1
|
Hubálek F, Cramer CN, Helleberg H, Johansson E, Nishimura E, Schluckebier G, Steensgaard DB, Sturis J, Kjeldsen TB. Enhanced disulphide bond stability contributes to the once-weekly profile of insulin icodec. Nat Commun 2024; 15:6124. [PMID: 39033137 PMCID: PMC11271312 DOI: 10.1038/s41467-024-50477-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024] Open
Abstract
Insulin icodec is a once-weekly insulin analogue that has a long half-life of approximately 7 days, making it suitable for once weekly dosing. The Insulin icodec molecule was developed based on the hypothesis that lowering insulin receptor affinity and introducing a strong albumin-binding moiety would result in a long insulin half-life, provided that non-receptor-mediated clearance is diminished. Here, we report an insulin clearance mechanism, resulting in the splitting of insulin molecules into its A-chain and B-chain by a thiol-disulphide exchange reaction. Even though the substitutions in insulin icodec significantly stabilise insulin against such degradation, some free B-chain is observed in plasma samples from minipigs and people with type 2 diabetes. In summary, we identify thiol-disulphide exchange reactions to be an important insulin clearance mechanism and find that stabilising insulin icodec towards this reaction significantly contributes to its long pharmacokinetic/pharmacodynamic profile.
Collapse
|
2
|
Niloy KK, Lowe TL. Injectable systems for long-lasting insulin therapy. Adv Drug Deliv Rev 2023; 203:115121. [PMID: 37898336 DOI: 10.1016/j.addr.2023.115121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Insulin therapy is the mainstay to treat diabetes characterizedd by hyperglycemia. However, its short half-life of only 4-6 min limits its effectiveness in treating chronic diabetes. Advances in recombinant DNA technology and protein engineering have led to several insulin analogue products that have up to 42 h of glycemic control. However, these insulin analogues still require once- or twice-daily injections for optimal glycemic control and have poor patient compliance and adherence issues. To achieve insulin release for more than one day, different injectable delivery systems including microspheres, in situ forming depots, nanoparticles and composite systems have been developed. Several of these delivery systems have advanced to clinical trials for once-weekly insulin injection. This review comprehensively summarizes the developments of injectable insulin analogs and delivery systems covering the whole field of injectable long-lasting insulin technologies from prototype design, preclinical studies, clinical trials to marketed products for the treatment of diabetes.
Collapse
Affiliation(s)
- Kumar Kulldeep Niloy
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Tao L Lowe
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
3
|
An N, Wang X, He A, Chen W. Current Status of Weekly Insulin Analogs and Their Pharmacokinetic/Pharmacodynamic Evaluation by the Euglycemic Clamp Technique. Clin Pharmacol Drug Dev 2023; 12:849-855. [PMID: 37439495 DOI: 10.1002/cpdd.1296] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/31/2023] [Indexed: 07/14/2023]
Abstract
Diabetes mellitus represents a significant global health threat characterized by hyperglycemia caused by inadequate insulin secretion and/or insulin resistance. Exogenous insulin supplements had been recognized as a crucial treatment for achieving successful glycemic control in patients with Type 1 and most patients with Type 2 diabetes. Over the past century, substantial progress has been made in the development of novel insulin formulations, including the super-fast-acting and long-acting basal insulin analogs, of which the latter is indispensable for the management of nocturnal fasting and intraprandial blood glucose within the normal physiological range. Recently, combining chemical and genetic engineering with drug optimization have resulted in a formidable evolution in ultra-long-acting weekly insulin. Here, the current state of once-weekly insulin analogs and the euglycemic clamp technique used in the early clinical development to elucidate the pharmacokinetics and pharmacodynamics of this type of novel weekly insulin analogs were systematically overviewed.
Collapse
Affiliation(s)
- Na An
- Beijing Jingmei Group General Hospital, Beijing, China
| | - Xuhong Wang
- Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Anshun He
- Gan & Lee Pharmaceuticals, Beijing, China
| | - Wei Chen
- Gan & Lee Pharmaceuticals, Beijing, China
| |
Collapse
|
4
|
Reinhart JM, Graves TK. The Future of Diabetes Therapies: New Insulins and Insulin Delivery Systems, Glucagon-Like Peptide 1 Analogs, and Sodium-Glucose Cotransporter Type 2 Inhibitors, and Beta Cell Replacement Therapy. Vet Clin North Am Small Anim Pract 2023; 53:675-690. [PMID: 36854632 DOI: 10.1016/j.cvsm.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
As the prevalence of diabetes mellitus increases, so too does the number of available treatment modalities. Many diabetic therapies available in human medicine or on the horizon could hold promise in the management of small animal diabetes. However, it is important to consider how species differences in pathophysiology, management practices and goals, and lifestyle may affect the translation of such treatment modalities for veterinary use. This review article aimed to familiarize veterinarians with the more promising novel diabetic therapies and explore their possible applications in the treatment of canine and feline diabetes mellitus.
Collapse
Affiliation(s)
- Jennifer M Reinhart
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, 1008 West Hazelwood Drive, Urbana, IL 61802, USA.
