1
|
Nevermann DH, Gros C, Lennon JT. A Game of Life with dormancy. Proc Biol Sci 2025; 292:20242543. [PMID: 39876717 PMCID: PMC11775590 DOI: 10.1098/rspb.2024.2543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 01/30/2025] Open
Abstract
The factors contributing to the persistence and stability of life are fundamental for understanding complex living systems. Organisms are commonly challenged by harsh and fluctuating environments that are suboptimal for growth and reproduction, which can lead to extinction. Many species contend with unfavourable and noisy conditions by entering a reversible state of reduced metabolic activity, a phenomenon known as dormancy. Here, we develop Spore Life, a model to investigate the effects of dormancy on population dynamics. It is based on Conway's Game of Life (GoL), a deterministic cellular automaton where simple rules govern the metabolic state of an individual based on the metabolic state of its neighbours. For individuals that would otherwise die, Spore Life provides a refuge in the form of an inactive state. These dormant individuals (spores) can resuscitate when local conditions improve. The model includes a parameter [Formula: see text] that controls the survival probability of spores, interpolating between GoL ([Formula: see text]) and Spore Life ([Formula: see text]), while capturing stochastic dynamics in the intermediate regime ([Formula: see text]). In addition to identifying the emergence of unique periodic configurations, we find that spore survival increases the average number of active individuals and buffers populations from extinction. Contrary to expectations, stabilization of the population is not the result of a large and long-lived seed bank. Instead, the demographic patterns in Spore Life only require a small number of resuscitation events. Our approach yields novel insight into what is minimally required for the origins of complex behaviours associated with dormancy and the seed banks that they generate.
Collapse
Affiliation(s)
| | - Claudius Gros
- Institute for Theoretical Physics, Goethe-Universitat Frankfurt, Frankfurt, Germany
| | - Jay T. Lennon
- Department of Biology, Indiana University, Bloomington, IN47405, USA
| |
Collapse
|
2
|
Cuello WS, Schreiber SJ, Gremer JR, Trimmer PC, Venable DL, Sih A. Shifting Precipitation Regimes Influence Optimal Germination Strategies and Population Dynamics in Bet-Hedging Desert Annuals. Am Nat 2025; 205:55-75. [PMID: 39718794 DOI: 10.1086/733105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
AbstractClimate change will affect both the mean and the variability in environmental conditions and may have major negative impacts on population densities in the future. For annual plants that already live in an extreme environment like the Sonoran Desert, keeping a fraction of their seeds dormant underground (for possibly years at a time) is critical to survive. Here, we consider how this form of bet hedging (i.e., delayed germination) for 10 Sonoran Desert annuals mediates responses to precipitation shifts. We use a demographic model parameterized with long-term field and precipitation data to explore how forecasted changes in precipitation impact annual plant species' population densities. We then examine how instantaneous evolution of optimal germination fractions in the shifted precipitation regimes bolsters population densities. Our results indicate that overall less rainfall and, to a lesser extent, increased variance in rainfall drive population levels down. Instantaneous evolution of optimal germination fractions in new regimes benefited species' populations only marginally, and only for small to moderate shifts in precipitation. Thus, even rapid evolution is unlikely to save populations experiencing larger shifts in precipitation. Finally, we predict that specialists that can capitalize on wet-year bonanzas or are water use efficient will be the most resilient to precipitation shifts as long as their seed survivorships are sufficiently high.
