1
|
Camper BT, Kanes AS, Laughlin ZT, Manuel RT, Bewick SA. Transgressive hybrids as hopeful holobionts. MICROBIOME 2025; 13:19. [PMID: 39844274 PMCID: PMC11752726 DOI: 10.1186/s40168-024-01994-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 12/02/2024] [Indexed: 01/24/2025]
Abstract
BACKGROUND Hybridization between evolutionary lineages has profound impacts on the fitness and ecology of hybrid progeny. In extreme cases, the effects of hybridization can transcend ecological timescales by introducing trait novelty upon which evolution can act. Indeed, hybridization can even have macroevolutionary consequences, for example, as a driver of adaptive radiations and evolutionary innovations. Accordingly, hybridization is now recognized as a motor for macrobial evolution. By contrast, there has been substantially less progress made towards understanding the positive eco-evolutionary consequences of hybridization on holobionts. Rather, the emerging paradigm in holobiont literature is that hybridization disrupts symbiosis between a host lineage and its microbiome, leaving hybrids at a fitness deficit. These conclusions, however, have been drawn based on results from predominantly low-fitness hybrid organisms. Studying "dead-end" hybrids all but guarantees finding that hybridization is detrimental. This is the pitfall that Dobzhansky fell into over 80 years ago when he used hybrid sterility and inviability to conclude that hybridization hinders evolution. Goldschmidt, however, argued that rare saltational successes-so-called hopeful monsters-disproportionately drive positive evolutionary outcomes. Goldschmidt's view is now becoming a widely accepted explanation for the prevalence of historical hybridization in extant macrobial lineages. Aligning holobiont research with this broader evolutionary perspective requires recognizing the importance of similar patterns in host-microbiome systems. That is, rare and successful "hopeful holobionts" (i.e., hopeful monsters at the holobiont scale) might be disproportionately responsible for holobiont evolution. If true, then it is these successful systems that we should be studying to assess impacts of hybridization on the macroevolutionary trajectories of host-microbiome symbioses. RESULTS In this paper, we explore the effects of hybridization on the gut (cloacal) and skin microbiota in an ecologically successful hybrid lizard, Aspidoscelis neomexicanus. Specifically, we test the hypothesis that hybrid lizards have host-associated (HA) microbiota traits strongly differentiated from their progenitor species. Across numerous hybrid microbiota phenotypes, we find widespread evidence of transgressive segregation. Further, microbiota restructuring broadly correlates with niche restructuring during hybridization. This suggests a relationship between HA microbiota traits and ecological success. CONCLUSION Transgressive segregation of HA microbiota traits is not only limited to hybrids at a fitness deficit but also occurs in ecologically successful hybrids. This suggests that hybridization may be a mechanism for generating novel and potentially beneficial holobiont phenotypes. Supporting such a conclusion, the correlations that we find between hybrid microbiota and the hybrid niche indicate that hybridization might change host microbiota in ways that promote a shift or an expansion in host niche space. If true, hybrid microbiota restructuring may underly ecological release from progenitors. This, in turn, could drive evolutionary diversification. Using our system as an example, we elaborate on the evolutionary implications of host hybridization within the context of holobiont theory and then outline the next steps for understanding the role of hybridization in holobiont research. Video Abstract.
Collapse
Affiliation(s)
| | | | | | - Riley Tate Manuel
- Department of Biological Sciences, Clemson University, Clemson, SC, 29631, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sharon Anne Bewick
- Department of Biological Sciences, Clemson University, Clemson, SC, 29631, USA
| |
Collapse
|
2
|
Samraoui F, Nedjah R, Boucheker A, El‐Serehy HA, Samraoui B. Sky High or Grounded: Nest Site Selection of Herons and Egrets in a Mixed-Species Colony. Ecol Evol 2025; 15:e70761. [PMID: 39748809 PMCID: PMC11693640 DOI: 10.1002/ece3.70761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
Resource partitioning is crucial for the coexistence of colonial herons, as it allows multiple species to share the same habitat while minimising competition. This study took advantage of a natural experiment in 2006 and 2007 when Black-crowned Night Herons were prevented from breeding at Lake Fetzara in the first year due to the presence of a feral cat. This event provided valuable insight into the spatial and temporal dynamics of nest site selection among coexisting heron species, which consisted of Cattle Egrets (Ardea ibis), Little Egrets (Egretta garzetta) and Squacco Herons (Ardeola ralloides). After the cat was removed, egg-laying began in the core areas of the colony and gradually spread to the periphery. Species that initiated nesting early selected mid-elevation sites near the tree trunk, which likely offered protection from both ground and aerial predators, while also providing some shielding from solar radiation and strong winds. These early selected sites featured larger branches, which conferred greater nest stability. Vertical stratification was evident among the heron species; however, contrary to long-standing assumptions, it was not directly related to body size. Both vertical and horizontal stratification were observed, with nests progressively moving higher and further from the tree trunk as the breeding season advanced. The following year, Black-crowned Night Herons displaced other species to lower heights and positions further from the trunk, highlighting the significant influence of interspecific interactions on nest site selection. This study underscores the complex interplay between nest site selection, biotic interactions and abiotic factors in heron colonies, emphasising the importance of resource partitioning in maintaining species coexistence in densely populated breeding sites.