| | - Thomas K Graves
- College of Veterinary Medicine, Midwestern University, 19555 North 59th Avenue, Glendale, AZ 85308, USA
| |
Collapse
|
5
|
Werner U, Bielohuby M, Korn M, Riedel J, Will M, Méndez M. Preclinical pharmacology of RA15127343: In vitro and in vivo activity of a novel ultralong-acting basal insulin. Diabetes Obes Metab 2022; 24:2411-2419. [PMID: 35892256 DOI: 10.1111/dom.14827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/13/2022] [Accepted: 07/22/2022] [Indexed: 11/28/2022]
Abstract
AIM To report the in vitro and in vivo preclinical pharmacokinetic (PK) and pharmacodynamic (PD) properties of RA15127343, a novel ultralong-acting insulin analogue targeting once-weekly administration, in female Göttingen minipigs. METHODS In vitro binding and activation of human insulin receptor isoforms (IR-A/IR-B), glucose uptake in rat myocytes, as well as mitogenic activity of RA15127343 were evaluated. In vivo, the PK and PD activities of RA15127343 were assessed in female, normoglycaemic Göttingen minipigs. The half-life (t1/2 ) and time to maximum plasma concentration (Tmax ) of subcutaneously (SC) administered RA15127343 (10/30/45/60 nmol/kg) were estimated. In vivo blood glucose and endogenous plasma C-peptide concentrations after single SC administration (10/30/45/60 nmol/kg) or repeated dosing (15 nmol/kg) were analysed. RESULTS In comparison to human insulin, RA15127343 showed lower in vitro binding affinity (19.9/6.31 μM vs. 1.10/1.14 nM) and activation (2.054 μM/669.6 nM vs. 26.04/18.24 nM) of IR-A/IR-B, lower potency to activate glucose uptake (855.2 vs. 3.37 nM) and lower mitogenic activity (17.92 μM vs. 10.78 nM; proliferation in MCF7 cells). In vivo, the mean t1/2 and Tmax of RA15127343 after SC administration ranged from 48 to 59 and 30 to 39 hours, respectively. Blood glucose and plasma C-peptide concentrations were significantly lower with RA15127343 (single/repeated doses) versus vehicle. CONCLUSIONS RA15127343 showed an ultra-long t1/2 with a slow onset of action. The preclinical pharmacological outcomes suggest RA15127343 could be a potential ultralong-acting insulin analogue with low risk of hypoglycaemia in humans.
Collapse
Affiliation(s)
- Ulrich Werner
- Sanofi, R&D, TD Diabetes, Industriepark Hoechst, Frankfurt am Main, Germany
| | | | - Marcus Korn
- Sanofi, R&D, TD Diabetes, Industriepark Hoechst, Frankfurt am Main, Germany
| | - Jens Riedel
- Sanofi, R&D, Drug Metabolism and Pharmacokinetics, Industriepark Hoechst, Frankfurt am Main, Germany
| | - Martin Will
- Sanofi, R&D, Integrated Drug Discovery, Industriepark Hoechst, Frankfurt am Main, Germany
| | - María Méndez
- Sanofi, R&D, Integrated Drug Discovery, Industriepark Hoechst, Frankfurt am Main, Germany
| |
Collapse
|
6
|
Jarosinski MA, Chen YS, Varas N, Dhayalan B, Chatterjee D, Weiss MA. New Horizons: Next-Generation Insulin Analogues: Structural Principles and Clinical Goals. J Clin Endocrinol Metab 2022; 107:909-928. [PMID: 34850005 PMCID: PMC8947325 DOI: 10.1210/clinem/dgab849] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Indexed: 11/19/2022]
Abstract
Design of "first-generation" insulin analogues over the past 3 decades has provided pharmaceutical formulations with tailored pharmacokinetic (PK) and pharmacodynamic (PD) properties. Application of a molecular tool kit-integrating protein sequence, chemical modification, and formulation-has thus led to improved prandial and basal formulations for the treatment of diabetes mellitus. Although PK/PD changes were modest in relation to prior formulations of human and animal insulins, significant clinical advantages in efficacy (mean glycemia) and safety (rates of hypoglycemia) were obtained. Continuing innovation is providing further improvements to achieve ultrarapid and ultrabasal analogue formulations in an effort to reduce glycemic variability and optimize time in range. Beyond such PK/PD metrics, next-generation insulin analogues seek to exploit therapeutic mechanisms: glucose-responsive ("smart") analogues, pathway-specific ("biased") analogues, and organ-targeted analogues. Smart insulin analogues and delivery systems promise to mitigate hypoglycemic risk, a critical barrier to glycemic control, whereas biased and organ-targeted insulin analogues may better recapitulate physiologic hormonal regulation. In each therapeutic class considerations of cost and stability will affect use and global distribution. This review highlights structural principles underlying next-generation design efforts, their respective biological rationale, and potential clinical applications.
Collapse
Affiliation(s)
- Mark A Jarosinski
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yen-Shan Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nicolás Varas
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Balamurugan Dhayalan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Deepak Chatterjee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Michael A Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
7
|
Tagmose TM, Pedersen KM, Pridal L, Stidsen CE, Pedersen MØ, Lin Z, Zhang Y, Wan Z, Ferreras M, Naver H, Nielsen PK, Cao Z, Wang Y, Lykke L, Christensen JL, Jensen VS, Manfè V, Pedersen TÅ, Johansson E, Madsen P, Kodra JT, Münzel M, De Maria L, Nishimura E, Kjeldsen TB. Molecular Engineering of Efficacious Mono-Valent Ultra-Long Acting Two-Chain Insulin-Fc Conjugates. J Med Chem 2022; 65:2633-2645. [PMID: 35104142 DOI: 10.1021/acs.jmedchem.1c02039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here, we describe molecular engineering of monovalent ultra-long acting two-chain insulin-Fc conjugates. Insulin-Fc conjugates were synthesized using trifunctional linkers with one amino reactive group for reaction with a lysine residue of insulin and two thiol reactive groups used for re-bridging of a disulfide bond within the Fc molecule. The ultra-long pharmacokinetic profile of the insulin-Fc conjugates was the result of concertedly slowing insulin receptor-mediated clearance by (1) introduction of amino acid substitutions that lowered the insulin receptor affinity and (2) conjugating insulin to the Fc element. Fc conjugation leads to recycling by the neonatal Fc receptor and increase in the molecular size, both contributing to the ultra-long pharmacokinetic and pharmacodynamic profiles.
