1
|
Chi ST, Wei PC, Chiu YJ, Lin TH, Lin CH, Chen CM, Yao CF, Lin W, Lee-Chen GJ, Chang KH. Indole and Coumarin Derivatives Targeting EEF2K in Aβ Folding Reporter Cells. J Neurochem 2025; 169:e16300. [PMID: 39754378 DOI: 10.1111/jnc.16300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/25/2024] [Accepted: 12/12/2024] [Indexed: 01/06/2025]
Abstract
Misfolding and accumulation of amyloid-β (Aβ) in the brains of patients with Alzheimer's disease (AD) lead to neuronal loss through various mechanisms, including the downregulation of eukaryotic elongation factor 2 (EEF2) protein synthesis signaling. This study investigated the neuroprotective effects of indole and coumarin derivatives on Aβ folding and EEF2 signaling using SH-SY5Y cells expressing Aβ-green fluorescent protein (GFP) folding reporter. Among the tested compounds, two indole (NC009-1, -6) and two coumarin (LM-021, -036) derivatives effectively reduced Aβ misfolding and associated reactive oxygen species (ROS) production. Additionally, these compounds decreased acetylcholinesterase and caspase-3/-6 activities while promoting neurite outgrowth. NC009-1 increased active phosphorylation of extracellular-signal regulated kinase (ERK) (T202/Y204), leading to an increase in inactive eukaryotic elongation factor 2 kinase (EEF2K) phosphorylation (S366). LM-021 decreased the active phosphorylation of AMP-activated protein kinase (AMPK) (T172) and EEF2K (S398), while LM-036 exhibited dual effects, increasing inactive phosphorylation and decreasing active phosphorylation of EEF2K. These changes in EEF2K phosphorylation led to decreased EEF2K activity and a subsequent reduction in inactive phosphorylation of EEF2 (T56). This cascade further promoted the phosphorylation of transcription factor cAMP-response-element binding protein (CREB) (S133) and the expression of brain-derived neurotrophic factor (BDNF), and reduced BCL-2 associated X-protein (BAX)/B-cell lymphoma 2 (BCL2) ratio. Knockdown of EEF2 abolished the effects of NC009-1, LM-021, and LM-036 on CREB phosphorylation, BDNF expression, caspase-3 activity, and neurite outgrowth. These findings demonstrate that NC009-1, LM-021, and LM-036 exert their neuroprotective effects through modulation of EEF2K signaling, highlighting their potentials as therapeutic candidates for AD.
Collapse
Affiliation(s)
- Shun-Tzu Chi
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Pei-Cih Wei
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ya-Jen Chiu
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Te-Hsien Lin
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chih-Hsin Lin
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ching-Fa Yao
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Wenwei Lin
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Guey-Jen Lee-Chen
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
2
|
Chatterjee C, Ghosh P, Singh R, Kumar A, Singh SK. Integrated application of target-based and ligand-based drug-designing approaches for the identification of novel caspase-6 inhibitors. J Biomol Struct Dyn 2024:1-15. [PMID: 39671711 DOI: 10.1080/07391102.2024.2440149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/10/2024] [Indexed: 12/15/2024]
Abstract
Caspase-6 (CASP6) is an effector caspase that has been marked to possess various pathological attributes associated with neurodegeneration. It is widely expressed in the neurodegenerative brain and peripheral tissues. It plays a vital role in apoptotic cell death and also performs non-apoptotic functions like axon pruning which contribute to the degeneration of neurons. Increment in active CASP6 levels in the cerebrospinal fluid has been observed during inflammation and has been linked to the early onset of Alzheimer's disease (AD). In the current study, a novel CASP6 inhibitor was identified with the help of integrated target-based and ligand-based drug-designing approaches. Various molecular features of US9 (PDB ID 8EG6) were used to generate models. The pharmacophore models were evaluated using the EF value, GH score, and percentage yield to select the best-suited model. The best model was used to screen the ZINC-15 database to obtain virtual hits. The undesirable compounds were eliminated using various nodes in KNIME workflow. The resulting compounds were further subjected to docking-based virtual screening (DBVS) to find the lead compounds. Further, the molecular docking studies were carried out in three stages, followed by pharmacokinetic property prediction and toxicity studies. The top two virtual hits, i.e. ZINC000012563650 and ZINC000069415222, were considered for molecular dynamics simulation studies. Compound ZINC000069415222 was found to possess better stability, drug-like properties, and lower toxicity under simulated conditions. Thus, ZINC000069415222 was identified as a potential CASP6 inhibitor that could be further explored experimentally as an anti-AD drug.
Collapse
Affiliation(s)
- Chayanika Chatterjee
- Pharmaceutical Chemistry Research Laboratory-I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Powsali Ghosh
- Pharmaceutical Chemistry Research Laboratory-I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Ravi Singh
- Pharmaceutical Chemistry Research Laboratory-I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Ashok Kumar
- Pharmaceutical Chemistry Research Laboratory-I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Sushil Kumar Singh
- Pharmaceutical Chemistry Research Laboratory-I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| |
Collapse
|
3
|
Kobori T, Iwabu M, Okada-Iwabu M, Ohuchi N, Kikuchi A, Yamauchi N, Kadowaki T, Yamauchi T, Kasuga M. Decreased AdipoR1 signaling and its implications for obesity-induced male infertility. Sci Rep 2024; 14:5701. [PMID: 38459078 PMCID: PMC10923778 DOI: 10.1038/s41598-024-56290-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/05/2024] [Indexed: 03/10/2024] Open
Abstract
Obesity is among the risk factors for male infertility. Although several mechanisms underlying obesity-induced male subfertility have been reported, the entire mechanism of obesity-induced male infertility still remains unclear. Here, we show that sperm count, sperm motility and sperm fertilizing ability were decreased in male mice fed a high-fat diet and that the expression of the AdipoR1 gene and protein was decreased, and the expression of pro-apoptotic genes and protein increased, in the testis from mice fed a high-fat diet. Moreover, we demonstrate that testes weight, sperm count, sperm motility and sperm fertilizing ability were significantly decreased in AdipoR1 knockout mice compared to those in wild-type mice; furthermore, the phosphorylation of AMPK was decreased, and the expression of pro-apoptotic genes and proteins, caspase-6 activity and pathologically apoptotic seminiferous tubules were increased, in the testis from AdipoR1 knockout mice. Furthermore, study findings show that orally administrated AdipoRon decreased caspase-6 activity and apoptotic seminiferous tubules in the testis, thus ameliorating sperm motility in male mice fed a high-fat diet. This was the first study to demonstrate that decreased AdipoR1/AMPK signaling led to increased caspase-6 activity/increased apoptosis in the testis thus likely accounting for male infertility.
Collapse
Affiliation(s)
- Toshiko Kobori
- Division of Diabetes and Metabolism, The Institute of Medical Science, Asahi Life Foundation, Chuo-Ku, Tokyo, 103-0002, Japan
| | - Masato Iwabu
- Department of Endocrinology, Metabolism and Nephrology, Graduate School of Medicine, Nippon Medical School, Bunkyo-Ku, Tokyo, 113-8603, Japan.
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
| | - Miki Okada-Iwabu
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
- Laboratory for Advanced Research on Pathophysiology of Metabolic Diseases, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
| | - Nozomi Ohuchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Akiko Kikuchi
- Division of Diabetes and Metabolism, The Institute of Medical Science, Asahi Life Foundation, Chuo-Ku, Tokyo, 103-0002, Japan
| | - Naoko Yamauchi
- Digital Pathology Center, Asahi General Hospital, Asahi-Shi, Chiba, 289-2511, Japan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-8655, Japan
- Toranomon Hospital, Minato-Ku, Tokyo, 105-8470, Japan
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Masato Kasuga
- Division of Diabetes and Metabolism, The Institute of Medical Science, Asahi Life Foundation, Chuo-Ku, Tokyo, 103-0002, Japan
| |
Collapse
|
4
|
Rizzi L, Grinberg LT. Exploring the significance of caspase-cleaved tau in tauopathies and as a complementary pathology to phospho-tau in Alzheimer's disease: implications for biomarker development and therapeutic targeting. Acta Neuropathol Commun 2024; 12:36. [PMID: 38419122 PMCID: PMC10900669 DOI: 10.1186/s40478-024-01744-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
Tauopathies are neurodegenerative diseases that typically require postmortem examination for a definitive diagnosis. Detecting neurotoxic tau fragments in cerebrospinal fluid (CSF) and serum provides an opportunity for in vivo diagnosis and disease monitoring. Current assays primarily focus on total tau or phospho-tau, overlooking other post-translational modifications (PTMs). Caspase-cleaved tau is a significant component of AD neuropathological lesions, and experimental studies confirm the high neurotoxicity of these tau species. Recent evidence indicates that certain caspase-cleaved tau species, such as D13 and D402, are abundant in AD brain neurons and only show a modest degree of co-occurrence with phospho-tau, meaning caspase-truncated tau pathology is partially distinct and complementary to phospho-tau pathology. Furthermore, these caspase-cleaved tau species are nearly absent in 4-repeat tauopathies. In this review, we will discuss the significance of caspase-cleaved tau in the development of tauopathies, specifically emphasizing its role in AD. In addition, we will explore the potential of caspase-cleaved tau as a biomarker and the advantages for drug development targeting caspase-6. Developing specific and sensitive assays for caspase-cleaved tau in biofluids holds promise for improving the diagnosis and monitoring of tauopathies, providing valuable insights into disease progression and treatment efficacy.
Collapse
Affiliation(s)
- Liara Rizzi
- Memory and Aging Center, Department of Neurology, Sandler Neurosciences Center, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
- Department of Neurology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Lea T Grinberg
- Memory and Aging Center, Department of Neurology, Sandler Neurosciences Center, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA.
- Department of Pathology, LIM-22, University of São Paulo Medical School, São Paulo, SP, Brazil.
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
5
|
González LM, Bourissai A, Lessard-Beaudoin M, Lebel R, Tremblay L, Lepage M, Graham RK. Amelioration of Cognitive and Olfactory System Deficits in APOE4 Transgenic Mice with DHA Treatment. Mol Neurobiol 2023; 60:5624-5641. [PMID: 37329383 DOI: 10.1007/s12035-023-03401-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/24/2023] [Indexed: 06/19/2023]
Abstract
Olfactory dysfunction and atrophy of olfactory brain regions are observed early in mild cognitive impairment and Alzheimer disease. Despite substantial evidence showing neuroprotective effects in MCI/AD with treatment of docosahexaenoic acid (DHA), an omega-3 fatty acid, few studies have assessed DHA and its effects on the olfactory system deficits. We therefore performed structural (MRI), functional (olfactory behavior, novel object recognition), and molecular (markers of apoptosis and inflammation) assessments of APOE4 and wild-type mice ± DHA treatment at 3, 6, and 12 months of age. Our results demonstrate that APOE4 mice treated with the control diet show recognition memory deficits, abnormal olfactory habituation, and discrimination abilities and an increase in IBA-1 immunoreactivity in the olfactory bulb. These phenotypes were not present in APOE4 mice treated with a DHA diet. Alterations in some brain regions' weights and/or volumes were observed in the APOPE4 mice and may be due to caspase activation and/or neuroinflammatory events. These results suggest that the consumption of a diet rich in DHA may provide some benefit to E4 carriers but may not alleviate all symptoms.
