1
|
Su J, Mazei YA, Tsyganov AN, Chernyshov VA, Mazei NG, Saldaev DA, Yakimov BN. Multi-scale beta-diversity patterns in testate amoeba communities: species turnover and nestedness along a latitudinal gradient. Oecologia 2024; 205:691-707. [PMID: 39115695 DOI: 10.1007/s00442-024-05602-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 07/26/2024] [Indexed: 08/30/2024]
Abstract
The relationship between species diversity and spatial scale is a central topic in spatial community ecology. Latitudinal gradient is among the core mechanisms driving biodiversity distribution on most scales. Patterns of β-diversity along latitudinal gradient have been well studied for aboveground terrestrial and marine communities, whereas soil organisms remain poorly investigated in this regard. The West Siberian Plain is a good model to address diversity scale-dependence since the latitudinal gradient does not overlap with other possible factors such as elevational or maritime. Here, we collected 111 samples following hierarchical sampling (sub-zones, ecosystem types, microhabitat and replicate samples) and performed multi-scale partitioning of β-diversity of testate amoeba assemblages as a model of study. We found that among-ecosystem β-diversity is a leading scale in testate amoeba assemblages variation. Rare species determine β-diversity at all scale levels especially in the northern regions, where rare taxa almost exclusively accounted for the diversity at the ecosystem level. β-Diversity is generally dominated by the turnover component at all scales in lower latitudes, whereas nestedness prevailed at among-ecosystem scale in higher latitudes. These findings indicate that microbial assemblages in northern latitudes are spatially homogeneous and constrained by historical drivers at larger scales, whereas in southern regions, it is dominated by the turnover component both at the microhabitat and ecosystem scales and therefore determined by recent vegetation and environmental heterogeneity. Overall, we have provided the evidence for the existence of negative latitudinal gradient for among-ecosystem β-diversity but not for among-microhabitat and among-sample β-diversity for terrestrial testate amoeba communities.
Collapse
Affiliation(s)
- Jiahui Su
- Shenzhen MSU-BIT University, Shenzhen, 518172, China
- Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119991, Russia
| | - Yuri A Mazei
- Shenzhen MSU-BIT University, Shenzhen, 518172, China
- Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119991, Russia
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskiy Ave. 33, Moscow, 117071, Russia
| | - Andrey N Tsyganov
- Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119991, Russia
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskiy Ave. 33, Moscow, 117071, Russia
| | | | - Natalia G Mazei
- Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119991, Russia
| | - Damir A Saldaev
- Shenzhen MSU-BIT University, Shenzhen, 518172, China
- Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119991, Russia
| | - Basil N Yakimov
- Shenzhen MSU-BIT University, Shenzhen, 518172, China.
- Lobachevsky State University of Nizhny Novgorod, Pr. Gagarina 23, Nizhny Novgorod, 603950, Russia.