Collapse
Affiliation(s)
- Tina M Tagmose
- Novo Nordisk A/S, Global Research Technologies, Novo Nordisk Park, DK-2760 Maaloev, Denmark
| | | | - Lone Pridal
- Novo Nordisk A/S, Global Drug Discovery, Novo Nordisk Park, DK-2760 Maaloev, Denmark
| | - Carsten E Stidsen
- Novo Nordisk A/S, Global Drug Discovery, Novo Nordisk Park, DK-2760 Maaloev, Denmark
| | - Marie Ø Pedersen
- Novo Nordisk A/S, Global Research Technologies, Novo Nordisk Park, DK-2760 Maaloev, Denmark
| | - Zhaosheng Lin
- Novo Nordisk A/S, Global Research Technologies, 20 Life Science Park Road, Changping District, 102206 Beijing, China
| | - Yuanyuan Zhang
- Novo Nordisk A/S, Global Research Technologies, 20 Life Science Park Road, Changping District, 102206 Beijing, China
| | - Zhe Wan
- Novo Nordisk A/S, Global Research Technologies, 20 Life Science Park Road, Changping District, 102206 Beijing, China
| | - Mercedes Ferreras
- Novo Nordisk A/S, Global Research Technologies, Novo Nordisk Park, DK-2760 Maaloev, Denmark
| | - Helle Naver
- Novo Nordisk A/S, Global Research Technologies, Novo Nordisk Park, DK-2760 Maaloev, Denmark
| | - Peter K Nielsen
- Novo Nordisk A/S, Global Research Technologies, Novo Nordisk Park, DK-2760 Maaloev, Denmark
| | - Zheng Cao
- Novo Nordisk A/S, Global Research Technologies, 20 Life Science Park Road, Changping District, 102206 Beijing, China
| | - Yi Wang
- Novo Nordisk A/S, Global Research Technologies, 20 Life Science Park Road, Changping District, 102206 Beijing, China
| | - Lennart Lykke
- Novo Nordisk A/S, Global Research Technologies, Novo Nordisk Park, DK-2760 Maaloev, Denmark
| | | | - Victoria S Jensen
- Novo Nordisk A/S, Global Drug Discovery, Novo Nordisk Park, DK-2760 Maaloev, Denmark
| | - Valentina Manfè
- Novo Nordisk A/S, Global Drug Discovery, Novo Nordisk Park, DK-2760 Maaloev, Denmark
| | - Thomas Å Pedersen
- Novo Nordisk A/S, Global Drug Discovery, Novo Nordisk Park, DK-2760 Maaloev, Denmark
| | - Eva Johansson
- Novo Nordisk A/S, Global Research Technologies, Novo Nordisk Park, DK-2760 Maaloev, Denmark
| | - Peter Madsen
- Novo Nordisk A/S, Global Research Technologies, Novo Nordisk Park, DK-2760 Maaloev, Denmark
| | - János T Kodra
- Novo Nordisk A/S, Global Research Technologies, Novo Nordisk Park, DK-2760 Maaloev, Denmark
| | - Martin Münzel
- Novo Nordisk A/S, Global Research Technologies, Novo Nordisk Park, DK-2760 Maaloev, Denmark
| | - Leonardo De Maria
- Novo Nordisk A/S, Global Research Technologies, Novo Nordisk Park, DK-2760 Maaloev, Denmark
| | - Erica Nishimura
- Novo Nordisk A/S, Global Drug Discovery, Novo Nordisk Park, DK-2760 Maaloev, Denmark
| | - Thomas B Kjeldsen
- Novo Nordisk A/S, Global Research Technologies, Novo Nordisk Park, DK-2760 Maaloev, Denmark
| |
Collapse
|
8
|
Rosenstock J, Del Prato S. Basal weekly insulins: the way of the future! Metabolism 2022; 126:154924. [PMID: 34728221 DOI: 10.1016/j.metabol.2021.154924] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 12/15/2022]
Abstract
Basal insulin treatment is indispensable for patients with type 1 diabetes and often required by many with type 2 diabetes. Incremental advances lengthening the duration of action of insulin analogs and reducing pharmacodynamic variability have resulted in truly once-daily, long-acting basal insulin analogs. In the quest for better basal insulins to facilitate improvements in glycemic control and long-term outcomes, the driving need is to remove barriers delaying timely initiation of basal insulin, to maximize treatment adherence and persistence and reduce treatment burden without increasing risk of hypoglycemia. We review the range of investigational once-weekly insulins and their molecular strategies and profiles. Currently, the two most advanced clinical development programs are: (1) basal insulin icodec, an insulin analog acylated with a C20 fatty diacid (icosanedioic acid) side chain (Novo Nordisk) and (2) basal insulin Fc, a fusion protein that combines a single-chain insulin variant with a human immunoglobulin G fragment crystallizable domain (Eli Lilly). Available phase 2 data for these two once-weekly agents show comparable glycemic control to existing once-daily insulin analogs, with no greater risk of hypoglycemia. While phase 3 data are awaited to confirm efficacy and safety, we provide future clinical perspectives on practical considerations for the potential use of once-weekly insulins.
Collapse
Affiliation(s)
- Julio Rosenstock
- Dallas Diabetes Research Center at Medical City, Dallas, TX, USA.
| | - Stefano Del Prato
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
9
|
Apley KD, Laflin AD, Johnson SN, Batrash N, Griffin JD, Berkland CJ, DeKosky BJ. Optimized Production of Fc Fusion Proteins by Sortase Enzymatic Ligation. Ind Eng Chem Res 2021; 60:16839-16853. [PMID: 38646185 PMCID: PMC11031256 DOI: 10.1021/acs.iecr.1c02842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fc fusions are a growing class of drugs comprising an antibody Fc domain covalently linked to a protein or peptide and can pose manufacturing challenges. In this study we evaluated three synthetic approaches to generate Fc fusions, using Fc-insulin as a model drug candidate. Engineered human IgG1 was digested with HRV3C to produce an Fc fragment with a C-terminal sortase tag (Fc-LPETGGH6). The synthesis of Fc-insulin2 from Fc-LPETGGH6 was evaluated with direct sortase-mediated ligation (SML) and two chemoenzymatic strategies. Direct SML was performed with triglycine-insulin, and chemoenzymatic strategies used to SML fuse either triglycine-azide or triglycine-DBCO prior to linking insulin with copper-catalyzed or strain-promoted azidealkyne cycloaddition. Reaction conditions were optimized by evaluating reagent concentrations, relative equivalents, temperature, and time. Direct SML provided the most effective reaction yields, converting 60-70% of Fc-LPETGGH6 to Fc-insulin2, whereas our optimized chemoenzymatic synthesis converted 30-40% of Fc-LPETGGH6 to Fc-insulin2. Here we show that SML is a practical and efficient method to synthesize Fc fusions and provide an optimized pathway for fusion drug synthesis.