Collapse
Affiliation(s)
- Laura Martínez González
- Research Centre on Aging CIUSSS de l'Estrie-CHUS, Sherbrooke, Quebec, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12e Avenue Nord, QC, J1H 5N4, Sherbrooke, Canada
| | - Adam Bourissai
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Faculty of Medicine and Health Sciences, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Mélissa Lessard-Beaudoin
- Research Centre on Aging CIUSSS de l'Estrie-CHUS, Sherbrooke, Quebec, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12e Avenue Nord, QC, J1H 5N4, Sherbrooke, Canada
| | - Réjean Lebel
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Faculty of Medicine and Health Sciences, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Luc Tremblay
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Faculty of Medicine and Health Sciences, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Martin Lepage
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Faculty of Medicine and Health Sciences, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Rona K Graham
- Research Centre on Aging CIUSSS de l'Estrie-CHUS, Sherbrooke, Quebec, Canada.
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12e Avenue Nord, QC, J1H 5N4, Sherbrooke, Canada.
| |
Collapse
|
6
|
Bermejo-Bescós P, Jiménez-Aliaga KL, Benedí J, Martín-Aragón S. A Diet Containing Rutin Ameliorates Brain Intracellular Redox Homeostasis in a Mouse Model of Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24054863. [PMID: 36902309 PMCID: PMC10003355 DOI: 10.3390/ijms24054863] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Quercetin has been studied extensively for its anti-Alzheimer's disease (AD) and anti-aging effects. Our previous studies have found that quercetin and in its glycoside form, rutin, can modulate the proteasome function in neuroblastoma cells. We aimed to explore the effects of quercetin and rutin on intracellular redox homeostasis of the brain (reduced glutathione/oxidized glutathione, GSH/GSSG), its correlation with β-site APP cleaving enzyme 1 (BACE1) activity, and amyloid precursor protein (APP) expression in transgenic TgAPP mice (bearing human Swedish mutation APP transgene, APPswe). On the basis that BACE1 protein and APP processing are regulated by the ubiquitin-proteasome pathway and that supplementation with GSH protects neurons from proteasome inhibition, we investigated whether a diet containing quercetin or rutin (30 mg/kg/day, 4 weeks) diminishes several early signs of AD. Genotyping analyses of animals were carried out by PCR. In order to determine intracellular redox homeostasis, spectrofluorometric methods were adopted to quantify GSH and GSSG levels using o-phthalaldehyde and the GSH/GSSG ratio was ascertained. Levels of TBARS were determined as a marker of lipid peroxidation. Enzyme activities of SOD, CAT, GR, and GPx were determined in the cortex and hippocampus. ΒACE1 activity was measured by a secretase-specific substrate conjugated to two reporter molecules (EDANS and DABCYL). Gene expression of the main antioxidant enzymes: APP, BACE1, a Disintegrin and metalloproteinase domain-containing protein 10 (ADAM10), caspase-3, caspase-6, and inflammatory cytokines were determined by RT-PCR. First, overexpression of APPswe in TgAPP mice decreased GSH/GSSG ratio, increased malonaldehyde (MDA) levels, and, overall, decreased the main antioxidant enzyme activities in comparison to wild-type (WT) mice. Treatment of TgAPP mice with quercetin or rutin increased GSH/GSSG, diminished MDA levels, and favored the enzyme antioxidant capacity, particularly with rutin. Secondly, both APP expression and BACE1 activity were diminished with quercetin or rutin in TgAPP mice. Regarding ADAM10, it tended to increase in TgAPP mice with rutin treatment. As for caspase-3 expression, TgAPP displayed an increase which was the opposite with rutin. Finally, the increase in expression of the inflammatory markers IL-1β and IFN-γ in TgAPP mice was lowered by both quercetin and rutin. Collectively, these findings suggest that, of the two flavonoids, rutin may be included in a day-to-day diet as a form of adjuvant therapy in AD.
Collapse
|
7
|
Chen HY, Zhao Y, Xie YZ. Immunosenescence of brain accelerates Alzheimer's disease progression. Rev Neurosci 2023; 34:85-101. [PMID: 35791032 DOI: 10.1515/revneuro-2022-0021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/04/2022] [Indexed: 01/07/2023]
Abstract
Most of Alzheimer's disease (AD) cases are sporadic and occur after age 65. With prolonged life expectancy and general population aging, AD is becoming a significant public health concern. The immune system supports brain development, plasticity, and homeostasis, yet it is particularly vulnerable to aging-related changes. Aging of the immune system, called immunosenescence, is the multifaceted remodeling of the immune system during aging. Immunosenescence is a contributing factor to various age-related diseases, including AD. Age-related changes in brain immune cell phenotype and function, crosstalk between immune cells and neural cells, and neuroinflammation work together to promote neurodegeneration and age-related cognitive impairment. Although numerous studies have confirmed the correlation between systemic immune changes and AD, few studies focus on the immune state of brain microenvironment in aging and AD. This review mainly addresses the changes of brain immune microenvironment in aging and AD. Specifically, we delineate how various aspects of the brain immune microenvironment, including immune gateways, immune cells, and molecules, and the interplay between immune cells and neural cells, accelerate AD pathogenesis during aging. We also propose a theoretical framework of therapeutic strategies selectively targeting the different mechanisms to restore brain immune homeostasis.
Collapse
Affiliation(s)
- Hou-Yu Chen
- Department of Abdominal Surgery, Affiliated Cancer Hospital, Institute of Guangzhou Medical University, Guangdong 510095, China
| | - Yan Zhao
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan 410011, China
| | - Yong-Zhi Xie
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
8
|
Xia LY, Tang L, Huang H, Luo J. Identification of Potential Driver Genes and Pathways Based on Transcriptomics Data in Alzheimer's Disease. Front Aging Neurosci 2022; 14:752858. [PMID: 35401145 PMCID: PMC8985410 DOI: 10.3389/fnagi.2022.752858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/21/2022] [Indexed: 01/16/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. To identify AD-related genes from transcriptomics and help to develop new drugs to treat AD. In this study, firstly, we obtained differentially expressed genes (DEG)-enriched coexpression networks between AD and normal samples in multiple transcriptomics datasets by weighted gene co-expression network analysis (WGCNA). Then, a convergent genomic approach (CFG) integrating multiple AD-related evidence was used to prioritize potential genes from DEG-enriched modules. Subsequently, we identified candidate genes in the potential genes list. Lastly, we combined deepDTnet and SAveRUNNER to predict interaction among candidate genes, drug and AD. Experiments on five datasets show that the CFG score of GJA1 is the highest among all potential driver genes of AD. Moreover, we found GJA1 interacts with AD from target-drugs-diseases network prediction. Therefore, candidate gene GJA1 is the most likely to be target of AD. In summary, identification of AD-related genes contributes to the understanding of AD pathophysiology and the development of new drugs.
Collapse
|
9
|
The caspase-6-p62 axis modulates p62 droplets based autophagy in a dominant-negative manner. Cell Death Differ 2021; 29:1211-1227. [PMID: 34862482 PMCID: PMC9178044 DOI: 10.1038/s41418-021-00912-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 12/15/2022] Open
Abstract
SQSTM1/p62, as a major autophagy receptor, forms droplets that are critical for cargo recognition, nucleation, and clearance. p62 droplets also function as liquid assembly platforms to allow the formation of autophagosomes at their surfaces. It is unknown how p62-droplet formation is regulated under physiological or pathological conditions. Here, we report that p62-droplet formation is selectively blocked by inflammatory toxicity, which induces cleavage of p62 by caspase-6 at a novel cleavage site D256, a conserved site across human, mouse, rat, and zebrafish. The N-terminal cleavage product is relatively stable, whereas the C-terminal product appears undetectable. Using a variety of cellular models, we show that the p62 N-terminal caspase-6 cleavage product (p62-N) plays a dominant-negative role to block p62-droplet formation. In vitro p62 phase separation assays confirm this observation. Dominant-negative regulation of p62-droplet formation by caspase-6 cleavage attenuates p62 droplets dependent autophagosome formation. Our study suggests a novel pathway to modulate autophagy through the caspase-6–p62 axis under certain stress stimuli.
Collapse
|
10
|
Webb JL, Moe SM, Bolstad AK, McNeill EM. Identification of conserved transcriptome features between humans and Drosophila in the aging brain utilizing machine learning on combined data from the NIH Sequence Read Archive. PLoS One 2021; 16:e0255085. [PMID: 34379632 PMCID: PMC8357136 DOI: 10.1371/journal.pone.0255085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 07/09/2021] [Indexed: 11/19/2022] Open
Abstract
Aging is universal, yet characterizing the molecular changes that occur in aging which lead to an increased risk for neurological disease remains a challenging problem. Aging affects the prefrontal cortex (PFC), which governs executive function, learning, and memory. Previous sequencing studies have demonstrated that aging alters gene expression in the PFC, however the extent to which these changes are conserved across species and are meaningful in neurodegeneration is unknown. Identifying conserved, age-related genetic and morphological changes in the brain allows application of the wealth of tools available to study underlying mechanisms in model organisms such as Drosophila melanogaster. RNA sequencing data from human PFC and fly heads were analyzed to determine conserved transcriptome signatures of age. Our analysis revealed that expression of 50 conserved genes can accurately determine age in Drosophila (R2 = 0.85) and humans (R2 = 0.46). These transcriptome signatures were also able to classify Drosophila into three age groups with a mean accuracy of 88% and classify human samples with a mean accuracy of 69%. Overall, this work identifies 50 highly conserved aging-associated genetic changes in the brain that can be further studied in model organisms and demonstrates a novel approach to uncovering genetic changes conserved across species from multi-study public databases.