Collapse
|
3
|
Wang Y, Zhang TL, Barnett EM, Sureshkumar S, Balasubramanian S, Fournier-Level A. Warm temperature perceived at the vegetative stage affects progeny seed germination in natural accessions of Arabidopsis thaliana. THE NEW PHYTOLOGIST 2025; 245:668-683. [PMID: 39550624 DOI: 10.1111/nph.20241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 10/10/2024] [Indexed: 11/18/2024]
Abstract
Temperatures perceived early in the life cycle of mother plants can affect the germination of the offspring seeds. In Arabidopsis thaliana, vernalisation-insensitive mutants showed altered germination response to elevated maternal temperature, hence revealing a strong genetic determinism. However, the genetic control of this maternal effect and its prevalence across natural populations remain unclear. Here, we exposed a collection of European accessions of A. thaliana to increased temperature during the vegetative phase and assessed germination in their progeny to identify the genetic basis of transgenerational germination response. We found that genotypes with rapidly germinating progeny after early maternal exposure to elevated temperature originated from regions with low-light radiation. Combining genome-wide association, expression analysis and functional assays across multiple genetic backgrounds, we show a central role for PHYB in mediating the response to maternally perceived temperature at the vegetative stage. Differential gene expression analysis in leaves identified a similar genetic network as previously found in seed endosperm under elevated temperature, supporting the pleiotropic involvement of PHYB signalling across different tissues and stages. This provides evidence that complex environmental responses modulated by the maternal genotype can rely on a consistent set of genes yet produce different effects at the different stages of exposure.
Collapse
Affiliation(s)
- Yu Wang
- School of BioSciences, The University of Melbourne, Parkville, Vic., 3010, Australia
| | - Tania L Zhang
- School of BioSciences, The University of Melbourne, Parkville, Vic., 3010, Australia
| | - Emma M Barnett
- School of BioSciences, The University of Melbourne, Parkville, Vic., 3010, Australia
| | - Sridevi Sureshkumar
- School of Biological Sciences, Monash University, Clayton, Vic., 3800, Australia
| | | | | |
Collapse
|
4
|
Noonburg EG, Alonzo SH, Osenberg CW, Swearer SE, Shima JS. Patterns of spawning and settlement of reef fishes as strategic responses to post-settlement competition. Theor Popul Biol 2024; 160:1-13. [PMID: 39182695 DOI: 10.1016/j.tpb.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
Settlement is a critical transition in the life history of reef fish, and the timing of this event can have a strong effect on fitness. Key factors that influence settlement timing are predictable lunar cyclic variation in tidal currents, moonlight, and nocturnal predation risk as larvae transition from pelagic to benthic environments. However, populations typically display wide variation in the arrival of settlers over the lunar cycle. This variation is often hypothesized to result from unpredictable conditions in the pelagic environment and bet-hedging by spawning adults. Here, we consider the hypothesis that the timing of spawning and settlement is a strategic response to post-settlement competition. We use a game theoretic model to predict spawning and settlement distributions when fish face a tradeoff between minimizing density-independent predation risk while crossing the reef crest vs. avoiding high competitor density on settlement habitat. In general, we expect competition to spread spawning over time such that settlement is distributed around the lunar phase with the lowest predation risk, similar to an ideal free distribution in which competition spreads competitors across space. We examine the effects of overcompensating density dependence, age-dependent competition, and competition among daily settler cohorts. Our model predicts that even in the absence of stochastic variation in the larval environment, competition can result in qualitative divergence between spawning and settlement distributions. Furthermore, we show that if competitive strength increases with settler age, competition results in covariation between settler age and settlement date, with older larvae settling when predation risk is minimal. We predict that competition between daily cohorts delays peak settlement, with priority effects potentially selecting for a multimodal settlement distribution.
Collapse
Affiliation(s)
- Erik G Noonburg
- 7001 Seaview Ave NW, Ste. 160 PMB 860, Seattle, WA 98117, USA.
