1
|
Granado N, Mendieta L, Tizabi Y, Murer MG, Moratalla R. Attenuated neurotoxicity after repeated methamphetamine binges linked to dopamine transporter (DAT) decline. Neurobiol Dis 2025; 207:106839. [PMID: 39947439 DOI: 10.1016/j.nbd.2025.106839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/26/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025] Open
Abstract
Methamphetamine (METH) abuse increases worldwide. In addition to its acute life-threatening effects, METH is toxic for dopaminergic neurons, increasing the risk of developing Parkinson's disease. The impact of repeated METH binge consumption on dopaminergic and neurotoxicity markers remains unclear. We exposed mice to a repeated "binge-like" METH regime, consisting of three doses over a 6 h interval, repeated three times with 14-day intervals. After the first binge, spontaneous motor activity decreased markedly but remained normal after subsequent binges. Following the first binge, we observed a 25 % loss of nigral dopaminergic cell bodies and significant axon terminal damage as assessed through striatal silver staining, with minimal further degeneration after additional binges. Dopaminergic markers were substantially depleted after the first and second binges, despite partial recovery between binges, dropping to below 20 % of control levels. By one day after the third binge, tyrosine hydroxylase (TH) and vesicular monoamine transporter 2 (VMAT2) stabilized at 50-60 % of control levels, but the dopamine transporter (DAT) remained at only 25 %, showing less recovery. These changes were accompanied by an evolving neuroinflammation pattern, with a transient microglial surge after the first binge and persistent astroglial and temperature responses. Overall, our findings indicate partial recovery of dopaminergic markers and the development of tolerance to METH neurotoxicity. The robust reduction of DAT after the first binge may contribute to this tolerance to subsequence binges by limiting METH entry into neurons thereby mitigating its neurotoxic effects.
Collapse
Affiliation(s)
- Noelia Granado
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Liliana Mendieta
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Mario Gustavo Murer
- Universidad de Buenos Aires, Facultad de Medicina, and CONICET, Instituto de Fisiología y Biofísica (IFIBIO), Buenos Aires, Argentina
| | - Rosario Moratalla
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
2
|
Shen B, Wu Z, Lv M, Yang G, Cao Y, Zhang Y, Shu J, Dong W, Hou Z, Jing D, Zhang X, Hou Y, Xu J, Hong S, Li L. Methamphetamine inhibits huntingtin-associated protein 1-mediated tyrosine receptor kinase B endocytosis resulting the neuroprotective dysfunction of brain-derived neurotrophic factor. Toxicology 2025; 511:154047. [PMID: 39800156 DOI: 10.1016/j.tox.2025.154047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/29/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
Methamphetamine (METH), a synthetic stimulant, has seen an escalating abuse situation globally over the past decade. Although the molecular mechanism underlying METH-induced neurotoxicity has been explored, the dysfunction of brain-derived neurotrophic factor (BDNF) neuroprotection in the context of METH neurotoxicity remains insufficiently understood. Our previous studies have found that METH induced neurotoxicity and BDNF expression in rat primary neurons, necessitating further research into this paradox. Specifically, BDNF-dependent tyrosine receptor kinase B (TrkB) endocytosis was crucial for BDNF to confer neuroprotection in neurons. Therefore, we investigated the effect and molecular mechanism of METH on TrkB endocytosis. This work attempted to explain the potential reasons why BDNF did not exert neuroprotection in the context of METH exposure. In the current study, excessive apoptosis, elevated BDNF and reduced huntingtin-associated protein 1 (HAP1) expression were observed in the hippocampus of METH users. METH also induced cell degeneration, cytotoxicity, and BDNF expression and release in HT-22 cells in both a concentration- (0.25, 0.5, 1, 2, and 4 mM) and time-dependent manner (3, 6, 12, 24, and 48 h). Furthermore, following 24 h of exposure to METH (2 mM), apoptosis, impaired TrkB endocytosis, and reduced HAP1 expression were evident in HT-22 cells and organotypic hippocampal slices from mice. Notably, overexpression of HAP1 attenuated METH-induced cell degeneration, cytotoxicity, apoptosis, and TrkB endocytosis disruption in HT-22 cells. These findings suggest that HAP1 is a key molecule in the disruption of BDNF-mediated neuroprotective signaling by METH, and that targeting HAP1-mediated TrkB endocytosis may represent a promising therapeutic avenue for METH-induced neurotoxicity.
Collapse
Affiliation(s)
- Baoyu Shen
- School of Forensic Medicine, National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Zhenling Wu
- School of Forensic Medicine, National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Mengran Lv
- School of Forensic Medicine, National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Genmeng Yang
- School of Forensic Medicine, National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yuanyuan Cao
- School of Forensic Medicine, National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yuan Zhang
- School of Forensic Medicine, National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Junjie Shu
- School of Forensic Medicine, National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Wenjuan Dong
- School of Forensic Medicine, National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Zhenping Hou
- School of Forensic Medicine, National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Di Jing
- School of Forensic Medicine, National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Xinjie Zhang
- School of Forensic Medicine, National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yuhan Hou
- School of Forensic Medicine, National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Jing Xu
- School of Forensic Medicine, National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Shijun Hong
- School of Forensic Medicine, National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan 650500, China.
| | - Lihua Li
- School of Forensic Medicine, National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan 650500, China.
| |
Collapse
|
3
|
Serra M, Simola N, Pollack AE, Costa G. Brain dysfunctions and neurotoxicity induced by psychostimulants in experimental models and humans: an overview of recent findings. Neural Regen Res 2024; 19:1908-1918. [PMID: 38227515 DOI: 10.4103/1673-5374.390971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/10/2023] [Indexed: 01/17/2024] Open
Abstract
Preclinical and clinical studies indicate that psychostimulants, in addition to having abuse potential, may elicit brain dysfunctions and/or neurotoxic effects. Central toxicity induced by psychostimulants may pose serious health risks since the recreational use of these substances is on the rise among young people and adults. The present review provides an overview of recent research, conducted between 2018 and 2023, focusing on brain dysfunctions and neurotoxic effects elicited in experimental models and humans by amphetamine, cocaine, methamphetamine, 3,4-methylenedioxymethamphetamine, methylphenidate, caffeine, and nicotine. Detailed elucidation of factors and mechanisms that underlie psychostimulant-induced brain dysfunction and neurotoxicity is crucial for understanding the acute and enduring noxious brain effects that may occur in individuals who use psychostimulants for recreational and/or therapeutic purposes.
Collapse
Affiliation(s)
- Marcello Serra
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Nicola Simola
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Alexia E Pollack
- Department of Biology, University of Massachusetts-Boston, Boston, MA, USA
| | - Giulia Costa
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| |
Collapse
|
4
|
Ferrucci M, Lenzi P, Lazzeri G, Busceti CL, Frati A, Puglisi-Allegra S, Fornai F. Combined light and electron microscopy (CLEM) to quantify methamphetamine-induced alpha-synuclein-related pathology. J Neural Transm (Vienna) 2024; 131:335-358. [PMID: 38367081 PMCID: PMC11016004 DOI: 10.1007/s00702-024-02741-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/09/2024] [Indexed: 02/19/2024]
Abstract
Methamphetamine (METH) produces a cytopathology, which is rather specific within catecholamine neurons both in vitro and ex vivo, in animal models and chronic METH abusers. This led some authors to postulate a sort of parallelism between METH cytopathology and cell damage in Parkinson's disease (PD). In fact, METH increases and aggregates alpha-syn proto-fibrils along with producing spreading of alpha-syn. Although alpha-syn is considered to be the major component of aggregates and inclusions developing within diseased catecholamine neurons including classic Lewy body (LB), at present, no study provided a quantitative assessment of this protein in situ, neither following METH nor in LB occurring in PD. Similarly, no study addressed the quantitative comparison between occurrence of alpha-syn and other key proteins and no investigation measured the protein compared with non-protein structure within catecholamine cytopathology. Therefore, the present study addresses these issues using an oversimplified model consisting of a catecholamine cell line where the novel approach of combined light and electron microscopy (CLEM) was used measuring the amount of alpha-syn, which is lower compared with p62 or poly-ubiquitin within pathological cell domains. The scenario provided by electron microscopy reveals unexpected findings, which are similar to those recently described in the pathology of PD featuring packing of autophagosome-like vesicles and key proteins shuttling autophagy substrates. Remarkably, small seed-like areas, densely packed with p62 molecules attached to poly-ubiquitin within wide vesicular domains occurred. The present data shed new light about quantitative morphometry of catecholamine cell damage in PD and within the addicted brain.
Collapse
Affiliation(s)
- Michela Ferrucci
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - Paola Lenzi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - Gloria Lazzeri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - Carla L Busceti
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077, Pozzilli, Italy
| | - Alessandro Frati
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077, Pozzilli, Italy
- Neurosurgery Division, Human Neurosciences Department, Sapienza University, 00135, Rome, Italy
| | - Stefano Puglisi-Allegra
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077, Pozzilli, Italy
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126, Pisa, Italy.
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077, Pozzilli, Italy.
| |
Collapse
|
5
|
Çakır B, Uzun Çakır AD, Yalın Sapmaz Ş, Bilaç Ö, Taneli F, Kandemir H. Cognitive functioning of adolescents using Methamphetamine: The impact of inflammatory and oxidative processes. APPLIED NEUROPSYCHOLOGY. CHILD 2024:1-10. [PMID: 38447149 DOI: 10.1080/21622965.2024.2323643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
BACKGROUND Methamphetamine is a substance that causes neurotoxicity and its use is increasing in recent years. Literature highlights cognitive impairment resulting from Methamphetamine use. The aim of the present study is to evaluate the relationship between cognitive impairment and inflammatory processes in adolescents with Methamphetamine use disorder. METHODS The study included 69 adolescents aged 15-19 years, comprising 37 participants with Methamphetamine Use Disorder and 32 healthy controls. Central Nervous System Vital Signs was used to detect cognitive impairment. Childhood Trauma Questionnaire-33 and The Children's Depression Inventory scales were used. In addition, venous blood was collected from the volunteers. Biochemical parameters (IL-1beta, IL-6, TNF-a, BDNF, FAM19A5, TAS, TOS) were analyzed. RESULTS Our study showed that (I) IL-6 and TNF-a levels of Methamphetamine users were lower than the healthy group; (II) BDNF levels of Methamphetamine users were higher than the healthy group; (III) mean Neurocognitive Index in cognitive tests of Methamphetamine using adolescents was negatively correlated with duration of Methamphetamine use and BDNF levels. CONCLUSIONS Our study suggests that Methamphetamine use may have a negative effect on cognitive functions.
