1
|
Han N, Yuan Z, Zhao H, Chang X, Chen Y, Zhang M, Wang Y. Relationship between serum NLRP3 along with its effector molecules and pregnancy outcomes in women with hyperglycemia. J Matern Fetal Neonatal Med 2024; 37:2312447. [PMID: 38350233 DOI: 10.1080/14767058.2024.2312447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/23/2024] [Indexed: 02/15/2024]
Abstract
OBJECTIVE The study aims to investigate the levels of serum NLRP3 along with its effector molecules (Caspase-1, IL-1β, and IL-18) in the mid-pregnancy in pregnant women with hyperglycemia, and explore the relationship between NLRP3, along with its effector molecules (Caspase-1, IL-1β, and IL-18) and insulin resistance, as well as pregnancy outcomes. METHODS The levels of serum NLRP3 along with its effector molecules (Caspase-1, IL-1β, and IL-18) in three groups of pregnant women with gestational diabetes mellitus (GDM), pregestational diabetes mellitus (PGDM) and normal glucose tolerance (NGT) were measured in mid-pregnancy, and their relationship with insulin resistance and pregnancy outcomes was analyzed. The ROC curve was also used to evaluate the predictive value of serum NLRP3 inflammasome and its effector molecules for pregnancy outcomes. RESULTS There were no statistical differences in the general clinical data of the three groups, and the concentrations of serum NLRP3 along with its effector molecules were higher in the GDM and PGDM groups than in the NGT group, and NLRP3 along with its effector molecules were positively correlated with fasting blood glucose, fasting insulin, and insulin resistance index in both groups (r > 0, p < .05). The incidence of preterm delivery, hypertensive disorders of pregnancy, premature rupture of membranes, neonatal hypoglycemia and macrosomia was significantly higher in both groups than in the NGT group (p < .05). The value of the combined serum NLRP3 and its effector molecules in mid-pregnancy to predict adverse pregnancy outcomes was highest, and the AUCs for the combined prediction of late hypertensive disorders of pregnancy, premature rupture of membranes, preterm delivery, neonatal hypoglycemia and macrosomia were 0.84 (95% CI 0.79-0.88, p < .001), 0.81 (95% CI 0.75-0.85, p < .001), 0.76 (95% CI 0.70-0.81, p < .001), 0.76 (95% CI 0.70-0.81, p < .001) and 0.72 (95% CI 0.63-0.81, p < .001), respectively. CONCLUSIONS Increased serum NLRP3 along with its effector molecules in pregnant women with hyperglycemia are associated with the levels of insulin resistance and the subsequent development of adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Ning Han
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zili Yuan
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongyang Zhao
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinyuan Chang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingying Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Miao Zhang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yizhan Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Luo Y, Luo D, Li M, Tang B. Insulin Resistance in Pediatric Obesity: From Mechanisms to Treatment Strategies. Pediatr Diabetes 2024; 2024:2298306. [PMID: 40302954 PMCID: PMC12016791 DOI: 10.1155/2024/2298306] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/07/2024] [Accepted: 06/15/2024] [Indexed: 05/02/2025] Open
Abstract
Insulin resistance, an increasingly prevalent characteristic among children and adolescents with obesity, is now recognized as a significant contributor to the development of type 2 diabetes mellitus (T2DM) and other metabolic diseases in individuals with obesity. Insulin resistance refers to a decrease in the sensitivity of peripheral tissues (primarily skeletal muscle, adipose tissue, and liver) to insulin, which is mainly characterized by impaired glucose uptake and utilization. Although the mechanisms underlying insulin resistance in children with obesity remain incompletely elucidated, several risk factors including lipid metabolism disorders, oxidative stress (OS), mitochondrial dysfunction, inflammation, and genetic factors have been identified as pivotal contributors to the pathogenesis of obesity-related insulin resistance. In this review, we comprehensively analyze relevant literature and studies to elucidate the underlying mechanisms of insulin resistance in childhood obesity. Additionally, we discuss treatment strategies for pediatric obesity from a perspective centered on improving insulin sensitivity, aiming to provide valuable insights for the prevention and management of pediatric obesity.
Collapse
Affiliation(s)
- Yu Luo
- Department of PediatricsSichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of China, Chengdu, China
| | - Dan Luo
- Department of PediatricsSchool of Medicine and Life Science of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Maojun Li
- Department of PediatricsSichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of China, Chengdu, China
| | - Binzhi Tang
- Department of PediatricsSichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of China, Chengdu, China
- Department of PediatricsSchool of Medicine and Life Science of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Mazzini G, Le Foll C, Boyle CN, Garelja ML, Zhyvoloup A, Miller MET, Hay DL, Raleigh DP, Lutz TA. The processing intermediate of human amylin, pro-amylin(1-48), has in vivo and in vitro bioactivity. Biophys Chem 2024; 308:107201. [PMID: 38452520 PMCID: PMC11223094 DOI: 10.1016/j.bpc.2024.107201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/31/2024] [Accepted: 02/13/2024] [Indexed: 03/09/2024]
Abstract
Amylin is released by pancreatic beta-cells in response to a meal and its major soluble mature form (37 amino acid-peptide) produces its biological effects by activating amylin receptors. Amylin is derived from larger propeptides that are processed within the synthesizing beta-cell. There are suggestions that a partially processed form, pro-amylin(1-48) is also secreted. We tested the hypothesis that pro-amylin(1-48) has biological activity and that human pro-amylin(1-48) may also form toxic pre-amyloid species. Amyloid formation, the ability to cross-seed and in vitro toxicity were similar between human pro-amylin(1-48) and amylin. Human pro-amylin(1-48) was active at amylin-responsive receptors, though its potency was reduced at rat, but not human amylin receptors. Pro-amylin(1-48) was able to promote anorexia by activating neurons of the area postrema, amylin's primary site of action, indicating that amylin can tolerate significant additions at the N-terminus without losing bioactivity. Our studies help to shed light on the possible roles of pro-amylin(1-48) which may be relevant for the development of future amylin-based drugs.
Collapse
Affiliation(s)
- Giulia Mazzini
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Christelle Le Foll
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Christina N Boyle
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Michael L Garelja
- Department of Pharmacology and Toxicology, University of Otago, New Zealand
| | - Alexander Zhyvoloup
- Research Department of Structural and Molecular Biology, University College London, UK
| | | | - Debbie L Hay
- Department of Pharmacology and Toxicology, University of Otago, New Zealand.
| | - Daniel P Raleigh
- Research Department of Structural and Molecular Biology, University College London, UK; Department of Chemistry, Stony Brook University, USA; Laufer Center for Quantitative Biology Stony Brook University, USA.
| | - Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Duan K, Liu J, Zhang J, Chu T, Liu H, Lou F, Liu Z, Gao B, Wei S, Wei F. Advancements in innate immune regulation strategies in islet transplantation. Front Immunol 2024; 14:1341314. [PMID: 38288129 PMCID: PMC10823010 DOI: 10.3389/fimmu.2023.1341314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/28/2023] [Indexed: 01/31/2024] Open
Abstract
As a newly emerging organ transplantation technique, islet transplantation has shown the advantages of minimal trauma and high safety since it was first carried out. The proposal of the Edmonton protocol, which has been widely applied, was a breakthrough in this method. However, direct contact between islets and portal vein blood will cause a robust innate immune response leading to massive apoptosis of the graft, and macrophages play an essential role in the innate immune response. Therefore, therapeutic strategies targeting macrophages in the innate immune response have become a popular research topic in recent years. This paper will summarize and analyze recent research on strategies for regulating innate immunity, primarily focusing on macrophages, in the field of islet transplantation, including drug therapy, optimization of islet preparation process, islet engineering and Mesenchymal stem cells cotransplantation. We also expounded the heterogeneity, plasticity and activation mechanism of macrophages in islet transplantation, providing a theoretical basis for further research.
Collapse
Affiliation(s)
- Kehang Duan
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jiao Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jian Zhang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Tongjia Chu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Huan Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Fengxiang Lou
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Ziyu Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Bing Gao
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Shixiong Wei
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Feng Wei
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
5
|
Soylu S, Cherkezzade M, Akbayır E, Yüceer Korkmaz H, Koral G, Şanlı E, Topaloğlu P, Yılmaz V, Tüzün E, Küçükali Cİ. Distribution of peripheral blood mononuclear cell subtypes in patients with West syndrome: Impact of synacthen treatment. Immunol Lett 2023; 261:17-24. [PMID: 37459957 DOI: 10.1016/j.imlet.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND West Syndrome (WS) is an epileptic encephalopathy that typically occurs in infants and is characterized by hypsarrhythmia, infantile spasms, and neurodevelopmental impairment. Demonstration of autoantibodies and cytokines in some WS patients and favorable response to immunotherapy have implicated inflammation as a putative trigger of epileptiform activity in WS. Our aim was to provide additional support for altered inflammatory responses in WS through peripheral blood immunophenotype analysis. METHODS Eight WS cases treated with synacthen and 11 age- and sex-matched healthy volunteers were included. Peripheral blood mononuclear cells (PBMC) were isolated and immunophenotyping was performed in pre-treatment baseline (8 patients) and 3 months post-treatment (6 patients) samples. The analysis included PBMC expressing NFκB transcription and NLRP3 inflammasome factors. RESULTS In pre-treatment baseline samples, switched memory B cells (CD19+IgD-CD27+) were significantly reduced, whereas plasma cells (CD19+CD38+CD138+) and cytotoxic T cells (CD3+CD8+) were significantly increased. Regulatory T and B cell ratios were not significantly altered. Synacthen treatment only marginally reduced helper T cell ratios and did not significantly change other T, B, NK and NKT cell and monocyte ratios. CONCLUSIONS Our findings lend further support for the involvement of inflammation-related mechanisms in WS. New-onset WS patients are inclined to display increased plasma cells in the peripheral blood. Synacthen treatment does not show a beneficial effect on most effector acquired and innate immunity subsets.
