA
| | - Matt Cocks
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - James P Morton
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Asker Jeukendrup
- School of Sport and Exercise Sciences, University of Birmingham, Birmingham, UK
| | - Radu Dragulin
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jørgen F P Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Rafael Castol
- Team Novo Nordisk Professional Cycling Team, Atlanta, GA, USA
| | - Michael C Riddell
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Christoph Stettler
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Bern University Hospital, University of Bern, Bern, Switzerland.
| | | |
Collapse
|
11
|
Nutrition and Exercise Performance in Adults With Type 1 Diabetes. Can J Diabetes 2020; 44:750-758. [PMID: 32847769 DOI: 10.1016/j.jcjd.2020.05.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 11/21/2022]
Abstract
The best nutritional practices for exercise and sports performance are largely activity specific. The presence of type 1 diabetes undeniably bestows additional factors to consider to manage exercise and ensure adequate nutrients and fuels are available for optimal performance. Whether participating in sports or physical activity on a recreational basis or striving to achieve a high level of athletic performance, individuals with type 1 diabetes must pay attention to their nutritional and dietary patterns, including intake of macronutrients, micronutrients, fluids and supplements, such as caffeine to maintain metabolic and glycemic balance. Performance aside, nutritional recommendations may also differ on an individual basis relative to exercise, glycemic management and body weight goals. Balancing all these dietary factors can be challenging for individuals with type 1 diabetes, and many related aspects have yet to be fully researched in this population.
Collapse
|
12
|
Hannon BA, Fairfield WD, Adams B, Kyle T, Crow M, Thomas DM. Use and abuse of dietary supplements in persons with diabetes. Nutr Diabetes 2020; 10:14. [PMID: 32341338 PMCID: PMC7186221 DOI: 10.1038/s41387-020-0117-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
The dietary supplement industry has estimated sales of over $30 billion in the US and over $100 billion globally. Many consumers believe that dietary supplements are safer and possibly more effective than drugs to treat diabetes. The sheer volume of the literature in this space makes compiling them into one review challenging, so much so that primarily narrative reviews currently exist. By applying the interactive database supplied by the Office of Dietary Supplements at the National Institutes of Health, we identified the top 100 ingredients that appeared most often in dietary supplement products. One-hundred different keyword searches using the ingredient name and the word diabetes were performed using a program developed to automatically scrape PubMed. Each search was retained in a separate Excel spreadsheet, which was then reviewed for inclusion or exclusion. The studies that met the inclusion criteria were evaluated for effect of reducing and controlling diabetes. The PubMed scrape resulted in 6217 studies. For each keyword search only the most recent 100 were retained, which refined the total to 1823 studies. Of these 425 met the screening criteria. The ingredients, fiber, selenium and zinc had the most studies associated with improvement in diabetes. Several popular supplement ingredients (phosphorus, pantothenic acid, calcium, magnesium, glutamine, isoleucine, tyrosine, choline, and creatine monohydrate) did not result in any studies meeting our screening criteria. Our study demonstrates how to automate reviews to filter and collapse literature in content areas that have an enormous volume of studies. The aggregated set of studies suggest there is little clinical evidence for the use of dietary supplements to reduce or control diabetes.
Collapse
Affiliation(s)
- Bridget A Hannon
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - William D Fairfield
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Bryan Adams
- Department of Mathematical Sciences, United States Military Academy, West Point, NY, USA
| | - Theodore Kyle
- ConscienHealth, Country Club Dr, Pittsburgh, PA, USA
| | - Mason Crow
- Department of Mathematical Sciences, United States Military Academy, West Point, NY, USA
| | - Diana M Thomas
- Department of Mathematical Sciences, United States Military Academy, West Point, NY, USA.