Collapse
Affiliation(s)
- Joe L. Webb
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States of America
| | - Simon M. Moe
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States of America
| | - Andrew K. Bolstad
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, United States of America
| | - Elizabeth M. McNeill
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States of America
- Neuroscience Interdepartmental Graduate program, Iowa State University, Ames, IA, United States of America
| |
Collapse
|
11
|
Rare CASP6N73T variant associated with hippocampal volume exhibits decreased proteolytic activity, synaptic transmission defect, and neurodegeneration. Sci Rep 2021; 11:12695. [PMID: 34135352 PMCID: PMC8209045 DOI: 10.1038/s41598-021-91367-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/25/2021] [Indexed: 01/22/2023] Open
Abstract
Caspase-6 (Casp6) is implicated in Alzheimer disease (AD) cognitive impairment and pathology. Hippocampal atrophy is associated with cognitive impairment in AD. Here, a rare functional exonic missense CASP6 single nucleotide polymorphism (SNP), causing the substitution of asparagine with threonine at amino acid 73 in Casp6 (Casp6N73T), was associated with hippocampal subfield CA1 volume preservation. Compared to wild type Casp6 (Casp6WT), recombinant Casp6N73T altered Casp6 proteolysis of natural substrates Lamin A/C and α-Tubulin, but did not alter cleavage of the Ac-VEID-AFC Casp6 peptide substrate. Casp6N73T-transfected HEK293T cells showed elevated Casp6 mRNA levels similar to Casp6WT-transfected cells, but, in contrast to Casp6WT, did not accumulate active Casp6 subunits nor show increased Casp6 enzymatic activity. Electrophysiological and morphological assessments showed that Casp6N73T recombinant protein caused less neurofunctional damage and neurodegeneration in hippocampal CA1 pyramidal neurons than Casp6WT. Lastly, CASP6 mRNA levels were increased in several AD brain regions confirming the implication of Casp6 in AD. These studies suggest that the rare Casp6N73T variant may protect against hippocampal atrophy due to its altered catalysis of natural protein substrates and intracellular instability thus leading to less Casp6-mediated damage to neuronal structure and function.
Collapse
|
12
|
Noël A, Foveau B, LeBlanc AC. Caspase-6-cleaved Tau fails to induce Tau hyperphosphorylation and aggregation, neurodegeneration, glial inflammation, and cognitive deficits. Cell Death Dis 2021; 12:227. [PMID: 33649324 PMCID: PMC7921451 DOI: 10.1038/s41419-021-03506-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 01/09/2023]
Abstract
Active Caspase-6 (Casp6) and Tau cleaved by Casp6 at amino acids 402 (Tau∆D402) and 421 (Tau∆D421) are present in early Alzheimer disease intraneuronal neurofibrillary tangles, which are made primarily of filamentous Tau aggregates. To assess whether Casp6 cleavage of Tau contributes to Tau pathology and Casp6-mediated age-dependent cognitive impairment, we generated transgenic knock-in mouse models that conditionally express full-length human Tau (hTau) 0N4R only (CTO) or together with human Casp6 (hCasp6) (CTC). Region-specific hippocampal and cortical hCasp6 and hTau expression were confirmed with western blot and immunohistochemistry in 2-25-month-old brains. Casp6 activity was confirmed with Tau∆D421 and Tubulin cleaved by Casp6 immunopositivity in 3-25-month-old CTC, but not in CTO, brains. Immunoprecipitated Tau∆D402 was detected in both CTC and CTO brains, but was more abundant in CTC brains. Intraneuronal hippocampal Tau hyperphosphorylation at S202/T205, S422, and T231, and Tau conformational change were absent in both CTC and CTO brains. A slight accumulation of Tau phosphorylated at S396/404 and S202 was observed in Cornu Ammonis 1 (CA1) hippocampal neuron soma of CTC compared to CTO brains. Eighteen-month-old CTC brains showed rare argentophilic deposits that increased by 25 months, whereas CTO brains only displayed them sparsely at 25 months. Tau microtubule binding was equivalent in CTC and CTO hippocampi. Episodic and spatial memory measured with novel object recognition and Barnes maze, respectively, remained normal in 3-25-month-old CTC and CTO mice, in contrast to previously observed impairments in ACL mice expressing equivalent levels of hCasp6 only. Consistently, the CTC and CTO hippocampal CA1 region displayed equivalent dendritic spine density and no glial inflammation. Together, these results reveal that active hCasp6 co-expression with hTau generates Tau cleavage and rare age-dependent argentophilic deposits but fails to induce cognitive deficits, neuroinflammation, and Tau pathology.
Collapse
Affiliation(s)
- Anastasia Noël
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Bénédicte Foveau
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Andréa C LeBlanc
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
13
|
Al-Otaibi M, Lessard-Beaudoin M, Castellano CA, Gris D, Cunnane SC, Graham RK. Volumetric MRI demonstrates atrophy of the olfactory cortex in AD. Curr Alzheimer Res 2020; 17:904-915. [PMID: 33327913 DOI: 10.2174/1567205017666201215120909] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 10/02/2020] [Accepted: 11/05/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Alzheimer disease (AD) is a chronic neurodegenerative disorder that affects millions of individuals worldwide. Symptoms include memory dysfunction and deficits in attention, planning, language, and overall cognitive function. Olfactory dysfunction is a common symptom of AD and evidence supports that it is an early marker. Furthermore, olfactory bulb and entorhinal cortex atrophy are well described in AD. However, in AD, no studies have assessed the olfactory cortex as a whole and if sex effects are observed. METHODS Magnetic Resonance Imaging was used to scan 39 participants with an average age of 72 years and included men and women. AAL Single-Subject Atlas (implemented in PNEURO tool - PMOD 3.8) was used to determine the volume of the olfactory cortex and the hippocampus. Olfactory cortex volume was lower in both men and women AD cases compared with controls. This decrease was more apparent in the left olfactory cortex and was influenced by age. As expected, hippocampal volume was also significantly reduced in AD. However, this was only observed in the male cohort. A significant correlation was observed between levels of education and hippocampal volume in controls that were not detected in the AD participants. Asymmetry was observed in the olfactory cortex volume when comparing left and right volumes in both the control and AD participants, which was not observed in the hippocampus. RESULTS These data highlight the importance of the role of olfactory cortical atrophy in the pathogenesis of AD and the interplay between the olfactory deficits and degeneration of olfactory regions in the brain.
Collapse
Affiliation(s)
| | | | | | - Denis Gris
- Department of Pediatrics, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Stephen C Cunnane
- Research Center on Aging, CIUSSS-IUGS de l'Estrie-CHUS, Sherbrooke, QC, Canada
| | - Rona K Graham
- Research Center on Aging, CIUSSS-IUGS de l'Estrie-CHUS, Sherbrooke, QC, Canada
| |
Collapse
|
14
|
Flores J, Noël A, Foveau B, Beauchet O, LeBlanc AC. Pre-symptomatic Caspase-1 inhibitor delays cognitive decline in a mouse model of Alzheimer disease and aging. Nat Commun 2020; 11:4571. [PMID: 32917871 PMCID: PMC7486940 DOI: 10.1038/s41467-020-18405-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023] Open
Abstract
Early therapeutic interventions are essential to prevent Alzheimer Disease (AD). The association of several inflammation-related genetic markers with AD and the early activation of pro-inflammatory pathways in AD suggest inflammation as a plausible therapeutic target. Inflammatory Caspase-1 has a significant impact on AD-like pathophysiology and Caspase-1 inhibitor, VX-765, reverses cognitive deficits in AD mouse models. Here, a one-month pre-symptomatic treatment of Swedish/Indiana mutant amyloid precursor protein (APPSw/Ind) J20 and wild-type mice with VX-765 delays both APPSw/Ind- and age-induced episodic and spatial memory deficits. VX-765 delays inflammation without considerably affecting soluble and aggregated amyloid beta peptide (Aβ) levels. Episodic memory scores correlate negatively with microglial activation. These results suggest that Caspase-1-mediated inflammation occurs early in the disease and raise hope that VX-765, a previously Food and Drug Administration-approved drug for human CNS clinical trials, may be a useful drug to prevent the onset of cognitive deficits and brain inflammation in AD.
Collapse
Affiliation(s)
- Joseph Flores
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Anastasia Noël
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Bénédicte Foveau
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Olivier Beauchet
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.,Department of Medicine, Division of Geriatric Medicine, Sir Mortimer B. Davis - Jewish General Hospital, Montreal, Quebec, Canada.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Andréa C LeBlanc
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada. .,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada. .,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
15
|
Schueller E, Paiva I, Blanc F, Wang XL, Cassel JC, Boutillier AL, Bousiges O. Dysregulation of histone acetylation pathways in hippocampus and frontal cortex of Alzheimer's disease patients. Eur Neuropsychopharmacol 2020; 33:101-116. [PMID: 32057591 DOI: 10.1016/j.euroneuro.2020.01.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/18/2019] [Accepted: 01/26/2020] [Indexed: 12/29/2022]
Abstract
Memory impairment is the main feature of Alzheimer's disease (AD). Initial impairments originate in the temporal lobe area and propagate throughout the brain in a sequential manner. Epigenetic mechanisms, especially histone acetylation, regulate plasticity and memory processes. These may be dismantled during the disease. The aim of this work was to establish changes in the acetylation-associated pathway in two key brain regions affected in AD: the hippocampus and the F2 area of frontal cortex in end-stage AD patients and age-matched controls. We found that the F2 area was more affected than the hippocampus. Indeed, CREB-Binding Protein (CBP), P300/CBP-associated protein (PCAF), Histone Deacetylase 1 (HDAC1) and HDAC2 (but not HDAC3) levels were strongly decreased in F2 area of AD compared to controls patients, whereas only HDAC1 was decreased and CBP showed a downward trend in the hippocampus. At the histone level, we detected a substantial increase in total (H3 and H2B) histone levels in the frontal cortex, but these were decreased in nuclear extracts, pointing to a dysregulation in histone trafficking/catabolism in this brain region. Histone H3 acetylation levels were increased in cell nuclei mainly in the frontal cortex. These findings provide evidence for acetylation dysfunctions at the level of associated enzymes and of histones in AD brains, which may underlie transcriptional dysregulations and AD-related cognitive impairments. They further point to stronger dysregulations in the F2 area of the frontal cortex than in the hippocampus at an end-stage of the disease, suggesting a differential vulnerability and/or compensatory mechanisms efficiency towards epigenetic alterations.