Collapse
Affiliation(s)
- Selen Soylu
- Istanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Neuroscience, Istanbul, Turkey; Istanbul University, Institute of Graduate Studies in Health Sciences, Istanbul, Turkey
| | - Minara Cherkezzade
- Istanbul University, Istanbul Medical Faculty, Department of Neurology, Istanbul, Turkey
| | - Ece Akbayır
- Istanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Neuroscience, Istanbul, Turkey; Istanbul University, Institute of Graduate Studies in Health Sciences, Istanbul, Turkey
| | - Hande Yüceer Korkmaz
- Istanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Neuroscience, Istanbul, Turkey; Istanbul University, Institute of Graduate Studies in Health Sciences, Istanbul, Turkey
| | - Gizem Koral
- Istanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Neuroscience, Istanbul, Turkey; Istanbul University, Institute of Graduate Studies in Health Sciences, Istanbul, Turkey
| | - Elif Şanlı
- Istanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Neuroscience, Istanbul, Turkey; Istanbul University, Institute of Graduate Studies in Health Sciences, Istanbul, Turkey
| | - Pınar Topaloğlu
- Istanbul University, Istanbul Medical Faculty, Department of Neurology, Istanbul, Turkey
| | - Vuslat Yılmaz
- Istanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Neuroscience, Istanbul, Turkey
| | - Erdem Tüzün
- Istanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Neuroscience, Istanbul, Turkey
| | - Cem İsmail Küçükali
- Istanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Neuroscience, Istanbul, Turkey.
| |
Collapse
|
6
|
Su Y, Ye L, Hu C, Zhang Y, Liu J, Shao L. Periodontitis as a promoting factor of T2D: current evidence and mechanisms. Int J Oral Sci 2023; 15:25. [PMID: 37321994 PMCID: PMC10272210 DOI: 10.1038/s41368-023-00227-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/12/2023] [Accepted: 04/26/2023] [Indexed: 06/17/2023] Open
Abstract
Periodontitis is an infectious disease caused by an imbalance between the local microbiota and host immune response. Epidemiologically, periodontitis is closely related to the occurrence, development, and poor prognosis of T2D and is recognized as a potential risk factor for T2D. In recent years, increasing attention has been given to the role of the virulence factors produced by disorders of the subgingival microbiota in the pathological mechanism of T2D, including islet β-cell dysfunction and insulin resistance (IR). However, the related mechanisms have not been well summarized. This review highlights periodontitis-derived virulence factors, reviews how these stimuli directly or indirectly regulate islet β-cell dysfunction. The mechanisms by which IR is induced in insulin-targeting tissues (the liver, visceral adipose tissue, and skeletal muscle) are explained, clarifying the influence of periodontitis on the occurrence and development of T2D. In addition, the positive effects of periodontal therapy on T2D are overviewed. Finally, the limitations and prospects of the current research are discussed. In summary, periodontitis is worthy of attention as a promoting factor of T2D. Understanding on the effect of disseminated periodontitis-derived virulence factors on the T2D-related tissues and cells may provide new treatment options for reducing the risk of T2D associated with periodontitis.
Collapse
Affiliation(s)
- Yuan Su
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Leilei Ye
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Chen Hu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanli Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Jia Liu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Longquan Shao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
7
|
Wang P, Qian H, Xiao M, Lv J. Role of signal transduction pathways in IL-1β-induced apoptosis: Pathological and therapeutic aspects. Immun Inflamm Dis 2023; 11:e762. [PMID: 36705417 PMCID: PMC9837938 DOI: 10.1002/iid3.762] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Interleukin-1β (IL-1β) is a pro-inflammatory cytokine mainly produced by monocytes and macrophages with a wide range of biological effects. Evidence has shown that IL-1β plays a vital role in the process of apoptosis; however, the specific mechanisms, by which IL-1β induces apoptosis, vary due to different cellular and experimental conditions. Therefore, this present reviewstudy aimed to systematically review the association between the molecular mechanisms of IL-1β-induced apoptosis in pathological processes and the role of signaling pathways. This article also sought to briefly investigate the potential of signaling pathway-targeted therapy in the prevention and treatment of disease. METHODS This is a literature review article. The present discourse aim is first to scrutinize and assess the available literature on IL-1β and apoptosis. The relevant studies using the keywords of "IL-1β-induced apoptosis" and "signaling pathways" were searched in the databases of PubMed, Scopus, Google Scholar, and Web of Science. Gathered relevant material, and extracted information was then assessed. RESULTS IL-1β can induce apoptosis in various types of cells under different external stimuli via the mitochondrial pathway, death receptor pathway and endoplasmic reticulum pathway, and that the different pathways are often interconnected. The NF-kB signaling pathway, p38MAPK, and JNK signaling pathways mainly play a proapoptotic part, and the ERK1/2 pathway has a bidirectional role in regulating apoptosis, while activation of the PI3K-Akt signaling pathway can inhibit apoptosis. CONCLUSION This review indicates that IL-1β-induced apoptosis plays an important role in pathogenesis and development of pathology of many inflammatory diseases. Elucidating the role of the signaling pathways will aid the development of targeted therapeutic treatments.
Collapse
Affiliation(s)
- Peixuan Wang
- Department of Pediatric Dentistry, Stomatological HospitalSouthern Medical UniversityGuangzhouChina
| | - Hong Qian
- Department of Pediatric Dentistry, Stomatological HospitalSouthern Medical UniversityGuangzhouChina
| | - Manxue Xiao
- Department of Pediatric Dentistry, Stomatological HospitalSouthern Medical UniversityGuangzhouChina
| | - Jingwen Lv
- Department of Pediatric Dentistry, Stomatological HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
8
|
Infante M, Padilla N, Alejandro R, Caprio M, Della-Morte D, Fabbri A, Ricordi C. Diabetes-Modifying Antirheumatic Drugs: The Roles of DMARDs as Glucose-Lowering Agents. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:571. [PMID: 35629988 PMCID: PMC9143119 DOI: 10.3390/medicina58050571] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 02/06/2023]
Abstract
Systemic inflammation represents a shared pathophysiological mechanism which underlies the frequent clinical associations among chronic inflammatory rheumatic diseases (CIRDs), insulin resistance, type 2 diabetes (T2D), and chronic diabetes complications, including cardiovascular disease. Therefore, targeted anti-inflammatory therapies are attractive and highly desirable interventions to concomitantly reduce rheumatic disease activity and to improve glucose control in patients with CIRDs and comorbid T2D. Therapeutic approaches targeting inflammation may also play a role in the prevention of prediabetes and diabetes in patients with CIRDs, particularly in those with traditional risk factors and/or on high-dose corticosteroid therapy. Recently, several studies have shown that different disease-modifying antirheumatic drugs (DMARDs) used for the treatment of CIRDs exert antihyperglycemic properties by virtue of their anti-inflammatory, insulin-sensitizing, and/or insulinotropic effects. In this view, DMARDs are promising drug candidates that may potentially reduce rheumatic disease activity, ameliorate glucose control, and at the same time, prevent the development of diabetes-associated cardiovascular complications and metabolic dysfunctions. In light of their substantial antidiabetic actions, some DMARDs (such as hydroxychloroquine and anakinra) could be alternatively termed "diabetes-modifying antirheumatic drugs", since they may be repurposed for co-treatment of rheumatic diseases and comorbid T2D. However, there is a need for future randomized controlled trials to confirm the beneficial metabolic and cardiovascular effects as well as the safety profile of distinct DMARDs in the long term. This narrative review aims to discuss the current knowledge about the mechanisms behind the antihyperglycemic properties exerted by a variety of DMARDs (including synthetic and biologic DMARDs) and the potential use of these agents as antidiabetic medications in clinical settings.
Collapse
Affiliation(s)
- Marco Infante
- Clinical Cell Transplant Program (CCTP), Diabetes Research Institute, University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL 33136, USA; (R.A.); (C.R.)
- Department of Systems Medicine, Diabetes Research Institute Federation (DRIF), University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
- Section of Endocrinology, UniCamillus, Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Via Cola di Rienzo 28, 00192 Rome, Italy
| | - Nathalia Padilla
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Colonia Centroamérica L-823, Managua 14048, Nicaragua;
| | - Rodolfo Alejandro
- Clinical Cell Transplant Program (CCTP), Diabetes Research Institute, University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL 33136, USA; (R.A.); (C.R.)