Collapse
Affiliation(s)
- Kyle D Apley
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Amy D Laflin
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Stephanie N Johnson
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Noora Batrash
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - J Daniel Griffin
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Cory J Berkland
- Department of Pharmaceutical Chemistry, Department of Chemical and Petroleum Engineering, and Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas 66045, United States
| | - Brandon J DeKosky
- Department of Pharmaceutical Chemistry, Department of Chemical and Petroleum Engineering, and Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas 66045, United States; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States; The Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Abstract
Insulin therapy has a long history at the cutting edge of technological development through purification, extended-action, molecular chemistry, and devices, and in support technologies including self-measurement and patient education. But unmet needs remain large. Today's therapy cannot deliver minute-to-minute control of glucose levels, and cannot imitate the reflex/incretin driven physiological insulin delivery at mealtimes. Further it depends on a raft of devices for administration several times a day, devices liked for their functionality, but disliked as an intrusive reminder of the condition, several times a day. Approaches to overcoming these barriers include closed-loop systems and further modification of insulin formulations, but are limited by fundamental underlying difficulties. While clinical studies of oral insulin are in progress, the barriers to success look daunting. Development of small-molecule approaches (insulin-mimetic tablets) appears to have stalled, while concepts for glucose-responsive insulin as yet fail to deliver the necessary insulin-to-glucose gradient. Gene therapy, feasible in animals in preliminary studies, is not capable of providing feedback control. Transplantation of cultured islets and islet B-cells from stem cells thus looks to the be the best long-term prospect for insulin delivery in terms of overcoming the above barriers, but is a true biotechnological tour-de-force which will take time to mature.
Collapse
Affiliation(s)
- Philip Home
- Translational and Clinical Research Institute, Newcastle University, UK.
| |
Collapse
|
11
|
Home PD, Mehta R. Insulin therapy development beyond 100 years. Lancet Diabetes Endocrinol 2021; 9:695-707. [PMID: 34480874 DOI: 10.1016/s2213-8587(21)00182-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 12/21/2022]
Abstract
The first insulin preparation capable of consistently lowering blood glucose was developed in 1921. But 100 years later, blood glucose control with insulin in people with diabetes is nearly universally suboptimal, with essentially the same molecule still delivered by the same inappropriate subcutaneous injection route. Bypassing this route with oral administration appears to have become technologically feasible, accelerating over the past 50 years, either with packaged insulin peptides or by chemical insulin mimetics. Some of the problems of prospective unregulated absorption of insulin into the circulation from subcutaneous depots might be overcome with glucose-responsive insulins. Approaches to these problems could be modification of the peptide by adducts, or the use of nanoparticles or insulin patches, which deliver insulin according to glucose concentration. Some attention has been paid to targeting insulin preferentially to different organs, either by molecular engineering of insulin, or with adducts. But all these approaches still have problems in even beginning to match the responsiveness of physiological insulin delivery to metabolic requirements, both prandially and basally. As would be expected, for all these technically complex approaches, many examples of abandoned development can be found. Meanwhile, it is becoming possible to change the duration of action of subcutaneous injected insulin analogues to act even more rapidly for meals, and towards weekly insulin for basal administration. The state of the art of all these approaches, and the barriers to success, are reviewed here.
Collapse
Affiliation(s)
- Philip D Home
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
| | - Roopa Mehta
- Metabolic Diseases Research Unit, National Institute of Medical Sciences and Nutrition Salvador Zubiran, Mexico City, Mexico
| |
Collapse
|
12
|
Jarosinski MA, Dhayalan B, Chen YS, Chatterjee D, Varas N, Weiss MA. Structural principles of insulin formulation and analog design: A century of innovation. Mol Metab 2021; 52:101325. [PMID: 34428558 PMCID: PMC8513154 DOI: 10.1016/j.molmet.2021.101325] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The discovery of insulin in 1921 and its near-immediate clinical use initiated a century of innovation. Advances extended across a broad front, from the stabilization of animal insulin formulations to the frontiers of synthetic peptide chemistry, and in turn, from the advent of recombinant DNA manufacturing to structure-based protein analog design. In each case, a creative interplay was observed between pharmaceutical applications and then-emerging principles of protein science; indeed, translational objectives contributed to a growing molecular understanding of protein structure, aggregation and misfolding. SCOPE OF REVIEW Pioneering crystallographic analyses-beginning with Hodgkin's solving of the 2-Zn insulin hexamer-elucidated general features of protein self-assembly, including zinc coordination and the allosteric transmission of conformational change. Crystallization of insulin was exploited both as a step in manufacturing and as a means of obtaining protracted action. Forty years ago, the confluence of recombinant human insulin with techniques for site-directed mutagenesis initiated the present era of insulin analogs. Variant or modified insulins were developed that exhibit improved prandial or basal pharmacokinetic (PK) properties. Encouraged by clinical trials demonstrating the long-term importance of glycemic control, regimens based on such analogs sought to resemble daily patterns of endogenous β-cell secretion more closely, ideally with reduced risk of hypoglycemia. MAJOR CONCLUSIONS Next-generation insulin analog design seeks to explore new frontiers, including glucose-responsive insulins, organ-selective analogs and biased agonists tailored to address yet-unmet clinical needs. In the coming decade, we envision ever more powerful scientific synergies at the interface of structural biology, molecular physiology and therapeutics.