Collapse
Affiliation(s)
- Estelle Schueller
- Université de Strasbourg, UMR 7364 CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), 12 Rue Goethe, Strasbourg 67000, France
| | - Isabel Paiva
- Université de Strasbourg, UMR 7364 CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), 12 Rue Goethe, Strasbourg 67000, France
| | - Frédéric Blanc
- Neuropsychology Unit, Neurology Service, and CNRS, ICube laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), team IMIS/Neurocrypto, and CMRR (Memory Resources and Research Centre), and Geriatrics Day Hospital, Geriatrics Service, University Hospital of Strasbourg, Strasbourg, France
| | - Xiao-Lan Wang
- Université de Strasbourg, UMR 7364 CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), 12 Rue Goethe, Strasbourg 67000, France; Department of Endocrinology and Metabolism, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Jean-Christophe Cassel
- Université de Strasbourg, UMR 7364 CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), 12 Rue Goethe, Strasbourg 67000, France
| | - Anne-Laurence Boutillier
- Université de Strasbourg, UMR 7364 CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), 12 Rue Goethe, Strasbourg 67000, France.
| | - Olivier Bousiges
- Université de Strasbourg, UMR 7364 CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), 12 Rue Goethe, Strasbourg 67000, France; Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, Hôpital de Hautepierre, Avenue Molière, Strasbourg, France.
| |
Collapse
|
16
|
Zhao P, Sun X, Chaggan C, Liao Z, In Wong K, He F, Singh S, Loomba R, Karin M, Witztum JL, Saltiel AR. An AMPK-caspase-6 axis controls liver damage in nonalcoholic steatohepatitis. Science 2020; 367:652-660. [PMID: 32029622 PMCID: PMC8012106 DOI: 10.1126/science.aay0542] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 12/23/2019] [Indexed: 12/14/2022]
Abstract
Liver cell death has an essential role in nonalcoholic steatohepatitis (NASH). The activity of the energy sensor adenosine monophosphate (AMP)-activated protein kinase (AMPK) is repressed in NASH. Liver-specific AMPK knockout aggravated liver damage in mouse NASH models. AMPK phosphorylated proapoptotic caspase-6 protein to inhibit its activation, keeping hepatocyte apoptosis in check. Suppression of AMPK activity relieved this inhibition, rendering caspase-6 activated in human and mouse NASH. AMPK activation or caspase-6 inhibition, even after the onset of NASH, improved liver damage and fibrosis. Once phosphorylation was decreased, caspase-6 was activated by caspase-3 or -7. Active caspase-6 cleaved Bid to induce cytochrome c release, generating a feedforward loop that leads to hepatocyte death. Thus, the AMPK-caspase-6 axis regulates liver damage in NASH, implicating AMPK and caspase-6 as therapeutic targets.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Xiaoli Sun
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Cynthia Chaggan
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zhongji Liao
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kai In Wong
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Feng He
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Seema Singh
- NAFLD Research Center, Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michael Karin
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joseph L Witztum
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alan R Saltiel
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
17
|
Zheng M, Kanneganti TD. Newly Identified Function of Caspase-6 in ZBP1-mediated Innate Immune Responses, NLRP3 Inflammasome Activation, PANoptosis, and Host Defense. JOURNAL OF CELLULAR IMMUNOLOGY 2020; 2:341-347. [PMID: 33426542 PMCID: PMC7793005 DOI: 10.33696/immunology.2.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Caspase-6 was discovered decades ago, but its roles in biological processes remain largely unknown. Recently, we have demonstrated that caspase-6 plays a critical role in influenza A virus (IAV)-induced cell death and innate immune responses. During IAV infection, Z-DNA binding protein 1 (ZBP1) initiates ZBP1-PANoptosome assembly to drive inflammasome activation and cell death, and we showed that caspase-6 interacts with RIPK3 to enhance the interaction between RIPK3 and ZBP1, thus promoting PANoptosome assembly. Moreover, the caspase activity of caspase-6 is not required for tins process, suggesting a caspase-independent function of caspase-6 during IAV infection. Additionally, we found that caspase-6 is required for the alternative activation of alveolar macrophages in response to IAV infection. Our findings provide an opportunity to reconsider the physiological role of caspase-6.
Collapse
Affiliation(s)
- Min Zheng
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | | |
Collapse
|
18
|
Jonesco DS, Hassager C, Frydland M, Kjærgaard J, Karsdal M, Henriksen K. A caspase-6-cleaved fragment of Glial Fibrillary Acidic Protein as a potential serological biomarker of CNS injury after cardiac arrest. PLoS One 2019; 14:e0224633. [PMID: 31693684 PMCID: PMC6834260 DOI: 10.1371/journal.pone.0224633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/17/2019] [Indexed: 12/31/2022] Open
Abstract
Blood levels of Glial Fibrillary Acidic protein (GFAP) reflect processes associated with different types of CNS injury. Evidence suggests that GFAP is cleaved by caspases during CNS injury, hence positioning GFAP fragments as potential biomarkers of injury-associated processes. We set out to develop an assay detecting the neo-epitope generated by caspase-6 cleavage of GFAP (GFAP-C6), and to assess the ability of GFAP-C6 to reflect pathological processes in patients suffering a cardiac arrest and subsequent global cerebral ischemia. Anti-GFAP-C6 antibodies recognized their specific target sequence, and dilution and spike recoveries in serum were within limits of ±20% reflecting high precision and accuracy of measurements. Intra- and inter-assay CVs were below limits of 10% and 15%, respectively. Serological levels of GFAP-C6 were significantly elevated 72 hours after CA (Mean±SD) (20.39±10.59 ng/mL) compared to time of admission (17.79±10.77 ng/mL, p<0.0001), 24 hours (17.40±7.99 ng/mL, p<0.0001) and 48 hours (17.87±8.56 ng/mL, p<0.0001) after CA, but were not related to neurological outcome at day 180. GFAP-C6 levels at admission, 24, 48, and 72 hours after cardiac arrest correlated with two proteolytic fragments of tau, tau-A (r = 0.30, r = 0.40, r = 0.50, r = 0.53, p < 0.0001) and tau-C (r = 54, r = 0.48, r = 0.55, r = 0.54, p < 0.0001), respectively. GFAP-C6 levels did not correlate with other markers of CNS damage; total tau, NSE and S100B. In conclusion, we developed the first assay detecting a caspase-6 cleaved fragment of GFAP in blood. Increased levels at 72 hours after cardiac arrest as well as moderate correlations between GFAP-C6 and two other blood biomarkers of neurodegeneration suggest the ability of GFAP-C6 to reflect pathological processes of the injured brain. Investigations into the potential of GFAP-C6 in other types of CNS injury are warranted.
Collapse
Affiliation(s)
- Ditte S. Jonesco
- Biomarkers & Research, Nordic Bioscience, Herlev, Denmark
- * E-mail:
| | - Christian Hassager
- Department of Cardiology B, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Martin Frydland
- Department of Cardiology B, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jesper Kjærgaard
- Department of Cardiology B, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Morten Karsdal
- Biomarkers & Research, Nordic Bioscience, Herlev, Denmark
| | - Kim Henriksen
- Biomarkers & Research, Nordic Bioscience, Herlev, Denmark
| |
Collapse
|
19
|
Activation of Caspase-6 Is Promoted by a Mutant Huntingtin Fragment and Blocked by an Allosteric Inhibitor Compound. Cell Chem Biol 2019; 26:1295-1305.e6. [PMID: 31353319 DOI: 10.1016/j.chembiol.2019.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 01/08/2019] [Accepted: 06/28/2019] [Indexed: 01/04/2023]
Abstract
Aberrant activation of caspase-6 (C6) in the absence of other hallmarks of apoptosis has been demonstrated in cells and tissues from patients with Huntington disease (HD) and animal models. C6 activity correlates with disease progression in patients with HD and the cleavage of mutant huntingtin (mHTT) protein is thought to strongly contribute to disease pathogenesis. Here we show that the mHTT1-586 fragment generated by C6 cleavage interacts with the zymogen form of the enzyme, stabilizing a conformation that contains an active site and is prone to full activation. This shift toward enhanced activity can be prevented by a small-molecule inhibitor that blocks the interaction between C6 and mHTT1-586. Molecular docking studies suggest that the inhibitor binds an allosteric site in the C6 zymogen. The interaction of mHTT1-586 with C6 may therefore promote a self-reinforcing, feedforward cycle of C6 zymogen activation and mHTT cleavage driving HD pathogenesis.
Collapse
|
20
|
Velagapudi R, Kosoko AM, Olajide OA. Induction of Neuroinflammation and Neurotoxicity by Synthetic Hemozoin. Cell Mol Neurobiol 2019; 39:1187-1200. [PMID: 31332667 PMCID: PMC6764936 DOI: 10.1007/s10571-019-00713-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/13/2019] [Indexed: 12/22/2022]
Abstract
Hemozoin produced by Plasmodium falciparum during malaria infection has been linked to the neurological dysfunction in cerebral malaria. In this study, we determined whether a synthetic form of hemozoin (sHZ) produces neuroinflammation and neurotoxicity in cellular models. Incubation of BV-2 microglia with sHZ (200 and 400 µg/ml) induced significant elevation in the levels of TNFα, IL-6, IL-1β, NO/iNOS, phospho-p65, accompanied by an increase in DNA binding of NF-κB. Treatment of BV-2 microglia with sHZ increased protein levels of NLRP3 with accompanying increase in caspase-1 activity. In the presence of NF-κB inhibitor BAY11-7082 (10 µM), there was attenuation of sHZ-induced release of pro-inflammatory cytokines, NO/iNOS. In addition, increase in caspase-1/NLRP3 inflammasome activation was blocked by BAY11-7082. Pre-treatment with BAY11-7082 also reduced both phosphorylation and DNA binding of the p65 sub-unit. The NLRP3 inhibitor CRID3 (100 µM) did not prevent sHZ-induced release of TNFα and IL-6. However, production of IL-1β, NO/iNOS as well as caspase-1/NLRP3 activity was significantly reduced in the presence of CRID3. Incubation of differentiated neural progenitor (ReNcell VM) cells with sHZ resulted in a reduction in cell viability, accompanied by significant generation of cellular ROS and increased activity of caspase-6, while sHZ-induced neurotoxicity was prevented by N-acetylcysteine and Z-VEID-FMK. Taken together, this study shows that the synthetic form of hemozoin induces neuroinflammation through the activation of NF-κB and NLRP3 inflammasome. It is also proposed that sHZ induces ROS- and caspase-6-mediated neurotoxicity. These results have thrown more light on the actions of malarial hemozoin in the neurobiology of cerebral malaria.
Collapse
Affiliation(s)
- Ravikanth Velagapudi
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.,Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Ayokulehin M Kosoko
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Olumayokun A Olajide
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| |
Collapse
|
21
|
Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC. Neuronal Cell Death. Physiol Rev 2018; 98:813-880. [PMID: 29488822 PMCID: PMC5966715 DOI: 10.1152/physrev.00011.2017] [Citation(s) in RCA: 769] [Impact Index Per Article: 109.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/23/2017] [Accepted: 07/10/2017] [Indexed: 02/07/2023] Open
Abstract
Neuronal cell death occurs extensively during development and pathology, where it is especially important because of the limited capacity of adult neurons to proliferate or be replaced. The concept of cell death used to be simple as there were just two or three types, so we just had to work out which type was involved in our particular pathology and then block it. However, we now know that there are at least a dozen ways for neurons to die, that blocking a particular mechanism of cell death may not prevent the cell from dying, and that non-neuronal cells also contribute to neuronal death. We review here the mechanisms of neuronal death by intrinsic and extrinsic apoptosis, oncosis, necroptosis, parthanatos, ferroptosis, sarmoptosis, autophagic cell death, autosis, autolysis, paraptosis, pyroptosis, phagoptosis, and mitochondrial permeability transition. We next explore the mechanisms of neuronal death during development, and those induced by axotomy, aberrant cell-cycle reentry, glutamate (excitoxicity and oxytosis), loss of connected neurons, aggregated proteins and the unfolded protein response, oxidants, inflammation, and microglia. We then reassess which forms of cell death occur in stroke and Alzheimer's disease, two of the most important pathologies involving neuronal cell death. We also discuss why it has been so difficult to pinpoint the type of neuronal death involved, if and why the mechanism of neuronal death matters, the molecular overlap and interplay between death subroutines, and the therapeutic implications of these multiple overlapping forms of neuronal death.