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Roma, Via di Val Cannuta 247, 00166 Rome, Italy;
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Via di Val Cannuta 247, 00166 Rome, Italy;
| | - David Della-Morte
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Via di Val Cannuta 247, 00166 Rome, Italy;
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- Department of Neurology, Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, 1120 NW 14th St., Miami, FL 33136, USA
| | - Andrea Fabbri
- Department of Systems Medicine, Diabetes Research Institute Federation (DRIF), University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Camillo Ricordi
- Clinical Cell Transplant Program (CCTP), Diabetes Research Institute, University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL 33136, USA; (R.A.); (C.R.)
| |
Collapse
|
9
|
Roham PH, Save SN, Sharma S. Human islet amyloid polypeptide: A therapeutic target for the management of type 2 diabetes mellitus. J Pharm Anal 2022; 12:556-569. [PMID: 36105173 PMCID: PMC9463490 DOI: 10.1016/j.jpha.2022.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/21/2022] [Accepted: 04/01/2022] [Indexed: 12/22/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) and other metabolic disorders are often silent and go unnoticed in patients because of the lack of suitable prognostic and diagnostic markers. The current therapeutic regimens available for managing T2DM do not reverse diabetes; instead, they delay the progression of diabetes. Their efficacy (in principle) may be significantly improved if implemented at earlier stages. The misfolding and aggregation of human islet amyloid polypeptide (hIAPP) or amylin has been associated with a gradual decrease in pancreatic β-cell function and mass in patients with T2DM. Hence, hIAPP has been recognized as a therapeutic target for managing T2DM. This review summarizes hIAPP's role in mediating dysfunction and apoptosis in pancreatic β-cells via induction of endoplasmic reticulum stress, oxidative stress, mitochondrial dysfunction, inflammatory cytokine secretion, autophagy blockade, etc. Furthermore, it explores the possibility of using intermediates of the hIAPP aggregation pathway as potential drug targets for T2DM management. Finally, the effects of common antidiabetic molecules and repurposed drugs; other hIAPP mimetics and peptides; small organic molecules and natural compounds; nanoparticles, nanobodies, and quantum dots; metals and metal complexes; and chaperones that have demonstrated potential to inhibit and/or reverse hIAPP aggregation and can, therefore, be further developed for managing T2DM have been discussed. Misfolded species of hIAPP form toxic oligomers in pancreatic β-cells. hIAPP amyloids has been detected in the pancreas of about 90% subjects with T2DM. Inhibitors of hIAPP aggregation can help manage T2DM.
Collapse
|
10
|
Takamatsu T, Yamanaka G, Ohno K, Hayashi K, Watanabe Y, Takeshita M, Suzuki S, Morichi S, Go S, Ishida Y, Oana S, Kashiwagi Y, Kawashima H. Involvement of Peripheral Monocytes with IL-1β in the Pathogenesis of West Syndrome. J Clin Med 2022; 11:jcm11020447. [PMID: 35054141 PMCID: PMC8779005 DOI: 10.3390/jcm11020447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/02/2022] [Accepted: 01/14/2022] [Indexed: 12/31/2022] Open
Abstract
Neuroinflammation has been implicated in the pathogenesis of West syndrome (WS). Inflammatory cytokines, including interleukin-1β(IL-1β), have been reported to be associated with epilepsy. However, the assessment of cytokine changes in humans is not always simple or deterministic. This study aimed to elucidate the immunological mechanism of WS. We examined the intracellular cytokine profiles of peripheral blood cells collected from 13 patients with WS, using flow cytometry, and measured their serum cytokine levels. These were compared with those of 10 age-matched controls. We found that the WS group had significantly higher percentages of inter IL-1β, interleukin-1 receptor antagonist (IL-1RA)-positive monocytes, and interferon gamma (IFN-γ) in their CD8+ T cells than the control group. Interestingly, the group with sequelae revealed significantly lower levels of intracellular IFN-γ and IL-6 in their CD8+ T and CD4+ T cells, respectively, than the group without sequelae. There was no correlation between the ratios of positive cells and the serum levels of a particular cytokine in the WS patients. These cytokines in the peripheral immune cells might be involved in the neuroinflammation of WS, even in the absence of infectious or immune disease. Overall, an immunological approach using flow cytometry analysis might be useful for immunological studies of epilepsy.
Collapse
|
11
|
Taurine Grafted Micro-Implants Improved Functions without Direct Dependency between Interleukin-6 and the Bile Acid Lithocholic Acid in Plasma. Biomedicines 2022; 10:biomedicines10010111. [PMID: 35052790 PMCID: PMC8772949 DOI: 10.3390/biomedicines10010111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 01/27/2023] Open
Abstract
A recent study showed an association between diabetes development and the bile acid lithocholic acid (LCA), while another study demonstrated positive biological effects of the conjugated bile acid, taurocholic acid (TCA), on pancreatic cells. Thus, this study aimed to encapsulate TCA with primary islets (graft) and study the biological effects of the graft, post-transplantation, in diabetic mice, including effects on LCA concentrations. Sixteen mature adult mice were made diabetic and randomly divided into two equal groups, control and test (transplanted encapsulated islets without or with TCA). Graft pharmaceutical features pre-transplantation, and biological effects including on LCA concentrations post-transplantation, were measured. TCA-microcapsules had an oval shape and similar size compared with the control. The treatment group survived longer, showed improved glucose and interleukin-6 concentrations, and lower LCA concentrations in plasma, large intestine, faeces, liver and spleen, compared with control. Results suggest that TCA incorporation with islets encapsulated graft exerted beneficial effects, but there was no direct and significant dependency between concentrations of interleukin-6 and LCA.
Collapse
|
12
|
Nie T, Cooper GJS. Mechanisms Underlying the Antidiabetic Activities of Polyphenolic Compounds: A Review. Front Pharmacol 2021; 12:798329. [PMID: 34970150 PMCID: PMC8712966 DOI: 10.3389/fphar.2021.798329] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/18/2021] [Indexed: 12/16/2022] Open
Abstract
Polyphenolic compounds are thought to show considerable promise for the treatment of various metabolic disorders, including type 2 diabetes mellitus (T2DM). This review addresses evidence from in vitro, in vivo, and clinical studies for the antidiabetic effects of certain polyphenolic compounds. We focus on the role of cytotoxic human amylin (hA) aggregates in the pathogenesis of T2DM, and how polyphenols can ameliorate this process by suppressing or modifying their formation. Small, soluble amylin oligomers elicit cytotoxicity in pancreatic islet β-cells and may thus cause β-cell disruption in T2DM. Amylin oligomers may also contribute to oxidative stress and inflammation that lead to the triggering of β-cell apoptosis. Polyphenols may exert antidiabetic effects via their ability to inhibit hA aggregation, and to modulate oxidative stress, inflammation, and other pathways that are β-cell-protective or insulin-sensitizing. There is evidence that their ability to inhibit and destabilize self-assembly by hA requires aromatic molecular structures that bind to misfolding monomers or oligomers, coupled with adjacent hydroxyl groups present on single phenyl rings. Thus, these multifunctional compounds have the potential to be effective against the pleiotropic mechanisms of T2DM. However, substantial further research will be required before it can be determined whether a polyphenol-based molecular entity can be used as a therapeutic for type 2 diabetes.
Collapse
Affiliation(s)
- Tina Nie
- School of Biological Sciences, Faculty of Science, the University of Auckland, Auckland, New Zealand
| | - Garth J. S. Cooper
- School of Biological Sciences, Faculty of Science, the University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre for Molecular Biodiscovery, Faculty of Science, the University of Auckland, Auckland, New Zealand
- Centre for Advanced Discovery and Experimental Therapeutics, Division of Cardiovascular Sciences, Faculty of Biology Medicine & Health, School of Medical Sciences, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
13
|
Wong HY, Hui Q, Hao Z, Warnock GL, Woo M, Luciani DS, Marzban L. The role of mitochondrial apoptotic pathway in islet amyloid-induced β-cell death. Mol Cell Endocrinol 2021; 537:111424. [PMID: 34400259 DOI: 10.1016/j.mce.2021.111424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/24/2021] [Accepted: 08/10/2021] [Indexed: 12/16/2022]
Abstract
Islet amyloid, formed by aggregation of human islet amyloid polypeptide (hIAPP), contributes to β-cell death in type 2 diabetes. We previously showed that extracellular hIAPP aggregates promote Fas-mediated β-cell apoptosis. Here, we tested if hIAPP aggregates can trigger the mitochondrial apoptotic pathway (MAP). hIAPP aggregation in Ad-hIAPP transduced INS-1 and human islet β-cells promoted cytochrome c release, caspase-9 activation and apoptosis, which were reduced by Bax inhibitor. Amyloid formation in hIAPP-expressing mouse islets during culture increased caspase-9 activation in β-cells. Ad-hIAPP transduced islets from CytcKA/KA and BaxBak βDKO mice (models of blocked MAP), had lower caspase-9-positive and apoptotic β-cells than transduced wild-type islets, despite comparable amyloid formation. Blocking Fas (markedly) and Bax or caspase-9 (modestly) reduced β-cell death induced by extracellular hIAPP aggregates. These findings suggest a role for MAP in amyloid-induced β-cell death and a potential strategy to reduce intracellular amyloid β-cell toxicity by blocking cytochrome c apoptotic function.
Collapse
Affiliation(s)
- Helen Y Wong
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Queenie Hui
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Zhenyue Hao
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Garth L Warnock
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Minna Woo
- Toronto General Hospital Research Institute and Division of Endocrinology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Dan S Luciani
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Lucy Marzban
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
14
|
Marmentini C, Branco RCS, Boschero AC, Kurauti MA. Islet amyloid toxicity: From genesis to counteracting mechanisms. J Cell Physiol 2021; 237:1119-1142. [PMID: 34636428 DOI: 10.1002/jcp.30600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 09/09/2021] [Accepted: 10/01/2021] [Indexed: 11/11/2022]
Abstract
Islet amyloid polypeptide (IAPP or amylin) is a hormone co-secreted with insulin by pancreatic β-cells and is the major component of islet amyloid. Islet amyloid is found in the pancreas of patients with type 2 diabetes (T2D) and may be involved in β-cell dysfunction and death, observed in this disease. Thus, investigating the aspects related to amyloid formation is relevant to the development of strategies towards β-cell protection. In this sense, IAPP misprocessing, IAPP overproduction, and disturbances in intra- and extracellular environments seem to be decisive for IAPP to form islet amyloid. Islet amyloid toxicity in β-cells may be triggered in intra- and/or extracellular sites by membrane damage, endoplasmic reticulum stress, autophagy disruption, mitochondrial dysfunction, inflammation, and apoptosis. Importantly, different approaches have been suggested to prevent islet amyloid cytotoxicity, from inhibition of IAPP aggregation to attenuation of cell death mechanisms. Such approaches have improved β-cell function and prevented the development of hyperglycemia in animals. Therefore, counteracting islet amyloid may be a promising therapy for T2D treatment.