Collapse
Affiliation(s)
- Burak Çakır
- Child and Adolescent Psychiatry, Usak University, Uşak, Turkey
| | | | - Şermin Yalın Sapmaz
- Child and Adolescent Psychiatry, Manisa Celal Bayar University, Manisa, Turkey
| | - Öznur Bilaç
- Child and Adolescent Psychiatry, Manisa Celal Bayar University, Manisa, Turkey
| | - Fatma Taneli
- Department of Clinical Biochemistry, Manisa Celal Bayar University School of Medicine, Manisa, Turkey
| | - Hasan Kandemir
- Child and Adolescent Psychiatry, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
6
|
Choi S, Methiwala HN, Graves SM. Isradipine, an L-type calcium channel inhibitor, attenuates cue-associated methamphetamine-seeking in mice. Brain Res 2023; 1818:148528. [PMID: 37567548 PMCID: PMC10530265 DOI: 10.1016/j.brainres.2023.148528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Methamphetamine (meth) is an addictive psychostimulant and there are no FDA-approved treatment options for patients suffering from meth use disorders. In addition to being addictive, meth is also neurotoxic and chronic administration results in degeneration of substantia nigra pars compacta (SNc) dopamine and locus coeruleus (LC) norepinephrine neurons in mice. Optimal treatment strategies for meth use disorders would attenuate maladaptive meth-seeking behavior as well as provide neuroprotection. The L-type calcium channel inhibitor isradipine and the monoamine oxidase (MAO) inhibitor rasagiline both prevent chronic meth-induced SNc and LC degeneration but effects on meth-seeking are unknown. To test whether these clinically available compounds can mitigate meth-seeking, mice were implanted with chronic indwelling jugular vein catheters and allowed to self-administer meth (0.1 mg/kg/infusion) for 10 consecutive days (2-hrs/day) on a fixed ratio (FR) 1 schedule of reinforcement with meth infusions paired to a cue light. One day after the last self-administration session mice were tested for cue-associated meth-seeking behavior wherein the meth-associated cue light was contingently presented but meth reinforcement withheld. Isradipine (3 mg/kg) attenuated cue-associated meth-seeking in both male and female mice. In contrast, rasagiline (1 mg/kg) had no effect on seeking in either sex. These results suggest that isradipine may have the potential to serve as a dual-purpose pharmacotherapy for meth use disorders by attenuating seeking behavior and providing neuroprotection.
Collapse
Affiliation(s)
- Sanghoon Choi
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | | | - Steven M Graves
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
7
|
Pilski A, Graves SM. Repeated Methamphetamine Administration Results in Axon Loss Prior to Somatic Loss of Substantia Nigra Pars Compacta and Locus Coeruleus Neurons in Male but Not Female Mice. Int J Mol Sci 2023; 24:13039. [PMID: 37685846 PMCID: PMC10487759 DOI: 10.3390/ijms241713039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Methamphetamine (meth) is a neurotoxic psychostimulant that increases monoamine oxidase (MAO)-dependent mitochondrial oxidant stress in axonal but not somatic compartments of substantia nigra pars compacta (SNc) and locus coeruleus (LC) neurons. Chronic meth administration results in the degeneration of SNc and LC neurons in male mice, and MAO inhibition is neuroprotective, suggesting that the deleterious effects of chronic meth begin in axons before advancing to the soma of SNc and LC neurons. To test this hypothesis, mice were administered meth (5 mg/kg) for 14, 21, or 28 days, and SNc and LC axonal lengths and numbers of neurons were quantified. In male mice, the SNc and LC axon lengths decreased with 14, 21, and 28 days of meth, whereas somatic loss was only observed after 28 days of meth; MAO inhibition (phenelzine; 20 mg/kg) prevented axonal and somatic loss of SNc and LC neurons. In contrast, chronic (28-day) meth had no effect on the axon length or numbers of SNc or LC neurons in female mice. The results demonstrate that repeated exposure to meth produces SNc and LC axonal deficits prior to somatic loss in male subjects, consistent with a dying-back pattern of degeneration, whereas female mice are resistant to chronic meth-induced degeneration.
Collapse
Affiliation(s)
| | - Steven M. Graves
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
8
|
Methamphetamine induced neurotoxic diseases, molecular mechanism, and current treatment strategies. Biomed Pharmacother 2022; 154:113591. [PMID: 36007276 DOI: 10.1016/j.biopha.2022.113591] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
Methamphetamine (MA) is a extremely addictive psychostimulant drug with a significant abuse potential. Long-term MA exposure can induce neurotoxic effects through oxidative stress, mitochondrial functional impairment, endoplasmic reticulum stress, the activation of astrocytes and microglial cells, axonal transport barriers, autophagy, and apoptosis. However, the molecular and cellular mechanisms underlying MA-induced neurotoxicity remain unclear. MA abuse increases the chances of developing neurotoxic conditions such as Parkinson's disease (PD), Alzheimer's disease (AD) and other neurotoxic diseases. MA increases the risk of PD by increasing the expression of alpha-synuclein (ASYN). Furthermore, MA abuse is linked to high chances of developing AD and subsequent neurodegeneration due to biological variations in the brain region or genetic and epigenetic variations. To date, there is no Food and Drug Administration (FDA)-approved therapy for MA-induced neurotoxicity, although many studies are being conducted to develop effective therapeutic strategies. Most current studies are now focused on developing therapies to diminish the neurotoxic effects of MA, based on the underlying mechanism of neurotoxicity. This review article highlights current research on several therapeutic techniques targeting multiple pathways to reduce the neurotoxic effects of MA in the brain, as well as the putative mechanism of MA-induced neurotoxicity.
Collapse
|
9
|
Du Y, Choi S, Pilski A, Graves SM. Differential vulnerability of locus coeruleus and dorsal raphe neurons to chronic methamphetamine-induced degeneration. Front Cell Neurosci 2022; 16:949923. [PMID: 35936499 PMCID: PMC9354074 DOI: 10.3389/fncel.2022.949923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022] Open
Abstract
Methamphetamine (meth) increases monoamine oxidase (MAO)-dependent mitochondrial stress in axons of substantia nigra pars compacta (SNc), and ventral tegmental area (VTA) dopamine neurons. Chronic administration of meth results in SNc degeneration and MAO inhibition is neuroprotective, whereas, the VTA is resistant to degeneration. This differential vulnerability is attributed, at least in part, to the presence of L-type Ca2+ channel-dependent mitochondrial stress in SNc but not VTA dopamine neurons. MAO is also expressed in other monoaminergic neurons such as noradrenergic locus coeruleus (LC) and serotonergic dorsal raphe (DR) neurons. The impact of meth on mitochondrial stress in LC and DR neurons is unknown. In the current study we used a genetically encoded redox biosensor to investigate meth-induced MAO-dependent mitochondrial stress in LC and DR neurons. Similar to SNc and VTA neurons, meth increased MAO-dependent mitochondrial stress in axonal but not somatic compartments of LC norepinephrine and DR serotonin neurons. Chronic meth administration (5 mg/kg; 28-day) resulted in degeneration of LC neurons and MAO inhibition was neuroprotective whereas DR neurons were resistant to degeneration. Activating L-type Ca2+ channels increased mitochondrial stress in LC but not DR axons and inhibiting L-type Ca2+ channels in vivo with isradipine prevented meth-induced LC degeneration. These data suggest that similar to recent findings in SNc and VTA dopamine neurons, the differential vulnerability between LC and DR neurons can be attributed to the presence of L-type Ca2+ channel-dependent mitochondrial stress. Taken together, the present study demonstrates that both meth-induced MAO- and L-type Ca2+ channel-dependent mitochondrial stress are necessary for chronic meth-induced neurodegeneration.
Collapse
|
10
|
Salari M, Hojjati Pour F, Rashedi R, Etemadifar M. Atypical Parkinsonism: Methamphetamine may play a role. Clin Case Rep 2022; 10:e05808. [PMID: 35540713 PMCID: PMC9069367 DOI: 10.1002/ccr3.5808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/14/2022] [Accepted: 04/22/2022] [Indexed: 01/06/2023] Open
Abstract
Abusing methamphetamine can be considered as an agent that can cause or affect the course of atypical parkinsonian syndromes (APS), which may raise attention regarding preventing abusing these drugs.
Collapse
Affiliation(s)
- Mehri Salari
- Functional Neurosurgery Research Center, Shohada‐e‐Tajrish Neurosurgical Center of Excellence Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Fatemeh Hojjati Pour
- Functional Neurosurgery Research Center, Shohada‐e‐Tajrish Neurosurgical Center of Excellence Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Ronak Rashedi
- Functional Neurosurgery Research Center, Shohada‐e‐Tajrish Neurosurgical Center of Excellence Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Masoud Etemadifar
- Department of Neurosurgery Isfahan University of Medical Sciences Isfahan Iran
| |
Collapse
|
11
|
Calma ID, Persons AL, Napier TC. Mitochondrial function influences expression of methamphetamine-induced behavioral sensitization. Sci Rep 2021; 11:24529. [PMID: 34972820 PMCID: PMC8720100 DOI: 10.1038/s41598-021-04301-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/13/2021] [Indexed: 12/21/2022] Open
Abstract
Repeated methamphetamine use leads to long lasting brain and behavioral changes in humans and laboratory rats. These changes have high energy requirements, implicating a role for mitochondria. We explored whether mitochondrial function underpins behaviors that occur in rats months after stopping methamphetamine self-administration. Accordingly, rats self-administered intravenous methamphetamine for 3 h/day for 14 days. The mitochondrial toxin rotenone was administered as (1 mg/kg/day for 6 days) via an osmotic minipump starting at 0, 14 or 28 days of abstinence abstinence. On abstinence day 61, expression of methamphetamine-induced behavioral sensitization was obtained with an acute methamphetamine challenge in rotenone-free rats. Rotenone impeded the expression of sensitization, with the most robust effects obtained with later abstinence exposure. These findings verified that self-titration of moderate methamphetamine doses results in behavioral (and thus brain) changes that can be revealed months after exposure termination, and that the meth-initiated processes progressed during abstinence so that longer abstinence periods were more susceptible to the consequences of exposure to a mitochondrial toxin.
Collapse
Affiliation(s)
- I. Daphne Calma
- grid.240684.c0000 0001 0705 3621Departments of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL 60612 USA ,grid.240684.c0000 0001 0705 3621Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL 60612 USA
| | - Amanda L. Persons
- grid.240684.c0000 0001 0705 3621Departments of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL 60612 USA ,grid.240684.c0000 0001 0705 3621Departments of Physician Assistant Studies, Rush University Medical Center, Chicago, IL 60612 USA ,grid.240684.c0000 0001 0705 3621Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL 60612 USA
| | - T. Celeste Napier
- grid.240684.c0000 0001 0705 3621Departments of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL 60612 USA ,grid.240684.c0000 0001 0705 3621Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL 60612 USA ,grid.240684.c0000 0001 0705 3621Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Suite 424, Cohn Research Building, 1735 W. Harrison Street, Chicago, IL 60610 USA
| |
Collapse
|
12
|
Du Y, Lee YB, Graves SM. Chronic methamphetamine-induced neurodegeneration: Differential vulnerability of ventral tegmental area and substantia nigra pars compacta dopamine neurons. Neuropharmacology 2021; 200:108817. [PMID: 34610287 PMCID: PMC8556701 DOI: 10.1016/j.neuropharm.2021.108817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022]
Abstract
Methamphetamine (meth) increases monoamine oxidase (MAO)-dependent mitochondrial stress in substantia nigra pars compacta (SNc) axons; chronic administration produces SNc degeneration that is prevented by MAO inhibition suggesting that MAO-dependent axonal mitochondrial stress is a causal factor. To test whether meth similarly increases mitochondrial stress in ventral tegmental area (VTA) axons, we used a genetically encoded redox biosensor to assess mitochondrial stress ex vivo. Meth increased MAO-dependent mitochondrial stress in both SNc and VTA axons. However, despite having the same meth-induced stress as SNc neurons, VTA neurons were resistant to chronic meth-induced degeneration indicating that meth-induced MAO-dependent mitochondrial stress in axons was necessary but not sufficient for degeneration. To determine whether L-type Ca2+ channel-dependent stress differentiates SNc and VTA axons, as reported in the soma, the L-type Ca2+ channel activator Bay K8644 was used. Opening L-type Ca2+ channels increased axonal mitochondrial stress in SNc but not VTA axons. To first determine whether mitochondrial stress was necessary for SNc degeneration, mice were treated with the mitochondrial antioxidant mitoTEMPO. Chronic meth-induced SNc degeneration was prevented by mitoTEMPO thereby confirming the necessity of mitochondrial stress. Similar to results with the antioxidant, both MAO inhibition and L-type Ca2+ channel inhibition also prevented SNc degeneration. Taken together the presented data demonstrate that both MAO- and L-type Ca2+ channel-dependent mitochondrial stress is necessary for chronic meth-induced degeneration.