| |
Collapse
|
2
|
Cheng Z, Wu S, Pan H, Lu X, Liu Y, Yang L. Cortinarius and Tomentella Fungi Become Dominant Taxa in Taiga Soil after Fire Disturbance. J Fungi (Basel) 2023; 9:1113. [PMID: 37998918 PMCID: PMC10672602 DOI: 10.3390/jof9111113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
Fungi have important ecological functions in the soil of forests, where they decompose organic matter, provide plants with nutrients, increase plant water uptake, and improve plant resistance to adversity, disease, and disturbance. A forest fire presents a serious disturbance of the local ecosystem and can be considered an important component affecting the function of ecosystem biomes; however, the response of soil fungi to fire disturbance is largely unknown. To investigate the effects of fire disturbance on the community composition and diversity of soil fungi in a taiga forest, we collected soil from plots that had undergone a light, moderate, and heavy fire 10 years previously, with the inclusion of a fire-free control. The present soil fungi were characterized using Illumina MiSeq technology, and the sequences were analyzed to identify differences in the community composition and diversity in response to the changed soil physicochemical properties. The results showed that the Chao1 index, which characterizes the alpha diversity of the fungi, did not change significantly. In contrast, the Shannon index increased significantly (p < 0.05) and the Simpson index decreased significantly (p < 0.05) following a light or heavy fire disturbance compared to the control. The relative abundance of Basidiomycota was significantly higher in the soil of the fire sites than that in the control (p < 0.01), and the relative abundance of Ascomycota was significantly lower (p < 0.01). The results of principal coordinates analyses (PCoAs) showed that fire disturbance highly significantly affected the beta diversity of soil fungi (p < 0.001), while the results of canonical correlation analysis (CCA) indicated that the available nitrogen (AN), moisture content (MC), pH, available potassium (AK), and total nitrogen (TN) contents of the soil significantly affected the compositional structure and diversity of the soil fungal communities. The results of functional prediction showed that the majority of the detected soil fungi were symbiotrophs, followed by saprotrophs and saprotroph-symbiotrophs, with ectomycorrhiza being the dominant functional taxon. Fire disturbance significantly reduced the relative abundance of ectomycorrhiza (p < 0.05). This study illustrates that fire disturbance alters the structural composition, diversity, dominance, and relative abundance of the guilds of soil fungal communities in taiga forest, and strongly affected the beta diversity of soil fungi, with AN, MC, pH, AK, and TN being the most important factors affecting their community structure. The results may provide a useful reference for the restoration and rehabilitation of taiga forests after fire disturbance.
Collapse
Affiliation(s)
- Zhichao Cheng
- Key Laboratory of Biodiversity, Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin 150040, China; (Z.C.); (H.P.); (X.L.)
- Heilongjiang Huzhong National Nature Reserve, Daxing’anling 165038, China
| | - Song Wu
- Science and Technology Innovation Center, Institute of Scientifc and Technical Information of Heilongjiang Province, Harbin 150028, China;
| | - Hong Pan
- Key Laboratory of Biodiversity, Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin 150040, China; (Z.C.); (H.P.); (X.L.)
| | - Xinming Lu
- Key Laboratory of Biodiversity, Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin 150040, China; (Z.C.); (H.P.); (X.L.)
| | - Yongzhi Liu
- Heilongjiang Huzhong National Nature Reserve, Daxing’anling 165038, China
| | - Libin Yang
- Key Laboratory of Biodiversity, Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin 150040, China; (Z.C.); (H.P.); (X.L.)
| |
Collapse
|
5
|
Viljur ML, Abella SR, Adámek M, Alencar JBR, Barber NA, Beudert B, Burkle LA, Cagnolo L, Campos BR, Chao A, Chergui B, Choi CY, Cleary DFR, Davis TS, Dechnik-Vázquez YA, Downing WM, Fuentes-Ramirez A, Gandhi KJK, Gehring C, Georgiev KB, Gimbutas M, Gongalsky KB, Gorbunova AY, Greenberg CH, Hylander K, Jules ES, Korobushkin DI, Köster K, Kurth V, Lanham JD, Lazarina M, Leverkus AB, Lindenmayer D, Marra DM, Martín-Pinto P, Meave JA, Moretti M, Nam HY, Obrist MK, Petanidou T, Pons P, Potts SG, Rapoport IB, Rhoades PR, Richter C, Saifutdinov RA, Sanders NJ, Santos X, Steel Z, Tavella J, Wendenburg C, Wermelinger B, Zaitsev AS, Thorn S. The effect of natural disturbances on forest biodiversity: an ecological synthesis. Biol Rev Camb Philos Soc 2022; 97:1930-1947. [PMID: 35808863 DOI: 10.1111/brv.12876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 11/28/2022]