Collapse
Affiliation(s)
- Carine Marmentini
- Laboratory of Endocrine Pancreas and Metabolism, Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil
| | - Renato C S Branco
- Laboratory of Endocrine Pancreas and Metabolism, Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil
| | - Antonio C Boschero
- Laboratory of Endocrine Pancreas and Metabolism, Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil
| | - Mirian A Kurauti
- Laboratory of Endocrine Pancreas and Metabolism, Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil.,Department of Physiological Sciences, Biological Sciences Center, State University of Maringa (UEM), Maringa, Brazil
| |
Collapse
|
15
|
Kahn SE, Chen YC, Esser N, Taylor AJ, van Raalte DH, Zraika S, Verchere CB. The β Cell in Diabetes: Integrating Biomarkers With Functional Measures. Endocr Rev 2021; 42:528-583. [PMID: 34180979 PMCID: PMC9115372 DOI: 10.1210/endrev/bnab021] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Indexed: 02/08/2023]
Abstract
The pathogenesis of hyperglycemia observed in most forms of diabetes is intimately tied to the islet β cell. Impairments in propeptide processing and secretory function, along with the loss of these vital cells, is demonstrable not only in those in whom the diagnosis is established but typically also in individuals who are at increased risk of developing the disease. Biomarkers are used to inform on the state of a biological process, pathological condition, or response to an intervention and are increasingly being used for predicting, diagnosing, and prognosticating disease. They are also proving to be of use in the different forms of diabetes in both research and clinical settings. This review focuses on the β cell, addressing the potential utility of genetic markers, circulating molecules, immune cell phenotyping, and imaging approaches as biomarkers of cellular function and loss of this critical cell. Further, we consider how these biomarkers complement the more long-established, dynamic, and often complex measurements of β-cell secretory function that themselves could be considered biomarkers.
Collapse
Affiliation(s)
- Steven E Kahn
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - Yi-Chun Chen
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Nathalie Esser
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - Austin J Taylor
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Daniël H van Raalte
- Department of Internal Medicine, Amsterdam University Medical Center (UMC), Vrije Universiteit (VU) University Medical Center, 1007 MB Amsterdam, The Netherlands.,Department of Experimental Vascular Medicine, Amsterdam University Medical Center (UMC), Academic Medical Center, 1007 MB Amsterdam, The Netherlands
| | - Sakeneh Zraika
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - C Bruce Verchere
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| |
Collapse
|
16
|
Chen C, Rong P, Yang M, Ma X, Feng Z, Wang W. The Role of Interleukin-1β in Destruction of Transplanted Islets. Cell Transplant 2021; 29:963689720934413. [PMID: 32543895 PMCID: PMC7563886 DOI: 10.1177/0963689720934413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Islet transplantation is a promising β-cell replacement therapy for type 1 diabetes, which can reduce glucose lability and hypoglycemic episodes compared with standard insulin therapy. Despite the tremendous progress made in this field, challenges remain in terms of long-term successful transplant outcomes. The insulin independence rate remains low after islet transplantation from one donor pancreas. It has been reported that the islet-related inflammatory response is the main cause of early islet damage and graft loss after transplantation. The production of interleukin-1β (IL-1β) has considered to be one of the primary harmful inflammatory events during pancreatic procurement, islet isolation, and islet transplantation. Evidence suggests that the innate immune response is upregulated through the activity of Toll-like receptors and The NACHT Domain-Leucine-Rich Repeat and PYD-containing Protein 3 inflammasome, which are the starting points for a series of signaling events that drive excessive IL-1β production in islet transplantation. In this review, we show recent contributions to the advancement of knowledge of IL-1β in islet transplantation and discuss several strategies targeting IL-1β for improving islet engraftment.
Collapse
Affiliation(s)
- Cheng Chen
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Pengfei Rong
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Min Yang
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaoqian Ma
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhichao Feng
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Wang
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
17
|
Mechanisms of Beta-Cell Apoptosis in Type 2 Diabetes-Prone Situations and Potential Protection by GLP-1-Based Therapies. Int J Mol Sci 2021; 22:ijms22105303. [PMID: 34069914 PMCID: PMC8157542 DOI: 10.3390/ijms22105303] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 12/22/2022] Open
Abstract
Type 2 diabetes (T2D) is characterized by chronic hyperglycemia secondary to the decline of functional beta-cells and is usually accompanied by a reduced sensitivity to insulin. Whereas altered beta-cell function plays a key role in T2D onset, a decreased beta-cell mass was also reported to contribute to the pathophysiology of this metabolic disease. The decreased beta-cell mass in T2D is, at least in part, attributed to beta-cell apoptosis that is triggered by diabetogenic situations such as amyloid deposits, lipotoxicity and glucotoxicity. In this review, we discussed the molecular mechanisms involved in pancreatic beta-cell apoptosis under such diabetes-prone situations. Finally, we considered the molecular signaling pathways recruited by glucagon-like peptide-1-based therapies to potentially protect beta-cells from death under diabetogenic situations.
Collapse
|
18
|
Ghanbari M, Momen Maragheh S, Aghazadeh A, Mehrjuyan SR, Hussen BM, Abdoli Shadbad M, Dastmalchi N, Safaralizadeh R. Interleukin-1 in obesity-related low-grade inflammation: From molecular mechanisms to therapeutic strategies. Int Immunopharmacol 2021; 96:107765. [PMID: 34015596 DOI: 10.1016/j.intimp.2021.107765] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/27/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022]
Abstract
Since adipose tissue (AT) can upregulate pro-inflammatory interleukins (ILs) via storing extra lipids in obesity, obesity is considered the leading cause of chronic low-grade inflammation. These ILs can pave the way for the infiltration of immune cells into the AT, ultimately resulting in low-grade inflammation and dysregulation of adipocytes. IL-1, which is divided into two subclasses, i.e., IL-1α and IL-1β, is a critical pro-inflammatory factor. In obesity, IL-1α and IL-1β can promote insulin resistance via impairing the function of adipocytes and promoting inflammation. The current study aims to review the detailed molecular mechanisms and the roles of IL-1α and IL-1β and their antagonist, interleukin-1 receptor antagonist(IL-1Ra), in developing obesity-related inflammatory complications, i.e., type II diabetes (T2D), non-alcoholic steatohepatitis (NASH), atherosclerosis, and cognitive disorders. Besides, the current study discusses the recent advances in natural drugs, synthetic agents, and gene therapy approaches to treat obesity-related inflammatory complications via suppressing IL-1.
Collapse
Affiliation(s)
- Mohammad Ghanbari
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Aida Aghazadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | | | - Mahdi Abdoli Shadbad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Dastmalchi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
19
|
Verma AK, Bhatt D, Goyal Y, Dev K, Beg MMA, Alsahli MA, Rahmani AH. Association of Rheumatoid Arthritis with Diabetic Comorbidity: Correlating Accelerated Insulin Resistance to Inflammatory Responses in Patients. J Multidiscip Healthc 2021; 14:809-820. [PMID: 33880030 PMCID: PMC8052128 DOI: 10.2147/jmdh.s285469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/10/2020] [Indexed: 12/23/2022] Open
Abstract
Over the past two decades, with advancement of medical research and technology, treatments of many diseases including chronic disorders like rheumatoid arthritis (RA) have been revolutionized. Treatment and management of RA has been refined by advances in understanding its pathologic mechanisms, the development of drugs which target them and its association with various other chronic comorbidities like diabetes. Diabetes prevalence is closely associated with RA since elevated insulin resistance have been observed with RA. It is also associated with inflammation caused due to pro-inflammatory cytokines like tumour necrosis factor α and interleukin 6. Inflammation encourages insulin resistance and also stimulates other factors like a high level of rheumatoid factor in the blood leading to positivity of rheumatoid factor in RA patients. The degree of RA inflammation also tends to influence the criticality of insulin resistance, which increases with high activity of RA and vice versa. Markers of glucose metabolism appear to be improved by DMARDs like methotrexate, hydroxychloroquine, interleukin 1 antagonists and TNF antagonist while glucocorticoids adversely affect glycemic control especially when administered chronically. The intent of the present review paper is to understand the association between RA, insulin resistance and diabetes; the degree to which both can influence the other along with the plausible impact of RA medications on diabetes and insulin resistance.
Collapse
Affiliation(s)
- Amit K Verma
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Deepti Bhatt
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Yamini Goyal
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Kapil Dev
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | | | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
20
|
Yamanaka G, Takamatsu T, Morichi S, Yamazaki T, Mizoguchi I, Ohno K, Watanabe Y, Ishida Y, Oana S, Suzuki S, Kashiwagi Y, Takata F, Sakuma H, Yoshimoto T, Kato M, Kawashima H. Interleukin-1β in peripheral monocytes is associated with seizure frequency in pediatric drug-resistant epilepsy. J Neuroimmunol 2021; 352:577475. [PMID: 33454554 DOI: 10.1016/j.jneuroim.2021.577475] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/01/2021] [Accepted: 01/02/2021] [Indexed: 12/16/2022]
Abstract
In this study, we assessed circulating immune cells and plasma cytokine levels in 15 pediatric patients with drug-resistant epilepsy (DRE). DRE patients had a significantly higher percentage of CD14+ monocytes positive for IL-1β, IL-1 receptor antagonist, IL-6, and TNF-α than controls. Significantly higher intracellular levels of IFN-γ in CD4+ T cells and NK cells were also found in DRE patients. The level of IL-1β+ CD14+ monocytes correlated with seizure frequency, and intracellular levels of IFN-γ in NKT-like cells were negatively correlated with the duration of epilepsy. Peripheral immune cells might be involved in the pathogenesis of DRE.