Collapse
Affiliation(s)
- Farrah Samraoui
- Laboratoire de Conservation Des Zones HumidesUniversity of GuelmaGuelmaAlgeria
- Department of EcologyUniversity 8 Mai 1945GuelmaAlgeria
| | - Riad Nedjah
- Laboratoire de Conservation Des Zones HumidesUniversity of GuelmaGuelmaAlgeria
- Department of EcologyUniversity 8 Mai 1945GuelmaAlgeria
| | - Abdennour Boucheker
- Laboratoire de Conservation Des Zones HumidesUniversity of GuelmaGuelmaAlgeria
- Department of BiologyUniversity Badji MokhtarAnnabaAlgeria
| | - Hamed A. El‐Serehy
- Department of Zoology, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Boudjéma Samraoui
- Department of BiologyUniversity Badji MokhtarAnnabaAlgeria
- Algerian Academy of Sciences and TechnologiesEl MadaniaAlgeria
| |
Collapse
|
3
|
Zhu F, Yuan J, Hou Z, Guo X, Liao W, Yang S, Chu Z. Interannual hydrological changes affect plant communities across different elevation zones in plateau lakeshores: insights from Lake Erhai. FRONTIERS IN PLANT SCIENCE 2024; 15:1439772. [PMID: 39610891 PMCID: PMC11602318 DOI: 10.3389/fpls.2024.1439772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024]
Abstract
The relationship between wetland water level changes and plant community has been a research hotspot. However, the gradient changes and critical influencing factors of plateau lakeshore plants and soils during wet-dry alternation remain unclear. Here, we studied the variations in plants and soils along the Erhai lakeshore across three elevation ranges (1965.0-1965.3m, 1965.3-1965.6m, and 1965.6-1966.4m) during flooding and drought years. Our research aimed to elucidate the interrelationships and mechanisms among hydrology, soil properties, and plant dynamics. The results showed that (1) In drought years, the Shannon-Wiener index of plants significantly decreased across the three elevation ranges, and other plant diversity indices, biomass, and coverage also decreased to varying degrees; (2) except for soil pH, soil water (SW) and nutrient content decreased to varying degrees in the drought year; (3) SW was the primary factor influencing plant biomass, coverage, and diversity in the 1965.0-1965.3m and 1965.3-1965.6m ranges; nitrate nitrogen, C/N ratio, total phosphorus were the primary factors in the 1965.6-1966.4m ranges. The results of structural equation modeling revealed a significant and strong correlation between SW and plant biomass, coverage, and soil pH. This suggests that changes in SW directly impacted plant biomass accumulation, subsequently affecting coverage, and also played a role in regulating soil pH. This study identified the effects of hydrological inter-annual changes on plant communities and highlighted SW as a crucial driver. The strategies proposed in the results protect and improve the diversity and stability of lake ecosystems in Lake Erhai and other similar lakes.
Collapse
Affiliation(s)
- Feng Zhu
- College of Water Sciences, Beijing Normal University, Beijing, China
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Jing Yuan
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Zeying Hou
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Xia Guo
- Construction Project Environmental Impact Assessment and Audit Center of Dali Bai Autonomous Prefecture, Dali, Yunnan, China
| | - Wanxue Liao
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Shenglin Yang
- College of Water Sciences, Beijing Normal University, Beijing, China
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Zhaosheng Chu
- College of Water Sciences, Beijing Normal University, Beijing, China
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, China
| |
Collapse
|
4
|
Yang S, Yuan Z, Ye B, Zhu F, Chu Z, Liu X. Impacts of landscape pattern on plants diversity and richness of 20 restored wetlands in Chaohu Lakeside of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167649. [PMID: 37813269 DOI: 10.1016/j.scitotenv.2023.167649] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/19/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
The recovery of wetland function and biodiversity conservation aroused considerable interest in the past decades. Although many advances have been achieved in revealing disturbing factors on plants diversity, the knowledge of biodiversity manipulation, landscape configuration and ecosystem process in restored wetlands remains incomplete. To address this issue, the landscape of 20 restored wetlands' vegetation was classified into five vegetation formations including: upland plants, wet grassland, emergent plants, floating plants and submerged plants. Meanwhile, the configuration of landscape, plants' function traits and the structure of plants communities of each wetland were analyzed. A total of 142 herbaceous plants were identified from 399 samples of 20 lakeside wetlands. The top five predominant species were Typha orientalis, Alternanthera philoxeroides, Phragmites australis, Echinochloa caudata, and Erigeron canadensis. The highest of diversity index was observed in upland plants with Shannon-Wiener index (H) of 0.92 while higher richness of plants was obtained in wet grassland with species of 88. In dry year, the immigration of upland xerophyte and obligated aquatic species to facultative area increased the biodiversity of the ecotone. Meanwhile, this change may also aggravate the diffusion risk of exotic invasive species Erigeron canadensis. Additionally, the results indicated that number and evenness of landscape outweighed Shannon diversity index (SHDI) of wetlands in shaping the richness and diversity of wetland plants. Whereas, the high value of maximum proportion of landscape (Pmax) have reduced the landscape evenness and species richness. A suggested Pmax of <0.5 was benefit for the stability and biodiversity of restored wetlands.