Abstract
Disturbances alter biodiversity via their specific characteristics, including severity and extent in the landscape, which act at different temporal and spatial scales. Biodiversity response to disturbance also depends on the community characteristics and habitat requirements of species. Untangling the mechanistic interplay of these factors has guided disturbance ecology for decades, generating mixed scientific evidence of biodiversity responses to disturbance. Understanding the impact of natural disturbances on biodiversity is increasingly important due to human-induced changes in natural disturbance regimes. In many areas, major natural forest disturbances, such as wildfires, windstorms, and insect outbreaks, are becoming more frequent, intense, severe, and widespread due to climate change and land-use change. Conversely, the suppression of natural disturbances threatens disturbance-dependent biota. Using a meta-analytic approach, we analysed a global data set (with most sampling concentrated in temperate and boreal secondary forests) of species assemblages of 26 taxonomic groups, including plants, animals, and fungi collected from forests affected by wildfires, windstorms, and insect outbreaks. The overall effect of natural disturbances on α-diversity did not differ significantly from zero, but some taxonomic groups responded positively to disturbance, while others tended to respond negatively. Disturbance was beneficial for taxonomic groups preferring conditions associated with open canopies (e.g. hymenopterans and hoverflies), whereas ground-dwelling groups and/or groups typically associated with shady conditions (e.g. epigeic lichens and mycorrhizal fungi) were more likely to be negatively impacted by disturbance. Across all taxonomic groups, the highest α-diversity in disturbed forest patches occurred under moderate disturbance severity, i.e. with approximately 55% of trees killed by disturbance. We further extended our meta-analysis by applying a unified diversity concept based on Hill numbers to estimate α-diversity changes in different taxonomic groups across a gradient of disturbance severity measured at the stand scale and incorporating other disturbance features. We found that disturbance severity negatively affected diversity for Hill number q = 0 but not for q = 1 and q = 2, indicating that diversity-disturbance relationships are shaped by species relative abundances. Our synthesis of α-diversity was extended by a synthesis of disturbance-induced change in species assemblages, and revealed that disturbance changes the β-diversity of multiple taxonomic groups, including some groups that were not affected at the α-diversity level (birds and woody plants). Finally, we used mixed rarefaction/extrapolation to estimate biodiversity change as a function of the proportion of forests that were disturbed, i.e. the disturbance extent measured at the landscape scale. The comparison of intact and naturally disturbed forests revealed that both types of forests provide habitat for unique species assemblages, whereas species diversity in the mixture of disturbed and undisturbed forests peaked at intermediate values of disturbance extent in the simulated landscape. Hence, the relationship between α-diversity and disturbance severity in disturbed forest stands was strikingly similar to the relationship between species richness and disturbance extent in a landscape consisting of both disturbed and undisturbed forest habitats. This result suggests that both moderate disturbance severity and moderate disturbance extent support the highest levels of biodiversity in contemporary forest landscapes.
Collapse
Affiliation(s)
- Mari-Liis Viljur
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology (Zoology III), Julius Maximilians University Würzburg, Glashüttenstraße 5, 96181, Rauhenebrach, Germany
| | - Scott R Abella
- School of Life Sciences, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV, 89154-4004, USA
| | - Martin Adámek
- Department of GIS and Remote Sensing, Institute of Botany of the CAS, Průhonice, Czech Republic.,Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Praha 2, Czech Republic
| | - Janderson Batista Rodrigues Alencar
- Instituto Nacional de Pesquisas da Amazônia (INPA), Programa de pós-graduação em Ciências Biológicas (Entomologia), Manaus, AM, 0000-0001-9482-7866, Brazil
| | - Nicholas A Barber