| | - Suzanne H Alonzo
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, USA
| | | | | | - Jeffrey S Shima
- School of Biological Sciences, Victoria University of Wellington, New Zealand
| |
Collapse
|
5
|
Vergara IH, Geber MA, Moeller DA, Eckhart VM. Population histories of variable reproductive success and low winter precipitation correlate with risk-averse seed germination in a mediterranean-climate winter annual. AMERICAN JOURNAL OF BOTANY 2024; 111:e16412. [PMID: 39328075 DOI: 10.1002/ajb2.16412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 09/28/2024]
Abstract
PREMISE Seed germination involves risk; post-germination conditions might not allow survival and reproduction. Variable, stressful environments favor seeds with germination that avoids risk (e.g., germination in conditions predicting success), spreads risk (e.g., dormancy), or escapes risk (e.g., rapid germination). Germination studies often investigate trait correlations with climate features linked to variation in post-germination reproductive success. Rarely are long-term records of population reproductive success available. METHODS Supported by demographic and climate monitoring, we analyzed germination in the California winter-annual Clarkia xantiana subsp. xantiana. Sowing seeds of 10 populations across controlled levels of water potential and temperature, we estimated temperature-specific base water potential for 20% germination, germination time weighted by water potential above base (hydrotime), and a dormancy index (frequency of viable, ungerminated seeds). Mixed-effects models analyzed responses to (1) temperature, (2) discrete variation in reproductive success (presence or absence of years with zero seed production by a population), and (3) climate covariates, mean winter precipitation and coefficient of variation (CV) of spring precipitation. For six populations, records enabled analysis with a continuous metric of variable reproduction, the CV of per-capita reproductive success. RESULTS Populations with more variable reproductive success had higher base water potential and dormancy. Higher base water potential and faster germination occurred at warmer experimental temperatures and in seeds of populations with wetter winters. CONCLUSIONS Geographic variation in seed germination in this species suggests local adaptation to demographic risk and rainfall. High base water potential and dormancy may concentrate germination in years likely to allow reproduction, while spreading risk among years.
Collapse
Affiliation(s)
- Isabella H Vergara
- Grinnell College, Grinnell, IA, USA
- Donald Danforth Plant Science Center, Olivette, MO, USA
| | | | | | | |
Collapse
|
6
|
Krebs SA, Schummer ML. A review of plant phenolics and endozoochory. Ecol Evol 2024; 14:e70255. [PMID: 39290664 PMCID: PMC11405292 DOI: 10.1002/ece3.70255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Phenolic compounds (phenolics) are secondary metabolites ubiquitous across plants. The earliest phenolics are linked to plants' successful transition from an aquatic to a terrestrial environment, serving as protection against damaging ultraviolet (UV) radiation, and as antioxidants to reduce oxidative stress in an atmosphere with an increasingly high O2:CO2 ratio. In modern plants, phenolics are best known for the defense against fungal and bacterial pathogens and as antifeedants that deter herbivory. Phenolics also play a role in seed dormancy, delaying germination, and lengthening viability in the seed bank. Many plants' seeds are endozoochorous - dispersed by animals, like birds, who eat and later excrete the seeds. Plants send visual signals to attract birds with UV-sensitive (UVS) vision for pollination and seed dispersal. As fruits ripen, antioxidant activity and phenolic content decrease. The waxy cuticle of fruits increases in UV reflection as phenolic rings, which absorb UV light, degrade. The UV contrast that birds detect may act as an honest signal, indicating nutritional changes in the fruit. However, there is little evidence to support the evolution of UV coloration during ripening being driven by frugivore selection. Antioxidant properties of fruit phenolics may be dually adaptive in plants and avian frugivores.
Collapse
Affiliation(s)
- Samuel A Krebs
- Department of Environmental Biology State University of New York College of Environmental Science and Forestry (SUNY ESF) Syracuse New York USA
| | - Michael L Schummer
- Department of Environmental Biology State University of New York College of Environmental Science and Forestry (SUNY ESF) Syracuse New York USA
| |
Collapse
|
7
|
Zhang X, van Kleunen M, Chang C, Liu Y. Soil microbes mediate the effects of resource variability on plant invasion. Ecology 2023; 104:e4154. [PMID: 37611168 DOI: 10.1002/ecy.4154] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/19/2023] [Indexed: 08/25/2023]
Abstract
A fundamental question in ecology is which species will prevail over others amid changes in both environmental mean conditions and their variability. Although the widely accepted fluctuating resource hypothesis predicts that increases in mean resource availability and variability therein will promote nonnative plant invasion, it remains unclear to what extent these effects might be mediated by soil microbes. We grew eight invasive nonnative plant species as target plants in pot-mesocosms planted with five different synthetic native communities as competitors, and assigned them to eight combinations of two nutrient-fluctuation (constant vs. pulsed), two nutrient-availability (low vs. high) and two soil-microbe (living vs. sterilized) treatments. We found that when plants grew in sterilized soil, nutrient fluctuation promoted the dominance of nonnative plants under overall low nutrient availability, whereas the nutrient fluctuation had minimal effect under high nutrient availability. In contrast, when plants grew in living soil, nutrient fluctuation promoted the dominance of nonnative plants under high nutrient availability rather than under low nutrient availability. Analysis of the soil microbial community suggests that this might reflect that nutrient fluctuation strongly increased the relative abundance of the most dominant pathogenic fungal family or genus under high nutrient availability, while decreasing it under low nutrient availability. Our findings are the first to indicate that besides its direct effect, environmental variability could also indirectly affect plant invasion via changes in soil microbial communities.