Collapse
Affiliation(s)
- Shenglin Yang
- College of water science, Beijing Normal university, Beijing 100875, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhen Yuan
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Bibi Ye
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Feng Zhu
- College of water science, Beijing Normal university, Beijing 100875, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhaosheng Chu
- College of water science, Beijing Normal university, Beijing 100875, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Xiaowei Liu
- School of Biology, food and Environment, Hefei University, Hefei 230601, China.
| |
Collapse
|
5
|
Kulbaba MW, Yoko Z, Hamilton JA. Chasing the fitness optimum: temporal variation in the genetic and environmental expression of life-history traits for a perennial plant. ANNALS OF BOTANY 2023; 132:1191-1204. [PMID: 37493041 PMCID: PMC10902883 DOI: 10.1093/aob/mcad100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND AND AIMS The ability of plants to track shifting fitness optima is crucial within the context of global change, where increasing environmental extremes may have dramatic consequences for life history, fitness, and ultimately population persistence. However, tracking changing conditions relies on the relationship between genetic and environmental variance, where selection may favour plasticity, the evolution of genetic differences, or both depending on the spatial and temporal scale of environmental heterogeneity. METHODS Over three years, we compared the genetic and environmental components of phenological and life-history variation in a common environment for the spring perennial Geum triflorum. Populations were sourced from alvar habitats that exhibit extreme but predictable annual flood-desiccation cycles and prairie habitats that exhibit similar but less predictable variation in water availability. KEY RESULTS Heritability was generally higher for early life-history (emergence probability) relative to later life-history traits (total seed mass), indicating that traits associated with establishment are under stronger genetic control relative to later life-history fitness expressions, where plasticity may play a larger role. This pattern was particularly notable in seeds sourced from environmentally extreme but predictable alvar habitats relative to less predictable prairie environments. Fitness landscapes based on seed source origin, largely characterized by varying water availability and flower production, described selection as the degree of maladaptation of seed source environment relative to the prairie common garden environment. Plants from alvar populations were consistently closer to the fitness optimum across all years. Annually, the breadth of the fitness optimum expanded primarily along a moisture gradient, with inclusion of more populations onto the expanding optimum. CONCLUSIONS These results highlight the importance of temporally and spatially varying selection in life-history evolution, indicating plasticity may become a primary mechanism needed to track fitness for later life-history events within perennial systems.
Collapse
Affiliation(s)
- Mason W Kulbaba
- Our Lady of the Lake University, Department of Mathematics and Science, San Antonio, TX 78207, USA
- St Mary’s University, Biology Area, 14500 Bannister Road SE, Calgary, Alberta, Canada, T2X 1Z4
| | - Zebadiah Yoko
- North Dakota State University, Department of Biological Sciences, Fargo, ND 58102, USA
| | - Jill A Hamilton
- North Dakota State University, Department of Biological Sciences, Fargo, ND 58102, USA
- Pennsylvania State University, Department of Ecosystem Science and Management, University Park, PA 16801, USA
| |
Collapse
|
6
|
Alexander JM, Atwater DZ, Colautti RI, Hargreaves AL. Effects of species interactions on the potential for evolution at species' range limits. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210020. [PMID: 35184598 PMCID: PMC8859514 DOI: 10.1098/rstb.2021.0020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 01/14/2022] [Indexed: 01/13/2023] Open
Abstract
Species' ranges are limited by both ecological and evolutionary constraints. While there is a growing appreciation that ecological constraints include interactions among species, like competition, we know relatively little about how interactions contribute to evolutionary constraints at species' niche and range limits. Building on concepts from community ecology and evolutionary biology, we review how biotic interactions can influence adaptation at range limits by impeding the demographic conditions that facilitate evolution (which we term a 'demographic pathway to adaptation'), and/or by imposing evolutionary trade-offs with the abiotic environment (a 'trade-offs pathway'). While theory for the former is well-developed, theory for the trade-offs pathway is not, and empirical evidence is scarce for both. Therefore, we develop a model to illustrate how fitness trade-offs along biotic and abiotic gradients could affect the potential for range expansion and niche evolution following ecological release. The model shows that which genotypes are favoured at species' range edges can depend strongly on the biotic context and the nature of fitness trade-offs. Experiments that characterize trade-offs and properly account for biotic context are needed to predict which species will expand their niche or range in response to environmental change. This article is part of the theme issue 'Species' ranges in the face of changing environments (Part II)'.