Collapse
Affiliation(s)
- Yijuan Du
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - You Bin Lee
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Steven M Graves
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
13
|
Persons AL, Bradaric BD, Kelly LP, Kousik SM, Graves SM, Yamamoto BK, Napier TC. Gut and brain profiles that resemble pre-motor and early-stage Parkinson's disease in methamphetamine self-administering rats. Drug Alcohol Depend 2021; 225:108746. [PMID: 34098381 PMCID: PMC8483557 DOI: 10.1016/j.drugalcdep.2021.108746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Methamphetamine is a potent psychomotor stimulant, and methamphetamine abusers are up to three times more likely to develop Parkinson's disease (PD) later in life. Prodromal PD may involve gut inflammation and the accumulation of toxic proteins that are transported from the enteric nervous system to the central nervous system to mediate, in part, the degeneration of dopaminergic projections. We hypothesized that self-administration of methamphetamine in rats produces a gut and brain profile that mirrors pre-motor and early-stage PD. METHODS Rats self-administered methamphetamine in daily 3 h sessions for two weeks. Motor function was assessed before self-administration, during self-administration and throughout the 56 days of forced abstinence. Assays for pathogenic markers (tyrosine hydroxylase, glial fibrillary acidic protein (GFAP), α-synuclein) were conducted on brain and gut tissue collected at one or 56 days after cessation of methamphetamine self-administration. RESULTS Motor deficits emerged by day 14 of forced abstinence and progressively worsened up to 56 days of forced abstinence. In the pre-motor stage, we observed increased immunoreactivity for GFAP and α-synuclein within the ganglia of the myenteric plexus in the distal colon. Increased α-synuclein was also observed in the substantia nigra pars compacta. At 56 days, GFAP and α-synuclein normalized in the gut, but the accumulation of nigral α-synuclein persisted, and the dorsolateral striatum exhibited a significant loss of tyrosine hydroxylase. CONCLUSION The pre-motor profile is consistent with gut inflammation and gut/brain α-synuclein accumulation associated with prodromal PD and the eventual development of the neurological disease.
Collapse
Affiliation(s)
- Amanda L. Persons
- Department of Pharmacology, Rush University Medical Center, Chicago, IL 60612,Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL 60612,Department of Physician Assistant Studies, Rush University Medical Center, Chicago, IL 60612,Department of Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL 60612
| | - Brinda D. Bradaric
- Department of Pharmacology, Rush University Medical Center, Chicago, IL 60612,Department of Health Sciences, Rush University Medical Center, Chicago, IL 60612,Department of Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL 60612
| | - Leo P. Kelly
- Department of Pharmacology, Rush University Medical Center, Chicago, IL 60612
| | - Sharanya M. Kousik
- Department of Pharmacology, Rush University Medical Center, Chicago, IL 60612,Department of Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL 60612
| | - Steven M. Graves
- Department of Pharmacology, Rush University Medical Center, Chicago, IL 60612,Department of Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL 60612
| | - Bryan K. Yamamoto
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - T. Celeste Napier
- Department of Pharmacology, Rush University Medical Center, Chicago, IL 60612,Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL 60612,Department of Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL 60612
| |
Collapse
|
14
|
Graves SM, Schwarzschild SE, Tai RA, Chen Y, Surmeier DJ. Mitochondrial oxidant stress mediates methamphetamine neurotoxicity in substantia nigra dopaminergic neurons. Neurobiol Dis 2021; 156:105409. [PMID: 34082123 PMCID: PMC8686177 DOI: 10.1016/j.nbd.2021.105409] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/12/2021] [Accepted: 05/28/2021] [Indexed: 12/14/2022] Open
Abstract
Methamphetamine abuse is associated with an increased risk of developing Parkinson's disease (PD). Recently, it was found that methamphetamine increases mitochondrial oxidant stress in substantia nigra pars compacta (SNc) dopaminergic neurons by releasing vesicular dopamine (DA) and stimulating mitochondrially-anchored monoamine oxidase (MAO). As mitochondrial oxidant stress is widely thought to be a driver of SNc degeneration in PD, these observations provide a potential explanation for the epidemiological linkage. To test this hypothesis, mice were administered methamphetamine (5 mg/kg) for 28 consecutive days with or without pretreatment with an irreversible MAO inhibitor. Chronic methamphetamine administration resulted in the degeneration of SNc dopaminergic neurons and this insult was blocked by pretreatment with a MAO inhibitor - confirming the linkage between methamphetamine, MAO and SNc degeneration. To determine if shorter bouts of consumption were as damaging, mice were given methamphetamine for two weeks and then studied. Methamphetamine treatment elevated both axonal and somatic mitochondrial oxidant stress in SNc dopaminergic neurons, was associated with a modest but significant increase in firing frequency, and caused degeneration after drug cessation. While axonal stress was sensitive to MAO inhibition, somatic stress was sensitive to Cav1 Ca2+ channel inhibition. Inhibiting either MAO or Cav1 Ca2+ channels after methamphetamine treatment attenuated subsequent SNc degeneration. Our results not only establish a mechanistic link between methamphetamine abuse and PD, they point to pharmacological strategies that could lessen PD risk for patients with a methamphetamine use disorder.
Collapse
Affiliation(s)
- Steven M Graves
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Sarah E Schwarzschild
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States of America
| | - Rex A Tai
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States of America
| | - Yu Chen
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States of America
| | - D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States of America.
| |
Collapse
|
15
|
Shin EJ, Jeong JH, Hwang Y, Sharma N, Dang DK, Nguyen BT, Nah SY, Jang CG, Bing G, Nabeshima T, Kim HC. Methamphetamine-induced dopaminergic neurotoxicity as a model of Parkinson's disease. Arch Pharm Res 2021; 44:668-688. [PMID: 34286473 DOI: 10.1007/s12272-021-01341-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 07/06/2021] [Indexed: 12/01/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease with a high prevalence, approximately 1 % in the elderly population. Numerous studies have demonstrated that methamphetamine (MA) intoxication caused the neurological deficits and nigrostriatal damage seen in Parkinsonian conditions, and subsequent rodent studies have found that neurotoxic binge administration of MA reproduced PD-like features, in terms of its symptomatology and pathology. Several anti-Parkinsonian medications have been shown to attenuate the motor impairments and dopaminergic damage induced by MA. In addition, it has been recognized that mitochondrial dysfunction, oxidative stress, pro-apoptosis, proteasomal/autophagic impairment, and neuroinflammation play important roles in inducing MA neurotoxicity. Importantly, MA neurotoxicity has been shown to share a common mechanism of dopaminergic toxicity with that of PD pathogenesis. This review describes the major findings on the neuropathological features and underlying neurotoxic mechanisms induced by MA and compares them with Parkinsonian pathogenesis. Taken together, it is suggested that neurotoxic binge-type administration of MA in rodents is a valid animal model for PD that may provide knowledge on the neuropathogenesis of PD.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea
| | - Ji Hoon Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, 06974, Seoul, Republic of Korea
| | - Yeonggwang Hwang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea.,Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, 06974, Seoul, Republic of Korea
| | - Duy-Khanh Dang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea.,Pharmacy Faculty, Can Tho University of Medicine and Pharmacy, 900000, Can Tho City, Vietnam
| | - Bao-Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory, Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, 05029, Seoul, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, 16419, Suwon, Republic of Korea
| | - Guoying Bing
- Department of Neuroscience, College of Medicine, University of Kentucky, KY, 40536, Lexington, USA
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Graduate School of Health Science, Fujita Health University, 470-1192, Toyoake, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea. .,Neuropsychopharmacology & Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea.
| |
Collapse
|
16
|
Wu M, Su H, Zhao M. The Role of α-Synuclein in Methamphetamine-Induced Neurotoxicity. Neurotox Res 2021; 39:1007-1021. [PMID: 33555547 DOI: 10.1007/s12640-021-00332-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 12/19/2020] [Accepted: 01/06/2021] [Indexed: 12/28/2022]
Abstract
Methamphetamine (METH), a highly addictive psychostimulant, is the second most widely used illicit drug. METH produces damage dopamine neurons and apoptosis via multiple inter-regulating mechanisms, including dopamine overload, hyperthermia, oxidative stress, mitochondria dysfunction, endoplasmic reticulum stress, protein degradation system dysfunction, and neuroinflammation. Increasing evidence suggests that chronic METH abuse is associated with neurodegenerative changes in the human brain and an increased risk of Parkinson's disease (PD). METH use and PD may share some common steps in causing neurotoxicity. Accumulation of α-synuclein, a presynaptic protein, is the pathological hallmark of PD. Intriguingly, α-synuclein upregulation and aggregation are also found in dopaminergic neurons in the substantia nigra in chronic METH users. This suggests α-synuclein may play a role in METH-induced neurotoxicity. The mechanism of α-synuclein cytotoxicity in PD has attracted considerable attention; however, how α-synuclein affects METH-induced neurotoxicity has not been reviewed. In this review, we summarize the relationship between METH use and PD, interdependent mechanisms that are involved in METH-induced neurotoxicity and the significance of α-synuclein upregulation in response to METH use. The identification of α-synuclein overexpression and aggregation as a contributor to METH-induced neurotoxicity may provide a novel therapeutic target for the treatment of the deleterious effect of this drug and drug addiction.
Collapse
Affiliation(s)
- Manqing Wu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hang Su
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China.
- Shanghai Clinical Research Center for Mental Health, Shanghai, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
17
|
Ohene-Nyako M, Persons AL, Napier TC. Hippocampal blood-brain barrier of methamphetamine self-administering HIV-1 transgenic rats. Eur J Neurosci 2021; 53:416-429. [PMID: 32725911 PMCID: PMC9949894 DOI: 10.1111/ejn.14925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022]
Abstract
Combined antiretroviral therapy for HIV infection reduces plasma viral load and prolongs life. However, the brain is a viral reservoir, and pathologies such as cognitive decline and blood-brain barrier (BBB) disruption persist. Methamphetamine abuse is prevalent among HIV-infected individuals. Methamphetamine and HIV toxic proteins can disrupt the BBB, but it is unclear if there exists a common pathway by which HIV proteins and methamphetamine induce BBB damage. Also unknown are the BBB effects imposed by chronic exposure to HIV proteins in the comorbid context of chronic methamphetamine abuse. To evaluate these scenarios, we trained HIV-1 transgenic (Tg) and non-Tg rats to self-administer methamphetamine using a 21-day paradigm that produced an equivalency dose range at the low end of the amounts self-titrated by humans. Markers of BBB integrity were measured for the hippocampus, a brain region involved in cognitive function. Outcomes revealed that tight junction proteins, claudin-5 and occludin, were reduced in Tg rats independent of methamphetamine, and this co-occurred with increased levels of lipopolysaccharide, albumin (indicating barrier breakdown) and matrix metalloproteinase-9 (MMP-9; indicating barrier matrix disruption); reductions in GFAP (indicating astrocytic dysfunction); and microglial activation (indicating inflammation). Evaluations of markers for two signaling pathways that regulate MMP-9 transcription, NF-κB and ERK/∆FosB revealed an overall genotype effect for NF-κB. Methamphetamine did not alter measurements from Tg rats, but in non-Tg rats, methamphetamine reduced occludin and GFAP, and increased MMP-9 and NF-κB. Study outcomes suggest that BBB dysregulation resulting from chronic exposure to HIV-1 proteins or methamphetamine both involve NF-κB/MMP-9.