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-4614, USA
| | | | - Laura A Burkle
- Department of Ecology, Montana State University, Bozeman, MT, 59717, USA
| | - Luciano Cagnolo
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET-Universidad Nacional de Córdoba, Vélez Sarsfield 1611, 5000, Córdoba, Argentina
| | - Brent R Campos
- Point Blue Conservation Science, Petaluma, CA, 94954, USA
| | - Anne Chao
- Institute of Statistics, National Tsing Hua University, Hsin-Chu, 30043, Taiwan
| | - Brahim Chergui
- LESCB URL-CNRST N°18, FS, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Chang-Yong Choi
- Department of Agriculture, Forestry, and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
| | - Daniel F R Cleary
- CESAM and Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Thomas Seth Davis
- Forest & Rangeland Stewardship, Warner College of Natural Resources, Colorado State University, Fort Collins, CO, 80523, USA
| | - Yanus A Dechnik-Vázquez
- Estudios Ambientales, Centro de Anteproyectos del Golfo, Comisión Federal de Electricidad, Nueva Era, Boca del Río, Veracruz, C.P, 94295, Mexico
| | - William M Downing
- Department of Forest Ecosystems and Society, College of Forestry, Oregon State University, Corvallis, OR, 97331, USA
| | - Andrés Fuentes-Ramirez
- Laboratorio de Biometría, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Temuco, Chile.,Centro Nacional de Excelencia para la Industria de la Madera (CENAMAD), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Kamal J K Gandhi
- D.B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, 30602, USA
| | - Catherine Gehring
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Kostadin B Georgiev
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology (Zoology III), Julius Maximilians University Würzburg, Glashüttenstraße 5, 96181, Rauhenebrach, Germany
| | - Mark Gimbutas
- Institute of Mathematics and Statistics, University of Tartu, Narva mnt. 18, 51009, Tartu, Estonia
| | - Konstantin B Gongalsky
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskii pr. 33, Moscow, 119071, Russia
| | - Anastasiya Y Gorbunova
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskii pr. 33, Moscow, 119071, Russia
| | - Cathryn H Greenberg
- USDA Forest Service, Southern Research Station, Bent Creek Experimental Forest, 1577 Brevard Road, Asheville, NC, 28806, USA
| | - Kristoffer Hylander
- Department of Ecology, Environment and Plant Science, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Erik S Jules
- Department of Biological Sciences, Humboldt State University, Arcata, CA, 95521, USA
| | - Daniil I Korobushkin
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskii pr. 33, Moscow, 119071, Russia
| | - Kajar Köster
- Department of Environmental and Biological Sciences, Faculty of Sciences and Forestry, University of Eastern Finland, PL 111, 80101, Joensuu, Finland
| | - Valerie Kurth
- Montana Department of Natural Resources and Conservation, Helena, MT, 59601, USA
| | - Joseph Drew Lanham
- Department of Forest Resources, Clemson University, 261 Lehotsky Hall, Clemson, SC, 29634, USA
| | - Maria Lazarina
- Laboratory of Biogeography & Ecology, Department of Geography, University of the Aegean, University Hill, GR-81100, Mytilene, Greece
| | | | - David Lindenmayer
- Fenner School of Environment and Society, The Australian National University, Canberra, ACT, Australia
| | | | - Pablo Martín-Pinto
- Sustainable Forest Management Research Institute, University of Valladolid, Avda, Madrid, Palencia, Spain
| | - Jorge A Meave
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacán, Mexico City, 04510, Mexico
| | - Marco Moretti
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Biodiversity and Conservation Biology, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Hyun-Young Nam
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Martin K Obrist
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Biodiversity and Conservation Biology, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Theodora Petanidou
- Laboratory of Biogeography & Ecology, Department of Geography, University of the Aegean, University Hill, GR-81100, Mytilene, Greece
| | - Pere Pons
- Departament de Ciències Ambientals, University of Girona, Campus Montilivi, 17003, Girona, Catalonia, Spain
| | - Simon G Potts
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Earley Gate, Reading, RG6 6AR, UK
| | - Irina B Rapoport
- Tembotov Institute of Ecology of Mountain Territories, Russian Academy of Sciences, I. Armand, 37a, Nalchik, Russia
| | - Paul R Rhoades
- Idaho State Department of Agriculture, Coeur d'Alene, ID 83854, USA