Collapse
Affiliation(s)
- Jake M. Alexander
- Institute of Integrative Biology, ETH Zurich, Universitätsstrasse 16, 8092 Zurich, Switzerland
| | - Daniel Z. Atwater
- Biology Department, Earlham College, 801 National Rd. W, Richmond, IN 47374, USA
| | - Robert I. Colautti
- Biology Department, Queen's University, 116 Barrie, St. Kingston, ON, Canada, K7 L 3N6
| | - Anna L. Hargreaves
- Department of Biology, McGill University, 1205 Dr Penfield Av, Montreal, QC, Canada H3A 1B1
| |
Collapse
|
7
|
Lancaster LT. On the macroecological significance of eco-evolutionary dynamics: the range shift-niche breadth hypothesis. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210013. [PMID: 35067095 PMCID: PMC8784922 DOI: 10.1098/rstb.2021.0013] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Global correlations of range size and niche breadth, and their relationship to latitude, have long intrigued ecologists and biogeographers. Study of these patterns has given rise to a number of hypothesized ecological and evolutionary processes purported to shape biogeographic outcomes, including the climate variability hypothesis, oscillation hypothesis, ecological opportunity, competitive release and taxon cycles. Here, I introduce the alternative range shift-niche breadth hypothesis, which posits that broader niches and larger range sizes are jointly determined under eco-evolutionary processes unique to expanding ranges, which may or may not be adaptive, but which co-shape observed latitudinal gradients in niche breadth and range size during periods of widespread range expansion. I formulate this hypothesis in comparison against previous hypotheses, exploring how each relies on equilibrium versus non-equilibrium evolutionary processes, faces differing issues of definition and scale, and results in alternative predictions for comparative risk and resilience of global ecosystems. Such differences highlight that accurate understanding of process is critical when applying macroecological insight to biodiversity forecasting. Furthermore, past conceptual emphasis on a central role of local adaptation under equilibrium conditions may have obscured a ubiquitous role of non-equilibrium evolutionary processes for generating many important, regional and global macroecological patterns. This article is part of the theme issue 'Species' ranges in the face of changing environments (part I)'.
Collapse
Affiliation(s)
- Lesley T Lancaster
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| |
Collapse
|
8
|
The Evolution of 'Ecological Release' into the 21st Century. Trends Ecol Evol 2020; 36:206-215. [PMID: 33223276 DOI: 10.1016/j.tree.2020.10.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 11/22/2022]
Abstract
Ecological release, originally conceived as niche expansion following a reduction in interspecific competition, may prompt invasion success, morphological evolution, speciation, and other ecological and evolutionary outcomes. However, the concept has not been recently reviewed. Here, we trace the study of 'ecological release' from its inception through the present day and find that current definitions are broad and highly varied. Viewing this development as a potential impediment to clear communication and hypothesis testing, we suggest a consensus definition for ecological release: niche expansions and shifts when a constraining interspecific interaction is reduced or removed. In rationalizing this definition, we highlight the various ways ecological release can unfold and address its potential evolutionary consequences.
Collapse
|
9
|
Swift HF, Dawson MN. Demographic, Environmental, and Phenotypic Change but Genetic Consistency in the Jellyfish Mastigias papua. THE BIOLOGICAL BULLETIN 2020; 239:80-94. [PMID: 33151754 DOI: 10.1086/710663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
AbstractSpatiotemporal environmental change can produce phenotypic differences within and between populations. For scyphozoans, the effect of environmental variation on phenotype has been unclear because of multiple challenges, including difficulties delimiting populations. Marine lakes, bodies of seawater entirely surrounded by land, provide an opportunity to study discrete populations and capture responses to perturbations. We use this opportunity to compare Mastigias papua (Lesson, 1830) medusae before and after a demographic and environmental perturbation. We reconstructed mitochondrial DNA haplotype networks, measured morphological variation, and assessed swimming behavior of pre- and post-perturbation samples to evaluate two hypotheses about the source of variation: recolonization from an alternate location or endemic phenotypic variation. We found significant differences between samples in morphology (F > 9.5, P < 0.001) and in two of three behaviors (F > 8.45, P < 0.005) but no substantial genetic differentiation (ΦST = 0.03, P = 0.09). We reject the hypothesis of recolonization because pre- and post-perturbation lake medusae were genetically similar to each other and also significantly different from any potential source locations (ΦST > 0.48, P > 0.001). We could not distinguish the source of endemic variation; this will require genomic or experimental analyses. Increasing climatic variability emphasizes the need for understanding population-level responses to environmental change and how responses may be modified by sources of intraspecific variation.