Collapse
Affiliation(s)
- Michael Fricker
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Aviva M Tolkovsky
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Vilmante Borutaite
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Michael Coleman
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Guy C Brown
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| |
Collapse
|
22
|
NLRs as Helpline in the Brain: Mechanisms and Therapeutic Implications. Mol Neurobiol 2018; 55:8154-8178. [DOI: 10.1007/s12035-018-0957-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 02/12/2018] [Indexed: 12/13/2022]
|
23
|
Kim W, Ma L, Lomoio S, Willen R, Lombardo S, Dong J, Haydon PG, Tesco G. BACE1 elevation engendered by GGA3 deletion increases β-amyloid pathology in association with APP elevation and decreased CHL1 processing in 5XFAD mice. Mol Neurodegener 2018; 13:6. [PMID: 29391027 PMCID: PMC5796504 DOI: 10.1186/s13024-018-0239-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 01/24/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND β-site amyloid precursor protein cleaving enzyme 1 (BACE1) is the rate-limiting enzyme in the production of amyloid beta (Aβ), the toxic peptide that accumulates in the brains of Alzheimer's disease (AD) patients. Our previous studies have shown that the clathrin adaptor Golgi-localized γ-ear-containing ARF binding protein 3 (GGA3) plays a key role in the trafficking of BACE1 to lysosomes, where it is normally degraded. GGA3 depletion results in BACE1 stabilization both in vitro and in vivo. Moreover, levels of GGA3 are reduced and inversely related to BACE1 levels in post-mortem brains of AD patients. METHOD In order to assess the effect of GGA3 deletion on AD-like phenotypes, we crossed GGA3 -/- mice with 5XFAD mice. BACE1-mediated processing of APP and the cell adhesion molecule L1 like protein (CHL1) was measured as well as levels of Aβ42 and amyloid burden. RESULTS In 5XFAD mice, we found that hippocampal and cortical levels of GGA3 decreased while BACE1 levels increased with age, similar to what is observed in human AD brains. GGA3 deletion prevented age-dependent elevation of BACE1 in GGA3KO;5XFAD mice. We also found that GGA3 deletion resulted in increased hippocampal levels of Aβ42 and amyloid burden in 5XFAD mice at 12 months of age. While levels of BACE1 did not change with age and gender in GGAKO;5XFAD mice, amyloid precursor protein (APP) levels increased with age and were higher in female mice. Moreover, elevation of APP was associated with a decreased BACE1-mediated processing of CHL1 not only in 12 months old 5XFAD mice but also in human brains from subjects affected by Down syndrome, most likely due to substrate competition. CONCLUSION This study demonstrates that GGA3 depletion is a leading candidate mechanism underlying elevation of BACE1 in AD. Furthermore, our findings suggest that BACE1 inhibition could exacerbate mechanism-based side effects in conditions associated with APP elevation (e.g. Down syndrome) owing to impairment of BACE1-mediated processing of CHL1. Therefore, therapeutic approaches aimed to restore GGA3 function and to prevent the down stream effects of its depletion (e.g. BACE1 elevation) represent an attractive alternative to BACE inhibition for the prevention/treatment of AD.
Collapse
Affiliation(s)
- WonHee Kim
- Alzheimer’s Disease Research Laboratory, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
| | - Liang Ma
- Alzheimer’s Disease Research Laboratory, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
| | - Selene Lomoio
- Alzheimer’s Disease Research Laboratory, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
| | - Rachel Willen
- Alzheimer’s Disease Research Laboratory, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
| | - Sylvia Lombardo
- Alzheimer’s Disease Research Laboratory, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
| | - Jinghui Dong
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
| | - Philip G. Haydon
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
| | - Giuseppina Tesco
- Alzheimer’s Disease Research Laboratory, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
| |
Collapse
|
24
|
Girling KD, Demers MJ, Laine J, Zhang S, Wang YT, Graham RK. Activation of caspase-6 and cleavage of caspase-6 substrates is an early event in NMDA receptor-mediated excitotoxicity. J Neurosci Res 2017; 96:391-406. [DOI: 10.1002/jnr.24153] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/10/2017] [Accepted: 08/18/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Kimberly D. Girling
- University of British Columbia, Brain Research Centre & Department of Medicine; Vancouver British Columbia Canada
| | - Marie-Josee Demers
- Research Centre on Aging, Department Pharmacology and Physiology, Faculty of Medicine and Health Sciences; University of Sherbrooke; Sherbrooke Quebec Canada
| | - Jean Laine
- Research Centre on Aging, Department Pharmacology and Physiology, Faculty of Medicine and Health Sciences; University of Sherbrooke; Sherbrooke Quebec Canada
| | - Shu Zhang
- University of British Columbia, Brain Research Centre & Department of Medicine; Vancouver British Columbia Canada
| | - Yu Tian Wang
- University of British Columbia, Brain Research Centre & Department of Medicine; Vancouver British Columbia Canada
| | - Rona K. Graham
- Research Centre on Aging, Department Pharmacology and Physiology, Faculty of Medicine and Health Sciences; University of Sherbrooke; Sherbrooke Quebec Canada
| |
Collapse
|
25
|
Theofilas P, Ehrenberg AJ, Nguy A, Thackrey JM, Dunlop S, Mejia MB, Alho AT, Paraizo Leite RE, Rodriguez RD, Suemoto CK, Nascimento CF, Chin M, Medina-Cleghorn D, Cuervo AM, Arkin M, Seeley WW, Miller BL, Nitrini R, Pasqualucci CA, Filho WJ, Rueb U, Neuhaus J, Heinsen H, Grinberg LT. Probing the correlation of neuronal loss, neurofibrillary tangles, and cell death markers across the Alzheimer's disease Braak stages: a quantitative study in humans. Neurobiol Aging 2017; 61:1-12. [PMID: 29031088 DOI: 10.1016/j.neurobiolaging.2017.09.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/08/2017] [Accepted: 09/08/2017] [Indexed: 12/30/2022]
Abstract
Clarifying the mechanisms connecting neurofibrillary tangle (NFT) neurotoxicity to neuronal dysfunction in humans is likely to be pivotal for developing effective treatments for Alzheimer's disease (AD). To model the temporal progression of AD in humans, we used a collection of brains with controls and individuals from each Braak stage to quantitatively investigate the correlation between intraneuronal caspase activation or macroautophagy markers, NFT burden, and neuronal loss, in the dorsal raphe nucleus and locus coeruleus, the earliest vulnerable areas to NFT accumulation. We fit linear regressions with each count as outcomes, with Braak score and age as the predictors. In progressive Braak stages, intraneuronal active caspase-6 positivity increases both alone and overlapping with NFTs. Likewise, the proportion of NFT-bearing neurons showing autophagosomes increases. Overall, caspases may be involved in upstream cascades in AD and are associated with higher NFTs. Macroautophagy changes correlate with increasing NFT burden from early AD stages.
Collapse
Affiliation(s)
- Panos Theofilas
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Alexander J Ehrenberg
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Austin Nguy
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Julia M Thackrey
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Sara Dunlop
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Maria B Mejia
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Ana T Alho
- Hospital Albert Einstein, São Paulo, Brazil; Department of Pathology, LIM-22, University of São Paulo Medical School, São Paulo, Brazil
| | | | | | - Claudia K Suemoto
- Division of Geriatrics, LIM-22, University of São Paulo Medical School, São Paulo, Brazil
| | - Camila F Nascimento
- Department of Pathology, LIM-22, University of São Paulo Medical School, São Paulo, Brazil
| | - Marcus Chin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel Medina-Cleghorn
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Ana Maria Cuervo
- Departments of Developmental and Molecular Biology, Anatomy and Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Michelle Arkin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Ricardo Nitrini
- Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil
| | | | - Wilson Jacob Filho
- Division of Geriatrics, LIM-22, University of São Paulo Medical School, São Paulo, Brazil
| | - Udo Rueb
- Dr. Senckenbergisches Chronomedizinisches Institut, Department of Anatomy, J. W. Goethe University Frankfurt am Main, Frankfurt, Germany
| | - John Neuhaus
- Department of Epidemiology & Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Helmut Heinsen
- Department of Pathology, LIM-22, University of São Paulo Medical School, São Paulo, Brazil; Department of Psychiatry, University of Wuerzburg, Wuerzburg, Germany
| | - Lea T Grinberg
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA; Department of Pathology, LIM-22, University of São Paulo Medical School, São Paulo, Brazil.
| |
Collapse
|
26
|
Lee H, Shin EA, Lee JH, Ahn D, Kim CG, Kim JH, Kim SH. Caspase inhibitors: a review of recently patented compounds (2013-2015). Expert Opin Ther Pat 2017; 28:47-59. [DOI: 10.1080/13543776.2017.1378426] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hyemin Lee
- Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Eun Ah Shin
- Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jae Hee Lee
- Department of East West Medical Science, Graduate School of East West Medical Science Kyung Hee University, Yongin, South Korea
| | - Deoksoo Ahn
- Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Chang Geun Kim
- Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Ju-Ha Kim
- Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Sung-Hoon Kim
- Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
27
|
Multiple proteolytic events in caspase-6 self-activation impact conformations of discrete structural regions. Proc Natl Acad Sci U S A 2017; 114:E7977-E7986. [PMID: 28864531 DOI: 10.1073/pnas.1704640114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Caspase-6 is critical to the neurodegenerative pathways of Alzheimer's, Huntington's, and Parkinson's diseases and has been identified as a potential molecular target for treatment of neurodegeneration. Thus, understanding the global and regional changes in dynamics and conformation provides insights into the unique properties of caspase-6 that may contribute to achieving control of its function. In this work, hydrogen/deuterium exchange MS (H/DX-MS) was used to map the local changes in the conformational flexibility of procaspase-6 at the discrete states that reflect the series of cleavage events that ultimately lead to the fully active, substrate-bound state. Intramolecular self-cleavage at Asp-193 evoked higher solvent exposure in the regions of the substrate-binding loops L1, L3, and L4 and in the 130s region, the intersubunit linker region, the 26-32 region as well as in the stabilized loop 2. Additional removal of the linker allowed caspase-6 to gain more flexibility in the 130s region and in the L2 region converting caspase-6 to a competent substrate-binding state. The prodomain region was found to be intrinsically disordered independent of the activation state of caspase-6; however, its complete removal resulted in the protection of the adjacent 26-32 region, suggesting that this region may play a regulatory role. The molecular details of caspase-6 dynamics in solution provide a comprehensive scaffold for strategic design of therapeutic approaches for neurodegenerative disorders.