| |
Collapse
|
13
|
Cockcroft EJ, Narendran P, Andrews RC. Exercise‐induced hypoglycaemia in type 1 diabetes. Exp Physiol 2020; 105:590-599. [DOI: 10.1113/ep088219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/26/2019] [Indexed: 12/30/2022]
Affiliation(s)
| | - P. Narendran
- Department of DiabetesUniversity Hospitals Birmingham NHS Foundation Trust Birmingham UK
- Institute of Immunology and ImmunotherapyUniversity of Birmingham Birmingham UK
| | - R. C. Andrews
- University of Exeter Medical School Exeter UK
- Department of DiabetesTaunton and Somerset NHS Foundation Trust Taunton UK
| |
Collapse
|
14
|
Houlder SK, Yardley JE. Continuous Glucose Monitoring and Exercise in Type 1 Diabetes: Past, Present and Future. BIOSENSORS-BASEL 2018; 8:bios8030073. [PMID: 30081478 PMCID: PMC6165159 DOI: 10.3390/bios8030073] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/29/2022]
Abstract
Prior to the widespread use of continuous glucose monitoring (CGM), knowledge of the effects of exercise in type 1 diabetes (T1D) was limited to the exercise period, with few studies having the budget or capacity to monitor participants overnight. Recently, CGM has become a staple of many exercise studies, allowing researchers to observe the otherwise elusive late post-exercise period. We performed a strategic search using PubMed and Academic Search Complete. Studies were included if they involved adults with T1D performing exercise or physical activity, had a sample size greater than 5, and involved the use of CGM. Upon completion of the search protocol, 26 articles were reviewed for inclusion. While outcomes have been variable, CGM use in exercise studies has allowed the assessment of post-exercise (especially nocturnal) trends for different exercise modalities in individuals with T1D. Sensor accuracy is currently considered adequate for exercise, which has been crucial to developing closed-loop and artificial pancreas systems. Until these systems are perfected, CGM continues to provide information about late post-exercise responses, to assist T1D patients in managing their glucose, and to be useful as a tool for teaching individuals with T1D about exercise.
Collapse
Affiliation(s)
- Shaelyn K Houlder
- Augustana Faculty, University of Alberta, 4901-46 Ave, Camrose, AB T4V 2R3, Canada.
| | - Jane E Yardley
- Augustana Faculty, University of Alberta, 4901-46 Ave, Camrose, AB T4V 2R3, Canada.
- Alberta Diabetes Institute, 112 St. NW, Edmonton, AB T6G 2T9, Canada.
| |
Collapse
|
15
|
Dewar L, Heuberger R. The effect of acute caffeine intake on insulin sensitivity and glycemic control in people with diabetes. Diabetes Metab Syndr 2017; 11 Suppl 2:S631-S635. [PMID: 28935543 DOI: 10.1016/j.dsx.2017.04.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 04/17/2017] [Indexed: 11/21/2022]
Abstract
The prevalence of diabetes is growing globally, and with no current cure for the disease, management is focused on optimizing blood glucose control to limit complications. The purpose of this review was to examine the effect of caffeine intake on blood glucose levels in people with diabetes. Electronic searches were completed using Pub Med, CINAHL, and Web of Science using the search terms "coffee and insulin," "caffeine and insulin," "caffeine and diabetes," "caffeine and type 1 diabetes," "caffeine and type 2 diabetes," and "caffeine and glycemia." Seven trials were found to meet the search criteria. Five of the 7 studies suggest caffeine intake increases blood glucose levels, and prolongs the period of high blood glucose levels. Future research should focus on larger clinical trials to confirm the relationship and mechanism of action related to caffeine intake and glycemic control in individuals with diabetes.
Collapse
Affiliation(s)
- Lisa Dewar
- 2004 Taylor St, San Francisco, CA, 94133, United States.
| | - Roschelle Heuberger
- Department of Human Environmental Studies, Central Michigan University, Mt Pleasant, MI, 48859, United States.
| |
Collapse
|
16
|
Riddell MC, Gallen IW, Smart CE, Taplin CE, Adolfsson P, Lumb AN, Kowalski A, Rabasa-Lhoret R, McCrimmon RJ, Hume C, Annan F, Fournier PA, Graham C, Bode B, Galassetti P, Jones TW, Millán IS, Heise T, Peters AL, Petz A, Laffel LM. Exercise management in type 1 diabetes: a consensus statement. Lancet Diabetes Endocrinol 2017; 5:377-390. [PMID: 28126459 DOI: 10.1016/s2213-8587(17)30014-1] [Citation(s) in RCA: 542] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 11/20/2016] [Accepted: 11/21/2016] [Indexed: 12/28/2022]
Abstract
Type 1 diabetes is a challenging condition to manage for various physiological and behavioural reasons. Regular exercise is important, but management of different forms of physical activity is particularly difficult for both the individual with type 1 diabetes and the health-care provider. People with type 1 diabetes tend to be at least as inactive as the general population, with a large percentage of individuals not maintaining a healthy body mass nor achieving the minimum amount of moderate to vigorous aerobic activity per week. Regular exercise can improve health and wellbeing, and can help individuals to achieve their target lipid profile, body composition, and fitness and glycaemic goals. However, several additional barriers to exercise can exist for a person with diabetes, including fear of hypoglycaemia, loss of glycaemic control, and inadequate knowledge around exercise management. This Review provides an up-to-date consensus on exercise management for individuals with type 1 diabetes who exercise regularly, including glucose targets for safe and effective exercise, and nutritional and insulin dose adjustments to protect against exercise-related glucose excursions.