Collapse
Affiliation(s)
- Michael Ohene-Nyako
- Department of Pharmacology, Rush University, Chicago, IL, USA,Department of Physician Assistant Studies, Rush University, Chicago, IL, USA
| | - Amanda L. Persons
- Department of Physician Assistant Studies, Rush University, Chicago, IL, USA,Department of Psychiatry and Behavioral Sciences, Rush University, Chicago, IL, USA,Center for Compulsive Behavior and Addiction, Rush University, Chicago, IL, USA
| | - T. Celeste Napier
- Department of Pharmacology, Rush University, Chicago, IL, USA,Department of Physician Assistant Studies, Rush University, Chicago, IL, USA,Center for Compulsive Behavior and Addiction, Rush University, Chicago, IL, USA
| |
Collapse
|
18
|
Schweppe CA, Burzynski C, Jayanthi S, Ladenheim B, Cadet JL, Gardner EL, Xi ZX, van Praag H, Newman AH, Keck TM. Neurochemical and behavioral comparisons of contingent and non-contingent methamphetamine exposure following binge or yoked long-access self-administration paradigms. Psychopharmacology (Berl) 2020; 237:1989-2005. [PMID: 32388619 PMCID: PMC7974824 DOI: 10.1007/s00213-020-05513-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 03/26/2020] [Indexed: 12/22/2022]
Abstract
RATIONALE Abuse of the psychostimulant methamphetamine (METH) can cause long-lasting damage to brain monoaminergic systems and is associated with profound mental health problems for users, including lasting cognitive impairments. Animal models of METH exposure have been useful in dissecting the molecular effects of the drug on cognition, but many studies use acute, non-contingent "binge" administrations of METH which do not adequately approximate human METH use. Long-term METH exposure via long-access (LgA) self-administration paradigms has been proposed to more closely reflect human use and induce cognitive impairments. OBJECTIVE To better understand the role of contingency and patterns of exposure in METH-induced cognitive impairments, we analyzed behavioral and neurochemical outcomes in adult male rats, comparing non-contingent "binge" METH administration with contingent (LgA) METH self-administration and non-contingent yoked partners. RESULTS Binge METH (40 mg/kg, i.p., over 1 day) dramatically altered striatal and hippocampal dopamine, DOPAC, 5-HT, 5-HIAA, BDNF, and TrkB 75 days after drug exposure. In contrast, 6-h LgA METH self-administration (cumulative 24.8-48.9 mg METH, i.v., over 16 days) altered hippocampal BDNF in both contingent and yoked animals but reduced striatal 5-HIAA in only contingent animals. Neurochemical alterations following binge METH administration were not accompanied by cognitive deficits in Morris water maze, novel object recognition, or Y-maze tests. However, contingent LgA METH self-administration resulted in impaired spatial memory in the water maze. CONCLUSIONS Overall, substantial differences in neurochemical markers between METH exposure and self-administration paradigms did not consistently translate to deficits in cognitive tasks, highlighting the complexity of correlating METH-induced neurochemical changes with cognitive outcomes.
Collapse
Affiliation(s)
- Catherine A. Schweppe
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore, 333 Cassell Drive, Baltimore, MD 21224, USA,Present address: Department of Neurology, University of California Los Angeles, 635 Charles E Young Drive South, Los Angeles, CA 90095, USA
| | - Caitlin Burzynski
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Subramaniam Jayanthi
- Molecular Neuropsychiatry Research Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Bruce Ladenheim
- Molecular Neuropsychiatry Research Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Eliot L. Gardner
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Zheng-Xiong Xi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Henriette van Praag
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging – Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA,Department of Biomedical Science, Charles E. Schmidt College of Medicine, and Brain Institute, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Amy Hauck Newman
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Thomas M. Keck
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore, 333 Cassell Drive, Baltimore, MD 21224, USA,Department of Chemistry & Biochemistry, Department of Molecular & Cellular Biosciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, USA
| |
Collapse
|
19
|
Ferreira C, Almeida C, Tenreiro S, Quintas A. Neuroprotection or Neurotoxicity of Illicit Drugs on Parkinson's Disease. Life (Basel) 2020; 10:life10060086. [PMID: 32545328 PMCID: PMC7344445 DOI: 10.3390/life10060086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/20/2022] Open
Abstract
Parkinson's Disease (PD) is currently the most rapid growing neurodegenerative disease and over the past generation, its global burden has more than doubled. The onset of PD can arise due to environmental, sporadic or genetic factors. Nevertheless, most PD cases have an unknown etiology. Chemicals, such as the anthropogenic pollutant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and amphetamine-type stimulants, have been associated with the onset of PD. Conversely, cannabinoids have been associated with the treatment of the symptoms'. PD and medical cannabis is currently under the spotlight, and research to find its benefits on PD is on-going worldwide. However, the described clinical applications and safety of pharmacotherapy with cannabis products are yet to be fully supported by scientific evidence. Furthermore, the novel psychoactive substances are currently a popular alternative to classical drugs of abuse, representing an unknown health hazard for young adults who may develop PD later in their lifetime. This review addresses the neurotoxic and neuroprotective impact of illicit substance consumption in PD, presenting clinical evidence and molecular and cellular mechanisms of this association. This research area is utterly important for contemporary society since illicit drugs' legalization is under discussion which may have consequences both for the onset of PD and for the treatment of its symptoms.
Collapse
Affiliation(s)
- Carla Ferreira
- Molecular Pathology and Forensic Biochemistry Laboratory, Centro de Investigação Interdisciplinar Egas Moniz, P-2825-084 Caparica, Portugal; (C.F.); (C.A.)
- Laboratório de Ciências Forenses e Psicológicas Egas Moniz, Campus Universitário–Quinta da Granja, Monte de Caparica, P-2825-084 Caparica, Portugal
- Faculty of Medicine of Porto University, Al. Prof. Hernâni Monteiro, P-4200–319 Porto, Portugal
| | - Catarina Almeida
- Molecular Pathology and Forensic Biochemistry Laboratory, Centro de Investigação Interdisciplinar Egas Moniz, P-2825-084 Caparica, Portugal; (C.F.); (C.A.)
| | - Sandra Tenreiro
- CEDOC–Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, P-1150-082 Lisboa, Portugal;
| | - Alexandre Quintas
- Molecular Pathology and Forensic Biochemistry Laboratory, Centro de Investigação Interdisciplinar Egas Moniz, P-2825-084 Caparica, Portugal; (C.F.); (C.A.)
- Laboratório de Ciências Forenses e Psicológicas Egas Moniz, Campus Universitário–Quinta da Granja, Monte de Caparica, P-2825-084 Caparica, Portugal
- Correspondence:
| |
Collapse
|
20
|
Qu D, Zhang K, Chen L, Wang Q, Wang H. RNA-sequencing analysis of the effect of luteolin on methamphetamine-induced hepatotoxicity in rats: a preliminary study. PeerJ 2020; 8:e8529. [PMID: 32071822 PMCID: PMC7007981 DOI: 10.7717/peerj.8529] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/07/2020] [Indexed: 12/25/2022] Open
Abstract
In this study, RNA-sequencing (RNA-seq) was utilized to investigate the effects of luteolin on hepatotoxicity caused by methamphetamine (METH). The rats in METH group were administrated with METH (15 mg/kg, two times per day) via intraperitoneal (i.p.) injections for four consecutive days. The rats in luteolin + METH group were firstly administrated with luteolin (100 mg/kg, once a day) by oral gavage for 3 days before METH treatment. Lueolin attenuated the hepatotoxicity induced by METH via histopathological and biochemical analysis. The results of RNA-seq showed that luteolin could regulate 497 differentially expressed genes (DEGs), and the selected DEGs were mainly enriched in eight pathways, according to KEGG analysis. Furthermore, qRT-PCR was utilized to verify the results of RNA-seq. Six genes were selected as follows: liver enriched antimicrobial peptide 2 (Leap2), fatty acid synthase (Fasn), fatty acid binding protein 5 (Fabp5), patatin like phospholipase domain containing 3 (Pnpla3), myelin basic protein (Mbp) and calmodulin 3 (Calm3). Though because of the design flaws, the luteolin group has not been included, this study demonstrated that luteolin might exert hepato-protective effects from METH via modulation of oxidative phosphorylation, cytochrome P450 and certain signaling pathways.
Collapse
Affiliation(s)
- Dong Qu
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Kaikai Zhang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Lijian Chen
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Qi Wang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Huijun Wang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
21
|
Costa G, De Luca MA, Piras G, Marongiu J, Fattore L, Simola N. Neuronal and peripheral damages induced by synthetic psychoactive substances: an update of recent findings from human and animal studies. Neural Regen Res 2020; 15:802-816. [PMID: 31719240 PMCID: PMC6990793 DOI: 10.4103/1673-5374.268895] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Preclinical and clinical studies indicate that synthetic psychoactive substances, in addition to having abuse potential, may elicit toxic effects of varying severity at the peripheral and central levels. Nowadays, toxicity induced by synthetic psychoactive substances poses a serious harm for health, since recreational use of these substances is on the rise among young and adult people. The present review summarizes recent findings on the peripheral and central toxicity elicited by “old” and “new” synthetic psychoactive substances in humans and experimental animals, focusing on amphetamine derivatives, hallucinogen and dissociative drugs and synthetic cannabinoids.
Collapse
Affiliation(s)
- Giulia Costa
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Maria Antonietta De Luca
- Department of Biomedical Sciences; National Institute of Neuroscience (INN), University of Cagliari, Cagliari, Italy
| | - Gessica Piras
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Jacopo Marongiu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Liana Fattore
- National Research Council of Italy, Institute of Neuroscience, Cagliari, Italy
| | - Nicola Simola
- Department of Biomedical Sciences; National Institute of Neuroscience (INN), University of Cagliari, Cagliari, Italy
| |
Collapse
|
22
|
Höllerhage M. Secondary parkinsonism due to drugs, vascular lesions, tumors, trauma, and other insults. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 149:377-418. [PMID: 31779822 DOI: 10.1016/bs.irn.2019.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In addition to neurodegenerative disorders, there are many secondary forms of parkinsonism. The most common cause for secondary parkinsonism is the intake of distinct drugs. Neuroleptics and calcium channel blockers have been mainly described to induce parkinsonism, but also other drugs were suspected to cause or worsen parkinsonism. Another common cause for secondary parkinsonism are vascular lesions (i.e. vascular parkinsonism). Furthermore, also brain tumors have been described as rare causes for parkinsonism. Moreover, parkinsonism can be caused by chronic traumatic encephalopathy, which is a special case, since secondary insults to the brain leads to the occurrence of a neuropathologically defined disease. Other rare causes for secondary parkinsonism are lesions caused by infectious or immunological diseases as well as toxins or street drugs.