Collapse
Affiliation(s)
- Gaku Yamanaka
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku, Tokyo 160-0023, Japan.
| | - Tomoko Takamatsu
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku, Tokyo 160-0023, Japan
| | - Shinichiro Morichi
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku, Tokyo 160-0023, Japan
| | - Takashi Yamazaki
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku, Tokyo 160-0023, Japan
| | - Izuru Mizoguchi
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Koko Ohno
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku, Tokyo 160-0023, Japan
| | - Yusuke Watanabe
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku, Tokyo 160-0023, Japan
| | - Yu Ishida
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku, Tokyo 160-0023, Japan
| | - Shingo Oana
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku, Tokyo 160-0023, Japan
| | - Shinji Suzuki
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku, Tokyo 160-0023, Japan
| | - Yasuyo Kashiwagi
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku, Tokyo 160-0023, Japan
| | - Fuyuko Takata
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Hiroshi Sakuma
- Developmental Neuroimmunology Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Takayuki Yoshimoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Hisashi Kawashima
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku, Tokyo 160-0023, Japan
| |
Collapse
|
21
|
Engin AB, Engin A. Protein Kinases Signaling in Pancreatic Beta-cells Death and Type 2 Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:195-227. [PMID: 33539017 DOI: 10.1007/978-3-030-49844-3_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Type 2 diabetes (T2D) is a worldwide serious public health problem. Insulin resistance and β-cell failure are the two major components of T2D pathology. In addition to defective endoplasmic reticulum (ER) stress signaling due to glucolipotoxicity, β-cell dysfunction or β-cell death initiates the deleterious vicious cycle observed in T2D. Although the primary cause is still unknown, overnutrition that contributes to the induction of the state of low-grade inflammation, and the activation of various protein kinases-related metabolic pathways are main factors leading to T2D. In this chapter following subjects, which have critical checkpoints regarding β-cell fate and protein kinases pathways are discussed; hyperglycemia-induced β-cell failure, chronic accumulation of unfolded protein in β-cells, the effect of intracellular reactive oxygen species (ROS) signaling to insulin secretion, excessive saturated free fatty acid-induced β-cell apoptosis, mitophagy dysfunction, proinflammatory responses and insulin resistance, and the reprogramming of β-cell for differentiation or dedifferentiation in T2D. There is much debate about selecting proposed therapeutic strategies to maintain or enhance optimal β-cell viability for adequate insulin secretion in T2D. However, in order to achieve an effective solution in the treatment of T2D, more intensive clinical trials are required on newer therapeutic options based on protein kinases signaling pathways.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| | - Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
22
|
Templin AT, Mellati M, Meier DT, Esser N, Hogan MF, Castillo JJ, Akter R, Raleigh DP, Zraika S, Hull RL, Kahn SE. Low concentration IL-1β promotes islet amyloid formation by increasing hIAPP release from humanised mouse islets in vitro. Diabetologia 2020; 63:2385-2395. [PMID: 32728889 PMCID: PMC7529980 DOI: 10.1007/s00125-020-05232-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/05/2020] [Indexed: 01/09/2023]
Abstract
AIMS/HYPOTHESIS Aggregation of the beta cell secretory product human islet amyloid polypeptide (hIAPP) results in islet amyloid deposition, a pathological feature of type 2 diabetes. Amyloid formation is associated with increased levels of islet IL-1β as well as beta cell dysfunction and death, but the mechanisms that promote amyloid deposition in situ remain unclear. We hypothesised that physiologically relevant concentrations of IL-1β stimulate beta cell islet amyloid polypeptide (IAPP) release and promote amyloid formation. METHODS We used a humanised mouse model of endogenous beta cell hIAPP expression to examine whether low (pg/ml) concentrations of IL-1β promote islet amyloid formation in vitro. Amyloid-forming islets were cultured for 48 h in the presence or absence of IL-1β with or without an IL-1β neutralising antibody. Islet morphology was assessed by immunohistochemistry and islet mRNA expression, hormone content and release were also quantified. Cell-free thioflavin T assays were used to monitor hIAPP aggregation kinetics in the presence and absence of IL-1β. RESULTS Treatment with a low concentration of IL-1β (4 pg/ml) for 48 h increased islet amyloid prevalence (93.52 ± 3.89% vs 43.83 ± 9.67% amyloid-containing islets) and amyloid severity (4.45 ± 0.82% vs 2.16 ± 0.50% amyloid area/islet area) in hIAPP-expressing mouse islets in vitro. This effect of IL-1β was reduced when hIAPP-expressing islets were co-treated with an IL-1β neutralising antibody. Cell-free hIAPP aggregation assays showed no effect of IL-1β on hIAPP aggregation in vitro. Low concentration IL-1β did not increase markers of the unfolded protein response (Atf4, Ddit3) or alter proIAPP processing enzyme gene expression (Pcsk1, Pcsk2, Cpe) in hIAPP-expressing islets. However, release of IAPP and insulin were increased over 48 h in IL-1β-treated vs control islets (IAPP 0.409 ± 0.082 vs 0.165 ± 0.051 pmol/5 islets; insulin 87.5 ± 8.81 vs 48.3 ± 17.3 pmol/5 islets), and this effect was blocked by co-treatment with IL-1β neutralising antibody. CONCLUSIONS/INTERPRETATION Under amyloidogenic conditions, physiologically relevant levels of IL-1β promote islet amyloid formation by increasing beta cell release of IAPP. Neutralisation of this effect of IL-1β may decrease the deleterious effects of islet amyloid formation on beta cell function and survival.
Collapse
Affiliation(s)
- Andrew T Templin
- Division of Metabolism, Endocrinology and Nutrition, Veteran Affairs Puget Sound Health Care System (151) and University of Washington, 1660 S. Columbian Way, Seattle, WA, 98108, USA
| | - Mahnaz Mellati
- Division of Metabolism, Endocrinology and Nutrition, Veteran Affairs Puget Sound Health Care System (151) and University of Washington, 1660 S. Columbian Way, Seattle, WA, 98108, USA
| | - Daniel T Meier
- Division of Metabolism, Endocrinology and Nutrition, Veteran Affairs Puget Sound Health Care System (151) and University of Washington, 1660 S. Columbian Way, Seattle, WA, 98108, USA
| | - Nathalie Esser
- Division of Metabolism, Endocrinology and Nutrition, Veteran Affairs Puget Sound Health Care System (151) and University of Washington, 1660 S. Columbian Way, Seattle, WA, 98108, USA
| | - Meghan F Hogan
- Division of Metabolism, Endocrinology and Nutrition, Veteran Affairs Puget Sound Health Care System (151) and University of Washington, 1660 S. Columbian Way, Seattle, WA, 98108, USA
| | - Joseph J Castillo
- Division of Metabolism, Endocrinology and Nutrition, Veteran Affairs Puget Sound Health Care System (151) and University of Washington, 1660 S. Columbian Way, Seattle, WA, 98108, USA
| | - Rehana Akter
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Daniel P Raleigh
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Sakeneh Zraika
- Division of Metabolism, Endocrinology and Nutrition, Veteran Affairs Puget Sound Health Care System (151) and University of Washington, 1660 S. Columbian Way, Seattle, WA, 98108, USA
| | - Rebecca L Hull
- Division of Metabolism, Endocrinology and Nutrition, Veteran Affairs Puget Sound Health Care System (151) and University of Washington, 1660 S. Columbian Way, Seattle, WA, 98108, USA
| | - Steven E Kahn
- Division of Metabolism, Endocrinology and Nutrition, Veteran Affairs Puget Sound Health Care System (151) and University of Washington, 1660 S. Columbian Way, Seattle, WA, 98108, USA.
| |
Collapse
|
23
|
Guo J, Fu W. Immune regulation of islet homeostasis and adaptation. J Mol Cell Biol 2020; 12:764-774. [PMID: 32236479 PMCID: PMC7816675 DOI: 10.1093/jmcb/mjaa009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 02/06/2023] Open
Abstract
The islet of Langerhans produces endocrine hormones to regulate glucose homeostasis. The normal function of the islet relies on the homeostatic regulations of cellular composition and cell–cell interactions within the islet microenvironment. Immune cells populate the islet during embryonic development and participate in islet organogenesis and function. In obesity, a low-grade inflammation manifests in multiple organs, including pancreatic islets. Obesity-associated islet inflammation is evident in both animal models and humans, characterized by the accumulation of immune cells and elevated production of inflammatory cytokines/chemokines and metabolic mediators. Myeloid lineage cells (monocytes and macrophages) are the dominant types of immune cells in islet inflammation during the development of obesity and type 2 diabetes mellitus (T2DM). In this review, we will discuss the role of the immune system in islet homeostasis and inflammation and summarize recent findings of the cellular and molecular factors that alter islet microenvironment and β cell function in obesity and T2DM.