Collapse
Affiliation(s)
- Mark A Jarosinski
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, 46202, IN, USA
| | - Balamurugan Dhayalan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, 46202, IN, USA
| | - Yen-Shan Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, 46202, IN, USA
| | - Deepak Chatterjee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, 46202, IN, USA
| | - Nicolás Varas
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, 46202, IN, USA
| | - Michael A Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, 46202, IN, USA; Department of Chemistry, Indiana University, Bloomington, 47405, IN, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, 47907, IN, USA.
| |
Collapse
|
13
|
Pan K, Shi X, Liu K, Wang J, Chen Y. Efficacy, Pharmacokinetics, Biodistribution and Excretion of a Novel Acylated Long-Acting Insulin Analogue INS061 in Rats. Drug Des Devel Ther 2021; 15:3487-3498. [PMID: 34408401 PMCID: PMC8364340 DOI: 10.2147/dddt.s317327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/23/2021] [Indexed: 12/17/2022] Open
Abstract
Purpose Long-acting insulin analogues are known to be a major player in the management of glucose levels in type I diabetic patients. However, highly frequent hypo- and hyperglycemic incidences of current long-acting insulins are the important factor to limit stable management of glucose level for clinical benefits. To further optimize the properties for steadily controlling glucose level, a novel long-acting insulin INS061 was designed and its efficacy, pharmacokinetics, biodistribution and excretion profiles were investigated in rats. Methods The glucose-lowering effects were evaluated in a streptozocin-induced diabetic rats compared to commercial insulins via subcutaneous administration. The pharmacokinetics, biodistribution, and excretion were examined by validated analytical methods including radioactivity assay and radioactivity assay after the precipitation with TCA and the separation by HPLC. Results INS061 exhibited favorable blood glucose lowering effects up to 24 h compared to Degludec. Pharmacokinetic study revealed that the concentration-time curves of INS061 between two administration routes were remarkably different. Following intravenous administration, INS061 was quickly distributed to various organs and tissues and slowly eliminated over time with urinary excretion being the major route for elimination, and the maximum plasma concentrations (Cmax) and systemic exposures (AUC) increased in a linear manner. Conclusion The present structural modifications of human insulin possessed a long-acting profile and glucose-lowering function along with favorable in vivo properties in rats, which establish a foundation for further preclinical and clinical evaluation.
Collapse
Affiliation(s)
- Kai Pan
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, People's Republic of China.,Jiangsu Hengrui Medicine Co., Ltd., Lianyungang, 222047, People's Republic of China
| | - Xiaolei Shi
- Jiangsu Hengrui Medicine Co., Ltd., Lianyungang, 222047, People's Republic of China
| | - Kai Liu
- Fujian Suncadia Medicine Co., Ltd, Xiamen, 361026, People's Republic of China
| | - Ju Wang
- Jiangsu Hengrui Medicine Co., Ltd., Lianyungang, 222047, People's Republic of China
| | - Yijun Chen
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, People's Republic of China
| |
Collapse
|
14
|
Nauck MA, Wefers J, Meier JJ. Treatment of type 2 diabetes: challenges, hopes, and anticipated successes. Lancet Diabetes Endocrinol 2021; 9:525-544. [PMID: 34181914 DOI: 10.1016/s2213-8587(21)00113-3] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022]
Abstract
Despite the successful development of new therapies for the treatment of type 2 diabetes, such as glucagon-like peptide-1 (GLP-1) receptor agonists and sodium-glucose cotransporter-2 inhibitors, the search for novel treatment options that can provide better glycaemic control and at reduce complications is a continuous effort. The present Review aims to present an overview of novel targets and mechanisms and focuses on glucose-lowering effects guiding this search and developments. We discuss not only novel developments of insulin therapy (eg, so-called smart insulin preparation with a glucose-dependent mode of action), but also a group of drug classes for which extensive research efforts have not been rewarded with obvious clinical impact. We discuss the potential clinical use of the salutary adipokine adiponectin and the hepatokine fibroblast growth factor (FGF) 21, among others. A GLP-1 peptide receptor agonist (semaglutide) is now available for oral absorption, and small molecules activating GLP-1 receptors appear on the horizon. Bariatric surgery and its accompanying changes in the gut hormonal milieu offer a background for unimolecular peptides interacting with two or more receptors (for GLP-1, glucose-dependent insulinotropic polypeptide, glucagon, and peptide YY) and provide more substantial glycaemic control and bodyweight reduction compared with selective GLP-1 receptor agonists. These and additional approaches will help expand the toolbox of effective medications needed for optimising the treatment of well delineated subgroups of type 2 diabetes or help develop personalised approaches for glucose-lowering drugs based on individual characteristics of our patients.
Collapse
Affiliation(s)
- Michael A Nauck
- Diabetes Division, Katholisches Klinikum Bochum, St Josef Hospital, Ruhr University Bochum, Bochum, Germany.
| | - Jakob Wefers
- Diabetes Division, Katholisches Klinikum Bochum, St Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Juris J Meier
- Diabetes Division, Katholisches Klinikum Bochum, St Josef Hospital, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
15
|
Kurtzhals P, Nishimura E, Haahr H, Høeg-Jensen T, Johansson E, Madsen P, Sturis J, Kjeldsen T. Commemorating insulin's centennial: engineering insulin pharmacology towards physiology. Trends Pharmacol Sci 2021; 42:620-639. [PMID: 34148677 DOI: 10.1016/j.tips.2021.05.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 01/14/2023]
Abstract
The life-saving discovery of insulin in Toronto in 1921 is one of the most impactful achievements in medical history, at the time being hailed as a miracle treatment for diabetes. The insulin molecule itself, however, is poorly amenable as a pharmacological intervention, and the formidable challenge of optimizing insulin therapy has been ongoing for a century. We review early academic insights into insulin structure and its relation to self-association and receptor binding, as well as recombinant biotechnology, which have all been seminal for drug design. Recent developments have focused on combining genetic and chemical engineering with pharmaceutical optimization to generate ultra-rapid and ultra-long-acting, tissue-selective, or orally delivered insulin analogs. We further discuss these developments and propose that future scientific efforts in molecular engineering include realizing the dream of glucose-responsive insulin delivery.