Collapse
Affiliation(s)
- Matthias Höllerhage
- Department for Neurology Hannover Medical School (MHH), Hannover, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| |
Collapse
|
23
|
Biagioni F, Ferese R, Limanaqi F, Madonna M, Lenzi P, Gambardella S, Fornai F. Methamphetamine persistently increases alpha-synuclein and suppresses gene promoter methylation within striatal neurons. Brain Res 2019; 1719:157-175. [DOI: 10.1016/j.brainres.2019.05.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 12/20/2022]
|
24
|
Sun L, Lian Y, Ding J, Meng Y, Li C, Chen L, Qiu P. The role of chaperone-mediated autophagy in neurotoxicity induced by alpha-synuclein after methamphetamine exposure. Brain Behav 2019; 9:e01352. [PMID: 31286692 PMCID: PMC6710200 DOI: 10.1002/brb3.1352] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/28/2019] [Accepted: 06/02/2019] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Chaperone-mediated autophagy (CMA) is an autophagy-lysosome pathway (ALP) that is different from the other two lysosomal pathways, namely, macroautophagy and microautophagy, and can selectively degrade cytosolic proteins in lysosomes without vesicle formation. CMA activity declines in neurodegenerative diseases such as Parkinson's disease, and similar neurotoxicity can occur after methamphetamine (METH) treatment. The relationship between CMA and METH-induced neurotoxicity is not clear. METHODS We detected changes in the chaperone protein Hsc70 and the lysosomal surface receptor Lamp-2a after METH treatment and then regulated these two proteins by small interfering RNA and DNA plasmid transfection to investigate how CMA influences METH-induced neurotoxicity. RESULTS We found that CMA activity is decreased after METH exposure in neurons and downregulated Lamp-2a can aggravate the neurotoxicity induced by α-Syn after METH exposure and that Hsc70 overexpression can relieve the abnormal levels of alpha-synuclein and its aggregate forms and the increase in cell apoptosis induced by METH. CONCLUSIONS The results provide in vivo evidence for CMA plays a pivotal role in METH-induced neurotoxicity, and upregulation of Hsc70 expression significantly protects neuronal cells against METH-induced toxicity. This research may pave the way for potential therapeutic approaches targeting CMA for METH abuse and neurodegenerative disorders.
Collapse
Affiliation(s)
- Leping Sun
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Yongling Lian
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jiuyang Ding
- School of Forensic Medicine, Southern Medical University, Guangzhou, China.,Department of Anatomy, Zunyi Medical College, Zunyi, China
| | - Yunle Meng
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Chen Li
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Ling Chen
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Pingming Qiu
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
25
|
Valian N, Heravi M, Ahmadiani A, Dargahi L. Effect of methamphetamine on rat primary midbrain cells; mitochondrial biogenesis as a compensatory response. Neuroscience 2019; 406:278-289. [DOI: 10.1016/j.neuroscience.2019.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 02/25/2019] [Accepted: 03/07/2019] [Indexed: 01/07/2023]
|
26
|
Huang C, Wu J, Chen D, Jin J, Wu Y, Chen Z. Effects of sulforaphane in the central nervous system. Eur J Pharmacol 2019; 853:153-168. [PMID: 30858063 DOI: 10.1016/j.ejphar.2019.03.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 12/12/2022]
Abstract
Sulforaphane (SFN) is an active component extracted from vegetables like cauliflower and broccoli. Activation of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) signaling is a common mechanism for the anti-oxidative and anti-inflammatory activity of some herb-derived compounds, such as icariin and berberine. However, due to its peculiar ability in Nrf2 activation, SFN is recognized as an activator of Nrf2 and recommended as a supplementation for prevention and/or treatment of disorders like neoplasm and heart failure. In the central nervous system (CNS), the prophylactic and/or therapeutic effects of SFN have been revealed in recent years. For example, it has been reported to prevent the progression of Alzheimer's disease, Parkinson's disease, cerebral ischemia, Huntington's disease, multiple sclerosis, epilepsy, and psychiatric disorders via promotion of neurogenesis or inhibition of oxidative stress and neuroinflammation. SFN is also implicated in reversing cognition, learning, and memory impairment in rodents induced by scopolamine, lipopolysaccharide, okadaic acid, and diabetes. In models of neurotoxicity, SFN has been shown to suppress neurotoxicity induced by a wide range of toxic factors, such as hydrogen peroxide, prion protein, hyperammonemia, and methamphetamine. To date, no consolidated source of knowledge about the pharmacological effects of SFN in the CNS has been presented in the literature. In this review, we summarize and discuss the pharmacological effects of SFN as well as their possible mechanisms in prevention and/or therapy of disorders afflicting the CNS, aiming to get a further insight into how SFN affects the pathophysiological process of CNS disorders.
Collapse
Affiliation(s)
- Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Jingjing Wu
- Department of Cardiology, Suzhou Kowloon Hospital of Shanghai Jiaotong University School of Medicine, #118 Wansheng Street, Suzhou 215021, Jiangsu, China
| | - Dongjian Chen
- Invasive Technology Department, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong 226001, Jiangsu, China
| | - Jie Jin
- Invasive Technology Department, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong 226001, Jiangsu, China
| | - Yue Wu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Zhuo Chen
- Invasive Technology Department, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong 226001, Jiangsu, China.
| |
Collapse
|
27
|
Uhl GR. Dopamine compartmentalization, selective dopaminergic vulnerabilities in Parkinson's disease and therapeutic opportunities. Ann Clin Transl Neurol 2019; 6:406-415. [PMID: 30847375 PMCID: PMC6389739 DOI: 10.1002/acn3.707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/29/2018] [Accepted: 11/05/2018] [Indexed: 12/13/2022] Open
Abstract
Progressive depletion of selected dopamine neurons is central to much Parkinson's disease (PD) disability. Although symptomatic treatments can ameliorate the disabilities that this neuronal depletion causes, no current strategy is documented to slow these losses. There is substantial evidence that dopamine in intracytoplasmic/extravesicular neuronal compartments can be toxic. Here, I review evidence that supports roles for dopamine compartmentalization, mediated largely by serial actions of plasma membrane SLC6A3/DAT and vesicular SLC18A2/VMAT2 transporters, in the selective patterns of dopamine neuronal loss found in PD brains. This compartmentalization hypothesis for the dopamine cell type specificity of PD lesions nominates available drugs for amelioration of damage arising from miscompartmentalized dopamine and raises cautions in using other drugs.
Collapse
Affiliation(s)
- George R. Uhl
- Neurology and Research ServicesNew Mexico VA HealthCare SystemAlbuquerqueNew Mexico87108
- Biomedical Research Institute of New MexicoAlbuquerqueNew Mexico87108
- Departments of Neurology, Neuroscience and Molecular Genetics and MicrobiologyUniversity of New MexicoAlbuquerqueNew Mexico87108
- Departments of Neurology, Neuroscience and Mental HealthJohns Hopkins Medical InstitutionsBaltimoreMaryland21287
| |
Collapse
|
28
|
Luikinga SJ, Kim JH, Perry CJ. Developmental perspectives on methamphetamine abuse: Exploring adolescent vulnerabilities on brain and behavior. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:78-84. [PMID: 29128447 DOI: 10.1016/j.pnpbp.2017.11.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/06/2017] [Accepted: 11/08/2017] [Indexed: 01/25/2023]
Abstract
Most people that experience illicit drugs do so for the first time during adolescence, and methamphetamine (meth) is no exception. Therefore, research into the effects of meth should highlight the adolescent period. Despite this, the vast majority of current literature has mainly focused on meth exposure during adulthood. In this review, we first describe existing literature that compares the behavioral effects of meth where exposure occurs in adolescence compared to adulthood. Given that there are actually very few such studies, we also look at what is known about neural effects of meth in the adult brain, and relate these to normal neural development occurring during the adolescent period to establish how meth may target maturing regions and related neurochemistry. What emerges overall is that adolescents appear to be more vulnerable to the rewarding and reinforcing effects of meth, and that meth indeed has effects on areas that are in flux during adolescence. However, there is some evidence for a paradoxical resistance to the neurotoxic effects during this period. We highlight the need for further age-related research to better understand, treat, and prevent meth use disorders and addiction in general.
Collapse
Affiliation(s)
- Sophia J Luikinga
- Behavioral Neuroscience Division, The Florey Institute of Neuroscience and Mental Health, VIC, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, VIC, Australia.
| | - Jee Hyun Kim
- Behavioral Neuroscience Division, The Florey Institute of Neuroscience and Mental Health, VIC, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, VIC, Australia
| | - Christina J Perry
- Behavioral Neuroscience Division, The Florey Institute of Neuroscience and Mental Health, VIC, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, VIC, Australia.
| |
Collapse
|
29
|
Flack A, Persons AL, Kousik SM, Celeste Napier T, Moszczynska A. Self-administration of methamphetamine alters gut biomarkers of toxicity. Eur J Neurosci 2018; 46:1918-1932. [PMID: 28661099 DOI: 10.1111/ejn.13630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 12/13/2022]
Abstract
Methamphetamine (METH) is a highly abused psychostimulant that is associated with an increased risk for developing Parkinson's disease (PD). This enhanced vulnerability likely relates to the toxic effects of METH that overlap with PD pathology, for example, aberrant functioning of α-synuclein and parkin. In PD, peripheral factors are thought to contribute to central nervous system (CNS) degeneration. For example, α-synuclein levels in the enteric nervous system (ENS) are elevated, and this precedes the onset of motor symptoms. It remains unclear whether neurons of the ENS, particularly catecholaminergic neurons, exhibit signs of METH-induced toxicity as seen in the CNS. The aim of this study was to determine whether self-administered METH altered the levels of α-synuclein, parkin, tyrosine hydroxylase (TH), and dopamine-β-hydroxylase (DβH) in the myenteric plexus of the distal colon ENS. Young adult male Sprague-Dawley rats self-administered METH for 3 h per day for 14 days and controls were saline-yoked. Distal colon tissue was collected at 1, 14, or 56 days after the last operant session. Levels of α-synuclein were increased, while levels of parkin, TH, and DβH were decreased in the myenteric plexus in the METH-exposed rats at 1 day following the last operant session and returned to the control levels after 14 or 56 days of forced abstinence. The changes were not confined to neurofilament-positive neurons. These results suggest that colon biomarkers may provide early indications of METH-induced neurotoxicity, particularly in young chronic METH users who may be more susceptible to progression to PD later in life.
Collapse
Affiliation(s)
- Amanda Flack
- Department of Pharmaceutical Sciences, Wayne State University, Eugene Applebaum College of Pharmaceutical Sciences, Detroit, MI, 48201, USA
| | - Amanda L Persons
- Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL, USA.,Department of Pharmacology, Rush University Medial Center, Chicago, IL, USA
| | - Sharanya M Kousik
- Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL, USA.,Department of Pharmacology, Rush University Medial Center, Chicago, IL, USA
| | - T Celeste Napier
- Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL, USA.,Department of Pharmacology, Rush University Medial Center, Chicago, IL, USA.,Department of Psychiatry, Rush University Medical Center, Chicago, IL, USA
| | - Anna Moszczynska
- Department of Pharmaceutical Sciences, Wayne State University, Eugene Applebaum College of Pharmaceutical Sciences, Detroit, MI, 48201, USA
| |
Collapse
|
30
|
Valian N, Ahmadiani A, Dargahi L. Increasing methamphetamine doses inhibit glycogen synthase kinase 3β activity by stimulating the insulin signaling pathway in substantia nigra. J Cell Biochem 2018; 119:8522-8530. [PMID: 30011098 DOI: 10.1002/jcb.27082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/26/2018] [Indexed: 01/01/2023]
Abstract
Methamphetamine (MA), a highly abused psychostimulant, exerts neurotoxic effects on the dopaminergic system via several neurotoxicity mechanisms in the long-term administration. Since the effect of MA on the signaling insulin pathway is less studied, the current study was designed to evaluate the effect of escalating an MA regimen on different insulin signaling elements in substantia nigra (SN) and striatum of a rat. Increasing MA doses (1-14 mg/kg) were administrated intraperitoneally twice a day for 14 days in rats. In the control group, normal saline was injected in the same volume. On days 1, 14, 28, and 60 after MA discontinuation, molecular assessments were performed. Insulin receptor (IR) and insulin receptor substrate (IRS) 1 and 2 gene expression were evaluated using real-time polymerase chain reaction, and protein levels of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), phospho-PI3K, Akt, phospho-Akt, glycogen synthase kinase 3β (GSK3β), and phospho-GSK3β were measured by the Western blot analysis in SN and striatum. Messenger RNA levels of IR and insulin receptor substrate 2 were increased in SN, 1 day after the last injection. Although no changes were observed in PI3K, phospho-PI3K, Akt, phospho-Akt, and GSK3β levels, increase in the level of inactive form of GSK3β (phosphorylated on serine 9) was indicated in SN on day 28. In striatum, decreases in IR and phospho-Akt were demonstrated, without any change in other elements. Repeated escalating regimen of MA activated the insulin signaling pathway and inhibited GSK3β activity in SN. This response, which did not occur in striatum, may act as an adaptive mechanism to prevent MA-induced neurotoxicity in dopaminergic cell bodies.