Collapse
Affiliation(s)
- Xue Zhang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz, Konstanz, Germany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| | - Chunling Chang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Yanjie Liu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
8
|
Is endozoochoric seed dispersal by large herbivores an evolutionary adaptation? Revisiting the Janzen's ‘Foliage is the fruit’ hypothesis. ACTA OECOLOGICA 2023. [DOI: 10.1016/j.actao.2022.103888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Usinowicz J, O'Connor MI. The fitness value of ecological information in a variable world. Ecol Lett 2023; 26:621-639. [PMID: 36849871 DOI: 10.1111/ele.14166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 03/01/2023]
Abstract
Information processing is increasingly recognized as a fundamental component of life in variable environments, including the evolved use of environmental cues, biomolecular networks, and social learning. Despite this, ecology lacks a quantitative framework for understanding how population, community, and ecosystem dynamics depend on information processing. Here, we review the rationale and evidence for 'fitness value of information' (FVOI), and synthesize theoretical work in ecology, information theory, and probability behind this general mathematical framework. The FVOI quantifies how species' per capita population growth rates can depend on the use of information in their environment. FVOI is a breakthrough approach to linking information processing and ecological and evolutionary outcomes in a changing environment, addressing longstanding questions about how information mediates the effects of environmental change and species interactions.
Collapse
Affiliation(s)
- Jacob Usinowicz
- Department of Zoology, University of British Columbia, Vancouver, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| | - Mary I O'Connor
- Department of Zoology, University of British Columbia, Vancouver, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| |
Collapse
|
10
|
Maleki K, Baskin CC, Baskin JM, Kiani M, Alahdadi I, Soltani E. Seed germination thermal niche differs among nine populations of an annual plant: A modeling approach. Ecol Evol 2022; 12:e9240. [PMID: 36052295 PMCID: PMC9412254 DOI: 10.1002/ece3.9240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 07/07/2022] [Accepted: 08/01/2022] [Indexed: 11/09/2022] Open
Abstract
Germination timing is an important determinant of survival and niche breadth of plants. The annual plant Nigella sativa occurs in diverse environments along a steep temperature gradient and thus is a suitable model for the study of germination behavior in response to temperature. We used a modeling approach to compare the germination thermal niche of seeds of nine populations of N. sativa produced in a common garden. Germination time courses were obtained by a newly developed process-based model, and thermal niche was visualized by plotting germination breadth as a function of after-ripening time. Seeds were sampled five times: immature (2 weeks before maturity), mature, and afterripened for 1, 2, and 5 months. Immature and mature seeds had a greater depth of dormancy than afterripened seeds, as estimated by lower values of high-limit temperatures (T h). Afterripening increased germination percentage, synchrony, and thermal niche breadth of all nine populations. The highest asynchrony was for immature and mature seeds, and afterripening enhanced synchrony. Based on the new graphical method, N. sativa has Type 1 nondeep physiological dormancy, and thus, the germination niche is narrow at seed maturity, leading to a delayed germination strategy that is highly dependent on thermal time accumulated during afterripening. Our findings show that there is considerable variation in the germination thermal niche among populations. Temperature regimes in the natural habitats of N. sativa have played a significant role in shaping variation in thermal niche breadth for seed germination of this annual species. The models used in our study precisely predict germination behavior and thermal niche under different environmental conditions. The germination synchrony model also can estimate germination pattern and degree of dormancy during the year, suggesting a useful method for quantification of germination strategies.