Collapse
Affiliation(s)
- Peter Kurtzhals
- Research and Development, Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd, Denmark.
| | - Erica Nishimura
- Research and Development, Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd, Denmark
| | - Hanne Haahr
- Research and Development, Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd, Denmark
| | - Thomas Høeg-Jensen
- Research and Development, Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd, Denmark
| | - Eva Johansson
- Research and Development, Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd, Denmark
| | - Peter Madsen
- Research and Development, Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd, Denmark
| | - Jeppe Sturis
- Research and Development, Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd, Denmark
| | - Thomas Kjeldsen
- Research and Development, Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd, Denmark
| |
Collapse
|
16
|
Abstract
BACKGROUND Hypoglycemia, the condition of low blood sugar, is a common occurance in people with diabetes using insulin therapy. Protecting against hypoglycaemia by engineering an insulin preparation that can auto-adjust its biological activity to fluctuating blood glucose levels has been pursued since the 1970s, but despite numerous publications, no system that works well enough for practical use has reached clinical practise. SCOPE OF REVIEW This review will summarise and scrutinise known approaches for producing glucose-sensitive insulin therapies. Notably, systems described in patent applications will be extensively covered, which has not been the case for earlier reviews of this area. MAJOR CONCLUSIONS The vast majority of published systems are not suitable for product development, but a few glucose-sensitive insulin concepts have recently reached clinical trials, and there is hope that glucose-sensitive insulin will become available to people with diabetes in the near future.
Collapse
Affiliation(s)
- Thomas Hoeg-Jensen
- Research Chemistry, Novo Nordisk A/S, Novo Nordisk Park H5.S.05, DK-2720 Maaloev, Denmark.
| |
Collapse
|
17
|
Ardaiz N, Gomar C, Vasquez M, Tenesaca S, Fernandez-Sendin M, Di Trani CA, Belsué V, Escalada J, Werner U, Tennagels N, Berraondo P. Insulin Fused to Apolipoprotein A-I Reduces Body Weight and Steatosis in DB/DB Mice. Front Pharmacol 2021; 11:591293. [PMID: 33679386 PMCID: PMC7934061 DOI: 10.3389/fphar.2020.591293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/23/2020] [Indexed: 01/06/2023] Open
Abstract
Background: Targeting long-lasting insulins to the liver may improve metabolic alterations that are not corrected with current insulin replacement therapies. However, insulin is only able to promote lipogenesis but not to block gluconeogenesis in the insulin-resistant liver, exacerbating liver steatosis associated with diabetes. Methods: In order to overcome this limitation, we fused a single-chain insulin to apolipoprotein A-I, and we evaluated the pharmacokinetics and pharmacodynamics of this novel fusion protein in wild type mice and in db/db mice using both recombinant proteins and recombinant adenoassociated virus (AAV). Results: Here, we report that the fusion protein between single-chain insulin and apolipoprotein A-I prolonged the insulin half-life in circulation, and accumulated in the liver. We analyzed the long-term effect of these insulin fused to apolipoprotein A-I or insulin fused to albumin using AAVs in the db/db mouse model of diabetes, obesity, and liver steatosis. While AAV encoding insulin fused to albumin exacerbated liver steatosis in several mice, AAV encoding insulin fused to apolipoprotein A-I reduced liver steatosis. These results were confirmed upon daily subcutaneous administration of the recombinant insulin-apolipoprotein A-I fusion protein for six weeks. The reduced liver steatosis was associated with reduced body weight in mice treated with insulin fused to apolipoprotein A-I. Recombinant apolipoprotein A-I alone significantly reduces body weight and liver weight, indicating that the apolipoprotein A-I moiety is the main driver of these effects. Conclusion: The fusion protein of insulin and apolipoprotein A-I could be a promising insulin derivative for the treatment of diabetic patients with associated fatty liver disease.
Collapse
Affiliation(s)
- Nuria Ardaiz
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Celia Gomar
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Marcos Vasquez
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Shirley Tenesaca
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Myriam Fernandez-Sendin
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Claudia Augusta Di Trani
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Virginia Belsué
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Javier Escalada
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,Department of Endocrinology, Clínica Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Ulrich Werner
- Sanofi-Aventis Deutschland GmbH, TA Diabetes, Frankfurt am Main, Germany
| | - Norbert Tennagels
- Sanofi-Aventis Deutschland GmbH, TA Diabetes, Frankfurt am Main, Germany
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
18
|
Kim D, Lee J, Bae I, Kim M, Huh Y, Choi J, Bae S, Choi IY, Kim HH, Kim DK. Preparation, characterization, and pharmacological study of a novel long-acting FGF21 with a potential therapeutic effect in obesity. Biologicals 2020; 69:49-58. [PMID: 33277119 DOI: 10.1016/j.biologicals.2020.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/22/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
FGF21 (Fibroblast Growth Factor 21), which is expressed in the liver, adipose tissue, and pancreas, has been widely known as a therapeutic candidate for metabolic diseases. Though FGF21 is crucial to glucose, lipid, and energy homeostasis, it is not straightforward to develop a new drug with FGF21 due to its short half-life in serum. Here, we derived a novel long-acting FGF21 (LAPS-FGF21), which is chemically conjugated to the human IgG4 Fc fragment for longer half-life in serum. The recombinant human IgG4 Fc fragment and FGF21 were prepared by the refolding of inclusion body and periplasmic expression in Escherichia coli overexpression systems, respectively. The efficacy study of LAPS-FGF21 in a Diet-Induced Obesity (DIO) mouse model revealed that LAPS-FGF21 reduced body weight effectively accompanied by improved glucose tolerance in a dose-dependent manner. The administration of LAPS-FGF21 also improved the blood profiles with a significant reduction in cholesterol and triglyceride levels. Additionally, the pharmacokinetic (PK) studies of LAPS-FGF21 using normal ICR mice demonstrated that the half-life of LAPS-FGF21 was approximately 64-fold longer than FGF21. Taken together, the LAPS-FGF21 could be a feasible drug candidate with excellent bodyweight loss efficacy and longer dosing interval by half-life increase in serum.
