1
|
Luo H, Jia W, Zhang F, Zhang M, Zhang Y, Lan X, Yu Z. The competitive relationship of scrub plants for water use in the subalpine zone of the Qilian Mountains in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21326-21340. [PMID: 38386162 DOI: 10.1007/s11356-024-32519-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
Samples of scrub plants and soil were collected from May to October 2019 in the subalpine scrub zone of the Qilian Mountains. Based on measured oxygen isotope values (δ18O) in plant xylem water and soil water, the multivariate linear mixed model (IsoSource) and the proportional similarity index (PS index) were used to analyze the using proportion for each potential water source and the competition relationship for water use of scrub plants in different growing periods and habitats. The results showed that the soil water content gradually decreased with increasing depth of the soil layer, with the maximum value in the soil layer of 0-10 cm. Most of the scrub plants mainly used soil water in the soil layer of 0-30 cm during the different periods of growing season, but Salix sclerophylla Anderss. and Salix oritrepha Schneid. on the semi-sunny slope habitat mainly used soil water in the soil layer of 40-80 cm during the middle period of growing season (July-August), with the proportion of 59.5% and 52.1%, respectively; and Potentilla fruticosa Linn. and Salix cupularis Rehd. on the semi-shady slope habitat mainly used soil water in the soil layer of 30-60 cm during the early period of growing season (May-June), with the proportion of 61.1% and 49.7%, respectively. The competition relationships of scrub plants for water use varied during different periods of growing season (P < 0.05). On the semi-sunny slope habitat, they were fiercest for Salix cupularis Rehd. and Rhododendron thymifolium Maxim., Potentilla fruticosa Linn., and Salix sclerophylla Anderss. during the early period of growing season; Salix cupularis Rehd. and Rhododendron thymifolium Maxim. during the middle period of growing season, and Salix sclerophylla Anderss. and Salix oritrepha Schneid. during the end period of growing season (September-October). On the semi-shady slope habitat, they were fiercest for Salix oritrepha Schneid. and Caragana jubata (Pall.) Poir. during the early period of growing season; Rhododendron przewalskii Maxim. and Rhododendron thymifolium Maxim. during the middle period of growing season; and Salix cupularis Rehd. and Salix oritrepha Schneid. during the end period of growing season. This study reveals the competitive relationship of scrub plants for water use in the subalpine zone and their response to environmental changes, so as to provide theoretical references for the ecological conservation in the ecologically fragile areas of the Qilian Mountains.
Collapse
Affiliation(s)
- Huifang Luo
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou, 730070, China
| | - Wenxiong Jia
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, China.
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou, 730070, China.
| | - Fuhua Zhang
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou, 730070, China
| | - Miaomiao Zhang
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou, 730070, China
| | - Yue Zhang
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou, 730070, China
| | - Xin Lan
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou, 730070, China
| | - Zhijie Yu
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou, 730070, China
| |
Collapse
|
2
|
Bi MH, Jiang C, Brodribb T, Yang YJ, Yao GQ, Jiang H, Fang XW. Ethylene constrains stomatal reopening in Fraxinus chinensis post moderate drought. TREE PHYSIOLOGY 2023; 43:883-892. [PMID: 36547259 DOI: 10.1093/treephys/tpac144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/01/2022] [Accepted: 12/11/2022] [Indexed: 06/11/2023]
Abstract
Clarifying the mechanisms underlying the recovery of gas exchange following drought is the key to providing insights into plant drought adaptation and habitat distribution. However, the mechanisms are still largely unknown. Targeting processes known to inhibit gas exchange during drought recovery, we measured leaf water potential, the leaf hydraulic conductance, stomatal reopening, abscisic acid (ABA) and the ethylene emission rate (EER) following moderate drought stress in seedlings of the globally pervasive woody tree Fraxinus chinensis. We found strong evidence that the slow stomatal reopening after rehydration is regulated by a slow decrease in EER, rather than changes in leaf hydraulics or foliar ABA levels. This was supported by evidence of rapid gas exchange recovery in plants after treatment with the ethylene antagonist 1-methylcyclopropene. These findings provide evidence to rigorously support ethylene as a key factor constraining stomatal reopening from moderate drought directly, thereby potentially opening new windows for understanding species drought adaptation.
Collapse
Affiliation(s)
- Min-Hui Bi
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Chao Jiang
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Timothy Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| | - Yu-Jie Yang
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Guang-Qian Yao
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Hui Jiang
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Xiang-Wen Fang
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
3
|
Takahashi Y, Bosmans KC, Hsu PK, Paul K, Seitz C, Yeh CY, Wang YS, Yarmolinsky D, Sierla M, Vahisalu T, McCammon JA, Kangasjärvi J, Zhang L, Kollist H, Trac T, Schroeder JI. Stomatal CO 2/bicarbonate sensor consists of two interacting protein kinases, Raf-like HT1 and non-kinase-activity requiring MPK12/MPK4. SCIENCE ADVANCES 2022; 8:eabq6161. [PMID: 36475789 PMCID: PMC9728965 DOI: 10.1126/sciadv.abq6161] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/02/2022] [Indexed: 05/12/2023]
Abstract
The continuing rise in the atmospheric carbon dioxide (CO2) concentration causes stomatal closing, thus critically affecting transpirational water loss, photosynthesis, and plant growth. However, the primary CO2 sensor remains unknown. Here, we show that elevated CO2 triggers interaction of the MAP kinases MPK4/MPK12 with the HT1 protein kinase, thus inhibiting HT1 kinase activity. At low CO2, HT1 phosphorylates and activates the downstream negatively regulating CBC1 kinase. Physiologically relevant HT1-mediated phosphorylation sites in CBC1 are identified. In a genetic screen, we identify dominant active HT1 mutants that cause insensitivity to elevated CO2. Dominant HT1 mutants abrogate the CO2/bicarbonate-induced MPK4/12-HT1 interaction and HT1 inhibition, which may be explained by a structural AlphaFold2- and Gaussian-accelerated dynamics-generated model. Unexpectedly, MAP kinase activity is not required for CO2 sensor function and CO2-triggered HT1 inhibition and stomatal closing. The presented findings reveal that MPK4/12 and HT1 together constitute the long-sought primary stomatal CO2/bicarbonate sensor upstream of the CBC1 kinase in plants.
Collapse
Affiliation(s)
- Yohei Takahashi
- School of Biological Sciences, Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Krystal C. Bosmans
- School of Biological Sciences, Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Po-Kai Hsu
- School of Biological Sciences, Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Karnelia Paul
- School of Biological Sciences, Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Christian Seitz
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Chung-Yueh Yeh
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Yuh-Shuh Wang
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Dmitry Yarmolinsky
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Maija Sierla
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki FI-00014, Finland
| | - Triin Vahisalu
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki FI-00014, Finland
| | - J. Andrew McCammon
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| | - Jaakko Kangasjärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki FI-00014, Finland
| | - Li Zhang
- School of Biological Sciences, Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Hannes Kollist
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Thien Trac
- School of Biological Sciences, Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Julian I. Schroeder
- School of Biological Sciences, Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA 92093-0116, USA
| |
Collapse
|
4
|
Wang D, Zhang S, Wang G, Liu Y, Wang H, Gu J. Reservoir Regulation for Ecological Protection and Remediation: A Case Study of the Irtysh River Basin, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191811582. [PMID: 36141858 PMCID: PMC9517634 DOI: 10.3390/ijerph191811582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/03/2022] [Accepted: 09/12/2022] [Indexed: 05/08/2023]
Abstract
Hydrological processes play a key role in ecosystem stability in arid regions. The operation of water conservancy projects leads to changes in the natural hydrological processes, thereby damaging the ecosystem balance. Ecological regulation is an effective non-engineering measure to relieve the influence of water conservancy projects on ecosystems. However, there are still some problems, such as an insufficient understanding of hydraulic processes and difficulty evaluating the application effects. In this study, the theory of ecological reservoir regulation coupled with hydrological and ecological processes was examined and ecological protection and remediation were investigated using the valley forests and grasslands in the Irtysh River Basin as a case study. The results demonstrated that (1) to meet the demand of the hydrological processes in the valley forests and grasslands, in terms of ecological regulation, the peak flow and flood peak duration of the reservoir, named 635, in the Irtysh River Basin should be 1000 m3 s−1 and 168 h, respectively, and the total water volume of ecological regulation should be 605 million m³. Ecological regulation can guarantee that the floodplain range reaches 64.3% of the core area of ecological regulation and the inundation duration in most areas is between 4–8 d; (2) an insufficient ecological water supply would seriously affect the inundation effects. The inundation areas were reduced by 2.8, 5.1, 10.3, and 19.3%, respectively, under the four insufficient ecological water supply conditions (528, 482, 398, and 301 million m3), and the inundation duration showed a general decreasing trend; (3) the construction of ecological sluices and the optimization of the reservoir regulation rules could effectively relieve the influences of an insufficient ecological water supply. At water supply volumes of 528 and 482 million m3, the regulation rules should assign priority to the flood peak flow; at water supply volumes of 398 and 301 million m3, the regulation rules should assign priority to the flood peak duration. Consequently, this study provides a reference for ecological protection in arid regions and the optimization of ecological regulation theories.