Collapse
|
28
|
Affiliation(s)
- Andrea C LeBlanc
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B Davis Jewish General Hospital, Montréal, QC, Canada
| |
Collapse
|
29
|
Skotte NH, Sanders SS, Singaraja RR, Ehrnhoefer DE, Vaid K, Qiu X, Kannan S, Verma C, Hayden MR. Palmitoylation of caspase-6 by HIP14 regulates its activation. Cell Death Differ 2017; 24:433-444. [PMID: 27911442 PMCID: PMC5344205 DOI: 10.1038/cdd.2016.139] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 10/03/2016] [Accepted: 10/25/2016] [Indexed: 02/06/2023] Open
Abstract
Caspase-6 (CASP6) has an important role in axonal degeneration during neuronal apoptosis and in the neurodegenerative diseases Alzheimer and Huntington disease. Decreasing CASP6 activity may help to restore neuronal function in these and other diseases such as stroke and ischemia, where increased CASP6 activity has been implicated. The key to finding approaches to decrease CASP6 activity is a deeper understanding of the mechanisms regulating CASP6 activation. We show that CASP6 is posttranslationally palmitoylated by the palmitoyl acyltransferase HIP14 and that the palmitoylation of CASP6 inhibits its activation. Palmitoylation of CASP6 is decreased both in Hip14-/- mice, where HIP14 is absent, and in YAC128 mice, a model of Huntington disease, where HIP14 is dysfunctional and where CASP6 activity is increased. Molecular modeling suggests that palmitoylation of CASP6 may inhibit its activation via steric blockage of the substrate-binding groove and inhibition of CASP6 dimerization, both essential for CASP6 function. Our studies identify palmitoylation as a novel CASP6 modification and as a key regulator of CASP6 activity.
Collapse
Affiliation(s)
- Niels H Skotte
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Shaun S Sanders
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Roshni R Singaraja
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
- Translational Laboratories in Genetic Medicine, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Medicine at Yong Loo Lin School of Medicine, National University of Singapore, Singapore 138648, Singapore
| | - Dagmar E Ehrnhoefer
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Kuljeet Vaid
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Xiaofan Qiu
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Srinivasaragavan Kannan
- Bioinformatics Institute, Agency for Science, Technology and Research, 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
| | - Chandra Verma
- Bioinformatics Institute, Agency for Science, Technology and Research, 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
- School of Biological Sciences, Nanyang Technological University, 50 Nanyang Drive, Singapore 637551, Singapore
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
- Translational Laboratories in Genetic Medicine, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
30
|
Pakavathkumar P, Noël A, Lecrux C, Tubeleviciute-Aydin A, Hamel E, Ahlfors JE, LeBlanc AC. Caspase vinyl sulfone small molecule inhibitors prevent axonal degeneration in human neurons and reverse cognitive impairment in Caspase-6-overexpressing mice. Mol Neurodegener 2017; 12:22. [PMID: 28241839 PMCID: PMC5329948 DOI: 10.1186/s13024-017-0166-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/22/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The activation of the aspartate-specific cysteinyl protease, Caspase-6, is proposed as an early pathogenic event of Alzheimer disease (AD) and Huntington's disease. Caspase-6 inhibitors could be useful against these neurodegenerative diseases but most Caspase-6 inhibitors have been exclusively studied in vitro or show acute liver toxicity in humans. Here, we assessed vinyl sulfone small molecule peptide caspase inhibitors for potential use in vivo. METHODS The IC50 of NWL vinyl sulfone small molecule caspase inhibitors were determined on Caspase-1 to 10, and Caspase-6-transfected human colon carcinoma HCT116 cells. Inhibition of Caspase-6-mediated axonal degeneration was assessed in serum-deprived or amyloid precursor protein-transfected primary human CNS neurons. Cellular toxicity was measured by phase contrast microscopy, mitochondrial and lactate dehydrogenase colorimetric activity assays, or flow cytometry. Caspase inhibition was measured by fluorogenic activity assays, fluorescence microscopy, and western blot analyses. The effect of inhibitors on age-dependent cognitive deficits in Caspase-6 transgenic mice was assessed by the novel object recognition task. Liquid chromatography coupled to tandem mass spectrometry assessed the blood-brain barrier permeability of inhibitors in Caspase-6 mice. RESULTS Vinyl sulfone NWL-117 caspase inhibitor has a higher selectivity against Caspase-6, -4, -8, -9, and -10 whereas NWL-154 has higher selectivity against Caspase-6, -8, and -10. The half-maximal inhibitory concentrations (IC50) of NWL-117 and NWL-154 is 192 nM and 100 nM against Caspase-6 in vitro, and 4.82 μM and 3.63 μM in Caspase-6-transfected HCT116 cells, respectively. NWL inhibitors are not toxic to HCT116 cells or to human primary neurons. NWL-117 and NWL-154 inhibit serum deprivation-induced Caspase-6 activity and prevent amyloid precursor protein-mediated neurite degeneration in human primary CNS neurons. NWL-117 crosses the blood brain barrier and reverses age-dependent episodic memory deficits in Caspase-6 mice. CONCLUSIONS NWL peptidic vinyl methyl sulfone inhibitors are potent, non-toxic, blood-brain barrier permeable, and irreversible caspase inhibitors with neuroprotective effects in HCT116 cells, in primary human CNS neurons, and in Caspase-6 mice. These results highlight the therapeutic potential of vinyl sulfone inhibitors as caspase inhibitors against neurodegenerative diseases and sanction additional work to improve their selectivity against different caspases.
Collapse
Affiliation(s)
- Prateep Pakavathkumar
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3999 Ch. Cote Ste-Catherine, Montreal, QC, H3T 1E2, Canada
- Department of Neurology and Neurosurgery, McGill University, 845 Sherbrooke O, Montreal, QC, H3A 0G4, Canada
| | - Anastasia Noël
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3999 Ch. Cote Ste-Catherine, Montreal, QC, H3T 1E2, Canada
- Department of Neurology and Neurosurgery, McGill University, 845 Sherbrooke O, Montreal, QC, H3A 0G4, Canada
| | - Clotilde Lecrux
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, 3801 University Street, Montreal, QC, H3A 2B4, Canada
| | - Agne Tubeleviciute-Aydin
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3999 Ch. Cote Ste-Catherine, Montreal, QC, H3T 1E2, Canada
- Department of Neurology and Neurosurgery, McGill University, 845 Sherbrooke O, Montreal, QC, H3A 0G4, Canada
| | - Edith Hamel
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, 3801 University Street, Montreal, QC, H3A 2B4, Canada
| | - Jan-Eric Ahlfors
- New World Laboratories, 500 Boulevard Cartier Ouest, Laval, QC, H7V 5B7, Canada
| | - Andrea C LeBlanc
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3999 Ch. Cote Ste-Catherine, Montreal, QC, H3T 1E2, Canada.
- Department of Neurology and Neurosurgery, McGill University, 845 Sherbrooke O, Montreal, QC, H3A 0G4, Canada.
- Molecular and Regenerative Medicine Axis, Lady Davis Institute for Medical Research, Sir Mortimer B Davis Jewish General Hospital, 3755 ch. Côte Ste-Catherine, Montréal, QC, H3T 1E2, Canada.
| |
Collapse
|
31
|
Dagbay KB, Bolik-Coulon N, Savinov SN, Hardy JA. Caspase-6 Undergoes a Distinct Helix-Strand Interconversion upon Substrate Binding. J Biol Chem 2017; 292:4885-4897. [PMID: 28154009 DOI: 10.1074/jbc.m116.773499] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/01/2017] [Indexed: 12/22/2022] Open
Abstract
Caspases are cysteine aspartate proteases that are major players in key cellular processes, including apoptosis and inflammation. Specifically, caspase-6 has also been implicated in playing a unique and critical role in neurodegeneration; however, structural similarities between caspase-6 and other caspase active sites have hampered precise targeting of caspase-6. All caspases can exist in a canonical conformation, in which the substrate binds atop a β-strand platform in the 130's region. This caspase-6 region can also adopt a helical conformation that has not been seen in any other caspases. Understanding the dynamics and interconversion between the helical and strand conformations in caspase-6 is critical to fully assess its unique function and regulation. Here, hydrogen/deuterium exchange mass spectrometry indicated that caspase-6 is inherently and dramatically more conformationally dynamic than closely related caspase-7. In contrast to caspase-7, which rests constitutively in the strand conformation before and after substrate binding, the hydrogen/deuterium exchange data in the L2' and 130's regions suggested that before substrate binding, caspase-6 exists in a dynamic equilibrium between the helix and strand conformations. Caspase-6 transitions exclusively to the canonical strand conformation only upon substrate binding. Glu-135, which showed noticeably different calculated pK a values in the helix and strand conformations, appears to play a key role in the interconversion between the helix and strand conformations. Because caspase-6 has roles in several neurodegenerative diseases, exploiting the unique structural features and conformational changes identified here may provide new avenues for regulating specific caspase-6 functions for therapeutic purposes.