Collapse
Affiliation(s)
- Michael C Riddell
- Muscle Health Research Centre, York University, Toronto, ON, Canada.
| | - Ian W Gallen
- Royal Berkshire NHS Foundation Trust Centre for Diabetes and Endocrinology, Royal Berkshire Hospital, Reading, UK
| | - Carmel E Smart
- Hunter Medical Research Institute, School of Health Sciences, University of Newcastle, Rankin Park, NSW, Australia
| | - Craig E Taplin
- Division of Endocrinology and Diabetes, Department of Pediatrics, University of Washington, Seattle Children's Hospital, Seattle, WA, USA
| | - Peter Adolfsson
- Department of Pediatrics, The Hospital of Halland, Kungsbacka, Sweden; Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Alistair N Lumb
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, UK
| | - Aaron Kowalski
- Juvenile Diabetes Research Foundation, New York, NY, USA
| | - Remi Rabasa-Lhoret
- Department of Nutrition and Institut de Recherches Cliniques de Montréal, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Rory J McCrimmon
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, UK
| | | | - Francesca Annan
- Children and Young People's Diabetes Service, University College London Hospitals NHS Foundation Trust, London, UK
| | - Paul A Fournier
- School of Sport Science, Exercise, and Health, Perth, WA, Australia
| | | | - Bruce Bode
- Atlanta Diabetes Associates, Atlanta, GA, USA
| | - Pietro Galassetti
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA; AstraZeneca, Gaithersburg, MD, USA
| | - Timothy W Jones
- The University of Western Australia, Perth, WA, Australia; Department of Endocrinology and Diabetes, Princess Margaret Hospital for Children, Perth, WA, Australia; Telethon Kids Institute, Perth, WA, Australia
| | - Iñigo San Millán
- Department of Physical Medicine and Rehabilitation, University of Colorado, School of Medicine, Aurora, CO, USA
| | | | - Anne L Peters
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Lori M Laffel
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA; Pediatric, Adolescent and Young Adult Section, Joslin Diabetes Center, Boston, MA, USA
| |
Collapse
|
17
|
Selected Literature Watch. JOURNAL OF CAFFEINE RESEARCH 2016. [DOI: 10.1089/jcr.2016.29001.slw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Thabit H, Leelarathna L. Basal insulin delivery reduction for exercise in type 1 diabetes: finding the sweet spot. Diabetologia 2016; 59:1628-31. [PMID: 27287376 PMCID: PMC4930462 DOI: 10.1007/s00125-016-4010-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 05/20/2016] [Indexed: 12/12/2022]
Abstract
Exercise poses significant challenges to glucose management in type 1 diabetes. In spite of careful planning and manipulation of subcutaneous insulin administration, increased risk of hypoglycaemia and glycaemic variability during and after exercise may occur as a result of inherent delays in insulin action and impaired counter-regulatory hormone responses. Various strategies to mitigate this issue have been advocated in clinical practice, including ingestion of supplementary carbohydrate prior to exercise, reducing background and pre-meal insulin bolus and performing bouts of resistance/high intensity exercise before aerobic exercise. Insulin pump therapy, considered the most physiological form of insulin replacement for type 1 diabetes allows modulation of basal insulin delivery before, during and after exercise. However uncertainty remains regarding the optimal strategy to reduce basal insulin delivery and its efficacy. In this issue of Diabetologia, McAuley and colleagues (DOI: 10.1007/s00125-016-3981-9 ) report on the impact of a 50% reduction of basal insulin delivery before, during and after moderate-intensity aerobic exercise. Results from this study may contribute to a better understanding of the effects of basal insulin delivery manipulation and may aid in devising therapeutic approaches for glucose management during exercise.
Collapse
Affiliation(s)
- Hood Thabit
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, CB2 0QQ, Cambridge, UK.
- Department of Diabetes & Endocrinology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | - Lalantha Leelarathna
- Endocrinology and Diabetes Research Group, Institute of Human Development, Faculty of Medical & Human Sciences, University of Manchester, Manchester, UK
- Manchester Diabetes Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
19
|
Holt RIG. Hypoglycaemia: costs, insulins and prevention. Diabet Med 2016; 33:419-20. [PMID: 26995756 DOI: 10.1111/dme.13100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- R I G Holt
- Diabetic Medicine, University of Southampton
| |
Collapse
|