Collapse
Affiliation(s)
- Dan Wang
- School of Hydraulic Engineering, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Simulations and Regulations of Water Cycles in River Basins (SKL-WAC), China Institute of Water Resources and Hydropower Research (IWHR), Beijing 100038, China
| | - Shuanghu Zhang
- State Key Laboratory of Simulations and Regulations of Water Cycles in River Basins (SKL-WAC), China Institute of Water Resources and Hydropower Research (IWHR), Beijing 100038, China
- Correspondence: or ; Tel.: +86-010-6878-5508
| | - Guoli Wang
- School of Hydraulic Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yin Liu
- School of Environment and Ecology, Jiangsu Open University, Nanjing 210036, China
| | - Hao Wang
- State Key Laboratory of Simulations and Regulations of Water Cycles in River Basins (SKL-WAC), China Institute of Water Resources and Hydropower Research (IWHR), Beijing 100038, China
| | - Jingjing Gu
- State Key Laboratory of Simulations and Regulations of Water Cycles in River Basins (SKL-WAC), China Institute of Water Resources and Hydropower Research (IWHR), Beijing 100038, China
| |
Collapse
|
5
|
Raman H, Raman R, Pirathiban R, McVittie B, Sharma N, Liu S, Qiu Y, Zhu A, Kilian A, Cullis B, Farquhar GD, Stuart‐Williams H, White R, Tabah D, Easton A, Zhang Y. Multienvironment QTL analysis delineates a major locus associated with homoeologous exchanges for water-use efficiency and seed yield in canola. PLANT, CELL & ENVIRONMENT 2022; 45:2019-2036. [PMID: 35445756 PMCID: PMC9325393 DOI: 10.1111/pce.14337] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 04/06/2022] [Indexed: 05/29/2023]
Abstract
Canola varieties exhibit variation in drought avoidance and drought escape traits, reflecting adaptation to water-deficit environments. Our understanding of underlying genes and their interaction across environments in improving crop productivity is limited. A doubled haploid population was analysed to identify quantitative trait loci (QTL) associated with water-use efficiency (WUE) related traits. High WUE in the vegetative phase was associated with low seed yield. Based on the resequenced parental genome data, we developed sequence-capture-based markers and validated their linkage with carbon isotope discrimination (Δ13 C) in an F2 population. RNA sequencing was performed to determine the expression of candidate genes underlying Δ13 C QTL. QTL contributing to main and QTL × environment interaction effects for Δ13 C and yield were identified. One multiple-trait QTL for Δ13 C, days to flower, plant height, and seed yield was identified on chromosome A09. Interestingly, this QTL region overlapped with a homoeologous exchange (HE) event, suggesting its association with the multiple traits. Transcriptome analysis revealed 121 significantly differentially expressed genes underlying Δ13 C QTL on A09 and C09, including in HE regions. Sorting out the negative relationship between vegetative WUE and seed yield is a priority. Genetic and genomic resources and knowledge so developed could improve canola WUE and yield.
Collapse
Affiliation(s)
- Harsh Raman
- NSW Department of Primary IndustriesWagga Wagga Agricultural InstituteWagga WaggaNew South WalesAustralia
| | - Rosy Raman
- NSW Department of Primary IndustriesWagga Wagga Agricultural InstituteWagga WaggaNew South WalesAustralia
| | - Ramethaa Pirathiban
- Centre for Biometrics and Data Science for Sustainable Primary Industries, National Institute for Applied Statistics Research AustraliaUniversity of WollongongWollongongNew South WalesAustralia
| | - Brett McVittie
- NSW Department of Primary IndustriesWagga Wagga Agricultural InstituteWagga WaggaNew South WalesAustralia
| | - Niharika Sharma
- NSW Department of Primary IndustriesOrange Agricultural InstituteOrangeNew South WalesAustralia
| | - Shengyi Liu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of PRCOil Crops Research Institute, Chinese Academy of Agricultural SciencesWuhanHubeiChina
| | - Yu Qiu
- NSW Department of Primary IndustriesWagga Wagga Agricultural InstituteWagga WaggaNew South WalesAustralia
| | - Anyu Zhu
- Diversity Arrays Technology P/LUniversity of CanberraCanberraAustralian Capital TerritoryAustralia
| | - Andrzej Kilian
- Diversity Arrays Technology P/LUniversity of CanberraCanberraAustralian Capital TerritoryAustralia
| | - Brian Cullis
- Centre for Biometrics and Data Science for Sustainable Primary Industries, National Institute for Applied Statistics Research AustraliaUniversity of WollongongWollongongNew South WalesAustralia
| | - Graham D. Farquhar
- Research School of BiologyAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Hilary Stuart‐Williams
- Research School of BiologyAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| | | | - David Tabah
- Advanta Seeds Pty LtdToowoombaQueenslandAustralia
| | | | - Yuanyuan Zhang
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs of PRCOil Crops Research Institute, Chinese Academy of Agricultural SciencesWuhanHubeiChina
| |
Collapse
|
6
|
Carvalho C, Davis R, Connallon T, Gleadow RM, Moore JL, Uesugi A. Multivariate selection mediated by aridity predicts divergence of drought-resistant traits along natural aridity gradients of an invasive weed. THE NEW PHYTOLOGIST 2022; 234:1088-1100. [PMID: 35118675 PMCID: PMC9311224 DOI: 10.1111/nph.18018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Geographical variation in the environment underpins selection for local adaptation and evolutionary divergence among populations. Because many environmental conditions vary across species' ranges, identifying the specific environmental variables underlying local adaptation is profoundly challenging. We tested whether natural selection mediated by aridity predicts clinal divergence among invasive populations of capeweed (Arctotheca calendula) that established and spread across southern Australia during the last two centuries. Using common garden experiments with two environmental treatments (wet and dry) that mimic aridity conditions across capeweed's invasive range, we estimated clinal divergence and effects of aridity on fitness and multivariate phenotypic selection in populations sampled along aridity gradients in Australia. We show that: (1) capeweed populations have relatively high fitness in aridity environments similar to their sampling locations; (2) the magnitude and direction of selection strongly differs between wet and dry treatments, with drought stress increasing the strength of selection; and (3) differences in directional selection between wet and dry treatments predict patterns of clinal divergence across the aridity gradient, particularly for traits affecting biomass, flowering phenology and putative antioxidant expression. Our results suggest that aridity-mediated selection contributes to trait diversification among invasive capeweed populations, possibly facilitating the expansion of capeweed across southern Australia.