Collapse
|
10
|
Carscadden KA, Emery NC, Arnillas CA, Cadotte MW, Afkhami ME, Gravel D, Livingstone SW, Wiens JJ. Niche Breadth: Causes and Consequences for Ecology, Evolution, and Conservation. QUARTERLY REVIEW OF BIOLOGY 2020. [DOI: 10.1086/710388] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Niu K, Zhang S, Lechowicz MJ. Harsh environmental regimes increase the functional significance of intraspecific variation in plant communities. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13582] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Kechang Niu
- Department of Ecology School of Life Sciences Nanjing University Nanjing China
- Department of Ecology & Evolutionary Biology Cornell University Ithaca NY USA
| | - Shiting Zhang
- State Key Laboratory of Grassland and Agro‐Ecosystems School of Life Science Lanzhou University Lanzhou China
| | | |
Collapse
|
12
|
Naciri Y, Linder HP. The genetics of evolutionary radiations. Biol Rev Camb Philos Soc 2020; 95:1055-1072. [PMID: 32233014 DOI: 10.1111/brv.12598] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023]
Abstract
With the realization that much of the biological diversity on Earth has been generated by discrete evolutionary radiations, there has been a rapid increase in research into the biotic (key innovations) and abiotic (key environments) circumstances in which such radiations took place. Here we focus on the potential importance of population genetic structure and trait genetic architecture in explaining radiations. We propose a verbal model describing the stages of an evolutionary radiation: first invading a suitable adaptive zone and expanding both spatially and ecologically through this zone; secondly, diverging genetically into numerous distinct populations; and, finally, speciating. There are numerous examples of the first stage; the difficulty, however, is explaining how genetic diversification can take place from the establishment of a, presumably, genetically depauperate population in a new adaptive zone. We explore the potential roles of epigenetics and transposable elements (TEs), of neutral process such as genetic drift in combination with trait genetic architecture, of gene flow limitation through isolation by distance (IBD), isolation by ecology and isolation by colonization, the possible role of intra-specific competition, and that of admixture and hybridization in increasing the genetic diversity of the founding populations. We show that many of the predictions of this model are corroborated. Most radiations occur in complex adaptive zones, which facilitate the establishment of many small populations exposed to genetic drift and divergent selection. We also show that many radiations (especially those resulting from long-distance dispersal) were established by polyploid lineages, and that many radiating lineages have small genome sizes. However, there are several other predictions which are not (yet) possible to test: that epigenetics has played a role in radiations, that radiations occur more frequently in clades with small gene flow distances, or that the ancestors of radiations had large fundamental niches. At least some of these may be testable in the future as more genome and epigenome data become available. The implication of this model is that many radiations may be hard polytomies because the genetic divergence leading to speciation happens within a very short time, and that the divergence history may be further obscured by hybridization. Furthermore, it suggests that only lineages with the appropriate genetic architecture will be able to radiate, and that such a radiation will happen in a meta-population environment. Understanding the genetic architecture of a lineage may be an essential part of accounting for why some lineages radiate, and some do not.