Collapse
Affiliation(s)
- Keyvan Maleki
- Department of Agronomy and Plant Breeding Sciences, College of AburaihanUniversity of TehranTehranIran
| | - Carol C. Baskin
- Department of BiologyUniversity of KentuckyLexingtonKentuckyUSA
- Department of Plant and Soil SciencesUniversity of KentuckyLexingtonKentuckyUSA
| | - Jerry M. Baskin
- Department of BiologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Mohadeseh Kiani
- Department of Agronomy and Plant Breeding Sciences, College of AburaihanUniversity of TehranTehranIran
| | - Iraj Alahdadi
- Department of Agronomy and Plant Breeding Sciences, College of AburaihanUniversity of TehranTehranIran
| | - Elias Soltani
- Department of Agronomy and Plant Breeding Sciences, College of AburaihanUniversity of TehranTehranIran
| |
Collapse
|
11
|
Wang S, Zhou D. Dynamic morphological plasticity in response to emergence timing in Abutilon theophrasti (Malvaceae). PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2022; 3:118-129. [PMID: 37284429 PMCID: PMC10168065 DOI: 10.1002/pei3.10084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 06/08/2023]
Abstract
Selections on emergence time might be conflicting, suggesting the existence of the optimal emergence time for plants. However, we know little about this and how morphological plasticity contributes to the strategies of plants in response to emergence timing. To better understand this issue from a dynamic perspective, we conducted a field experiment by subjecting plants of Abutilon theophrasti to four emergence treatments (ET1 ~ ET4) and measuring a number of mass and morphological traits on them at different growth stages (I ~ IV). On day 50, 70, and/or final harvest, among all ET treatments, plants germinated in late spring (ET2) performed the best in total mass, spring germinants (ET1) and ET2 performed better in stem allocation, stem, and root diameters than later germinants (ET3 and ET4); summer germinants (ET3) had the highest reproductive mass and allocation, while late-summer germinants (ET4) had the greatest leaf mass allocation, with greater or canalized leaf number, and root length traits than others. Plants that emerged in late spring can maximize their growth potential, while those with either advanced or delayed emergence are still capable of adaptation via allocation and morphological plasticity. Early germinants (ET1 and ET2) preferred stem growth to leaf and reproductive growth, due to sufficient time for reproduction in the growth season. With limited time for growth, plants that emerged late may prefer to quicken leaf growth (indicated by increased leaf mass allocation and leaf number) at the cost of stem or root growth for the complete life cycle, reflecting both positive and negative effects of delayed emergence.
Collapse
Affiliation(s)
- Shu Wang
- College of Forestry, Forest Ecology Research CenterGuizhou UniversityGuiyangChina
| | - Dao‐Wei Zhou
- Northeast Institute of Geography and Agroecology, Chinese Academy of SciencesChangchunChina
| |
Collapse
|
12
|
Lewandrowski W, Stevens JC, Webber BL, L. Dalziell E, Trudgen MS, Bateman AM, Erickson TE. Global change impacts on arid zone ecosystems: Seedling establishment processes are threatened by temperature and water stress. Ecol Evol 2021; 11:8071-8084. [PMID: 34188872 PMCID: PMC8216921 DOI: 10.1002/ece3.7638] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 03/31/2021] [Accepted: 04/17/2021] [Indexed: 11/24/2022] Open
Abstract
Recruitment for many arid-zone plant species is expected to be impacted by the projected increase in soil temperature and prolonged droughts associated with global climate change. As seed dormancy is considered a strategy to avoid unfavorable conditions, understanding the mechanisms underpinning vulnerability to these factors is critical for plant recruitment in intact communities, as well as for restoration efforts in arid ecosystems. This study determined the effects of temperature and water stress on recruitment processes in six grass species in the genus Triodia R.Br. from the Australian arid zone. Experiments in controlled environments were conducted on dormant and less-dormant seeds at constant temperatures of 25°C, 30°C, 35°C, and 40°C, under well-watered (Ψsoil = -0.15 MPa) and water-limited (Ψsoil = -0.35 MPa) conditions. Success at three key recruitment stages-seed germination, emergence, and survival-and final seed viability of ungerminated seeds was assessed. For all species, less-dormant seeds germinated to higher proportions under all conditions; however, subsequent seedling emergence and survival were higher in the more dormant seed treatment. An increase in temperature (35-40°C) under water-limited conditions caused 95%-100% recruitment failure, regardless of the dormancy state. Ungerminated seeds maintained viability in dry soil; however, when exposed to warm (30-40°C) and well-watered conditions, loss of viability was greater from the less-dormant seeds across all species. This work demonstrates that the transition from seed to established seedling is highly vulnerable to microclimatic constraints and represents a critical filter for plant recruitment in the arid zone. As we demonstrate temperature and water stress-driven mortality between seeds and established seedlings, understanding how these factors influence recruitment in other arid-zone species should be a high priority consideration for management actions to mitigate the impacts of global change on ecosystem resilience. The knowledge gained from these outcomes must be actively incorporated into restoration initiatives.