Collapse
Affiliation(s)
- Carter Carvalho
- School of Biological SciencesMonash UniversityClaytonVic.3800Australia
| | - Rochelle Davis
- School of Biological SciencesMonash UniversityClaytonVic.3800Australia
| | - Tim Connallon
- School of Biological SciencesMonash UniversityClaytonVic.3800Australia
| | - Roslyn M. Gleadow
- School of Biological SciencesMonash UniversityClaytonVic.3800Australia
| | - Joslin L. Moore
- School of Biological SciencesMonash UniversityClaytonVic.3800Australia
| | - Akane Uesugi
- School of Biological SciencesMonash UniversityClaytonVic.3800Australia
- Biosciences and Food Technology DivisionSchool of ScienceRMIT UniversityBundooraVic.3083Australia
| |
Collapse
|
7
|
Campitelli BE, Razzaque S, Barbero B, Abdulkina LR, Hall MH, Shippen DE, Juenger TE, Shakirov EV. Plasticity, pleiotropy and fitness trade-offs in Arabidopsis genotypes with different telomere lengths. THE NEW PHYTOLOGIST 2022; 233:1939-1952. [PMID: 34826163 PMCID: PMC9218941 DOI: 10.1111/nph.17880] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 11/14/2021] [Indexed: 05/12/2023]
Abstract
Telomere length has been implicated in the organismal response to stress, but the underlying mechanisms are unknown. Here we examine the impact of telomere length changes on the responses to three contrasting abiotic environments in Arabidopsis, and measure 32 fitness, developmental, physiological and leaf-level anatomical traits. We report that telomere length in wild-type and short-telomere mutants is resistant to abiotic stress, while the elongated telomeres in ku70 mutants are more plastic. We detected significant pleiotropic effects of telomere length on flowering time and key leaf physiological and anatomical traits. Furthermore, our data reveal a significant genotype by environment (G × E) interaction for reproductive fitness, with the benefits and costs to performance depending on the growth conditions. These results imply that life-history trade-offs between flowering time and reproductive fitness are impacted by telomere length variation. We postulate that telomere length in plants is subject to natural selection imposed by different environments.
Collapse
Affiliation(s)
- Brandon E. Campitelli
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
- Texas Institute for Discovery Education in Sciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Samsad Razzaque
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Borja Barbero
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA
| | - Liliia R. Abdulkina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan 420008, Russia
| | - Mitchell H. Hall
- Department of Biological Sciences, College of Science, Marshall University, Huntington, WV 25701, USA
| | - Dorothy E. Shippen
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA
| | - Thomas E. Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Eugene V. Shakirov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan 420008, Russia
- Department of Biological Sciences, College of Science, Marshall University, Huntington, WV 25701, USA
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| |
Collapse
|
8
|
Brendel O, Epron D. Are differences among forest tree populations in carbon isotope composition an indication of adaptation to drought? TREE PHYSIOLOGY 2022; 42:26-31. [PMID: 34726246 DOI: 10.1093/treephys/tpab143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Oliver Brendel
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, Nancy F-54000, France
| | - Daniel Epron
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, Nancy F-54000, France
- Kyoto University, Graduate School of Agriculture, Kyoto 606-8502, Japan
| |
Collapse
|
9
|
Xie J, Fernandes SB, Mayfield-Jones D, Erice G, Choi M, E Lipka A, Leakey ADB. Optical topometry and machine learning to rapidly phenotype stomatal patterning traits for maize QTL mapping. PLANT PHYSIOLOGY 2021; 187:1462-1480. [PMID: 34618057 PMCID: PMC8566313 DOI: 10.1093/plphys/kiab299] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 05/26/2021] [Indexed: 05/03/2023]
Abstract
Stomata are adjustable pores on leaf surfaces that regulate the tradeoff of CO2 uptake with water vapor loss, thus having critical roles in controlling photosynthetic carbon gain and plant water use. The lack of easy, rapid methods for phenotyping epidermal cell traits have limited discoveries about the genetic basis of stomatal patterning. A high-throughput epidermal cell phenotyping pipeline is presented here and used for quantitative trait loci (QTL) mapping in field-grown maize (Zea mays). The locations and sizes of stomatal complexes and pavement cells on images acquired by an optical topometer from mature leaves were automatically determined. Computer estimated stomatal complex density (SCD; R2 = 0.97) and stomatal complex area (SCA; R2 = 0.71) were strongly correlated with human measurements. Leaf gas exchange traits were genetically correlated with the dimensions and proportions of stomatal complexes (rg = 0.39-0.71) but did not correlate with SCD. Heritability of epidermal traits was moderate to high (h2 = 0.42-0.82) across two field seasons. Thirty-six QTL were consistently identified for a given trait in both years. Twenty-four clusters of overlapping QTL for multiple traits were identified, with univariate versus multivariate single marker analysis providing evidence consistent with pleiotropy in multiple cases. Putative orthologs of genes known to regulate stomatal patterning in Arabidopsis (Arabidopsis thaliana) were located within some, but not all, of these regions. This study demonstrates how discovery of the genetic basis for stomatal patterning can be accelerated in maize, a C4 model species where these processes are poorly understood.
Collapse
Affiliation(s)
- Jiayang Xie
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Samuel B Fernandes
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Center for Digital Agriculture, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Dustin Mayfield-Jones
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Center for Digital Agriculture, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Gorka Erice
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Min Choi
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Alexander E Lipka
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Center for Digital Agriculture, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Andrew D B Leakey
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Center for Digital Agriculture, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Author for communication: , cor2">Present address: Agrotecnologías Naturales S.L., 43762 Tarragona, Spain
| |
Collapse
|
10
|
Das A, Prakash A, Dedon N, Doty A, Siddiqui M, Preston JC. Variation in climatic tolerance, but not stomatal traits, partially explains Pooideae grass species distributions. ANNALS OF BOTANY 2021; 128:83-95. [PMID: 33772589 PMCID: PMC8318108 DOI: 10.1093/aob/mcab046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND AIMS Grasses in subfamily Pooideae live in some of the world's harshest terrestrial environments, from frigid boreal zones to the arid windswept steppe. It is hypothesized that the climate distribution of species within this group is driven by differences in climatic tolerance, and that tolerance can be partially explained by variation in stomatal traits. METHODS We determined the aridity index (AI) and minimum temperature of the coldest month (MTCM) for 22 diverse Pooideae accessions and one outgroup, and used comparative methods to assess predicted relationships for climate traits versus fitness traits, stomatal diffusive conductance to water (gw) and speed of stomatal closure following drought and/or cold. KEY RESULTS Results demonstrate that AI and MTCM predict variation in survival/regreening following drought/cold, and gw under drought/cold is positively correlated with δ 13C-measured water use efficiency (WUE). However, the relationship between climate traits and fitness under drought/cold was not explained by gw or speed of stomatal closure. CONCLUSIONS These findings suggest that Pooideae distributions are at least partly determined by tolerance to aridity and above-freezing cold, but that variation in tolerance is not uniformly explained by variation in stomatal traits.