Collapse
Affiliation(s)
- Jinglong Guo
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Wenxian Fu
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
24
|
Asiri MMH, Engelsman S, Eijkelkamp N, Höppener JWM. Amyloid Proteins and Peripheral Neuropathy. Cells 2020; 9:E1553. [PMID: 32604774 PMCID: PMC7349787 DOI: 10.3390/cells9061553] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
Painful peripheral neuropathy affects millions of people worldwide. Peripheral neuropathy develops in patients with various diseases, including rare familial or acquired amyloid polyneuropathies, as well as some common diseases, including type 2 diabetes mellitus and several chronic inflammatory diseases. Intriguingly, these diseases share a histopathological feature-deposits of amyloid-forming proteins in tissues. Amyloid-forming proteins may cause tissue dysregulation and damage, including damage to nerves, and may be a common cause of neuropathy in these, and potentially other, diseases. Here, we will discuss how amyloid proteins contribute to peripheral neuropathy by reviewing the current understanding of pathogenic mechanisms in known inherited and acquired (usually rare) amyloid neuropathies. In addition, we will discuss the potential role of amyloid proteins in peripheral neuropathy in some common diseases, which are not (yet) considered as amyloid neuropathies. We conclude that there are many similarities in the molecular and cell biological defects caused by aggregation of the various amyloid proteins in these different diseases and propose a common pathogenic pathway for "peripheral amyloid neuropathies".
Collapse
Affiliation(s)
- Mohammed M. H. Asiri
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands; (M.M.H.A.); (S.E.); (J.W.M.H.)
- The National Centre for Genomic Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, 11461 Riyadh, Saudi Arabia
| | - Sjoukje Engelsman
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands; (M.M.H.A.); (S.E.); (J.W.M.H.)
| | - Niels Eijkelkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands; (M.M.H.A.); (S.E.); (J.W.M.H.)
| | - Jo W. M. Höppener
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands; (M.M.H.A.); (S.E.); (J.W.M.H.)
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands
| |
Collapse
|
25
|
Alpha1-antitrypsin ameliorates islet amyloid-induced glucose intolerance and β-cell dysfunction. Mol Metab 2020; 37:100984. [PMID: 32229246 PMCID: PMC7186564 DOI: 10.1016/j.molmet.2020.100984] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 03/21/2020] [Indexed: 02/07/2023] Open
Abstract
Objective Pancreatic β-cell failure is central to the development and progression of type 2 diabetes (T2D). The aggregation of human islet amyloid polypeptide (hIAPP) has been associated with pancreatic islet inflammation and dysfunction in T2D. Alpha1-antitrypsin (AAT) is a circulating protease inhibitor with anti-inflammatory properties. Here, we sought to investigate the potential therapeutic effect of AAT treatment in a mouse model characterized by hIAPP overexpression in pancreatic β-cells. Methods Mice overexpressing hIAPP (hIAPP-Tg) in pancreatic β-cells were used as a model of amyloid-induced β-cell dysfunction. Glucose homeostasis was evaluated by glucose tolerance tests and insulin secretion assays. Apoptosis and amyloid formation was assessed in hIAPP-Tg mouse islets cultured at high glucose levels. Dissociated islet cells were cocultured with macrophages obtained from the peritoneal cavity. Results Nontreated hIAPP-Tg mice were glucose intolerant and exhibited impaired insulin secretion. Interestingly, AAT treatment improved glucose tolerance and restored the insulin secretory response to glucose in hIAPP-Tg mice. Moreover, AAT administration normalized the expression of the essential β-cell genes MafA and Pdx1, which were downregulated in pancreatic islets from hIAPP-Tg mice. AAT prevented the formation of amyloid deposits and apoptosis in hIAPP-Tg islets cultured at high glucose concentrations. Since islet macrophages mediate hIAPP-induced β-cell dysfunction, we investigated the effect of AAT in cocultures of macrophages and islet cells. AAT prevented hIAPP-induced β-cell apoptosis in these cocultures without reducing the hIAPP-induced secretion of IL-1β by macrophages. Remarkably, AAT protected β-cells against the cytotoxic effects of conditioned medium from hIAPP-treated macrophages. Similarly, AAT also abrogated the cytotoxic effects of exogenous proinflammatory cytokines on pancreatic β-cells. Conclusions These results demonstrate that treatment with AAT improves glucose homeostasis in mice overexpressing hIAPP and protects pancreatic β-cells from the cytotoxic actions of hIAPP mediated by macrophages. These results support the use of AAT-based therapies to recover pancreatic β-cell function for the treatment of T2D. Alpha1-antitrypsin (AAT) ameliorates glucose intolerance in hIAPP transgenic mice. AAT improves insulin secretion in hIAPP transgenic mice. AAT prevents apoptosis and amyloid deposition in cultured hIAPP transgenic islets. AAT protects β-cells from hIAPP-induced cytotoxicity mediated by macrophages. AAT abrogates the cytotoxic effects of proinflammatory cytokines on β-cells.
Collapse
|
26
|
Yamanaka G, Morichi S, Takamatsu T, Takahashi R, Watanabe Y, Ishida Y, Takeshita M, Morishita N, Kasuga A, Kanou K, Oana S, Suzuki S, Go S, Kashiwagi Y, Kawashima H. Granzyme A Participates in the Pathogenesis of Infection-Associated Acute Encephalopathy. J Child Neurol 2020; 35:208-214. [PMID: 31709864 DOI: 10.1177/0883073819886217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE The present study aimed to determine whether granzymes are implicated in the pathogenesis of infection-associated acute encephalopathy (AE). METHODS We investigated granzyme and cytokine levels in the cerebrospinal fluid of patients with acute encephalopathy or complex febrile seizures (cFS). A total of 24 acute encephalopathy patients and 22 complex febrile seizures patients were included in the present study. Levels of granzymes A and B were measured using enzyme-linked immunosorbent assay, and levels of tumor necrosis factor α (TNF-α), interferon-γ (IFN-γ), interleukin 1β (IL-1β), IL-1 receptor antagonist (IL-1RA), IL-4, IL-6, IL-8, and IL-10 were assessed using the Bio-Plex suspension array system. RESULTS Cerebrospinal fluid levels of granzyme A were significantly higher, and those of TNF-α and IL-1RA were significantly lower in the AE group than in the cFS group; however, no significant differences in the levels of granzyme B, IFN-γ, IL-1β, IL-4, IL-6, IL-8, and IL-10 were observed between the 2 groups. In addition, no significant differences in granzyme A, granzyme B, or cytokine levels were observed between acute encephalopathy patients with and those without neurologic sequelae. CONCLUSIONS Our findings indicate the involvement of granzyme A in the pathogenesis of acute encephalopathy.
Collapse
Affiliation(s)
- Gaku Yamanaka
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Shinjuku, Tokyo, Japan
| | - Shinichiro Morichi
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Shinjuku, Tokyo, Japan
| | - Tomoko Takamatsu
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Shinjuku, Tokyo, Japan
| | - Ryou Takahashi
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Shinjuku, Tokyo, Japan
| | - Yusuke Watanabe
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Shinjuku, Tokyo, Japan
| | - Yu Ishida
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Shinjuku, Tokyo, Japan
| | - Mika Takeshita
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Shinjuku, Tokyo, Japan
| | - Natsumi Morishita
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Shinjuku, Tokyo, Japan
| | - Akiko Kasuga
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Shinjuku, Tokyo, Japan
| | - Kanako Kanou
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Shinjuku, Tokyo, Japan
| | - Singo Oana
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Shinjuku, Tokyo, Japan
| | - Shunsuke Suzuki
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Shinjuku, Tokyo, Japan
| | - Soken Go
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Shinjuku, Tokyo, Japan
| | - Yasuyo Kashiwagi
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Shinjuku, Tokyo, Japan
| | - Hisashi Kawashima
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Shinjuku, Tokyo, Japan
| |
Collapse
|
27
|
Targeting the IL-1β/IL-1Ra pathways for the aggregation of human islet amyloid polypeptide in an ex vivo organ culture system of the intervertebral disc. Exp Mol Med 2019; 51:1-16. [PMID: 31554783 PMCID: PMC6802624 DOI: 10.1038/s12276-019-0310-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/12/2019] [Accepted: 06/18/2019] [Indexed: 12/18/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is characterized by excessive apoptosis of nucleus pulposus (NP) cells and hyperactive extracellular matrix (ECM) catabolism. Our previous studies revealed the relationship between human islet amyloid polypeptide (hIAPP) and NP cell apoptosis. However, the role of hIAPP aggregates in IDD has not yet been investigated. This study aimed to determine whether the accumulation of hIAPP aggregates promotes IDD progression. The aggregation of hIAPP increased in human NP tissues during IDD. The deposition of hIAPP aggravated the compression-induced IDD that promoted NP cell apoptosis and ECM degradation via IL-1β/IL-1Ra signaling in an ex vivo rat disc model. Moreover, neutralizing IL-1β augmented the protective effects of hIAPP overexpression by decreasing hIAPP aggregation in human NP cells. These results suggest that the aggregation of hIAPP promotes NP cell apoptosis and ECM degradation ex vivo and in vitro by disrupting the balance of IL-1β/IL-1Ra signaling.
Collapse
|
28
|
Modulation of Innate Immunity by Amyloidogenic Peptides. Trends Immunol 2019; 40:762-780. [PMID: 31320280 DOI: 10.1016/j.it.2019.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 12/11/2022]
Abstract
Amyloid formation contributes to the development of progressive metabolic and neurodegenerative diseases, while also serving functional roles in host defense. Emerging evidence suggests that as amyloidogenic peptides populate distinct aggregation states, they interact with different combinations of pattern recognition receptors (PRRs) to direct the phenotype and function of tissue-resident and infiltrating innate immune cells. We review recent evidence of innate immunomodulation by distinct forms of amyloidogenic peptides produced by mammals (humans, non-human primates), bacteria, and fungi, as well as the corresponding cell-surface and intracellular PRRs in these interactions, in human and mouse models. Our emerging understanding of peptide aggregate-innate immune cell interactions, and the factors regulating the balance between amyloid function and pathogenicity, might aid the development of anti-amyloid and immunomodulating therapies.