Collapse
Affiliation(s)
- Wolfgang Lewandrowski
- Kings Park ScienceDepartment of Biodiversity, Conservation and AttractionsKings ParkWestern AustraliaAustralia
- School of Biological SciencesThe University of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Jason C. Stevens
- Kings Park ScienceDepartment of Biodiversity, Conservation and AttractionsKings ParkWestern AustraliaAustralia
- School of Biological SciencesThe University of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Bruce L. Webber
- School of Biological SciencesThe University of Western AustraliaCrawleyWestern AustraliaAustralia
- CSIRO Health and BiosecurityFloreatWestern AustraliaAustralia
- Western Australian Biodiversity Science InstitutePerthWestern AustraliaAustralia
| | - Emma L. Dalziell
- Kings Park ScienceDepartment of Biodiversity, Conservation and AttractionsKings ParkWestern AustraliaAustralia
- School of Biological SciencesThe University of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Melinda S. Trudgen
- School of Biological SciencesThe University of Western AustraliaCrawleyWestern AustraliaAustralia
- CSIRO Health and BiosecurityFloreatWestern AustraliaAustralia
| | - Amber M. Bateman
- Kings Park ScienceDepartment of Biodiversity, Conservation and AttractionsKings ParkWestern AustraliaAustralia
- School of Biological SciencesThe University of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Todd E. Erickson
- Kings Park ScienceDepartment of Biodiversity, Conservation and AttractionsKings ParkWestern AustraliaAustralia
- School of Biological SciencesThe University of Western AustraliaCrawleyWestern AustraliaAustralia
| |
Collapse
|
13
|
Metz J, Lampei C, Bäumler L, Bocherens H, Dittberner H, Henneberg L, de Meaux J, Tielbörger K. Rapid adaptive evolution to drought in a subset of plant traits in a large-scale climate change experiment. Ecol Lett 2020; 23:1643-1653. [PMID: 32851791 DOI: 10.1111/ele.13596] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022]
Abstract
Rapid evolution of traits and of plasticity may enable adaptation to climate change, yet solid experimental evidence under natural conditions is scarce. Here, we imposed rainfall manipulations (+30%, control, -30%) for 10 years on entire natural plant communities in two Eastern Mediterranean sites. Additional sites along a natural rainfall gradient and selection analyses in a greenhouse assessed whether potential responses were adaptive. In both sites, our annual target species Biscutella didyma consistently evolved earlier phenology and higher reproductive allocation under drought. Multiple arguments suggest that this response was adaptive: it aligned with theory, corresponding trait shifts along the natural rainfall gradient, and selection analyses under differential watering in the greenhouse. However, another seven candidate traits did not evolve, and there was little support for evolution of plasticity. Our results provide compelling evidence for rapid adaptive evolution under climate change. Yet, several non-evolving traits may indicate potential constraints to full adaptation.