Collapse
Affiliation(s)
- Aayudh Das
- The University of Vermont, Department of Plant Biology, Burlington, VT 05405, USA
| | - Anoob Prakash
- The University of Vermont, Department of Plant Biology, Burlington, VT 05405, USA
| | - Natalie Dedon
- The University of Vermont, Department of Plant Biology, Burlington, VT 05405, USA
| | - Alex Doty
- The University of Vermont, Department of Plant Biology, Burlington, VT 05405, USA
| | - Muniba Siddiqui
- The University of Vermont, Department of Plant Biology, Burlington, VT 05405, USA
| | - Jill C Preston
- The University of Vermont, Department of Plant Biology, Burlington, VT 05405, USA
| |
Collapse
|
11
|
Stotz GC, Salgado-Luarte C, Escobedo VM, Valladares F, Gianoli E. Global trends in phenotypic plasticity of plants. Ecol Lett 2021; 24:2267-2281. [PMID: 34216183 DOI: 10.1111/ele.13827] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/26/2021] [Accepted: 05/21/2021] [Indexed: 12/14/2022]
Abstract
Predicting plastic responses is crucial to assess plant species potential to adapt to climate change, but little is known about which factors drive the biogeographical patterns of phenotypic plasticity in plants. Theory predicts that climatic variability would select for increased phenotypic plasticity, whereas evidence indicates that stressful conditions can limit phenotypic plasticity. Using a meta-analytic, phylogeny-corrected approach to global data on plant phenotypic plasticity, we tested whether latitude, climate, climatic variability and/or stressful conditions are predictors of plastic responses at a biogeographical scale. We found support for a positive association between phenotypic plasticity and climatic variability only for plasticity in allocation. Plasticity in leaf morphology, size and physiology were positively associated with mean annual temperature. We also found evidence that phenotypic plasticity in physiology is limited by cold stress. Overall, plant plastic responses to non-climatic factors were stronger than responses to climatic factors. However, while climatic conditions were associated with plant plastic responses to climatic factors, they generally did not relate to plastic responses to other abiotic or biotic factors. Our study highlights the need to consider those factors that favour and limit phenotypic plasticity in order to improve predictive frameworks addressing plant species' potential to adapt to climate change.
Collapse
Affiliation(s)
- Gisela C Stotz
- Sustainability Research Centre, Life Sciences Faculty, Universidad Andrés Bello, Santiago, Chile.,Departamento de Biología, Universidad de La Serena, La Serena, Chile
| | | | - Víctor M Escobedo
- Laboratorio de Biología Vegetal, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Fernando Valladares
- Departamento de Biogeografía y Cambio Global, LINCGlobal, Museo Nacional de Ciencias Naturales, MNCN-CSIC, Madrid, España.,Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Móstoles, Madrid, España
| | - Ernesto Gianoli
- Departamento de Biología, Universidad de La Serena, La Serena, Chile.,Departamento de Botánica, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
12
|
Yang YJ, Bi MH, Nie ZF, Jiang H, Liu XD, Fang XW, Brodribb TJ. Evolution of stomatal closure to optimize water-use efficiency in response to dehydration in ferns and seed plants. THE NEW PHYTOLOGIST 2021; 230:2001-2010. [PMID: 33586157 DOI: 10.1111/nph.17278] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Plants control water-use efficiency (WUE) by regulating water loss and CO2 diffusion through stomata. Variation in stomatal control has been reported among lineages of vascular plants, thus giving rise to the possibility that different lineages may show distinct WUE dynamics in response to water stress. Here, we compared the response of gas exchange to decreasing leaf water potential among four ferns and nine seed plant species exposed to a gradually intensifying water deficit. The data collected were combined with those from 339 phylogenetically diverse species obtained from previous studies. In well-watered angiosperms, the maximum stomatal conductance was high and greater than that required for maximum WUE, but drought stress caused a rapid reduction in stomatal conductance and an increase in WUE in response to elevated concentrations of abscisic acid. However, in ferns, stomata did not open beyond the optimum point corresponding to maximum WUE and actually exhibited a steady WUE in response to dehydration. Thus, seed plants showed improved photosynthetic WUE under water stress. The ability of seed plants to increase WUE could provide them with an advantage over ferns under drought conditions, thereby presumably increasing their fitness under selection pressure by drought.
Collapse
Affiliation(s)
- Yu-Jie Yang
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, Gansu Province, 730000, China
| | - Min-Hui Bi
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, Gansu Province, 730000, China
| | - Zheng-Fei Nie
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, Gansu Province, 730000, China
| | - Hui Jiang
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, Gansu Province, 730000, China
| | - Xu-Dong Liu
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, Gansu Province, 730000, China
| | - Xiang-Wen Fang
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, Gansu Province, 730000, China
| | - Timothy J Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, TAS, 7001, Australia
| |
Collapse
|
13
|
Biochemical, Physiological, and Molecular Aspects of Ornamental Plants Adaptation to Deficit Irrigation. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7050107] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
There is increasing concern regarding global warming and its severe impact on the farming sector and food security. Incidences of extreme weather conditions are becoming more and more frequent, posing plants to stressful conditions, such as flooding, drought, heat, or frost etc. Especially for arid lands, there is a tug-of-war between keeping high crop yields and increasing water use efficiency of limited water resources. This difficult task can be achieved through the selection of tolerant water stress species or by increasing the tolerance of sensitive species. In this scenario, it is important to understand the response of plants to water stress. So far, the response of staple foods and vegetable crops to deficit irrigation is well studied. However, there is lack of literature regarding the responses of ornamental plants to water stress conditions. Considering the importance of this ever-growing sector for the agricultural sector, this review aims to reveal the defense mechanisms and the involved morpho-physiological, biochemical, and molecular changes in ornamental plant’s responses to deficit irrigation.
Collapse
|
14
|
Welles SR, Funk JL. Patterns of intraspecific trait variation along an aridity gradient suggest both drought escape and drought tolerance strategies in an invasive herb. ANNALS OF BOTANY 2021; 127:461-471. [PMID: 32949134 PMCID: PMC7988521 DOI: 10.1093/aob/mcaa173] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/16/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND AIMS In water-limited landscapes, some plants build structures that enable them to survive with minimal water (drought resistance). Instead of making structures that allow survival through times of water limitation, annual plants may invoke a drought escape strategy where they complete growth and reproduction when water is available. Drought escape and resistance each require a unique combination of traits and therefore plants are likely to have a suite of trait values that are consistent with a single drought response strategy. In environments where conditions are variable, plants may additionally evolve phenotypically plastic trait responses to water availability. Invasive annual species commonly occur in arid and semi-arid environments and many will be subject to reduced water availability associated with climate change. Assessing intraspecific trait variation across environmental gradients is a valuable tool for understanding how invasive plants establish and persist in arid environments. METHODS In this study, we used a common garden experiment with two levels of water availability to determine how traits related to carbon assimilation, water use, biomass allocation and flowering phenology vary in California wild radish populations across an aridity gradient. KEY RESULTS We found that populations from arid environments have rapid flowering and increased allocation to root biomass, traits associated with both drought escape and tolerance. Early flowering was associated with higher leaf nitrogen concentration and lower leaf mass per area, traits associated with high resource acquisition. While trait values varied across low- and high-water treatments, these shifts were consistent across populations, indicating no differential plasticity across the aridity gradient. CONCLUSIONS While previous studies have suggested that drought escape and drought resistance are mutually exclusive drought response strategies, our findings suggest that invasive annuals may employ both strategies to succeed in novel semi-arid environments. As many regions are expected to become more arid in the future, investigations of intraspecific trait variation within low water environments help to inform our understanding of potential evolutionary responses to increased aridity in invasive species.