Collapse
Affiliation(s)
- Daejin Kim
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea; Hanmi Research Center, Hanmi Pharm. Co.Ltd, 550, Dongtangiheung-ro, Dongtan-myeon, Hwaseong-si, Gyeonggi-do, 18469, Republic of Korea
| | - Jongsoo Lee
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea; Hanmi Research Center, Hanmi Pharm. Co.Ltd, 550, Dongtangiheung-ro, Dongtan-myeon, Hwaseong-si, Gyeonggi-do, 18469, Republic of Korea
| | - InHwan Bae
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea; Hanmi Research Center, Hanmi Pharm. Co.Ltd, 550, Dongtangiheung-ro, Dongtan-myeon, Hwaseong-si, Gyeonggi-do, 18469, Republic of Korea
| | - Minyoung Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea; Hanmi Research Center, Hanmi Pharm. Co.Ltd, 550, Dongtangiheung-ro, Dongtan-myeon, Hwaseong-si, Gyeonggi-do, 18469, Republic of Korea
| | - Youngho Huh
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea; Hanmi Research Center, Hanmi Pharm. Co.Ltd, 550, Dongtangiheung-ro, Dongtan-myeon, Hwaseong-si, Gyeonggi-do, 18469, Republic of Korea
| | - Jaehyuk Choi
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea; Hanmi Research Center, Hanmi Pharm. Co.Ltd, 550, Dongtangiheung-ro, Dongtan-myeon, Hwaseong-si, Gyeonggi-do, 18469, Republic of Korea
| | - Sungmin Bae
- Hanmi Research Center, Hanmi Pharm. Co.Ltd, 550, Dongtangiheung-ro, Dongtan-myeon, Hwaseong-si, Gyeonggi-do, 18469, Republic of Korea
| | - In Young Choi
- Hanmi Research Center, Hanmi Pharm. Co.Ltd, 550, Dongtangiheung-ro, Dongtan-myeon, Hwaseong-si, Gyeonggi-do, 18469, Republic of Korea
| | - Ha Hyung Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| | - Dae Kyong Kim
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| |
Collapse
|
19
|
Faust C, Ochs C, Korn M, Werner U, Jung J, Dittrich W, Schiebler W, Schauder R, Rao E, Langer T. Production of a novel heterodimeric two-chain insulin-Fc fusion protein. Protein Eng Des Sel 2020; 33:5959880. [PMID: 33159202 DOI: 10.1093/protein/gzaa026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 01/12/2023] Open
Abstract
Insulin is a peptide hormone produced by the pancreas. The physiological role of insulin is the regulation of glucose metabolism. Under certain pathological conditions the insulin levels can be reduced leading to the metabolic disorder diabetes mellitus (DM). For type 1 DM and, dependent on the disease progression for type 2 DM, insulin substitution becomes indispensable. To relieve insulin substitution therapy for patients, novel insulin analogs with pharmacokinetic and pharmacodynamic profiles aiming for long-lasting or fast-acting insulins have been developed. The next step in the evolution of novel insulins should be insulin analogs with a time action profile beyond 1-2 days, preferable up to 1 week. Nowadays, insulin is produced in a recombinant manner. This approach facilitates the design and production of further insulin-analogs or insulin-fusion proteins. The usage of the Fc-domain from immunoglobulin as a fusion partner for therapeutic proteins and peptides is widely used to extend their plasma half-life. Insulin consists of two chains, the A- and B-chain, which are connected by two disulfide-bridges. To produce a novel kind of Fc-fusion protein we have fused the A-chain as well as the B-chain to Fc-fragments containing either 'knob' or 'hole' mutations. The 'knob-into-hole' technique is frequently used to force heterodimerization of the Fc-domain. Using this approach, we were able to produce different variants of two-chain-insulin-Fc-protein (tcI-Fc-protein) variants. The tcI-Fc-fusion variants retained activity as shown in in vitro assays. Finally, prolonged blood glucose lowering activity was demonstrated in normoglycemic rats. Overall, we describe here the production of novel insulin-Fc-fusion proteins with prolonged times of action.