Collapse
Affiliation(s)
- Neda Valian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University ofMedical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Natarajan R, Mitchell CM, Harless N, Yamamoto BK. Cerebrovascular Injury After Serial Exposure to Chronic Stress and Abstinence from Methamphetamine Self-Administration. Sci Rep 2018; 8:10558. [PMID: 30002494 PMCID: PMC6043597 DOI: 10.1038/s41598-018-28970-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 07/04/2018] [Indexed: 01/19/2023] Open
Abstract
Cerebrovascular damage caused by either exposure to stress or the widely abused drug, methamphetamine (Meth) is known but stress and drug abuse frequently occur in tandem that may impact their individual cerebrovascular effects. This study examined their co-morbid cerebrovascular effects during abstinence from self-administered Meth after the exposure to chronic unpredictable stress (CUS). Exposure to CUS prior to unrestricted Meth self-administration had no effect on Meth intake in rats; however, the pro-inflammatory mediator cyclooxygenase-2 (COX-2) and the breakdown of cell-matrix adhesion protein β-dystroglycan in isolated cerebral cortical capillaries were increased after 3 days of abstinence and persisted for 7 days. These changes preceded decreases in occludin, a key structural protein component of the blood-brain barrier. The decrease in occludin was blocked by the COX-2 specific inhibitor nimesulide treatment during abstinence from Meth. The changes in COX-2, β-dystroglycan, and occludin were only evident following the serial exposure to stress and Meth but not after either one alone. These results suggest that stress and voluntary Meth intake can synergize and disrupt cerebrovasculature in a time-dependent manner during abstinence from chronic stress and Meth. Furthermore, COX-2 inhibition may be a viable pharmacological intervention to block vascular changes after Meth exposure.
Collapse
Affiliation(s)
- Reka Natarajan
- Department of Pharmacology and Toxicology, Indiana University School of Medicine 635 Barnhill Drive MS A401, Indianapolis, IN, 46202, USA
| | - Carmen M Mitchell
- Department of Pharmacology and Toxicology, Indiana University School of Medicine 635 Barnhill Drive MS A401, Indianapolis, IN, 46202, USA
| | - Nicole Harless
- Department of Neurosciences, University of Toledo College of Medicine 3000 Arlington Avenue MS 1007, Toledo, OH, 43614, Spain
| | - Bryan K Yamamoto
- Department of Pharmacology and Toxicology, Indiana University School of Medicine 635 Barnhill Drive MS A401, Indianapolis, IN, 46202, USA.
| |
Collapse
|
32
|
Salvatore MF, Nejtek VA, Khoshbouei H. Prolonged increase in ser31 tyrosine hydroxylase phosphorylation in substantia nigra following cessation of chronic methamphetamine. Neurotoxicology 2018; 67:121-128. [PMID: 29782882 PMCID: PMC6088751 DOI: 10.1016/j.neuro.2018.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 12/13/2022]
Abstract
Methamphetamine (MA) exposure may increase the risk of motor or cognitive impairments similar to Parkinson's disease (PD) by middle age. Although damage to nigrostriatal or mesoaccumbens dopamine (DA) neurons may occur during or early after MA exposure, overt PD-like symptoms at a younger age may not manifest due to compensatory mechanisms to maintain DA neurotransmission. One possible compensatory mechanism is increased tyrosine hydroxylase (TH) phosphorylation. In the rodent PD 6-OHDA model, nigrostriatal lesion decreases TH protein in both striatum and substantia nigra (SN). However, DA loss in the SN is significantly less than that in the striatum. An increase in ser31 TH phosphorylation in the SN may increase TH activity in response to TH loss. To determine if similar compensatory mechanisms may be engaged in young mice after MA exposure, TH expression, phosphorylation, and DA tissue content were evaluated, along with dopamine transporter expression, 21 days after cessation of MA (24 mg/kg, daily, 14 days). DA tissue content was unaffected by the MA regimen in striatum, nucleus accumbens, SN, or ventral tegmental area (VTA), despite decreased TH protein in SN and VTA. In the SN, but not striatum, ser31 phosphorylation increased over 2-fold. This suggests that increased ser31 TH phosphorylation may be an inherent compensatory mechanism to attenuate DA loss against TH loss, similar to that in an established PD model. These results also indicate the somatodendritic compartments of DA neurons are more vulnerable to TH protein loss than terminal fields following MA exposure.
Collapse
Affiliation(s)
- Michael F Salvatore
- Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, United States; Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, United States.
| | - Vicki A Nejtek
- Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida, Gainesville, FL, United States; Center for Addiction Research & Education, University of Florida, Gainesville, FL, United States
| |
Collapse
|
33
|
Granado N, Ares-Santos S, Tizabi Y, Moratalla R. Striatal Reinnervation Process after Acute Methamphetamine-Induced Dopaminergic Degeneration in Mice. Neurotox Res 2018; 34:627-639. [PMID: 29934756 DOI: 10.1007/s12640-018-9925-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/28/2018] [Accepted: 06/07/2018] [Indexed: 01/03/2023]
Abstract
Methamphetamine (METH), an amphetamine derivate, may increase the risk of developing Parkinson's disease (PD). Human and animal studies have shown that METH produces persistent dopaminergic neurotoxicity in the nigrostriatal pathway, despite initial partial recovery. To determine the processes leading to early compensation, we studied the detailed morphology and distribution of tyrosine hydroxylase immunoreactive fibers (TH-ir) classified by their thickness (types I-IV) before and after METH. Applying three established neurotoxic regimens of METH: single high dose (1 × 30 mg/kg), multiple lower doses (3 × 5 mg/kg) or (3 × 10 mg/kg), we show that METH primarily damages type I fibers (the thinner ones), and to a much lesser extend types II-IV fibers including sterile axons. The striatal TH terminal partial recovery process, consisting of a progressive regrowth increases in types II, III, and IV fibers, demonstrated by co-localization of GAP-43, a sprouting marker, was observed 3 days post-METH treatment. In addition, we demonstrate the presence of growth-cone-like TH-ir structures, indicative of new terminal generation as well as improvement in motor functions after 3 days. A temporal relationship was observed between decreases in TH-expression and increases in silver staining, a marker of degeneration. Striatal regeneration was associated with an increase in astroglia and decrease in microglia expression, suggesting a possible role for the neuroimmune system in regenerative processes. Identification of regenerative compensatory mechanisms in response to neurotoxic agents could point to novel mechanisms in countering the neurotoxicity and/or enhancing the regenerative processes.
Collapse
Affiliation(s)
- Noelia Granado
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, CSIC, Avda Dr Arce 37, 28002, Madrid, Spain.,CIBERNED, ISCIII, Madrid, Spain
| | - Sara Ares-Santos
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, CSIC, Avda Dr Arce 37, 28002, Madrid, Spain.,CIBERNED, ISCIII, Madrid, Spain
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington DC, USA
| | - Rosario Moratalla
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, CSIC, Avda Dr Arce 37, 28002, Madrid, Spain. .,CIBERNED, ISCIII, Madrid, Spain.
| |
Collapse
|
34
|
Persons AL, Bradaric BD, Dodiya HB, Ohene-Nyako M, Forsyth CB, Keshavarzian A, Shaikh M, Napier TC. Colon dysregulation in methamphetamine self-administering HIV-1 transgenic rats. PLoS One 2018; 13:e0190078. [PMID: 29293553 PMCID: PMC5749763 DOI: 10.1371/journal.pone.0190078] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/07/2017] [Indexed: 02/07/2023] Open
Abstract
The integrity and function of the gut is impaired in HIV-infected individuals, and gut pathogenesis may play a role in several HIV-associated disorders. Methamphetamine is a popular illicit drug abused by HIV-infected individuals. However, the effect of methamphetamine on the gut and its potential to exacerbate HIV-associated gut pathology is not known. To shed light on this scenario, we evaluated colon barrier pathology in a rat model of the human comorbid condition. Intestinal barrier integrity and permeability were assessed in drug-naïve Fischer 344 HIV-1 transgenic (Tg) and non-Tg rats, and in Tg and non-Tg rats instrumented with jugular cannulae trained to self-administer methamphetamine or serving as saline-yoked controls. Intestinal permeability was determined by measuring the urine content of orally gavaged sugars. Intestinal barrier integrity was evaluated by immunoblotting or immunofluorescence of colon claudin-1 and zonula occludens-1 (ZO-1), two major tight junction proteins that regulate gut epithelial paracellular permeability. Both non-Tg and Tg rats self-administered moderate amounts of methamphetamine. These amounts were sufficient to increase colon permeability, reduce protein level of claudin-1, and reduce claudin-1 and ZO-1 immunofluorescence in Tg rats relative to non-Tg rats. Methamphetamine decreased tight junction immunofluorescence in non-Tg rats, with a similar, but non-significant trend observed in Tg rats. However, the effect of methamphetamine on tight junction proteins was subthreshold to gut leakiness. These findings reveal that both HIV-1 proteins and methamphetamine alter colon barrier integrity, and indicate that the gut may be a pathogenic site for these insults.
Collapse
Affiliation(s)
- Amanda L. Persons
- Department of Psychiatry, Rush University Medical Center, Chicago, IL, United States of America
- Department of Physician Assistant Studies, Rush University Medical Center, Chicago, IL, United States of America
- Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL, United States of America
- * E-mail:
| | - Brinda D. Bradaric
- Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL, United States of America
- Department of Health Sciences, Rush University Medical Center, Chicago, IL, United States of America
| | - Hemraj B. Dodiya
- Department of Pharmacology, Rush University Medical Center, Chicago, IL, United States of America
| | - Michael Ohene-Nyako
- Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL, United States of America
- Department of Pharmacology, Rush University Medical Center, Chicago, IL, United States of America
| | - Christopher B. Forsyth
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, United States of America
| | - Ali Keshavarzian
- Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL, United States of America
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, United States of America
| | - Maliha Shaikh
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, United States of America
| | - T. Celeste Napier
- Department of Psychiatry, Rush University Medical Center, Chicago, IL, United States of America
- Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL, United States of America
- Department of Pharmacology, Rush University Medical Center, Chicago, IL, United States of America
| |
Collapse
|
35
|
Prior nicotine self-administration attenuates subsequent dopaminergic deficits of methamphetamine in rats: role of nicotinic acetylcholine receptors. Behav Pharmacol 2017; 27:422-30. [PMID: 26871405 DOI: 10.1097/fbp.0000000000000215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Preclinical studies have demonstrated that oral nicotine exposure attenuates long-term dopaminergic damage induced by toxins, including repeated, high doses of methamphetamine. It is suggested that alterations in nicotinic acetylcholine receptor (nAChR) expression, including α4β2* and α6β2* subtypes, likely contribute to this protection. The current study extended these findings by investigating whether nicotine self-administration in male, Sprague-Dawley rats (a) attenuates short-term dopaminergic damage induced by methamphetamine and (b) causes alterations in levels of α4β2* and α6β2* nAChR subtypes. The findings indicate that nicotine self-administration (0.032 mg/kg/infusion for 14 days) per se did not alter α4β2* and α6β2* nAChR expression or dopamine transporter (DAT) expression and function. Interestingly, prior nicotine self-administration attenuated methamphetamine-induced decreases in DAT function when assessed 24 h, but not 1 h, after methamphetamine treatment (4×7.5 mg/kg/injection). The ability of nicotine to attenuate the effects of methamphetamine on DAT function corresponded with increases in α4β2*, but not α6β2*, nAChR binding density. Understanding the role of nAChRs in methamphetamine-induced damage has the potential to elucidate mechanisms underlying the etiology of disorders involving dopaminergic dysfunction, as well as to highlight potential new therapeutic strategies for prevention or reduction of dopaminergic neurodegeneration.