Collapse
Affiliation(s)
- Shana R Welles
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA
| | - Jennifer L Funk
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA
- Department of Plant Sciences, University of California, Davis, CA, USA
| |
Collapse
|
15
|
Lorts CM, Lasky JR. Competition × drought interactions change phenotypic plasticity and the direction of selection on Arabidopsis traits. THE NEW PHYTOLOGIST 2020; 227:1060-1072. [PMID: 32267968 DOI: 10.1111/nph.16593] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
Populations often exhibit genetic diversity in traits involved in responses to abiotic stressors, but what maintains this diversity is unclear. Arabidopsis thaliana exhibits high within-population variation in drought response. One hypothesis is that competition, varying at small scales, promotes diversity in resource use strategies. However, little is known about natural variation in competition effects on Arabidopsis physiology. We imposed drought and competition treatments on diverse genotypes. We measured resource economics traits, physiology, and fitness to characterize plasticity and selection in response to treatments. Plastic responses to competition differed depending on moisture availability. We observed genotype-drought-competition interactions for relative fitness: competition had little effect on relative fitness under well-watered conditions, whereas competition caused rank changes in fitness under drought. Early flowering was always selected. Higher δ13 C was selected only in the harshest treatment (drought and competition). Competitive context significantly changed the direction of selection on aboveground biomass and inflorescence height in well-watered environments. Our results highlight how local biotic conditions modify abiotic selection, in some cases promoting diversity in abiotic stress response. The ability of populations to adapt to environmental change may thus depend on small-scale biotic heterogeneity.
Collapse
Affiliation(s)
- Claire M Lorts
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Jesse R Lasky
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
16
|
Al-Yasi H, Attia H, Alamer K, Hassan F, Ali E, Elshazly S, Siddique KHM, Hessini K. Impact of drought on growth, photosynthesis, osmotic adjustment, and cell wall elasticity in Damask rose. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 150:133-139. [PMID: 32142986 DOI: 10.1016/j.plaphy.2020.02.038] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/25/2020] [Indexed: 05/21/2023]
Abstract
The response of Damask rose to drought and the underlying mechanisms involved are not known. In this study, vegetative, propagated rose plants were grown under control and water-deficit conditions in a greenhouse at Taïf University, south-west of Saudi Arabia. Control plants were irrigated to field capacity (FC), while water-stressed plants were irrigated to either 50% FC (mild stress) or 25% FC (severe stress). After 60 days, leaf, stem and root fresh and dry weights (g plant-1), photosynthetic activity, leaf water potential (Ψw), leaf water content (WC), apoplastic water fraction (AWF), osmotic potential at full turgor (Ψs100) and turgor loss point (Ψs0), cell wall elasticity, osmotic adjustment (OA), and some solutes (K+, Ca2+, Cl-, proline and soluble carbohydrates) were evaluated. Water stress significantly decreased fresh and dry weights of R. damascena and all photosynthetic parameters, apart from leaf temperature, which increased. Severe water stress (25% FC) resulted in more negative Ψs100 and Ψs0 values than the mild water stress and control. The AWF did not significantly change in response to water stress. The leaf bulk modulus of elasticity (ε) increased from 2.5 MPa under well-watered conditions to 2.82 and 3.5 MPa under mild and severe water stress, respectively. R. damascena experienced OA in response to water stress, which was due to the active accumulation of soluble carbohydrates and, to a lesser degree, proline under mild stress, along with tissue dehydration (passive OA) under severe stress. Overall, we identified two important mechanisms of drought tolerance in R. damascena-osmotic and elastic adjustment-but they could not offer resistance to water stress beyond 25% FC.
Collapse
Affiliation(s)
- Hatim Al-Yasi
- Department of Biology, College of Sciences, Taïf University, 21974, Taïf, PO Box 888, Saudi Arabia
| | - Houneida Attia
- Department of Biology, College of Sciences, Taïf University, 21974, Taïf, PO Box 888, Saudi Arabia
| | - Khalid Alamer
- Department of Biology, College of Sciences, Taïf University, 21974, Taïf, PO Box 888, Saudi Arabia; Biology Dep. Science and Arts College-Rabigh Campus, King Abdul-Aziz Univ, Jeddah, Saudi Arabia
| | - Fahmy Hassan
- Department of Biology, College of Sciences, Taïf University, 21974, Taïf, PO Box 888, Saudi Arabia; Horticulture Dep., Faculty of Agric., Tanta University, Egypt
| | - Esmat Ali
- Department of Biology, College of Sciences, Taïf University, 21974, Taïf, PO Box 888, Saudi Arabia
| | - Samir Elshazly
- Department of Biology, College of Sciences, Taïf University, 21974, Taïf, PO Box 888, Saudi Arabia
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| | - Kamel Hessini
- Department of Biology, College of Sciences, Taïf University, 21974, Taïf, PO Box 888, Saudi Arabia; Biotechnology Center of Borj-Cedria, The University of Tunis El Manar, Tunis, Tunisia.
| |
Collapse
|
17
|
McGale E, Valim H, Mittal D, Morales Jimenez J, Halitschke R, Schuman MC, Baldwin IT. Determining the scale at which variation in a single gene changes population yields. eLife 2020; 9:e53517. [PMID: 32057293 PMCID: PMC7136025 DOI: 10.7554/elife.53517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/13/2020] [Indexed: 11/13/2022] Open
Abstract
Plant trait diversity is known to influence population yield, but the scale at which this happens remains unknown: divergent individuals might change yields of immediate neighbors (neighbor scale) or of plants across a population (population scale). We use Nicotiana attenuata plants silenced in mitogen-activated protein kinase 4 (irMPK4) - with low water-use efficiency (WUE) - to study the scale at which water-use traits alter intraspecific population yields. In the field and glasshouse, we observed overyielding in populations with low percentages of irMPK4 plants, unrelated to water-use phenotypes. Paired-plant experiments excluded the occurrence of overyielding effects at the neighbor scale. Experimentally altering field arbuscular mycorrhizal fungal associations by silencing the Sym-pathway gene NaCCaMK did not affect reproductive overyielding, implicating an effect independent of belowground AMF interactions. Additionally, micro-grafting experiments revealed dependence on shoot-expressed MPK4 for N. attenuata to vary its yield per neighbor presence. We find that variation in a single gene, MPK4, is responsible for population overyielding through a mechanism, independent of irMPK4's WUE phenotype, at the aboveground, population scale.
Collapse
Affiliation(s)
- Erica McGale
- Department of Molecular Ecology, Max Planck for Chemical EcologyJenaGermany
| | - Henrique Valim
- Department of Molecular Ecology, Max Planck for Chemical EcologyJenaGermany
| | - Deepika Mittal
- Department of Molecular Ecology, Max Planck for Chemical EcologyJenaGermany
| | | | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck for Chemical EcologyJenaGermany
| | - Meredith C Schuman
- Department of Molecular Ecology, Max Planck for Chemical EcologyJenaGermany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck for Chemical EcologyJenaGermany
| |
Collapse
|
18
|
Flood PJ. Using natural variation to understand the evolutionary pressures on plant photosynthesis. CURRENT OPINION IN PLANT BIOLOGY 2019; 49:68-73. [PMID: 31284076 DOI: 10.1016/j.pbi.2019.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/23/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
Photosynthesis is the gateway of the Sun's energy into the biosphere and the source of the ozone layer; thus it is both provider and protector of life as we know it. Despite its pivotal role we know surprisingly little about the genetic basis of variation in photosynthesis and the selective pressures giving rise to or maintaining this variation. In this review, I will briefly summarise our current knowledge of intraspecific and interspecific variation in photosynthesis to understand the main selective constraints on photosynthesis and what this means for the future of nature and agriculture in a changing world.
Collapse
Affiliation(s)
- Pádraic J Flood
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
| |
Collapse
|
19
|
Climate change and abiotic stress mechanisms in plants. Emerg Top Life Sci 2019; 3:165-181. [DOI: 10.1042/etls20180105] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/05/2019] [Accepted: 04/09/2019] [Indexed: 12/20/2022]
Abstract
Abstract
Predicted global climatic change will perturb the productivity of our most valuable crops as well as detrimentally impact ecological fitness. The most important aspects of climate change with respect to these effects relate to water availability and heat stress. Over multiple decades, the plant research community has amassed a highly comprehensive understanding of the physiological mechanisms that facilitate the maintenance of productivity in response to drought, flooding, and heat stress. Consequently, the foundations necessary to begin the development of elite crop varieties that are primed for climate change are in place. To meet the food and fuel security concerns of a growing population, it is vital that biotechnological and breeding efforts to harness these mechanisms are accelerated in the coming decade. Despite this, those concerned with crop improvement must approach such efforts with caution and ensure that potentially harnessed mechanisms are viable under the context of a dynamically changing environment.