| | - Clark Richter
- Science Department, Staten Island Academy, Staten Island, NY, USA
| | - Ruslan A Saifutdinov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskii pr. 33, Moscow, 119071, Russia
| | - Nathan J Sanders
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Ave, Biological Sciences Building, Ann Arbor, MI, 48109-1085, USA
| | - Xavier Santos
- CIBIO-InBIO, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal
| | - Zachary Steel
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, 94720, USA
| | - Julia Tavella
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET-Universidad Nacional de Córdoba, Vélez Sarsfield 1611, 5000, Córdoba, Argentina.,Facultad de Agronomía, Cátedra de Botánica General, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Clara Wendenburg
- Departament de Ciències Ambientals, University of Girona, Campus Montilivi, 17003, Girona, Catalonia, Spain
| | - Beat Wermelinger
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Forest Health and Biotic Interactions-Forest Entomology, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Andrey S Zaitsev
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskii pr. 33, Moscow, 119071, Russia
| | - Simon Thorn
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology (Zoology III), Julius Maximilians University Würzburg, Glashüttenstraße 5, 96181, Rauhenebrach, Germany.,Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 1160/31, 37005, České Budějovice, Czech Republic
| |
Collapse
|
10
|
Ficetola GF, Marta S, Guerrieri A, Gobbi M, Ambrosini R, Fontaneto D, Zerboni A, Poulenard J, Caccianiga M, Thuiller W. Dynamics of Ecological Communities Following Current Retreat of Glaciers. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-010521-040017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glaciers are retreating globally, and the resulting ice-free areas provide an experimental system for understanding species colonization patterns, community formation, and dynamics. The last several years have seen crucial advances in our understanding of biotic colonization after glacier retreats, resulting from the integration of methodological innovations and ecological theories. Recent empirical studies have demonstrated how multiple factors can speed up or slow down the velocity of colonization and have helped scientists develop theoretical models that describe spatiotemporalchanges in community structure. There is a growing awareness of how different processes (e.g., time since glacier retreat, onset or interruption of surface processes, abiotic factors, dispersal, biotic interactions) interact to shape community formation and, ultimately, their functional structure through succession. Here, we examine how these studies address key theoretical questions about community dynamics and show how classical approaches are increasingly being combined with environmental DNA metabarcoding and functional trait analysis to document the formation of multitrophic communities, revolutionizing our understanding of the biotic processes that occur following glacier retreat.
Collapse
Affiliation(s)
- Gentile Francesco Ficetola
- Department of Environmental Science and Policy, Università degli Studi di Milano, I-20133 Milano, Italy
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Laboratoire d'Ecologie Alpine, F-38000, Grenoble, France
| | - Silvio Marta
- Department of Environmental Science and Policy, Università degli Studi di Milano, I-20133 Milano, Italy
| | - Alessia Guerrieri
- Department of Environmental Science and Policy, Università degli Studi di Milano, I-20133 Milano, Italy
| | - Mauro Gobbi
- Section of Invertebrate Zoology and Hydrobiology, MUSE-Science Museum, I-38122 Trento, Italy
| | - Roberto Ambrosini
- Department of Environmental Science and Policy, Università degli Studi di Milano, I-20133 Milano, Italy
| | - Diego Fontaneto
- Molecular Ecology Group, Water Research Institute (IRSA), Italian National Research Council (CNR), I-28922 Verbania Pallanza, Italy
| | - Andrea Zerboni
- Dipartimento di Scienze della Terra “A. Desio,” Università degli Studi di Milano, I-20133 Milano, Italy
| | - Jerome Poulenard
- Laboratory of Environments, Dynamics, and Mountain Territories (EDYTEM), Université Savoie Mont Blanc, Université Grenoble Alpes, CNRS, F‐73000 Chambéry, France
| | - Marco Caccianiga
- Department of Biosciences, Università degli Studi di Milano, I-20133 Milano, Italy
| | - Wilfried Thuiller
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Laboratoire d'Ecologie Alpine, F-38000, Grenoble, France
| |
Collapse
|