Collapse
Affiliation(s)
- Yamama Naciri
- Plant Systematics and Biodiversity Laboratory, Department of Botany and Plant biology of the University of Geneva, 1 Chemin de l'Impératrice, CH-1292, Chambésy, Geneva, Switzerland
| | - H Peter Linder
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, CH-8008, Zurich, Switzerland
| |
Collapse
|
13
|
Freedman MG, Jason C, Ramírez SR, Strauss SY. Host plant adaptation during contemporary range expansion in the monarch butterfly. Evolution 2020; 74:377-391. [DOI: 10.1111/evo.13914] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/11/2019] [Accepted: 12/08/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Micah G. Freedman
- Center for Population Biology University of California, Davis Davis California 95616
- Department of Evolution and Ecology University of California, Davis Davis California
| | - Christopher Jason
- Department of Evolution and Ecology University of California, Davis Davis California
- School of Biological Sciences Washington State University Vancouver Washington 98686
| | - Santiago R. Ramírez
- Center for Population Biology University of California, Davis Davis California 95616
- Department of Evolution and Ecology University of California, Davis Davis California
| | - Sharon Y. Strauss
- Center for Population Biology University of California, Davis Davis California 95616
- Department of Evolution and Ecology University of California, Davis Davis California
| |
Collapse
|
14
|
Sato H, Toju H. Timing of evolutionary innovation: scenarios of evolutionary diversification in a species-rich fungal clade, Boletales. THE NEW PHYTOLOGIST 2019; 222:1924-1935. [PMID: 30664238 DOI: 10.1111/nph.15698] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/14/2019] [Indexed: 06/09/2023]
Abstract
Acquisition of mutualistic symbiosis could provide hosts and/or symbionts with novel ecological opportunities for evolutionary diversification. Such a mechanism is one of the major components of coevolutionary diversification. However, whether the origin of mycorrhizal symbiosis promotes diversification in fungi still requires clarification. Here, we aimed to reveal evolutionary diversification in a clade comprising ectomycorrhizal (ECM) fungi. Based on a phylogenic tree inferred from the sequences of 87 single-copy genes, we reconstructed the origins of ECM symbiosis in a species-rich basidiomycetous order, Boletales. High-resolution phylogeny of Boletales revealed that ECM symbiosis independently evolved from non-ECM states at least four times in the group. Among them, only the second most recent event, occurring in the clade of Boletaceae, was inferred to involve an almost synchronous rapid diversification and rapid transition from non-ECM to ECM symbiosis. Our results contradict the hypothesis of evolutionary priority effect, which postulates the greatest ecological opportunities in the oldest lineages. Therefore, the novel resources that had not been pre-empted by the old ECM fungal lineages - supposedly the coevolving angiosperm hosts - could be available for the young ECM fungal lineages, which resulted in evolutionary diversification occurring only in the young ECM fungal lineages.
Collapse
Affiliation(s)
- Hirotoshi Sato
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo, Kyoto, 606-8501, Japan
| | - Hirokazu Toju
- Center for Ecological Research, Kyoto University, 509-3, 2-chome, Hirano, Otsu, Shiga, 520-2113, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
15
|
Torres‐Martínez L, McCarten N, Emery NC. The adaptive potential of plant populations in response to extreme climate events. Ecol Lett 2019; 22:866-874. [DOI: 10.1111/ele.13244] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/06/2018] [Accepted: 02/05/2019] [Indexed: 01/18/2023]
Affiliation(s)
- Lorena Torres‐Martínez
- Department of Biological Sciences Purdue University 915 W. State Street West Lafayette IN47907‐2054 USA
- Department of Evolution, Ecology and Organismal Biology University of California Riverside CA92521 USA
| | - Niall McCarten
- Department of Land, Air and Water Resources University of California Davis CA95616 USA
| | - Nancy C. Emery
- Department of Ecology and Evolutionary Biology University of Colorado Boulder Campus Box 334 Boulder CO80309‐0334 USA
| |
Collapse
|
16
|
Tittes SB, Walker JF, Torres-Martínez L, Emery NC. Grow Where You Thrive, or Where Only You Can Survive? An Analysis of Performance Curve Evolution in a Clade with Diverse Habitat Affinities. Am Nat 2019; 193:530-544. [PMID: 30912965 DOI: 10.1086/701827] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Performance curves are valuable tools for quantifying the fundamental niches of organisms and testing hypotheses about evolution, life-history trade-offs, and the drivers of variation in species' distribution patterns. Here, we present a novel Bayesian method for characterizing performance curves that facilitates comparisons among species. We then use this model to quantify and compare the hydrological performance curves of 14 different taxa in the genus Lasthenia, an ecologically diverse clade of plants that collectively occupy a variety of habitats with unique hydrological features, including seasonally flooded wetlands called vernal pools. We conducted a growth chamber experiment to measure each taxon's fitness across five hydrological treatments that ranged from severe drought to extended flooding, and we identified differences in hydrological performance curves that explain their associations with vernal pool and terrestrial habitats. Our analysis revealed that the distribution of vernal pool taxa in the field does not reflect their optimal hydrological environments: all taxa, regardless of habitat affinity, have highest fitness under similar hydrological conditions of saturated soil without submergence. We also found that a taxon's relative position across flood gradients within vernal pools is best predicted by the height of its performance curve. These results demonstrate the utility of our approach for generating insights into when and how performance curves evolve among taxa as they diversify into distinct environments. To facilitate its use, the modeling framework has been developed into an R package.