Collapse
|
20
|
Leakey ADB, Ferguson JN, Pignon CP, Wu A, Jin Z, Hammer GL, Lobell DB. Water Use Efficiency as a Constraint and Target for Improving the Resilience and Productivity of C 3 and C 4 Crops. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:781-808. [PMID: 31035829 DOI: 10.1146/annurev-arplant-042817-040305] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The ratio of plant carbon gain to water use, known as water use efficiency (WUE), has long been recognized as a key constraint on crop production and an important target for crop improvement. WUE is a physiologically and genetically complex trait that can be defined at a range of scales. Many component traits directly influence WUE, including photosynthesis, stomatal and mesophyll conductances, and canopy structure. Interactions of carbon and water relations with diverse aspects of the environment and crop development also modulate WUE. As a consequence, enhancing WUE by breeding or biotechnology has proven challenging but not impossible. This review aims to synthesize new knowledge of WUE arising from advances in phenotyping, modeling, physiology, genetics, and molecular biology in the context of classical theoretical principles. In addition, we discuss how rising atmospheric CO2 concentration has created and will continue to create opportunities for enhancing WUE by modifying the trade-off between photosynthesis and transpiration.
Collapse
Affiliation(s)
- Andrew D B Leakey
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA;
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - John N Ferguson
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Charles P Pignon
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA;
| | - Alex Wu
- Centre for Crop Science and Centre of Excellence for Translational Photosynthesis, University of Queensland, St. Lucia, Queensland 4069, Australia
| | - Zhenong Jin
- Department of Earth System Science and Center for Food Security and Environment, Stanford University, Stanford, California 94305, USA
| | - Graeme L Hammer
- Centre for Crop Science and Centre of Excellence for Translational Photosynthesis, University of Queensland, St. Lucia, Queensland 4069, Australia
| | - David B Lobell
- Department of Earth System Science and Center for Food Security and Environment, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
21
|
Takou M, Wieters B, Kopriva S, Coupland G, Linstädter A, De Meaux J. Linking genes with ecological strategies in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1141-1151. [PMID: 30561727 PMCID: PMC6382341 DOI: 10.1093/jxb/ery447] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/30/2018] [Accepted: 11/15/2018] [Indexed: 05/22/2023]
Abstract
Arabidopsis thaliana is the most prominent model system in plant molecular biology and genetics. Although its ecology was initially neglected, collections of various genotypes revealed a complex population structure, with high levels of genetic diversity and substantial levels of phenotypic variation. This helped identify the genes and gene pathways mediating phenotypic change. Population genetics studies further demonstrated that this variation generally contributes to local adaptation. Here, we review evidence showing that traits affecting plant life history, growth rate, and stress reactions are not only locally adapted, they also often co-vary. Co-variation between these traits indicates that they evolve as trait syndromes, and reveals the ecological diversification that took place within A. thaliana. We argue that examining traits and the gene that control them within the context of global summary schemes that describe major ecological strategies will contribute to resolve important questions in both molecular biology and ecology.
Collapse
Affiliation(s)
| | | | | | - George Coupland
- Max Planck Institute of Plant Breeding Research, Cologne, Germany
| | - Anja Linstädter
- Institute of Botany, University of Cologne, Germany
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Germany
| | | |
Collapse
|
22
|
Peltier E, Sharma V, Martí Raga M, Roncoroni M, Bernard M, Jiranek V, Gibon Y, Marullo P. Dissection of the molecular bases of genotype x environment interactions: a study of phenotypic plasticity of Saccharomyces cerevisiae in grape juices. BMC Genomics 2018; 19:772. [PMID: 30409183 PMCID: PMC6225642 DOI: 10.1186/s12864-018-5145-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/05/2018] [Indexed: 11/17/2022] Open
Abstract
Background The ability of a genotype to produce different phenotypes according to its surrounding environment is known as phenotypic plasticity. Within different individuals of the same species, phenotypic plasticity can vary greatly. This contrasting response is caused by gene-by-environment interactions (GxE). Understanding GxE interactions is particularly important in agronomy, since selected breeds and varieties may have divergent phenotypes according to their growing environment. Industrial microbes such as Saccharomyces cerevisiae are also faced with a large range of fermentation conditions that affect their technological properties. Finding the molecular determinism of such variations is a critical task for better understanding the genetic bases of phenotypic plasticity and can also be helpful in order to improve breeding methods. Results In this study we implemented a QTL mapping program using two independent cross (~ 100 progeny) in order to investigate the molecular basis of yeast phenotypic response in a wine fermentation context. Thanks to whole genome sequencing approaches, both crosses were genotyped, providing saturated genetic maps of thousands of markers. Linkage analyses allowed the detection of 78 QTLs including 21 with significant interaction with the environmental conditions. Molecular dissection of a major QTL demonstrated that the sulfite pump Ssu1p has a pleiotropic effect and impacts the phenotypic plasticity of several traits. Conclusions The detection of QTLs and their interactions with environment emphasizes the complexity of yeast industrial traits. The validation of the interaction of SSU1 allelic variants with the nature of the fermented juice increases knowledge about the impact of the sulfite pump during fermentation. All together these results pave the way for exploiting and deciphering the genetic determinism of phenotypic plasticity. Electronic supplementary material The online version of this article (10.1186/s12864-018-5145-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emilien Peltier
- Univ. Bordeaux, ISVV, Unité de recherche OEnologie EA 4577, USC 1366 INRA, Bordeaux INP, Villenave d'Ornon, France. .,Biolaffort, Bordeaux, France.
| | - Vikas Sharma
- Univ. Bordeaux, ISVV, Unité de recherche OEnologie EA 4577, USC 1366 INRA, Bordeaux INP, Villenave d'Ornon, France
| | - Maria Martí Raga
- Univ. Bordeaux, ISVV, Unité de recherche OEnologie EA 4577, USC 1366 INRA, Bordeaux INP, Villenave d'Ornon, France.,Departament de Bioquímica i Biotecnologia, Facultat d'Enologia de Tarragona, Tarragona, Spain
| | - Miguel Roncoroni
- Wine Science Programme, University of Auckland, Private Bag, Auckland, 92019, New Zealand
| | - Margaux Bernard
- Univ. Bordeaux, ISVV, Unité de recherche OEnologie EA 4577, USC 1366 INRA, Bordeaux INP, Villenave d'Ornon, France.,Biolaffort, Bordeaux, France
| | - Vladimir Jiranek
- Department of Wine and Food Science, University of Adelaide, Urrbrae, South Australia, 5064, Australia
| | - Yves Gibon
- INRA, University of Bordeaux, UMR 1332 Fruit Biology and Pathology, F-33883, Villenave d'Ornon, France
| | - Philippe Marullo
- Univ. Bordeaux, ISVV, Unité de recherche OEnologie EA 4577, USC 1366 INRA, Bordeaux INP, Villenave d'Ornon, France.,Biolaffort, Bordeaux, France
| |
Collapse
|
23
|
Dittberner H, Korte A, Mettler-Altmann T, Weber APM, Monroe G, de Meaux J. Natural variation in stomata size contributes to the local adaptation of water-use efficiency in Arabidopsis thaliana. Mol Ecol 2018; 27:4052-4065. [PMID: 30118161 PMCID: PMC7611081 DOI: 10.1111/mec.14838] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 07/18/2018] [Accepted: 07/24/2018] [Indexed: 01/01/2023]
Abstract
Stomata control gas exchanges between the plant and the atmosphere. How natural variation in stomata size and density contributes to resolve trade-offs between carbon uptake and water loss in response to local climatic variation is not yet understood. We developed an automated confocal microscopy approach to characterize natural genetic variation in stomatal patterning in 330 fully sequenced Arabidopsis thaliana accessions collected throughout the European range of the species. We compared this to variation in water-use efficiency, measured as carbon isotope discrimination (δ13 C). We detect substantial genetic variation for stomata size and density segregating within Arabidopsis thaliana. A positive correlation between stomata size and δ13 C further suggests that this variation has consequences on water-use efficiency. Genome wide association analyses indicate a complex genetic architecture underlying not only variation in stomatal patterning but also to its covariation with carbon uptake parameters. Yet, we report two novel QTL affecting δ13 C independently of stomatal patterning. This suggests that, in A. thaliana, both morphological and physiological variants contribute to genetic variance in water-use efficiency. Patterns of regional differentiation and covariation with climatic parameters indicate that natural selection has contributed to shape some of this variation, especially in Southern Sweden, where water availability is more limited in spring relative to summer. These conditions are expected to favour the evolution of drought avoidance mechanisms over drought escape strategies.