Collapse
|
36
|
Shin EJ, Tran HQ, Nguyen PT, Jeong JH, Nah SY, Jang CG, Nabeshima T, Kim HC. Role of Mitochondria in Methamphetamine-Induced Dopaminergic Neurotoxicity: Involvement in Oxidative Stress, Neuroinflammation, and Pro-apoptosis-A Review. Neurochem Res 2017; 43:66-78. [PMID: 28589520 DOI: 10.1007/s11064-017-2318-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/25/2017] [Accepted: 05/30/2017] [Indexed: 01/08/2023]
Abstract
Methamphetamine (MA), an amphetamine-type psychostimulant, is associated with dopaminergic toxicity and has a high abuse potential. Numerous in vivo and in vitro studies have suggested that impaired mitochondria are critical in dopaminergic toxicity induced by MA. Mitochondria are important energy-producing organelles with dynamic nature. Evidence indicated that exposure to MA can disturb mitochondrial energetic metabolism by inhibiting the Krebs cycle and electron transport chain. Alterations in mitochondrial dynamic processes, including mitochondrial biogenesis, mitophagy, and fusion/fission, have recently been shown to contribute to dopaminergic toxicity induced by MA. Furthermore, it was demonstrated that MA-induced mitochondrial impairment enhances susceptibility to oxidative stress, pro-apoptosis, and neuroinflammation in a positive feedback loop. Protein kinase Cδ has emerged as a potential mediator between mitochondrial impairment and oxidative stress, pro-apoptosis, or neuroinflammation in MA neurotoxicity. Understanding the role and underlying mechanism of mitochondrial impairment could provide a molecular target to prevent or alleviate dopaminergic toxicity induced by MA.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Hai-Quyen Tran
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Phuong-Tram Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Toyoake, 470-1192, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
37
|
Current understanding of methamphetamine-associated dopaminergic neurodegeneration and psychotoxic behaviors. Arch Pharm Res 2017; 40:403-428. [DOI: 10.1007/s12272-017-0897-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/02/2016] [Indexed: 12/21/2022]
|
38
|
Valian N, Ahmadiani A, Dargahi L. Escalating Methamphetamine Regimen Induces Compensatory Mechanisms, Mitochondrial Biogenesis, and GDNF Expression, in Substantia Nigra. J Cell Biochem 2017; 118:1369-1378. [PMID: 27862224 DOI: 10.1002/jcb.25795] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 11/14/2016] [Indexed: 12/22/2022]
Abstract
Methamphetamine (MA) produces long-lasting deficits in dopaminergic neurons in the long-term use via several neurotoxic mechanisms. The effects of MA on mitochondrial biogenesis is less studied currently. So, we evaluated the effects of repeated escalating MA regimen on transcriptional factors involved in mitochondrial biogenesis and glial-derived neurotrophic factor (GDNF) expression in substantia nigra (SN) and striatum of rat. In male Wistar rats, increasing doses of MA (1-14 mg/kg) were administrated twice a day for 14 days. At the 1st, 14th, 28th, and 60th days after MA discontinuation, we measured the PGC1α, TFAM and NRF1 mRNA levels, indicator of mitochondrial biogenesis, and GDNF expression in SN and striatum. Furthermore, we evaluated the glial fibrillary acidic protein (GFAP) and Iba1 mRNA levels, and the levels of tyrosine hydroxylase (TH) and α-synuclein (α-syn) using immunohistochemistry and real-time polymerase chain reaction (PCR). We detected increments in PGC1α and TFAM mRNA levels in SN, but not striatum, and elevations in GDNF levels in SN immediately after MA discontinuation. We also observed increases in GFAP and Iba1 mRNA levels in SN on day 1 and increases in Iba1 mRNA on days 1 and 14 in striatum. Data analysis revealed that the number of TH+ cells in the SN did not reduce in any time points, though TH mRNA levels was increased on day 1 after MA discontinuation in SN. These data show that repeated escalating MA induces several compensatory mechanisms, such as mitochondrial biogenesis and elevation in GDNF in SN. These mechanisms can reverse MA-induced neuroinflammation and prevent TH-immunoreactivity reduction in nigrostriatal pathway. J. Cell. Biochem. 118: 1369-1378, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Neda Valian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Spence AL, Guerin GF, Goeders NE. The differential effects of alprazolam and oxazepam on methamphetamine self-administration in rats. Drug Alcohol Depend 2016; 166:209-17. [PMID: 27485488 DOI: 10.1016/j.drugalcdep.2016.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Methamphetamine is the second most commonly used illicit drug in the world, and despite recent attempts by the Drug Enforcement Administration to combat this epidemic, methamphetamine use is still on the rise. As methamphetamine use increases so does polydrug use, particularly that involving methamphetamine and benzodiazepines. The present study was designed to examine the effects of two benzodiazepines on methamphetamine self-administration. METHODS Five doses of methamphetamine (0.0075, 0.015, 0.03, 0.09, and 0.12mg/kg/infusion) were tested, producing an inverted U-shaped dose-response curve. Rats were then pretreated with oxazepam, alprazolam, or vehicle prior to methamphetamine self-administration. To determine if the effects of these drugs were due to the GABAA receptor and/or translocator protein (TSPO), we also pretreated rats with an antagonist for the benzodiazepine-binding site on the GABAA receptor (i.e., flumazenil) and a TSPO antagonist (i.e., PK11195) prior to alprazolam or oxazepam administration. RESULTS Oxazepam significantly reduced methamphetamine self-administration as demonstrated by a downward shift of the dose-response curve. In contrast, alprazolam significantly enhanced methamphetamine self-administration as evidenced by a leftward shift of the dose-response curve. Flumazenil completely blocked the effects of alprazolam on methamphetamine self-administration. When administered individually, both flumazenil and PK11195 partially reversed the effects of oxazepam on methamphetamine self-administration. However, when these two antagonists were combined, the effects of oxazepam were completely reversed. CONCLUSIONS The GABAA receptor is responsible for the alprazolam-induced enhancement of methamphetamine self-administration, while the activation of both the GABAA receptor and TSPO are responsible for the oxazepam-induced reduction of methamphetamine self-administration.
Collapse
Affiliation(s)
- Allyson L Spence
- Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA 71130, United States.
| | - Glenn F Guerin
- Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA 71130, United States
| | - Nicholas E Goeders
- Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA 71130, United States
| |
Collapse
|
40
|
Batra V, Tran TLN, Caputo J, Guerin GF, Goeders NE, Wilden J. Intermittent bilateral deep brain stimulation of the nucleus accumbens shell reduces intravenous methamphetamine intake and seeking in Wistar rats. J Neurosurg 2016; 126:1339-1350. [PMID: 27392268 DOI: 10.3171/2016.4.jns152524] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE There is increasing interest in neuromodulation for addiction. Methamphetamine abuse is a global health epidemic with no proven treatment. The objective of this study was to examine the effects of intermittent nucleus accumbens shell (AcbSh) deep brain stimulation (DBS) on operant methamphetamine intake and on methamphetamine seeking when stimulation is delivered in an environment different from that of drug use. METHODS Eighteen rats were implanted with intravenous (IV) catheters and bilateral AcbSh electrodes and subsequently underwent daily sessions in 2-lever (active/methamphetamine and inactive/no reward) operant chambers to establish IV methamphetamine self-administration. After stable responding was achieved, 3 hours of DBS or sham treatment was administered (sham: 0 µA, n = 8; active: 200 µA, n = 10) in a separate nondrug environment prior to the daily operant sessions for 5 consecutive days. Immediately following each DBS/sham treatment, rats were placed in the operant chambers to examine the effects of remote stimulation on methamphetamine intake. After the 5 days of therapy were finished, rats reestablished a posttreatment baseline, followed by extinction training, abstinence, and 1 day of relapse testing to assess methamphetamine-seeking behavior. RESULTS There was a decrease in total methamphetamine intake in rats receiving active DBS versus sham on Days 1 (42%) and 2 (44%). Methamphetamine administration returned to baseline levels following the cessation of DBS therapy. Compared with baseline drug responding, methamphetamine seeking was reduced (57%) in the DBS group but not in the sham group. CONCLUSIONS It is feasible to deliver noncontinuous DBS outside of the drug use environment with a resultant decrease in IV methamphetamine intake and seeking. The AcbSh is a neuroanatomical substrate for psychostimulant reinforcement and may be a target for intermittent neuromodulatory therapies that could be administered during brief periods of sobriety.
Collapse
Affiliation(s)
| | - Thanh Lam N Tran
- Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Jessica Caputo
- Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Glenn F Guerin
- Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Nicholas E Goeders
- Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | | |
Collapse
|
41
|
Mursaleen LR, Stamford JA. Drugs of abuse and Parkinson's disease. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64:209-17. [PMID: 25816790 DOI: 10.1016/j.pnpbp.2015.03.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/19/2015] [Accepted: 03/19/2015] [Indexed: 11/15/2022]
Abstract
The term "drug of abuse" is highly contextual. What constitutes a drug of abuse for one population of patients does not for another. It is therefore important to examine the needs of the patient population to properly assess the status of drugs of abuse. The focus of this article is on the bidirectional relationship between patients and drug abuse. In this paper we will introduce the dopaminergic systems of the brain in Parkinson's and the influence of antiparkinsonian drugs upon them before discussing this synergy of condition and medication as fertile ground for drug abuse. We will then examine the relationship between drugs of abuse and Parkinson's, both beneficial and deleterious. In summary we will draw the different strands together and speculate on the future merit of current drugs of abuse as treatments for Parkinson's disease.