Collapse
|
17
|
Culumber ZW, Tobler M. Correlated evolution of thermal niches and functional physiology in tropical freshwater fishes. J Evol Biol 2018; 31:722-734. [DOI: 10.1111/jeb.13260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/13/2018] [Accepted: 02/23/2018] [Indexed: 11/30/2022]
Affiliation(s)
| | - Michael Tobler
- Division of Biology Kansas State University Manhattan KS USA
| |
Collapse
|
18
|
Colautti RI, Alexander JM, Dlugosch KM, Keller SR, Sultan SE. Invasions and extinctions through the looking glass of evolutionary ecology. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160031. [PMID: 27920376 PMCID: PMC5182427 DOI: 10.1098/rstb.2016.0031] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2016] [Indexed: 11/12/2022] Open
Abstract
Invasive and endangered species reflect opposite ends of a spectrum of ecological success, yet they experience many similar eco-evolutionary challenges including demographic bottlenecks, hybridization and novel environments. Despite these similarities, important differences exist. Demographic bottlenecks are more transient in invasive species, which (i) maintains ecologically relevant genetic variation, (ii) reduces mutation load, and (iii) increases the efficiency of natural selection relative to genetic drift. Endangered species are less likely to benefit from admixture, which offsets mutation load but also reduces fitness when populations are locally adapted. Invading species generally experience more benign environments with fewer natural enemies, which increases fitness directly and also indirectly by masking inbreeding depression. Adaptive phenotypic plasticity can maintain fitness in novel environments but is more likely to evolve in invasive species encountering variable habitats and to be compromised by demographic factors in endangered species. Placed in an eco-evolutionary context, these differences affect the breadth of the ecological niche, which arises as an emergent property of antagonistic selection and genetic constraints. Comparative studies of invasions and extinctions that apply an eco-evolutionary perspective could provide new insights into the environmental and genetic basis of ecological success in novel environments and improve efforts to preserve global biodiversity.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'.
Collapse
Affiliation(s)
- Robert I Colautti
- Department of Biology, Queen's University, 116 Barrie Street, Kingston, Ontario, Canada K7L 3N6
| | - Jake M Alexander
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zurich, Universitätsstrasse 16, 8092 Zürich, Switzerland
| | - Katrina M Dlugosch
- Department of Ecology and Evolutionary Biology, University of Arizona, PO Box 210088, Tucson, AZ 85721, USA
| | - Stephen R Keller
- Department of Plant Biology, University of Vermont, 111 Jeffords Hall, Burlington, VT 05405, USA
| | - Sonia E Sultan
- Department of Biology, Wesleyan University, 237 Church Street, Middletown, CT 06459, USA
| |
Collapse
|
19
|
Torres-Martínez L, Weldy P, Levy M, Emery NC. Spatiotemporal heterogeneity in precipitation patterns explain population-level germination strategies in an edaphic specialist. ANNALS OF BOTANY 2017; 119:253-265. [PMID: 27551027 PMCID: PMC5321057 DOI: 10.1093/aob/mcw161] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 04/24/2016] [Accepted: 06/10/2016] [Indexed: 05/06/2023]
Abstract
BACKGROUND AND AIMS Many locally endemic species in biodiversity hotspots are restricted to edaphic conditions that are fixed in the landscape, limiting their potential to track climate change through dispersal. Instead, such species experience strong selection for germination strategies that can track suitable conditions through time. Germination strategies were compared among populations across the geographic range of a California vernal pool annual, Lasthenia fremontii Local germination strategies were tested to determine the associations with geographic variation in precipitation patterns. METHODS This study evaluated patterns of seed germination, dormancy and mortality in response to simulated variation in the timing, amount and duration of the first autumn precipitation event using seeds from six populations that span a geographic gradient in precipitation. Next, it was tested whether the germination strategies of different populations can be predicted by historical precipitation patterns that characterize each site. KEY RESULTS A significant positive relationship was observed between the historical variability in autumn precipitation and the extent of dormancy in a population. Marginal populations, with histories of the most extreme but constant autumn precipitation levels, expressed the lowest dormancy levels. Populations from sites with historically higher levels of autumn precipitation tended to germinate faster, but this tendency was not statistically significant. CONCLUSIONS Germination in L. fremontii is cued by the onset of the first rains that characterize the beginning of winter in California's Great Central Valley. However, populations differ in how fast they germinate and the fraction of seeds that remain dormant when germination cues occur. The results suggest that seed dormancy may be a key trait for populations to track increasingly drier climates predicted by climate change models. However, the low dormancy and high mortality levels observed among seeds of the southernmost, driest populations make them most vulnerable to local extinction.