Collapse
Affiliation(s)
| | - Arthur Korte
- Center for Computational and Theoretical Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Tabea Mettler-Altmann
- Institute of Plant Biochemistry & CEPLAS Plant Metabolism and Metabolomics Laboratory, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Andreas P. M. Weber
- Institute of Plant Biochemistry & CEPLAS Plant Metabolism and Metabolomics Laboratory, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Grey Monroe
- College of Agricultural Sciences, Colorado State University, Fort Collins, Colorado
| | | |
Collapse
|
24
|
Ferguson JN, Humphry M, Lawson T, Brendel O, Bechtold U. Natural variation of life-history traits, water use, and drought responses in Arabidopsis. PLANT DIRECT 2018; 2:e00035. [PMID: 31245683 PMCID: PMC6508493 DOI: 10.1002/pld3.35] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 11/20/2017] [Accepted: 12/12/2017] [Indexed: 05/17/2023]
Abstract
The ability of plants to acquire and use water is critical in determining life-history traits such as growth, flowering, and allocation of biomass into reproduction. In this context, a combination of functionally linked traits is essential for plants to respond to environmental changes in a coordinated fashion to maximize resource use efficiency. We analyzed different water-use traits in Arabidopsis ecotypes to identify functionally linked traits that determine water use and plant growth performance. Water-use traits measured were (i) leaf-level water-use efficiency (WUE i ) to evaluate the amount of CO 2 fixed relative to water loss per leaf area and (ii) short-term plant water use at the vegetative stage (VWU) as a measure of whole-plant transpiration. Previously observed phenotypic variance in VWU, WUE i and life-history parameters, highlighted C24 as a valuable ecotype that combined drought tolerance, preferential reproductive biomass allocation, high WUE i , and reduced water use. We therefore screened 35 Arabidopsis ecotypes for these parameters, in order to assess whether the phenotypic combinations observed in C24 existed more widely within Arabidopsis ecotypes. All parameters were measured on a short dehydration cycle. A segmented regression analysis was carried out to evaluate the plasticity of the drought response and identified the breakpoint as a reliable measure of drought sensitivity. VWU was largely dependent on rosette area, but importantly the drought sensitivity and plasticity measures were independent of the transpiring leaf surface. A breakpoint at high rSWC indicated a more drought-sensitive plant that closed stomata early during the dehydration cycle and consequently showed stronger plasticity in leaf-level WUE i parameters. None of the sensitivity, plasticity, or water-use measurements were able to predict the overall growth performance; however, there was a general trade-off between vegetative and reproductive biomass. PCA and hierarchical clustering revealed that C24 was unique among the 35 ecotypes in uniting all the beneficial water use and stress tolerance traits, while also maintaining above average plant growth. We propose that a short dehydration cycle, measuring drought sensitivity and VWU is a fast and reliable screen for plant water use and drought response strategies.
Collapse
Affiliation(s)
- John N. Ferguson
- School of Biological SciencesUniversity of EssexColchesterUK
- Present address:
Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Matt Humphry
- Advanced Technologies CambridgeCambridge Science ParkCambridgeUK
- Present address:
British American TobaccoCambridge Science ParkCambridgeUK
| | - Tracy Lawson
- School of Biological SciencesUniversity of EssexColchesterUK
| | | | - Ulrike Bechtold
- School of Biological SciencesUniversity of EssexColchesterUK
| |
Collapse
|
25
|
Guo H, Peng X, Gu L, Wu J, Ge F, Sun Y. Up-regulation of MPK4 increases the feeding efficiency of the green peach aphid under elevated CO2 in Nicotiana attenuata. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5923-5935. [PMID: 29140446 DOI: 10.1093/jxb/erx394] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Previous research has shown that elevated CO2 reduces plant resistance against insects and enhances the water use efficiency of C3 plants, which improves the feeding efficiency of aphids. Although plant mitogen-activated protein kinases (MAPKs) are known to regulate water relations and phytohormone-mediated resistance, little is known about the effect of elevated CO2 on MAPKs and the cascading effects on aphids. By using stably transformed Nicotiana attenuata plants silenced in MPK4, wound-induced protein kinase (WIPK), or salicylic acid-induced protein kinase (SIPK), we determined the functions of MAPKs in plant-aphid interactions and their responses to elevated CO2. The results showed that among all plant genotypes, inverted repeat MPK4 plants had the largest stomatal apertures, the lowest water content, the strongest jasmonic acid (JA)-dependent resistance, and the lowest aphid numbers, suggesting that MPK4 affects plant responses to aphids by regulating stomatal aperture and JA-dependent resistance. Regardless of aphid infestation, elevated CO2 up-regulated MPK4, but not WIPK or SIPK, in wild-type plants. Elevated CO2 increased the number, mean relative growth rate, and feeding efficiency of aphids on all plant genotypes except inverted repeat MPK4. We conclude that MPK4 is a CO2-responsive plant determinant that regulates the molecular interaction between plants and aphids.
Collapse
Affiliation(s)
- Huijuan Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xinhong Peng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Liyuan Gu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Feng Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yucheng Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
26
|
Hu J, Lei L, de Meaux J. Temporal fitness fluctuations in experimental Arabidopsis thaliana populations. PLoS One 2017; 12:e0178990. [PMID: 28604796 PMCID: PMC5467858 DOI: 10.1371/journal.pone.0178990] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/22/2017] [Indexed: 12/17/2022] Open
Abstract
Understanding the genetics of lifetime fitness is crucial to understand a species’ ecological preferences and ultimately predict its ability to cope with novel environmental conditions. Yet, there is a dearth of information regarding the impact of the ecological variance experienced by natural populations on expressed phenotypic and fitness differences. Here, we follow the natural dynamics of experimental A. thaliana populations over 5 successive plantings whose timing was determined by the natural progression of the plant’s life cycle and disentangle the environmental and genetic factors that drive plant ecological performance at a given locality. We show that, at the temperate latitude where the experiment was conducted, a given genotype can experience winter-, spring- or summer-annual life cycles across successive seasons. Lifetime fitness across these seasons varied strongly, with a fall planting yielding 36-fold higher fitness compared to a spring planting. In addition, the actual life-stage at which plant overwinter oscillated across years, depending on the timing of the end of the summer season. We observed a rare but severe fitness differential coinciding with inadequate early flowering in one of the five planting. Substrate variation played a comparatively minor role, but also contributed to modulate the magnitude of fitness differentials between genotypes. Finally, reciprocal introgressions on chromosome 4 demonstrated that the fitness effect of a specific chromosomal region is strongly contingent on micro-geographic and seasonal fluctuations. Our study contributes to emphasize the extent to which the fitness impact of phenotypic traits and the genes that encode them in the genome can fluctuate. Experiments aiming at dissecting the molecular basis of local adaptation must apprehend the complexity introduced by temporal fluctuations because they massively affect the expression of phenotype and fitness differences.