Collapse
Affiliation(s)
| | | | - Sergey N Savinov
- Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | | |
Collapse
|
32
|
Foveau B, Albrecht S, Bennett DA, Correa JA, LeBlanc AC. Increased Caspase-6 activity in the human anterior olfactory nuclei of the olfactory bulb is associated with cognitive impairment. Acta Neuropathol Commun 2016; 4:127. [PMID: 27931265 PMCID: PMC5146837 DOI: 10.1186/s40478-016-0400-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/01/2016] [Indexed: 02/06/2023] Open
Abstract
Abnormally elevated hippocampal Caspase-6 (Casp6) activity is intimately associated with age-related cognitive impairment in humans and in mice. In humans, these high levels of Casp6 activity are initially localized in the entorhinal cortex, the area of the brain first affected by the formation of neurofibrillary tangles, according to Braak staging. The reason for the high vulnerability of entorhinal cortex neurons to neurofibrillary tangle pathology and Casp6 activity is unknown. Casp6 activity is involved in axonal degeneration, therefore, one possibility to explain increased vulnerability of the entorhinal cortex neurons would be that the afferent neurons of the olfactory bulb, some of which project their axons to the entorhinal cortex, are equally degenerating. To examine this possibility, we examined the presence of Casp6 activity, neurofibrillary tangle formation and amyloid deposition by immunohistochemistry with neoepitope antisera against the p20 subunit of active Casp6 and Tau cleaved by Casp6 (Tau∆Casp6), phosphorylated Tau paired helical filament (PHF-1) antibodies and anti-β-amyloid antiserum, respectively, in brains from individuals with no or mild cognitive impairment and Alzheimer disease (AD) dementia. Co-localization of Casp6 activity, PHF-1 and β-amyloid was detected mostly in the anterior olfactory nucleus (AON) of the olfactory bulb. The levels of active Casp6 in the AON, which were the highest in the AD brains, correlated with PHF-1 levels, but not with β-amyloid levels. AON Tau∆Casp6 levels correlated with entorhinal cortex Casp6 activity and PHF-1 levels. Multiple regression analyses demonstrated that AON Casp6 activity was associated with lower global cognitive function, mini mental state exam, episodic memory and semantic memory scores. These results suggest that AON Casp6 activity could lead to Casp6-mediated degeneration in the entorhinal cortex, but cannot exclude the possibilities that entorhinal cortex degeneration signals degeneration in the AON or that the pathologies occur in both regions independently. Nevertheless, AON Casp6 activity reflects that of the entorhinal cortex.
Collapse
Affiliation(s)
- Benedicte Foveau
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 ch. Côte Ste-Catherine, Montreal, QC Canada
| | - Steffen Albrecht
- Department of Pathology, Montreal Children’s Hospital and McGill University, Montreal, QC Canada
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL USA
| | - José A. Correa
- Department of Mathematics and Statistics, McGill University, Montreal, QC Canada
| | - Andrea C. LeBlanc
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 ch. Côte Ste-Catherine, Montreal, QC Canada ,Department of Neurology and Neurosurgery, McGill University, Montreal, QC Canada
| |
Collapse
|
33
|
Lessard-Beaudoin M, Laroche M, Loudghi A, Demers MJ, Denault JB, Grenier G, Riechers SP, Wanker EE, Graham RK. Organ-specific alteration in caspase expression and STK3 proteolysis during the aging process. Neurobiol Aging 2016; 47:50-62. [DOI: 10.1016/j.neurobiolaging.2016.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 06/14/2016] [Accepted: 07/01/2016] [Indexed: 10/21/2022]
|
34
|
Laquinimod decreases Bax expression and reduces caspase-6 activation in neurons. Exp Neurol 2016; 283:121-8. [DOI: 10.1016/j.expneurol.2016.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/18/2016] [Accepted: 06/09/2016] [Indexed: 12/20/2022]
|
35
|
The role of the drebrin/EB3/Cdk5 pathway in dendritic spine plasticity, implications for Alzheimer's disease. Brain Res Bull 2016; 126:293-299. [PMID: 27365229 DOI: 10.1016/j.brainresbull.2016.06.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 06/23/2016] [Accepted: 06/25/2016] [Indexed: 11/21/2022]
Abstract
The drebrin/EB3/Cdk5 intracellular signalling pathway couples actin filaments to dynamic microtubules in cellular settings where cells are changing shape. The pathway has been most intensively studied in neuronal development, particularly neuritogenesis and neuronal migration, and in synaptic plasticity at dendritic spines in mature neurons. Drebrin is an actin filament side-binding and bundling protein that stabilises actin filaments. The end-binding (EB) proteins are microtubule plus-end tracking proteins (+TIPs) that localise to the growing plus-ends of dynamic microtubules and regulate their behavior and the binding of other +TIP proteins. EB3 binds specifically to drebrin when drebrin is bound to actin filaments, for example at the base of a growth cone filopodium, and EB3 is located at the plus-end of a growing microtubule inserting into the filopodium. This interaction therefore forms the basis for coupling dynamic microtubules to actin filaments in growth cones of developing neurons. Appropriate responses to growth cone guidance cues depend on actin filament/microtubule co-ordination in the growth cone, although the role of the drebrin/EB3/Cdk5 pathway in this context has not been directly tested. A similar cytoskeleton coupling pathway operates in dendritic spines in mature neurons where the activity-dependent insertion of dynamic microtubules into dendritic spines is facilitated by drebrin binding to EB3. Microtubule insertion into dendritic spines drives spine maturation during long-term potentiation and therefore has a role in synaptic plasticity and memory formation. In Alzheimer's disease and related chronic neurodegenerative diseases, there is an early and dramatic loss of drebrin from dendritic spines that precedes synapse loss and neurodegeneration and might contribute to a failure of synaptic plasticity and hence to cognitive decline.
Collapse
|
36
|
Berta T, Qadri YJ, Chen G, Ji RR. Microglial Signaling in Chronic Pain with a Special Focus on Caspase 6, p38 MAP Kinase, and Sex Dependence. J Dent Res 2016; 95:1124-31. [PMID: 27307048 DOI: 10.1177/0022034516653604] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Microglia are the resident immune cells in the spinal cord and brain. Mounting evidence suggests that activation of microglia plays an important role in the pathogenesis of chronic pain, including chronic orofacial pain. In particular, microglia contribute to the transition from acute pain to chronic pain, as inhibition of microglial signaling reduces pathologic pain after inflammation, nerve injury, and cancer but not baseline pain. As compared with inflammation, nerve injury induces much more robust morphologic activation of microglia, termed microgliosis, as shown by increased expression of microglial markers, such as CD11b and IBA1. However, microglial signaling inhibitors effectively reduce inflammatory pain and neuropathic pain, arguing against the importance of morphologic activation of microglia in chronic pain sensitization. Importantly, microglia enhance pain states via secretion of proinflammatory and pronociceptive mediators, such as tumor necrosis factor α, interleukins 1β and 18, and brain-derived growth factor. Mechanistically, these mediators have been shown to enhance excitatory synaptic transmission and suppress inhibitory synaptic transmission in the pain circuits. While early studies suggested a predominant role of microglia in the induction of chronic pain, further studies have supported a role of microglia in the maintenance of chronic pain. Intriguingly, recent studies show male-dominant microglial signaling in some neuropathic pain and inflammatory pain states, although both sexes show identical morphologic activation of microglia after nerve injury. In this critical review, we provide evidence to show that caspase 6-a secreted protease that is expressed in primary afferent axonal terminals surrounding microglia-is a robust activator of microglia and induces profound release of tumor necrosis factor α from microglia via activation of p38 MAP kinase. The authors also show that microglial caspase 6/p38 signaling is male dominant in some inflammatory and neuropathic pain conditions. Finally, the authors discuss the relevance of microglial signaling in chronic trigeminal and orofacial pain.
Collapse
Affiliation(s)
- T Berta
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Y J Qadri
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - G Chen
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - R R Ji
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
37
|
Melzer J, Broemer M. Nerve-racking - apoptotic and non-apoptotic roles of caspases in the nervous system of Drosophila. Eur J Neurosci 2016; 44:1683-90. [PMID: 26900934 DOI: 10.1111/ejn.13213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/02/2016] [Accepted: 02/15/2016] [Indexed: 12/28/2022]
Abstract
Studies using Drosophila as a model system have contributed enormously to our knowledge of caspase function and regulation. Caspases are best known as central executioners of apoptosis but also control essential physiological processes in a non-apoptotic manner. The Drosophila genome codes for seven caspases and in this review we provide an overview of current knowledge about caspase function in the nervous system. Caspases regulate neuronal death at all developmental stages and in various neuronal populations. In contrast, non-apoptotic roles are less well understood. The development of new genetically encoded sensors for caspase activity provides unprecedented opportunities to study caspase function in the nervous system in more detail. In light of these new tools we discuss the potential of Drosophila as a model to discover new apoptotic and non-apoptotic neuronal roles of caspases.
Collapse
Affiliation(s)
- Juliane Melzer
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Meike Broemer
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| |
Collapse
|
38
|
|
39
|
Shrestha A, Megeney LA. Yeast proteinopathy models: a robust tool for deciphering the basis of neurodegeneration. MICROBIAL CELL 2015; 2:458-465. [PMID: 28357271 PMCID: PMC5354604 DOI: 10.15698/mic2015.12.243] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein quality control or proteostasis is an essential determinant of basic cell health and aging. Eukaryotic cells have evolved a number of proteostatic mechanisms to ensure that proteins retain functional conformation, or are rapidly degraded when proteins misfold or self-aggregate. Disruption of proteostasis is now widely recognized as a key feature of aging related illness, specifically neurodegenerative disease. For example, Alzheimer’s disease, Huntington’s disease, Parkinson’s disease and Amyotrophic Lateral Sclerosis (ALS) each target and afflict distinct neuronal cell subtypes, yet this diverse array of human pathologies share the defining feature of aberrant protein aggregation within the affected cell population. Here, we review the use of budding yeast as a robust proxy to study the intersection between proteostasis and neurodegenerative disease. The humanized yeast model has proven to be an amenable platform to identify both, conserved proteostatic mechanisms across eukaryotic phyla and novel disease specific molecular dysfunction. Moreover, we discuss the intriguing concept that yeast specific proteins may be utilized as bona fide therapeutic agents, to correct proteostasis errors across various forms of neurodegeneration.
Collapse
Affiliation(s)
- Amit Shrestha
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Sprott Centre for Stem Cell Research, The Ottawa Hospital, Ottawa, Ontario, Canada. ; Department of Cellular and Molecular Medicine University of Ottawa, Ottawa, Ontario, Canada
| | - Lynn A Megeney
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Sprott Centre for Stem Cell Research, The Ottawa Hospital, Ottawa, Ontario, Canada. ; Department of Cellular and Molecular Medicine University of Ottawa, Ottawa, Ontario, Canada ; Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
40
|
Pakavathkumar P, Sharma G, Kaushal V, Foveau B, LeBlanc AC. Methylene Blue Inhibits Caspases by Oxidation of the Catalytic Cysteine. Sci Rep 2015; 5:13730. [PMID: 26400108 PMCID: PMC4585840 DOI: 10.1038/srep13730] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/03/2015] [Indexed: 12/20/2022] Open
Abstract
Methylene blue, currently in phase 3 clinical trials against Alzheimer Disease, disaggregates the Tau protein of neurofibrillary tangles by oxidizing specific cysteine residues. Here, we investigated if methylene blue can inhibit caspases via the oxidation of their active site cysteine. Methylene blue, and derivatives, azure A and azure B competitively inhibited recombinant Caspase-6 (Casp6), and inhibited Casp6 activity in transfected human colon carcinoma cells and in serum-deprived primary human neuron cultures. Methylene blue also inhibited recombinant Casp1 and Casp3. Furthermore, methylene blue inhibited Casp3 activity in an acute mouse model of liver toxicity. Mass spectrometry confirmed methylene blue and azure B oxidation of the catalytic Cys163 cysteine of Casp6. Together, these results show a novel inhibitory mechanism of caspases via sulfenation of the active site cysteine. These results indicate that methylene blue or its derivatives could (1) have an additional effect against Alzheimer Disease by inhibiting brain caspase activity, (2) be used as a drug to prevent caspase activation in other conditions, and (3) predispose chronically treated individuals to cancer via the inhibition of caspases.