Collapse
Affiliation(s)
- Lorena Torres-Martínez
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054, USA
| | - Phillip Weldy
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054, USA
| | - Morris Levy
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054, USA
| | - Nancy C Emery
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Campus Box 334, University of Colorado, Boulder, CO 80309-0334, USA
| |
Collapse
|
20
|
Alexander JM, Diez JM, Hart SP, Levine JM. When Climate Reshuffles Competitors: A Call for Experimental Macroecology. Trends Ecol Evol 2016; 31:831-841. [PMID: 27640784 PMCID: PMC5159619 DOI: 10.1016/j.tree.2016.08.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 08/17/2016] [Accepted: 08/18/2016] [Indexed: 10/21/2022]
Abstract
Climate change will likely reshuffle ecological communities, causing novel species interactions that could profoundly influence how populations and communities respond to changing conditions. Nonetheless, predicting the impacts of novel interactions is challenging, partly because many methods of inference are contingent on the current configuration of climatic variables and species distributions. Focusing on competition, we argue that experiments designed to quantify novel interactions in ways that can inform species distribution models are urgently needed, and suggest an empirical agenda to pursue this goal, illustrated using plants. An emerging convergence of ideas from macroecology and demographically focused competition theory offers opportunities to mechanistically incorporate competition into species distribution models, while forging closer ties between experimental ecology and macroecology.
Collapse
Affiliation(s)
- Jake M Alexander
- Institute of Integrative Biology, Eidgenössische Technische Hochschule (ETH) Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland; Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Jeffrey M Diez
- Institute of Integrative Biology, Eidgenössische Technische Hochschule (ETH) Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland; Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Simon P Hart
- Institute of Integrative Biology, Eidgenössische Technische Hochschule (ETH) Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Jonathan M Levine
- Institute of Integrative Biology, Eidgenössische Technische Hochschule (ETH) Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland
| |
Collapse
|
21
|
Anacker BL, Strauss SY. Ecological similarity is related to phylogenetic distance between species in a cross‐niche field transplant experiment. Ecology 2016; 97:1807-1818. [DOI: 10.1890/15-1285.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 12/04/2015] [Accepted: 02/11/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Brian L. Anacker
- Department of Evolution and Ecology University of California One Shields Avenue Davis California 95616 USA
| | - Sharon Y. Strauss
- Department of Evolution and Ecology University of California One Shields Avenue Davis California 95616 USA
| |
Collapse
|
22
|
Lajoie G, Vellend M. Understanding context dependence in the contribution of intraspecific variation to community trait-environment matching. Ecology 2016; 96:2912-22. [PMID: 27070011 DOI: 10.1890/15-0156.1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Intraspecific trait variation (ITV) plays a potentially important role in determining functional community composition across environmental gradients. However, the importance of ITV varies greatly among studies, and we lack a coherent understanding of the contexts under which to expect a high vs. low contribution of ITV to trait-environment matching among communities. Here we first elaborate a novel conceptual framework posing specific hypotheses and predictions about the environmental and ecological contexts underlying the contribution of ITV to community trait turnover. We then empirically test these predictions in understory herbaceous plant communities in a montane environment, for three functional traits (flowering phenology, specific leaf area, and height). We found that different components of trait variation mapped onto different environmental axes, specifically reporting a greater contribution of ITV along non-climatic axes (e.g., soil properties, light) than along the main climatic axis (i.e., elevation), as predicted by the hypothesis that phenotypic plasticity (a major source of ITV) is greatest in response to conditions varying at a small spatial scale. Based on a variant of the niche-variation hypothesis, we predicted that the importance of ITV would be greatest in the lowest-diversity portion of the elevational gradient (i.e., at high elevation), but this prediction was not supported. Finally, the generally strong intraspecific responses to the gradient observed across species did not necessarily give rise to a high contribution of ITV (or vice versa) given (1) an especially weak or strong response of a dominant species driving the community-level trend, (2) differences among species in the direction of trait-environment response cancelling out, or (3) relatively narrow portions of the gradient where individual species abundances were high enough to have an important impact on community-level trait means. Our research identifies contexts in which we can predict that local adaptation and phenotypic plasticity will play a relatively large role in mediating community-level trait responses to environmental change.
Collapse
|
23
|
De Meester L, Vanoverbeke J, Kilsdonk LJ, Urban MC. Evolving Perspectives on Monopolization and Priority Effects. Trends Ecol Evol 2016; 31:136-146. [DOI: 10.1016/j.tree.2015.12.009] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/03/2015] [Accepted: 12/04/2015] [Indexed: 11/30/2022]
|
24
|
Refsnider JM, Des Roches S, Rosenblum EB. Evidence for ecological release over a fine spatial scale in a lizard from the White Sands formation. OIKOS 2015. [DOI: 10.1111/oik.02406] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Jeanine M. Refsnider
- Dept of Environmental Science, Policy and Management; Univ. of California at Berkeley; 130 Mulford Hall Berkeley CA 94720-3114 USA
| | - Simone Des Roches
- Dept of Environmental Science, Policy and Management; Univ. of California at Berkeley; 130 Mulford Hall Berkeley CA 94720-3114 USA
| | - Erica Bree Rosenblum
- Dept of Environmental Science, Policy and Management; Univ. of California at Berkeley; 130 Mulford Hall Berkeley CA 94720-3114 USA
| |
Collapse
|