Collapse
|
29
|
Abdel-Hamid AA, Firgany AEDL. Increased mast cell number is associated with a decrease in beta-cell mass and regeneration in type 2 diabetic rats. Acta Histochem 2019; 121:508-515. [PMID: 31014904 DOI: 10.1016/j.acthis.2019.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 11/27/2022]
Abstract
The role of mast cells (MCs) in type 2 diabetes (T2D) is not thoroughly studied as much as in T1D. Therefore in the current study we investigated correlation between these cells and various parameters of islets of Langerhans (IOL) in rats which were equally divided (n = 40) into; control and diabetic groups. We detected a significantly increased (p < 0.05) MC count (MCC) in the diabetic IOL compared to the control, together with a noticeable intra-islet seeding of these cells which displayed a tryptase positive immunostaining. A significant positive correlation (p < 0.05) between MCC and the % of glucagon cells per islet was detected in DM, unlike mass of the islets, mass of β-cells, and % of β-cells per islet which were negatively correlated with MCC. Similarly, there was a negative correlation between MCC with β-cell proliferation and neogenesis frequency in DM. This highlights the potential association between the increased MC number and the diminished islet`s mass as well as regeneration which may fasten the progression of T2D.
Collapse
|
30
|
Rickels MR, Robertson RP. Pancreatic Islet Transplantation in Humans: Recent Progress and Future Directions. Endocr Rev 2019; 40:631-668. [PMID: 30541144 PMCID: PMC6424003 DOI: 10.1210/er.2018-00154] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/26/2018] [Indexed: 12/11/2022]
Abstract
Pancreatic islet transplantation has become an established approach to β-cell replacement therapy for the treatment of insulin-deficient diabetes. Recent progress in techniques for islet isolation, islet culture, and peritransplant management of the islet transplant recipient has resulted in substantial improvements in metabolic and safety outcomes for patients. For patients requiring total or subtotal pancreatectomy for benign disease of the pancreas, isolation of islets from the diseased pancreas with intrahepatic transplantation of autologous islets can prevent or ameliorate postsurgical diabetes, and for patients previously experiencing painful recurrent acute or chronic pancreatitis, quality of life is substantially improved. For patients with type 1 diabetes or insulin-deficient forms of pancreatogenic (type 3c) diabetes, isolation of islets from a deceased donor pancreas with intrahepatic transplantation of allogeneic islets can ameliorate problematic hypoglycemia, stabilize glycemic lability, and maintain on-target glycemic control, consequently with improved quality of life, and often without the requirement for insulin therapy. Because the metabolic benefits are dependent on the numbers of islets transplanted that survive engraftment, recipients of autoislets are limited to receive the number of islets isolated from their own pancreas, whereas recipients of alloislets may receive islets isolated from more than one donor pancreas. The development of alternative sources of islet cells for transplantation, whether from autologous, allogeneic, or xenogeneic tissues, is an active area of investigation that promises to expand access and indications for islet transplantation in the future treatment of diabetes.
Collapse
Affiliation(s)
- Michael R Rickels
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - R Paul Robertson
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, Washington
- Division of Endocrinology, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
- Pacific Northwest Diabetes Research Institute, Seattle, Washington
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW We reviewed the current state of total pancreatectomy with islet autotransplantation (TPIAT) for chronic pancreatitis and recurrent acute pancreatitis (RAP). RECENT FINDINGS An increasing number of centers in the United States and internationally are performing TPIAT. In selected cases, TPIAT may be performed partially or entirely laparoscopically. Islet isolation is usually performed at the same center as the total pancreatectomy surgery, but new data suggest that diabetes outcomes may be nearly as good when a remote center is used for islet isolation. Ongoing clinical research is focused on patient and disease factors that predict success or failure to respond to TPIAT. Causes of persistent abdominal pain after TPIAT may include gastrointestinal dysmotility and central sensitization to pain. Several clinical trials are underway with anti-inflammatory or other islet protective strategies to better protect islets at the time of infusion and thereby improve the diabetes results of the procedure. SUMMARY In summary, there is an increasing body of literature emerging from multiple centers highlighting the benefits and persistent challenges of TPIAT for chronic pancreatitis and RAP. Ongoing study will be critical to optimizing the success of this procedure.
Collapse
|
32
|
Huang J, Yang Y, Hu R, Chen L. Anti-interleukin-1 therapy has mild hypoglycaemic effect in type 2 diabetes. Diabetes Obes Metab 2018; 20:1024-1028. [PMID: 29072812 DOI: 10.1111/dom.13140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 09/29/2017] [Accepted: 10/19/2017] [Indexed: 01/09/2023]
Abstract
The aim of this study was to systematically evaluate the efficacy and safety of anti-interleukin-1 therapy for type 2 diabetes. A literature search of PubMed and Embase for available trials on anti-interleukin-1 therapy in type 2 diabetes was performed. The baseline characteristics, changes in HbA1c and other metabolic parameters, and adverse events were extracted from included randomized controlled trials (RCTs) and were analysed with Review Manager. Mean differences (MDs) and 95% confidence intervals (Cis) were calculated to measure differences in metabolic parameters. Odds ratio and 95% CIs were calculated for adverse event rates. Five RCTs were included in the current meta-analysis with 357 subjects undergoing anti-interleukin-1 therapy (IL-1 receptor antagonist or anti-IL-1beta antibody) and 221 controls who received placebo. The HbA1c decrement (%) of anti-interleukin-1 group was significantly higher than that of the placebo group (MD = 0.23; 95% CI, -0.39 to -0.07; P = .005). AUC of C-peptide was improved also (MD = 14.55; 95% CI, 1.81-27.28; P = .03) after anti-interleukin-1 intervention. There was no difference in the rate of adverse events (odds ratio,1.16; 95% CI, 0.90-1.49; P = .25) between 2 groups. Anti-interleukin-1 therapy has mild hypoglycaemic effect in type 2 diabetes.
Collapse
Affiliation(s)
- Jinya Huang
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yehong Yang
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Renming Hu
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Lili Chen
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
33
|
Zhang Y, Warnock GL, Ao Z, Park YJ, Safikhan N, Ghahary A, Marzban L. Amyloid formation reduces protein kinase B phosphorylation in primary islet β-cells which is improved by blocking IL-1β signaling. PLoS One 2018; 13:e0193184. [PMID: 29474443 PMCID: PMC5825069 DOI: 10.1371/journal.pone.0193184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 02/02/2018] [Indexed: 12/31/2022] Open
Abstract
Amyloid formation in the pancreatic islets due to aggregation of human islet amyloid polypeptide (hIAPP) contributes to reduced β-cell mass and function in type 2 diabetes (T2D) and islet transplantation. Protein kinase B (PKB) signaling plays a key role in the regulation of β-cell survival, function and proliferation. In this study, we used human and hIAPP-expressing transgenic mouse islets in culture as two ex vivo models of human islet amyloid formation to: 1. Investigate the effects of amyloid formation on PKB phosphorylation in primary islet β-cells; 2. Test if inhibition of amyloid formation and/or interleukin-1β (IL-1β) signaling in islets can restore the changes in β-cell phospho-PKB levels mediated by amyloid formation. Human and hIAPP-expressing mouse islets were cultured in elevated glucose with an amyloid inhibitor (Congo red) or embedded within collagen matrix to prevent amyloid formation. To block the IL-1β signaling, human islets were treated with an IL-1 receptor antagonist (anakinra) or a glucagon-like peptide-1 agonist (exenatide). β-cell phospho-PKB levels, proliferation, apoptosis, islet IL-1β levels and amyloid formation were assessed. Amyloid formation in both cultured human and hIAPP-expressing mouse islets reduced β-cell phospho-PKB levels and increased islet IL-1β levels, both of which were restored by prevention of amyloid formation either by the amyloid inhibitor or embedding islets in collagen matrix, resulting in improved β-cell survival. Furthermore, inhibition of IL-1β signaling by treatment with anakinra or exenatide increased β-cell phospho-PKB levels, enhanced proliferation and reduced apoptosis in amyloid forming human islets during 7-day culture. These data suggest that amyloid formation leads to reduced PKB phosphorylation in β-cells which is associated with elevated islet IL-1β levels. Inhibitors of amyloid or amyloid-induced IL-1β production may provide a new approach to restore phospho-PKB levels thereby enhance β-cell survival and proliferation in conditions associated with islet amyloid formation such as T2D and clinical islet transplantation.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Garth L. Warnock
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ziliang Ao
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yoo Jin Park
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Nooshin Safikhan
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Aziz Ghahary
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Lucy Marzban
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- * E-mail:
| |
Collapse
|
34
|
Ursini F, Russo E, Ruscitti P, Giacomelli R, De Sarro G. The effect of non-TNF-targeted biologics and small molecules on insulin resistance in inflammatory arthritis. Autoimmun Rev 2018; 17:399-404. [PMID: 29452240 DOI: 10.1016/j.autrev.2017.11.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 11/25/2017] [Indexed: 12/14/2022]
Abstract
Inflammatory arthritides are chronic diseases characterised by an increase in cardiovascular risk, largely attributable to the synergy between high-grade systemic inflammation and an elevated prevalence of traditional cardiovascular risk factors. Amongst the latter, insulin resistance and type 2 diabetes (T2D) play a key position. Previous studies demonstrated a potential insulin-sensitizing effect of anti-TNF biologic medications. For converse, less is known about the role of newer biologics or small molecules. For this reason, we performed a systematic review of the literature in order to identify the available data on the effect on insulin resistance of non-TNF targeting biologics and small molecules approved for the treatment of inflammatory arthritides. The search strategy initially retrieved 486 records of which only 10 articles were selected for inclusion in the final review. According to the available evidence, some of the newest molecules, in particular tocilizumab and abatacept, may have a role in improving insulin sensitivity; for converse, anakinra-mediated effect on glucose metabolism may exploit different facets of T2D pathophysiology, such as the preservation of beta-cell function. However, the data available on this issue are largely inconsistent and future, adequately designed studies are still needed to clarify the differential impact of novel therapeutics on individual pathophysiological features of T2D and other emerging cardiovascular risk factors.