Collapse
Affiliation(s)
- Prateep Pakavathkumar
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Gyanesh Sharma
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Vikas Kaushal
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Bénédicte Foveau
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Andrea C. LeBlanc
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
41
|
Iturria-Medina Y, Evans AC. On the central role of brain connectivity in neurodegenerative disease progression. Front Aging Neurosci 2015; 7:90. [PMID: 26052284 PMCID: PMC4439541 DOI: 10.3389/fnagi.2015.00090] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/01/2015] [Indexed: 12/12/2022] Open
Abstract
Increased brain connectivity, in all its variants, is often considered an evolutionary advantage by mediating complex sensorimotor function and higher cognitive faculties. Interaction among components at all spatial scales, including genes, proteins, neurons, local neuronal circuits and macroscopic brain regions, are indispensable for such vital functions. However, a growing body of evidence suggests that, from the microscopic to the macroscopic levels, such connections might also be a conduit for in intra-brain disease spreading. For instance, cell-to-cell misfolded proteins (MP) transmission and neuronal toxicity are prominent connectivity-mediated factors in aging and neurodegeneration. This article offers an overview of connectivity dysfunctions associated with neurodegeneration, with a specific focus on how these may be central to both normal aging and the neuropathologic degenerative progression.
Collapse
Affiliation(s)
- Yasser Iturria-Medina
- Montreal Neurological Institute Montreal, QC, Canada ; Ludmer Center for NeuroInformatics and Mental Health Montreal, QC, Canada
| | - Alan C Evans
- Montreal Neurological Institute Montreal, QC, Canada ; Ludmer Center for NeuroInformatics and Mental Health Montreal, QC, Canada
| |
Collapse
|
42
|
Shalini S, Dorstyn L, Dawar S, Kumar S. Old, new and emerging functions of caspases. Cell Death Differ 2014; 22:526-39. [PMID: 25526085 DOI: 10.1038/cdd.2014.216] [Citation(s) in RCA: 933] [Impact Index Per Article: 84.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 11/13/2014] [Accepted: 11/19/2014] [Indexed: 12/26/2022] Open
Abstract
Caspases are proteases with a well-defined role in apoptosis. However, increasing evidence indicates multiple functions of caspases outside apoptosis. Caspase-1 and caspase-11 have roles in inflammation and mediating inflammatory cell death by pyroptosis. Similarly, caspase-8 has dual role in cell death, mediating both receptor-mediated apoptosis and in its absence, necroptosis. Caspase-8 also functions in maintenance and homeostasis of the adult T-cell population. Caspase-3 has important roles in tissue differentiation, regeneration and neural development in ways that are distinct and do not involve any apoptotic activity. Several other caspases have demonstrated anti-tumor roles. Notable among them are caspase-2, -8 and -14. However, increased caspase-2 and -8 expression in certain types of tumor has also been linked to promoting tumorigenesis. Increased levels of caspase-3 in tumor cells causes apoptosis and secretion of paracrine factors that promotes compensatory proliferation in surrounding normal tissues, tumor cell repopulation and presents a barrier for effective therapeutic strategies. Besides this caspase-2 has emerged as a unique caspase with potential roles in maintaining genomic stability, metabolism, autophagy and aging. The present review focuses on some of these less studied and emerging functions of mammalian caspases.
Collapse
Affiliation(s)
- S Shalini
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - L Dorstyn
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - S Dawar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - S Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| |
Collapse
|
43
|
Wang XJ, Cao Q, Zhang Y, Su XD. Activation and regulation of caspase-6 and its role in neurodegenerative diseases. Annu Rev Pharmacol Toxicol 2014; 55:553-72. [PMID: 25340928 DOI: 10.1146/annurev-pharmtox-010814-124414] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Caspases, a family of cysteine proteases, are major mediators of apoptosis and inflammation. Caspase-6 is classified as an apoptotic effector, and it mediates nuclear shrinkage during apoptosis, but it possesses unique activation and regulation mechanisms that differ from those of other effector caspases. Furthermore, increasing evidence has shown that caspase-6 is highly involved in axon degeneration and neurodegenerative diseases, such as Huntington's disease and Alzheimer's disease. Cleavage at the caspase-6 site in mutated huntingtin protein is a prerequisite for the development of the characteristic behavioral and neuropathological features of Huntington's disease. Active caspase-6 is present in early stages of Alzheimer's disease, and caspase-6 activity is associated with the disease's pathological lesions. In this review, we discuss the evidence relevant to the role of caspase-6 in neurodegenerative diseases and summarize its activation and regulation mechanisms. In doing so, we provide new insight about potential therapeutic approaches that incorporate the modulation of caspase-6 function for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiao-Jun Wang
- State Key Laboratory of Protein and Plant Gene Research and
| | | | | | | |
Collapse
|
44
|
Martin DDO, Ladha S, Ehrnhoefer DE, Hayden MR. Autophagy in Huntington disease and huntingtin in autophagy. Trends Neurosci 2014; 38:26-35. [PMID: 25282404 DOI: 10.1016/j.tins.2014.09.003] [Citation(s) in RCA: 235] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/08/2014] [Accepted: 09/09/2014] [Indexed: 01/20/2023]
Abstract
Autophagy is an important biological process that is essential for the removal of damaged organelles and toxic or aggregated proteins by delivering them to the lysosome for degradation. Consequently, autophagy has become a primary target for the treatment of neurodegenerative diseases that involve aggregating proteins. In Huntington disease (HD), an expansion of the polyglutamine (polyQ) tract in the N-terminus of the huntingtin (HTT) protein leads to protein aggregation. However, HD is unique among the neurodegenerative proteinopathies in that autophagy is not only dysfunctional but wild type (wt) HTT also appears to play several roles in regulating the dynamics of autophagy. Herein, we attempt to integrate the recently described novel roles of wtHTT and altered autophagy in HD.
Collapse
Affiliation(s)
- Dale D O Martin
- Centre for Molecular Medicine and Therapeutics (CMMT), Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada.
| | - Safia Ladha
- Centre for Molecular Medicine and Therapeutics (CMMT), Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Dagmar E Ehrnhoefer
- Centre for Molecular Medicine and Therapeutics (CMMT), Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics (CMMT), Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
45
|
Zhao H, Zhao W, Lok K, Wang Z, Yin M. A synergic role of caspase-6 and caspase-3 in Tau truncation at D421 induced by H2O 2. Cell Mol Neurobiol 2014; 34:369-78. [PMID: 24363090 PMCID: PMC11488892 DOI: 10.1007/s10571-013-0021-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 12/13/2013] [Indexed: 10/25/2022]
Abstract
Tau truncation is widely detected in Alzheimer's disease brain. Caspases activation is suggested to play a significant role in tau truncation at Aspartate 421 (D421) according to their ability to cleave recombinant tau in vitro. Ample evidence has shown that caspase-6 is involved in cognitive impairment and expressed in AD brain. Reactive oxygen species (ROS) can lead to caspase-6 activation and correlate with AD. Here, we transfected human embryonic kidney 293 (HEK 293) cells with Tau 441 plasmid and investigated the role of caspase-6 and caspase-3 in ROS-mediated tau truncation. Our data demonstrated that H2O2 induced oxidative stress and increased tau truncation. Caspase-6 and caspase-3 activity also increased in a dose-dependent manner in HEK 293/Tau cells during H2O2 insult. When cells were treated with an ROS inhibitor N-acetyl-L-cysteine, tau truncation was significantly suppressed. Compared with H2O2 (100 μM)/non-inhibitor group or single-inhibitor groups (z-VEID-fmk, caspase-6 inhibitor or z-DEVD-fmk, and caspase-3 inhibitor), tau truncation induced by H2O2 was effectively reduced in the combinative inhibitors group. Similar results were shown when cells were transfected with specific caspase-3 and caspase-6 siRNA. Inhibition of caspase-6 led to decline of caspase-3 activation. Taken together, our results suggest that the combination of caspase-6 and caspase-3 aggravates tau truncation at D421 induced by H2O2. Caspase-6 may play an important part in activating caspase-3. Further investigation of how the synergic role of caspase-6 and caspase-3 affects tau truncation may provide new visions for potential AD therapies.
Collapse
Affiliation(s)
- Hong Zhao
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Wenjuan Zhao
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Kenghoe Lok
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Zejian Wang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Ming Yin
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| |
Collapse
|
46
|
Modulating caspase activity: beyond the active site. Curr Opin Struct Biol 2013; 23:812-9. [DOI: 10.1016/j.sbi.2013.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 10/14/2013] [Indexed: 12/16/2022]
|
47
|
Raychaudhuri S, Raychaudhuri SC. Death ligand concentration and the membrane proximal signaling module regulate the type 1/type 2 choice in apoptotic death signaling. SYSTEMS AND SYNTHETIC BIOLOGY 2013; 8:83-97. [PMID: 24592294 DOI: 10.1007/s11693-013-9124-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 08/29/2013] [Accepted: 09/02/2013] [Indexed: 01/06/2023]
Abstract
Apoptotic death pathways are frequently activated by death ligand induction and subsequent activation of the membrane proximal signaling module. Death receptors cluster upon binding to death ligands, leading to formation of a membrane proximal death-inducing-signaling-complex (DISC). In this membrane proximal signalosome, initiator caspases (caspase 8) are processed resulting in activation of both type 1 and type 2 pathways of apoptosis signaling. How the type 1/type 2 choice is made is an important question in the systems biology of apoptosis signaling. In this study, we utilize a Monte Carlo based in silico approach to elucidate the role of membrane proximal signaling module in the type 1/type 2 choice of apoptosis signaling. Our results provide crucial mechanistic insights into the formation of DISC signalosome and caspase 8 activation. Increased concentration of death ligands was shown to correlate with increased type 1 activation. We also study the caspase 6 mediated system level feedback activation of apoptosis signaling and its role in the type 1/type 2 choice. Our results clarify the basis of cell-to-cell stochastic variability in apoptosis activation and ramifications of this issue is further discussed in the context of therapies for cancer and neurodegenerative disorders.
Collapse
Affiliation(s)
- Subhadip Raychaudhuri
- Indraprastha Institute of Information Technology, Delhi, 110020 Delhi India ; Department of Chemistry, University of California, Davis, Davis, CA 95776 USA
| | | |
Collapse
|