Collapse
Affiliation(s)
- Jinyong Hu
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan Province, P.R. China
- * E-mail: (JM); (JYH)
| | - Li Lei
- Dept. of Agronomy & Plant Genetics, University of Minnesota, St. Paul, MN, United States of America
| | - Juliette de Meaux
- Institute of Botany, University of Cologne Biocenter, Zülpicherstr. 47b, Cologne Germany
- * E-mail: (JM); (JYH)
| |
Collapse
|
27
|
|
28
|
Des Marais DL, Razzaque S, Hernandez KM, Garvin DF, Juenger TE. Quantitative trait loci associated with natural diversity in water-use efficiency and response to soil drying in Brachypodium distachyon. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 251:2-11. [PMID: 27593458 DOI: 10.1016/j.plantsci.2016.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/18/2016] [Accepted: 03/23/2016] [Indexed: 05/25/2023]
Abstract
All plants must optimize their growth with finite resources. Water use efficiency (WUE) measures the relationship between biomass acquisition and transpired water. In the present study, we performed two experiments to understand the genetic basis of WUE and other parameters of plant-water interaction under control and water-limited conditions. Our study used two inbred natural accessions of Brachypodium distachyon, a model grass species with close phylogenetic affinity to temperate forage and cereal crops. First, we identify the soil water content which causes a reduction in leaf relative water content and an increase in WUE. Second, we present results from a large phenotyping experiment utilizing a recombinant inbred line mapping population derived from these same two natural accessions. We identify QTLs associated with environmentally-insensitive genetic variation in WUE, including a pair of epistatically interacting loci. We also identify QTLs associated with constitutive differences in biomass and a QTL describing an environmentally-sensitive difference in leaf carbon content. Finally, we present a new linkage map for this mapping population based on new SNP markers as well as updated genomic positions for previously described markers. Our studies provide an initial characterization of plant-water relations in B. distachyon and identify candidate genomic regions involved in WUE.
Collapse
Affiliation(s)
- David L Des Marais
- Department of Integrative Biology and Institute for Cell and Molecular Biology, The University of Texas at Austin, United States.
| | - Samsad Razzaque
- Department of Integrative Biology and Institute for Cell and Molecular Biology, The University of Texas at Austin, United States
| | - Kyle M Hernandez
- Department of Integrative Biology and Institute for Cell and Molecular Biology, The University of Texas at Austin, United States
| | - David F Garvin
- U.S. Department of Agriculture-Agricultural Research Service, Plant Science Research Unit, St. Paul, MN, United States
| | - Thomas E Juenger
- Department of Integrative Biology and Institute for Cell and Molecular Biology, The University of Texas at Austin, United States
| |
Collapse
|
29
|
McAusland L, Vialet‐Chabrand S, Davey P, Baker NR, Brendel O, Lawson T. Effects of kinetics of light-induced stomatal responses on photosynthesis and water-use efficiency. THE NEW PHYTOLOGIST 2016; 211:1209-20. [PMID: 27214387 PMCID: PMC4982059 DOI: 10.1111/nph.14000] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/24/2016] [Indexed: 05/18/2023]
Abstract
Both photosynthesis (A) and stomatal conductance (gs ) respond to changing irradiance, yet stomatal responses are an order of magnitude slower than photosynthesis, resulting in noncoordination between A and gs in dynamic light environments. Infrared gas exchange analysis was used to examine the temporal responses and coordination of A and gs to a step increase and decrease in light in a range of different species, and the impact on intrinsic water use efficiency was evaluated. The temporal responses revealed a large range of strategies to save water or maximize photosynthesis in the different species used in this study but also displayed an uncoupling of A and gs in most of the species. The shape of the guard cells influenced the rapidity of response and the overall gs values achieved, with different impacts on A and Wi . The rapidity of gs in dumbbell-shaped guard cells could be attributed to size, whilst in elliptical-shaped guard cells features other than anatomy were more important for kinetics. Our findings suggest significant variation in the rapidity of stomatal responses amongst species, providing a novel target for improving photosynthesis and water use.
Collapse
Affiliation(s)
- Lorna McAusland
- School of Biological SciencesUniversity of EssexColchesterCO4 3SQUK
| | | | - Philip Davey
- School of Biological SciencesUniversity of EssexColchesterCO4 3SQUK
| | - Neil R. Baker
- School of Biological SciencesUniversity of EssexColchesterCO4 3SQUK
| | - Oliver Brendel
- INRAUMR1137 ‘Ecologie et Ecophysiologie Forestières’F‐54280ChampenouxFrance
- UMR1137 ‘Ecologie et Ecophysiologie Forestières’Faculté des SciencesUniversité de LorraineF‐54500Vandoeuvre‐Les‐NancyFrance
| | - Tracy Lawson
- School of Biological SciencesUniversity of EssexColchesterCO4 3SQUK
| |
Collapse
|
30
|
Coupel-Ledru A, Lebon E, Christophe A, Gallo A, Gago P, Pantin F, Doligez A, Simonneau T. Reduced nighttime transpiration is a relevant breeding target for high water-use efficiency in grapevine. Proc Natl Acad Sci U S A 2016; 113:8963-8. [PMID: 27457942 PMCID: PMC4987834 DOI: 10.1073/pnas.1600826113] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Increasing water scarcity challenges crop sustainability in many regions. As a consequence, the enhancement of transpiration efficiency (TE)-that is, the biomass produced per unit of water transpired-has become crucial in breeding programs. This could be achieved by reducing plant transpiration through a better closure of the stomatal pores at the leaf surface. However, this strategy generally also lowers growth, as stomatal opening is necessary for the capture of atmospheric CO2 that feeds daytime photosynthesis. Here, we considered the reduction in transpiration rate at night (En) as a possible strategy to limit water use without altering growth. For this purpose, we carried out a genetic analysis for En and TE in grapevine, a major crop in drought-prone areas. Using recently developed phenotyping facilities, potted plants of a cross between Syrah and Grenache cultivars were screened for 2 y under well-watered and moderate soil water deficit scenarios. High genetic variability was found for En under both scenarios and was primarily associated with residual diffusion through the stomata. Five quantitative trait loci (QTLs) were detected that underlay genetic variability in En Interestingly, four of them colocalized with QTLs for TE. Moreover, genotypes with favorable alleles on these common QTLs exhibited reduced En without altered growth. These results demonstrate the interest of breeding grapevine for lower water loss at night and pave the way to breeding other crops with this underexploited trait for higher TE.
Collapse
Affiliation(s)
- Aude Coupel-Ledru
- UMR Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), Institut National de la Recherche Agronomique (INRA), Montpellier SupAgro, 34060 Montpellier, France;
| | - Eric Lebon
- UMR Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), Institut National de la Recherche Agronomique (INRA), Montpellier SupAgro, 34060 Montpellier, France
| | - Angélique Christophe
- UMR Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), Institut National de la Recherche Agronomique (INRA), Montpellier SupAgro, 34060 Montpellier, France
| | - Agustina Gallo
- UMR Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), Institut National de la Recherche Agronomique (INRA), Montpellier SupAgro, 34060 Montpellier, France
| | - Pilar Gago
- Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas (MBG-CSIC), 36143 Pontevedra, Spain
| | - Florent Pantin
- UMR Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), Institut National de la Recherche Agronomique (INRA), Montpellier SupAgro, 34060 Montpellier, France
| | - Agnès Doligez
- UMR Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (AGAP), Institut National de la Recherche Agronomique (INRA), F-34060 Montpellier, France
| | - Thierry Simonneau
- UMR Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), Institut National de la Recherche Agronomique (INRA), Montpellier SupAgro, 34060 Montpellier, France;
| |
Collapse
|