Collapse
Affiliation(s)
- Leah R Mursaleen
- The Cure Parkinson's Trust, 120 Baker Street, London W1U 6TU, United Kingdom; Parkinson's Movement, 120 Baker Street, London W1U 6TU, United Kingdom; The University of Sussex, Life Sciences, Brighton BN1 9RH, United Kingdom
| | - Jonathan A Stamford
- The Cure Parkinson's Trust, 120 Baker Street, London W1U 6TU, United Kingdom; Parkinson's Movement, 120 Baker Street, London W1U 6TU, United Kingdom.
| |
Collapse
|
42
|
Vieira-Brock PL, McFadden LM, Nielsen SM, Ellis JD, Walters ET, Stout KA, McIntosh JM, Wilkins DG, Hanson GR, Fleckenstein AE. Chronic Nicotine Exposure Attenuates Methamphetamine-Induced Dopaminergic Deficits. J Pharmacol Exp Ther 2015; 355:463-72. [PMID: 26391161 PMCID: PMC4658490 DOI: 10.1124/jpet.114.221945] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 09/18/2015] [Indexed: 01/14/2023] Open
Abstract
Repeated methamphetamine (METH) administrations cause persistent dopaminergic deficits resembling aspects of Parkinson's disease. Many METH abusers smoke cigarettes and thus self-administer nicotine; yet few studies have investigated the effects of nicotine on METH-induced dopaminergic deficits. This interaction is of interest because preclinical studies demonstrate that nicotine can be neuroprotective, perhaps owing to effects involving α4β2 and α6β2 nicotinic acetylcholine receptors (nAChRs). This study revealed that oral nicotine exposure beginning in adolescence [postnatal day (PND) 40] through adulthood [PND 96] attenuated METH-induced striatal dopaminergic deficits when METH was administered at PND 89. This protection did not appear to be due to nicotine-induced alterations in METH pharmacokinetics. Short-term (i.e., 21-day) high-dose nicotine exposure also protected when administered from PND 40 to PND 61 (with METH at PND 54), but this protective effect did not persist. Short-term (i.e., 21-day) high-dose nicotine exposure did not protect when administered postadolescence (i.e., beginning at PND 61, with METH at PND 75). However, protection was engendered if the duration of nicotine exposure was extended to 39 days (with METH at PND 93). Autoradiographic analysis revealed that nicotine increased striatal α4β2 expression, as assessed using [(125)I]epibatidine. Both METH and nicotine decreased striatal α6β2 expression, as assessed using [(125)I]α-conotoxin MII. These findings indicate that nicotine protects against METH-induced striatal dopaminergic deficits, perhaps by affecting α4β2 and/or α6β2 expression, and that both age of onset and duration of nicotine exposure affect this protection.
Collapse
Affiliation(s)
- Paula L Vieira-Brock
- Departments of Pharmacology and Toxicology (P.V.-B., L.M.M., S.M.N., J.D.E., E.T.W., K.A.S., G.R.H.), Psychiatry and Biology (J.M.M.), and Pathology (D.G.W.), School of Dentistry (G.R.H., A.E.F.), University of Utah, Salt Lake City, Utah; and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.)
| | - Lisa M McFadden
- Departments of Pharmacology and Toxicology (P.V.-B., L.M.M., S.M.N., J.D.E., E.T.W., K.A.S., G.R.H.), Psychiatry and Biology (J.M.M.), and Pathology (D.G.W.), School of Dentistry (G.R.H., A.E.F.), University of Utah, Salt Lake City, Utah; and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.)
| | - Shannon M Nielsen
- Departments of Pharmacology and Toxicology (P.V.-B., L.M.M., S.M.N., J.D.E., E.T.W., K.A.S., G.R.H.), Psychiatry and Biology (J.M.M.), and Pathology (D.G.W.), School of Dentistry (G.R.H., A.E.F.), University of Utah, Salt Lake City, Utah; and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.)
| | - Jonathan D Ellis
- Departments of Pharmacology and Toxicology (P.V.-B., L.M.M., S.M.N., J.D.E., E.T.W., K.A.S., G.R.H.), Psychiatry and Biology (J.M.M.), and Pathology (D.G.W.), School of Dentistry (G.R.H., A.E.F.), University of Utah, Salt Lake City, Utah; and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.)
| | - Elliot T Walters
- Departments of Pharmacology and Toxicology (P.V.-B., L.M.M., S.M.N., J.D.E., E.T.W., K.A.S., G.R.H.), Psychiatry and Biology (J.M.M.), and Pathology (D.G.W.), School of Dentistry (G.R.H., A.E.F.), University of Utah, Salt Lake City, Utah; and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.)
| | - Kristen A Stout
- Departments of Pharmacology and Toxicology (P.V.-B., L.M.M., S.M.N., J.D.E., E.T.W., K.A.S., G.R.H.), Psychiatry and Biology (J.M.M.), and Pathology (D.G.W.), School of Dentistry (G.R.H., A.E.F.), University of Utah, Salt Lake City, Utah; and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.)
| | - J Michael McIntosh
- Departments of Pharmacology and Toxicology (P.V.-B., L.M.M., S.M.N., J.D.E., E.T.W., K.A.S., G.R.H.), Psychiatry and Biology (J.M.M.), and Pathology (D.G.W.), School of Dentistry (G.R.H., A.E.F.), University of Utah, Salt Lake City, Utah; and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.)
| | - Diana G Wilkins
- Departments of Pharmacology and Toxicology (P.V.-B., L.M.M., S.M.N., J.D.E., E.T.W., K.A.S., G.R.H.), Psychiatry and Biology (J.M.M.), and Pathology (D.G.W.), School of Dentistry (G.R.H., A.E.F.), University of Utah, Salt Lake City, Utah; and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.)
| | - Glen R Hanson
- Departments of Pharmacology and Toxicology (P.V.-B., L.M.M., S.M.N., J.D.E., E.T.W., K.A.S., G.R.H.), Psychiatry and Biology (J.M.M.), and Pathology (D.G.W.), School of Dentistry (G.R.H., A.E.F.), University of Utah, Salt Lake City, Utah; and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.)
| | - Annette E Fleckenstein
- Departments of Pharmacology and Toxicology (P.V.-B., L.M.M., S.M.N., J.D.E., E.T.W., K.A.S., G.R.H.), Psychiatry and Biology (J.M.M.), and Pathology (D.G.W.), School of Dentistry (G.R.H., A.E.F.), University of Utah, Salt Lake City, Utah; and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.)
| |
Collapse
|
43
|
Sun D, Yue Q, Guo W, Li T, Zhang J, Li G, Liu Z, Sun J. Neuroprotection of resveratrol against neurotoxicity induced by methamphetamine in mouse mesencephalic dopaminergic neurons. Biofactors 2015. [PMID: 26212417 DOI: 10.1002/biof.1221] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Resveratrol is originally extracted from huzhang, a Chinese herbal medicine. Recently, resveratrol has attracted a great of attention due to its antioxidant and antiapoptotic properties. Although the neuroprotection of resveratrol on neural damages in various models has been well characterized, little is known about the role of resveratrol in methamphetamine (MA) induced neurotoxicity in mesencephalic dopaminergic neurons. Dopaminergic neurons were isolated from midbrain of mouse embryos at embryonic day 15 and cultured in the presence of MA and resveratrol. Cell viability was examined by MTT assay and the apoptosis was assessed using Hoechst33342/PI double staining. To evaluate the Oxidative damage, ROS assay was performed. Moreover, the changes of time course of intracellular free calcium concentration ([Ca(2+) ]i) were analyzed with Fluo-3/AM tracing. The data showed that MA induced the neurotoxicity of cultured cells in a dose-dependent manner. Resveratrol significantly increased cellular viability and retarded cell apoptosis. Furthermore, resveratrol also attenuated MA induced ROS production and intracellular free calcium overload. Our results suggest that resveratrol protects dopaminergic neurons from MA-induced neuronal cytotoxicity, which, at least partly, is mediated by inhibition of [Ca(2+) ]i and oxidative stress. © 2015 BioFactors 41(4):252-260, 2015.
Collapse
Affiliation(s)
- Dong Sun
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Anatomy, Shandong University, School of Medicine, Jinan, Shandong, China
| | - Qingwei Yue
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Anatomy, Shandong University, School of Medicine, Jinan, Shandong, China
| | - Weihua Guo
- Department of Radiology, The second Hoppital of Shandong University, Jinan, Shandong, China
| | - Tao Li
- Department of Neurosurgery, the fourth hospital of Jinan City, Jinan, Shandong, China
| | - Jing Zhang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Anatomy, Shandong University, School of Medicine, Jinan, Shandong, China
| | - Guibao Li
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Anatomy, Shandong University, School of Medicine, Jinan, Shandong, China
| | - Zengxun Liu
- Department of Psychiatry School of Medicine, Shandong University, Jinan, Shandong, China
| | - Jinhao Sun
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Anatomy, Shandong University, School of Medicine, Jinan, Shandong, China
| |
Collapse
|
44
|
Chronic methamphetamine regulates the expression of MicroRNAs and putative target genes in the nucleus accumbens of mice. J Neurosci Res 2015; 93:1600-10. [DOI: 10.1002/jnr.23605] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 04/28/2015] [Accepted: 05/14/2015] [Indexed: 02/02/2023]
|
45
|
Kousik SM, Napier TC, Ross RD, Sumner DR, Carvey PM. Dopamine receptors and the persistent neurovascular dysregulation induced by methamphetamine self-administration in rats. J Pharmacol Exp Ther 2014; 351:432-9. [PMID: 25185214 DOI: 10.1124/jpet.114.217802] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Recently abstinent methamphetamine (Meth) abusers showed neurovascular dysregulation within the striatum. The factors that contribute to this dysregulation and the persistence of these effects are unclear. The current study addressed these knowledge gaps. First, we evaluated the brains of rats with a history of Meth self-administration following various periods of forced abstinence. Micro-computed tomography revealed a marked reduction in vessel diameter and vascular volume uniquely within the striatum between 1 and 28 days after Meth self-administration. Microvessels showed a greater impairment than larger vessels. Subsequently, we determined that dopamine (DA) D2 receptors regulated Meth-induced striatal vasoconstriction via acute noncontingent administration of Meth. These receptors likely regulated the response to striatal hypoxia, as hypoxia inducible factor 1α was elevated. Acute Meth exposure also increased striatal levels of endothelin receptor A and decreased neuronal nitric oxide synthase. Collectively, the data provide novel evidence that Meth-induced striatal neurovascular dysregulation involves DA receptor signaling that results in vasoconstriction via endothelin receptor A and nitric oxide signaling. As these effects can lead to hypoxia and trigger neuronal damage, these findings provide a mechanistic explanation for the selective striatal toxicity observed in the brains of Meth-abusing humans.
Collapse
Affiliation(s)
- Sharanya M Kousik
- Center for Compulsive Behavior and Addiction (S.M.K., T.C.N., P.M.C.), Department of Pharmacology (S.M.K., T.C.N., P.M.C.), Department of Psychiatry (T.C.N.), Department of Neurologic Sciences (P.M.C.), and Department of Anatomy and Cell Biology (R.D.R., D.R.S.), Rush University Medical Center, Chicago, Illinois
| | - T Celeste Napier
- Center for Compulsive Behavior and Addiction (S.M.K., T.C.N., P.M.C.), Department of Pharmacology (S.M.K., T.C.N., P.M.C.), Department of Psychiatry (T.C.N.), Department of Neurologic Sciences (P.M.C.), and Department of Anatomy and Cell Biology (R.D.R., D.R.S.), Rush University Medical Center, Chicago, Illinois
| | - Ryan D Ross
- Center for Compulsive Behavior and Addiction (S.M.K., T.C.N., P.M.C.), Department of Pharmacology (S.M.K., T.C.N., P.M.C.), Department of Psychiatry (T.C.N.), Department of Neurologic Sciences (P.M.C.), and Department of Anatomy and Cell Biology (R.D.R., D.R.S.), Rush University Medical Center, Chicago, Illinois
| | - D Rick Sumner
- Center for Compulsive Behavior and Addiction (S.M.K., T.C.N., P.M.C.), Department of Pharmacology (S.M.K., T.C.N., P.M.C.), Department of Psychiatry (T.C.N.), Department of Neurologic Sciences (P.M.C.), and Department of Anatomy and Cell Biology (R.D.R., D.R.S.), Rush University Medical Center, Chicago, Illinois
| | - Paul M Carvey
- Center for Compulsive Behavior and Addiction (S.M.K., T.C.N., P.M.C.), Department of Pharmacology (S.M.K., T.C.N., P.M.C.), Department of Psychiatry (T.C.N.), Department of Neurologic Sciences (P.M.C.), and Department of Anatomy and Cell Biology (R.D.R., D.R.S.), Rush University Medical Center, Chicago, Illinois
| |
Collapse
|