Collapse
Affiliation(s)
- Francesco Ursini
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Catanzaro, Italy; Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom.
| | - Emilio Russo
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Piero Ruscitti
- Division of Rheumatology, Department of Biotechnological and Applied Clinical Science, University of L'Aquila, L'Aquila, Italy
| | - Roberto Giacomelli
- Division of Rheumatology, Department of Biotechnological and Applied Clinical Science, University of L'Aquila, L'Aquila, Italy
| | | |
Collapse
|
35
|
Denroche HC, Verchere CB. IAPP and type 1 diabetes: implications for immunity, metabolism and islet transplants. J Mol Endocrinol 2018; 60:R57-R75. [PMID: 29378867 DOI: 10.1530/jme-17-0138] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 12/06/2017] [Indexed: 01/12/2023]
Abstract
Islet amyloid polypeptide (IAPP), the main component of islet amyloid in type 2 diabetes and islet transplants, is now recognized as a contributor to beta cell dysfunction. Increasingly, evidence warrants its investigation in type 1 diabetes owing to both its immunomodulatory and metabolic actions. Autoreactive T cells to IAPP-derived epitopes have been described in humans, suggesting that IAPP is an islet autoantigen in type 1 diabetes. In addition, although aggregates of IAPP have not been implicated in type 1 diabetes, they are potent pro-inflammatory stimuli to innate immune cells, and thus, could influence autoimmunity. IAPP aggregates also occur rapidly in transplanted islets and likely contribute to islet transplant failure in type 1 diabetes through sterile inflammation. In addition, since type 1 diabetes is a disease of both insulin and IAPP deficiency, clinical trials have examined the potential benefits of IAPP replacement in type 1 diabetes with the injectable IAPP analogue, pramlintide. Pramlintide limits postprandial hyperglycemia by delaying gastric emptying and suppressing hyperglucagonemia, underlining the possible role of IAPP in postprandial glucose metabolism. Here, we review IAPP in the context of type 1 diabetes: from its potential involvement in type 1 diabetes pathogenesis, through its role in glucose metabolism and use of IAPP analogues as therapeutics, to its potential role in clinical islet transplant failure and considerations in this regard for future beta cell replacement strategies.
Collapse
Affiliation(s)
- Heather C Denroche
- Department of Surgery, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - C Bruce Verchere
- Department of Surgery, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
36
|
Raleigh D, Zhang X, Hastoy B, Clark A. The β-cell assassin: IAPP cytotoxicity. J Mol Endocrinol 2017; 59:R121-R140. [PMID: 28811318 DOI: 10.1530/jme-17-0105] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 08/15/2017] [Indexed: 12/28/2022]
Abstract
Islet amyloid polypeptide (IAPP) forms cytotoxic oligomers and amyloid fibrils in islets in type 2 diabetes (T2DM). The causal factors for amyloid formation are largely unknown. Mechanisms of molecular folding and assembly of human IAPP (hIAPP) into β-sheets, oligomers and fibrils have been assessed by detailed biophysical studies of hIAPP and non-fibrillogenic, rodent IAPP (rIAPP); cytotoxicity is associated with the early phases (oligomers/multimers) of fibrillogenesis. Interaction with synthetic membranes promotes β-sheet assembly possibly via a transient α-helical molecular conformation. Cellular hIAPP cytotoxicity can be activated from intracellular or extracellular sites. In transgenic rodents overexpressing hIAPP, intracellular pro-apoptotic signals can be generated at different points in β-cell protein synthesis. Increased cellular trafficking of proIAPP, failure of the unfolded protein response (UPR) or excess trafficking of misfolded peptide via the degradation pathways can induce apoptosis; these data indicate that defects in intracellular handling of hIAPP can induce cytotoxicity. However, there is no evidence for IAPP overexpression in T2DM. Extracellular amyloidosis is directly related to the degree of β-cell apoptosis in islets in T2DM. IAPP fragments, fibrils and multimers interact with membranes causing disruption in vivo and in vitro These findings support a role for extracellular IAPP in β-sheet conformation in cytotoxicity. Inhibitors of fibrillogenesis are useful tools to determine the aberrant mechanisms that result in hIAPP molecular refolding and islet amyloidosis. However, currently, their role as therapeutic agents remains uncertain.
Collapse
Affiliation(s)
- Daniel Raleigh
- Department of ChemistryStony Brook University, Stony Brook, New York, USA
- Research Department of Structural and Molecule BiologyUniversity College London, London, UK
| | - Xiaoxue Zhang
- Department of ChemistryStony Brook University, Stony Brook, New York, USA
| | - Benoît Hastoy
- Oxford Centre for Diabetes Endocrinology and MetabolismUniversity of Oxford, Oxford, UK
| | - Anne Clark
- Oxford Centre for Diabetes Endocrinology and MetabolismUniversity of Oxford, Oxford, UK
| |
Collapse
|
37
|
Hui Q, Asadi A, Park YJ, Kieffer TJ, Ao Z, Warnock GL, Marzban L. Amyloid formation disrupts the balance between interleukin-1β and interleukin-1 receptor antagonist in human islets. Mol Metab 2017; 6:833-844. [PMID: 28752047 PMCID: PMC5518725 DOI: 10.1016/j.molmet.2017.05.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 12/28/2022] Open
Abstract
Objectives β-cell dysfunction and apoptosis associated with islet inflammation play a key role in the pathogenesis of type 2 diabetes (T2D). Growing evidence suggests that islet amyloid, formed by aggregation of human islet amyloid polypeptide (hIAPP), contributes to islet inflammation and β-cell death in T2D. We recently showed the role of interleukin-1β (IL-1β)/Fas/caspase-8 apoptotic pathway in amyloid-induced β-cell death. In this study, we used human islets in culture as an ex vivo model of amyloid formation to: (1) investigate the effects of amyloid on islet levels of the natural IL-1 receptor antagonist (IL-1Ra); (2) examine if modulating the IL-1β/IL-1Ra balance can prevent amyloid-induced β-cell Fas upregulation and apoptosis. Methods Isolated human islets (n = 10 donors) were cultured in elevated glucose (to form amyloid) with or without a neutralizing human IL-1β antibody for up to 7 days. Parallel studies were performed with human islets in which amyloid formation was prevented by adeno-siRNA-mediated suppression of hIAPP expression (as control). β-cell levels of IL-1Ra, Fas, apoptosis as well as islet function, insulin- and amyloid-positive areas, and IL-1Ra release were assessed. Results Progressive amyloid formation in human islets during culture was associated with alterations in IL-1Ra. Islet IL-1Ra levels were higher at early stages but were markedly reduced at later stages of amyloid formation. Furthermore, IL-1Ra release from human islets was reduced during 7-day culture in a time-dependent manner. These changes in IL-1Ra production and release from human islets during amyloid formation adversely correlated with islet IL-1β levels, β-cell Fas expression and apoptosis. Treatment with IL-1β neutralizing antibody markedly reduced amyloid-induced β-cell Fas expression and apoptosis, thereby improving islet β-cell survival and function during culture. Conclusions These data suggest that amyloid formation impairs the balance between IL-1β and IL-1Ra in islets by increasing IL-1β production and reducing IL-1Ra levels thereby promoting β-cell dysfunction and death. Restoring the IL-1β/IL-1Ra ratio may provide an effective strategy to protect islet β-cells from amyloid toxicity in T2D. Endogenous amyloid formation alters IL-1Ra levels in human islet β-cells. Amyloid impairs islet IL-1β/IL-1Ra balance by promoting IL-1β and reducing IL-1Ra. Restoring IL-1β/IL-1Ra ratio by blocking IL-1β protects human islets against amyloid.
Collapse
Key Words
- Amylin
- BSA, bovine serum albumin
- ER, endoplasmic reticulum
- FBS, fetal bovine serum
- IL-1R1, IL-1 receptor type I
- IL-1Ra, IL-1 receptor antagonist
- IL-1β, interleukin-1β
- Interleukin-1 receptor antagonist
- Interleukin-1β
- Islet amyloid
- Islet amyloid polypeptide
- Islet inflammation
- KRB, Krebs–Ringer bicarbonate
- PFA, paraformaldehyde
- T2D, type 2 diabetes
- Type 2 diabetes
- hIAPP, human islet amyloid polypeptide
- nIL1β, neutralizing IL-1β
- rIAPP, rat islet amyloid polypeptide
- β-cell apoptosis
Collapse
Affiliation(s)
- Queenie Hui
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ali Asadi
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yoo Jin Park
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Timothy J Kieffer
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ziliang Ao
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Garth L Warnock
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Lucy Marzban
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|