Collapse
Affiliation(s)
- Christine Faust
- Sanofi-Aventis Deutschland GmbH, R&D Biologics Research, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Christian Ochs
- Sanofi-Aventis Deutschland GmbH, R&D Biologics Research, Industriepark Höchst, 65926 Frankfurt am Main, Germany.,Provadis School of International Management and Technology AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Marcus Korn
- Sanofi-Aventis Deutschland GmbH, R&D TA Diabetes, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Ulrich Werner
- Sanofi-Aventis Deutschland GmbH, R&D TA Diabetes, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Jennifer Jung
- Sanofi-Aventis Deutschland GmbH, R&D Biologics Research, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Werner Dittrich
- Sanofi-Aventis Deutschland GmbH, R&D Biologics Research, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Werner Schiebler
- Provadis School of International Management and Technology AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Rolf Schauder
- Provadis School of International Management and Technology AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Ercole Rao
- Sanofi-Aventis Deutschland GmbH, R&D Biologics Research, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Thomas Langer
- Sanofi-Aventis Deutschland GmbH, R&D Biologics Research, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| |
Collapse
|
20
|
Abstract
BACKGROUND Since the discovery of insulin, it was the only drug available for the treatment of diabetes until the development of sulfonylureas and biguanides 50 years later. But even with the availability of oral glucose-lowering drugs, insulin supplementation was often needed to achieve good glucose control in type 2 diabetes. Insulin NPH became the basal insulin therapy of choice and adding NPH to metformin and/or sulfonylureas became the standard of care until basal insulin analogs were developed and new glucose-lowering drugs became available. AREAS OF UNCERTAINTY The advantages in cost-benefit of insulin analogs and their combination with new glucose-lowering drugs are still a matter of debate. There is no general agreement on how to avoid inertia by prescribing insulin therapy in type 2 diabetes when really needed, as reflected by the diversity of recommendations in the current clinical practice guidelines. DATA SOURCES When necessary for this review, a systematic search of the evidence was done in PubMed and Cochrane databases. THERAPEUTIC ADVANCES Adding new oral glucose-lowering drugs to insulin such as DPP-4 inhibitors lead to a modest HbA1c reduction without weight gain and no increase in hypoglycemia. When SGLT-2 inhibitors are added instead, there is a slightly higher HbA1c reduction, but with body weight and blood pressure reduction. The downside is the increase in genital tract infections. GLP-1 receptor agonists have become the best alternative when basal insulin fails, particularly using fixed ratio combinations. Rapid-acting insulins via the inhaled route may also become an alternative for insulin supplementation and/or intensification. "Smart insulins" are under investigation and may become available for clinical use in the near future. CONCLUSIONS Aggressive weight loss strategies together with the new glucose-lowering drugs which do not cause hypoglycemia nor weight gain should limit the number of patients with type 2 diabetes needing insulin. Nevertheless, because of therapeutic inertia and the progressive nature of the disease, many need at least a basal insulin supplementation and insulin analogs are the best choice as they become more affordable. Fixed ratio combinations with GLP1 receptor agonists are a good choice for intensification of insulin therapy.
Collapse
|
21
|
Conner KP, Devanaboyina SC, Thomas VA, Rock DA. The biodistribution of therapeutic proteins: Mechanism, implications for pharmacokinetics, and methods of evaluation. Pharmacol Ther 2020; 212:107574. [PMID: 32433985 DOI: 10.1016/j.pharmthera.2020.107574] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 04/30/2020] [Indexed: 02/08/2023]
Abstract
Therapeutic proteins (TPs) are a diverse drug class that include monoclonal antibodies (mAbs), recombinantly expressed enzymes, hormones and growth factors, cytokines (e.g. chemokines, interleukins, interferons), as well as a wide range of engineered fusion scaffolds containing IgG1 Fc domain for half-life extension. As the pharmaceutical industry advances more potent and selective protein-based medicines through discovery and into the clinical stages of development, it has become widely appreciated that a comprehensive understanding of the mechanisms of TP biodistribution can aid this endeavor. This review aims to highlight the literature that has advanced our understanding of the determinants of TP biodistribution. A particular emphasis is placed on the multi-faceted role of the neonatal Fc receptor (FcRn) in mAb and Fc-fusion protein disposition. In addition, characterization of the TP-target interaction at the cell-level is discussed as an essential strategy to establish pharmacokinetic-pharmacodynamic (PK/PD) relationships that may lead to more informed human dose projections during clinical development. Methods for incorporation of tissue and cell-level parameters defining these characteristics into higher-order mechanistic and semi-mechanistic PK models will also be presented.
Collapse
Affiliation(s)
- Kip P Conner
- Dept. of Pharmacokinetics and Drug Metabolism, Amgen Inc, 1120 Veterans Blvd, South San Francisco, CA 94080, USA.
| | - Siva Charan Devanaboyina
- Dept. of Pharmacokinetics and Drug Metabolism, Amgen Inc, 1120 Veterans Blvd, South San Francisco, CA 94080, USA.
| | - Veena A Thomas
- Dept. of Pharmacokinetics and Drug Metabolism, Amgen Inc, 1120 Veterans Blvd, South San Francisco, CA 94080, USA.
| | - Dan A Rock
- Dept. of Pharmacokinetics and Drug Metabolism, Amgen Inc, 1120 Veterans Blvd, South San Francisco, CA 94080, USA.
| |
Collapse
|
22
|
Rudra A, Li J, Shakur R, Bhagchandani S, Langer R. Trends in Therapeutic Conjugates: Bench to Clinic. Bioconjug Chem 2020; 31:462-473. [PMID: 31990184 DOI: 10.1021/acs.bioconjchem.9b00828] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In recent years, therapeutic conjugates have attracted considerable attention as a new class of drug due to their unique pharmacological properties, especially from the pharmaceutical community. Their molecular structure tunability, improved targeting specificity, and therapeutic efficacy have been demonstrated in a wide range of research and clinical applications. In this topical review, we summarize selected recent advances in bioconjugation strategies for the development of therapeutic conjugates, their emerging application in clinical settings, as well as perspectives on the direction of future research.
Collapse
Affiliation(s)
- Arnab Rudra
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts 02115, United States.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Junwei Li
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Rameen Shakur
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sachin Bhagchandani
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts 02115, United States.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
23
|
|
24
|
Abstract
There have been many advances in insulin with a realistic possibility of mimicking nature to improve insulin replacement, with a view to achieving improved metabolic control. Lessons can be learnt from the evolution of insulin, insulin development, and new advances in technology. This may lead to fewer side effects of therapy resulting in a lower risk of hypoglycaemia and less weight gain, which could in turn could reduce long-term complications for people with diabetes.
Collapse
Affiliation(s)
- R Herring
- Royal Surrey County NHS Foundation Hospital, Guildford, UK
- University of Surrey, Guildford, Surrey, UK
| | - D D L Russell-Jones
- Royal Surrey County NHS Foundation Hospital, Guildford, UK
- University of Surrey, Guildford, Surrey, UK
| |
Collapse
|
25
|
Affiliation(s)
- Satish K Garg
- 1 Barbara Davis Center for Diabetes, University of Colorado, Aurora, Colorado
| | - Amanda H Rewers
- 1 Barbara Davis Center for Diabetes, University of Colorado, Aurora, Colorado
| | - H Kaan Akturk
- 1 Barbara Davis Center for Diabetes, University of Colorado, Aurora, Colorado
| |
Collapse
|