Collapse
Affiliation(s)
- Johannes Metz
- Plant Ecology & Nature Conservation, Institute of Biology & Chemistry, University of Hildesheim, Hildesheim, Germany.,Plant Ecology Group, Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany
| | - Christian Lampei
- Biodiversity and Ecosystem Research, Institute of Landscape Ecology, University of Münster, Münster, Germany
| | - Laura Bäumler
- Plant Ecology Group, Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany
| | - Hervé Bocherens
- Senckenberg Centre for Human Evolution and Palaeoenvironment, and Department of Geosciences, Biogeology, University of Tübingen, Tübingen, Germany
| | - Hannes Dittberner
- Plant Molecular Ecology, Institute of Botany, University of Cologne, Cologne, Germany
| | - Lorenz Henneberg
- Plant Ecology Group, Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany
| | - Juliette de Meaux
- Plant Molecular Ecology, Institute of Botany, University of Cologne, Cologne, Germany
| | - Katja Tielbörger
- Plant Ecology Group, Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
14
|
Renzi JP, Duchoslav M, Brus J, Hradilová I, Pechanec V, Václavek T, Machalová J, Hron K, Verdier J, Smýkal P. Physical Dormancy Release in Medicago truncatula Seeds Is Related to Environmental Variations. PLANTS (BASEL, SWITZERLAND) 2020; 9:E503. [PMID: 32295289 PMCID: PMC7238229 DOI: 10.3390/plants9040503] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 12/26/2022]
Abstract
Seed dormancy and timing of its release is an important developmental transition determining the survival of individuals, populations, and species in variable environments. Medicago truncatula was used as a model to study physical seed dormancy at the ecological and genetics level. The effect of alternating temperatures, as one of the causes releasing physical seed dormancy, was tested in 178 M. truncatula accessions over three years. Several coefficients of dormancy release were related to environmental variables. Dormancy varied greatly (4-100%) across accessions as well as year of experiment. We observed overall higher physical dormancy release under more alternating temperatures (35/15 °C) in comparison with less alternating ones (25/15 °C). Accessions from more arid climates released dormancy under higher experimental temperature alternations more than accessions originating from less arid environments. The plasticity of physical dormancy can probably distribute the germination through the year and act as a bet-hedging strategy in arid environments. On the other hand, a slight increase in physical dormancy was observed in accessions from environments with higher among-season temperature variation. Genome-wide association analysis identified 136 candidate genes related to secondary metabolite synthesis, hormone regulation, and modification of the cell wall. The activity of these genes might mediate seed coat permeability and, ultimately, imbibition and germination.
Collapse
Affiliation(s)
- Juan Pablo Renzi
- Instituto Nacional de Tecnología Agropecuaria, Hilario Ascasubi 8142, Argentina;
| | - Martin Duchoslav
- Department of Botany, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (M.D.); (I.H.)
| | - Jan Brus
- Department of Geoinformatics, Palacký University, 17. listopadu 50, 771 46 Olomouc, Czech Republic; (J.B.); (V.P.)
| | - Iveta Hradilová
- Department of Botany, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (M.D.); (I.H.)
| | - Vilém Pechanec
- Department of Geoinformatics, Palacký University, 17. listopadu 50, 771 46 Olomouc, Czech Republic; (J.B.); (V.P.)
| | - Tadeáš Václavek
- Department of Mathematical Analysis and Applications of Mathematics, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic; (T.V.); (J.M.); (K.H.)
| | - Jitka Machalová
- Department of Mathematical Analysis and Applications of Mathematics, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic; (T.V.); (J.M.); (K.H.)
| | - Karel Hron
- Department of Mathematical Analysis and Applications of Mathematics, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic; (T.V.); (J.M.); (K.H.)
| | - Jerome Verdier
- UMR 1345 Institut de Recherche en Horticulture et Semences, Agrocampus Ouest, INRA, Université d’Angers, SFR 4207 QUASAV, 49070 Beaucouzé, France;
| | - Petr Smýkal
- Department of Botany, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (M.D.); (I.H.)
| |
Collapse
|