1
|
Ping Q, Xu S, He X, Sun S. Nitrogen addition alters litter chemical traits to regulate decomposition: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 983:179705. [PMID: 40403540 DOI: 10.1016/j.scitotenv.2025.179705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 05/01/2025] [Accepted: 05/16/2025] [Indexed: 05/24/2025]
Abstract
Litter chemical traits critically regulate decomposition dynamics and are highly responsive to atmospheric nitrogen (N) deposition, yet the magnitude of their responses and their mechanistic roles in decomposition under N enrichment remain uncertain. Here, we synthesized data from 80 studies to quantify the effects of N addition on litter chemistry and decomposition rates. Our analysis reveals that N addition significantly increases litter N (+34.6 %) and phosphorus (P, +18.5 %) concentrations, while reducing lignin (-2.2 %), cellulose (-2.2 %), and hemicellulose (-2.7 %). Moreover, key stoichiometric ratios-C/N (-23.8 %) and lignin/N (-25.4 %)-decreased, thereby enhancing litter quality. These shifts were more pronounced in herbaceous plants and grassland ecosystems compared to woody plants and forests. Nitrogen enrichment accelerated decomposition of herbaceous plant litter in both common-site and in-situ experiments but had no significant effect on woody plant litter. Decomposition rates (k) in herbaceous plant litter correlated strongly with initial traits-including N, phosphorus (P), calcium (Ca), cellulose, and stoichiometric ratios-whereas woody litter decomposition depended primarily on Ca. Our findings reveal that plant functional types and ecosystems govern decomposition responses to N deposition: grasslands exhibit accelerated decomposition via improved litter quality, while forests exhibit attenuated or even negative decomposition responses due to microbial suppression and inhibition of lignin degradation under. Integrating these trait-mediated mechanisms into biogeochemical models will refine predictions of carbon and nutrient cycling under global N enrichment, particularly in contrasting grassland and forest ecosystems.
Collapse
Affiliation(s)
- Qin Ping
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sheng Xu
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China; Liaoning Shenyang Urban Ecosystem Observation and Research Station, Shenyang 110164, China.
| | - Xingyuan He
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China; Liaoning Shenyang Urban Ecosystem Observation and Research Station, Shenyang 110164, China; Shenyang Arboretum, Chinese Academy of Sciences, Shenyang 110016, China
| | - Sining Sun
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shenyang Agricultural University, Shenyang 110016, China
| |
Collapse
|
2
|
Peng C, Chen T, He W, Mei L, Zhao Z, Fan J. Exploring Litter Decomposition, Nutrient Retention, and Sensitivity to Nitrogen Deposition Among Ancient and Recently Evolved Tree Species. Ecol Evol 2025; 15:e71317. [PMID: 40256263 PMCID: PMC12008664 DOI: 10.1002/ece3.71317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/26/2025] [Accepted: 04/07/2025] [Indexed: 04/22/2025] Open
Abstract
Investigating the differences among plant functional types (PFTs) and their responses to N deposition is crucial for predicting carbon and nutrient cycles and improving forest management strategies. Our research aimed to examine the decomposition rates and nutrient loss rates of leaf litter and fine roots from ancient and recently evolved species and their response to N deposition. We hypothesized that (1) leaves and fine roots of recently evolved tree species decomposes slower than those of ancient tree species due to their higher C:N ratios and structural compound content; (2) the effect of N addition on decomposition rates differs across different decomposition stages and is influenced by the associated PFT; and (3) litter morphology and substrate quality are key predictors of litter decomposition rates for both ancient and recently evolved species. Field decomposition experiments were conducted with leaf litter and fine roots under both control and N-addition treatment (10 g·m-2·a-1), focusing on three ancient tree species and three recently evolved tree species. The decomposition rate constants (k values) of leaves from recently evolved species were lower than those from ancient species, with values of 1.01 and 1.68 under control conditions, and 1.07 and 1.08 under N addition. For fine roots, recently evolved species had lower k values only under N addition (1.05 and 1.40), whereas no significant differences were observed between ancient and recently evolved species under control conditions. Furthermore, the N residual rate in fine roots of recently evolved species was higher under N addition compared to controls, while no such differences were observed in ancient species. The distinct patterns observed in this study provide valuable insights into the complexity of litter decomposition under N deposition, highlighting the importance of considering both PFTs and organ types for predicting ecosystem responses.
Collapse
Affiliation(s)
- Chaozhi Peng
- College of Horticulture and Forestry Sciences/Hubei Engineering Technology Research Center for Forestry InformationHuazhong Agricultural UniversityWuhanChina
| | - Tong Chen
- The Forestry Prospect & Design Institute of Hubei ProvinceWuhanChina
| | - Wei He
- College of Horticulture and Forestry Sciences/Hubei Engineering Technology Research Center for Forestry InformationHuazhong Agricultural UniversityWuhanChina
| | - Li Mei
- College of Horticulture and Forestry Sciences/Hubei Engineering Technology Research Center for Forestry InformationHuazhong Agricultural UniversityWuhanChina
| | - Zeyao Zhao
- College of Horticulture and Forestry Sciences/Hubei Engineering Technology Research Center for Forestry InformationHuazhong Agricultural UniversityWuhanChina
| | - Jie Fan
- College of Horticulture and Forestry Sciences/Hubei Engineering Technology Research Center for Forestry InformationHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
3
|
Nie H, You C, Gao J. Effects of fertilization on litter decomposition dynamics and nutrient release in orchard systems. FRONTIERS IN PLANT SCIENCE 2024; 15:1467689. [PMID: 39703550 PMCID: PMC11655230 DOI: 10.3389/fpls.2024.1467689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/12/2024] [Indexed: 12/21/2024]
Abstract
Plant litter decomposition is a significant ecosystem function that regulates nutrient cycling, soil fertility, and biomass production. It is heavily regulated by nutrient intake. The effects of exogenous nutrients on litter decomposition are not yet fully understood. To determine how Eriobotrya japonica litter decomposition responds to adding nutrients, we used the decomposition litter bag method in the laboratory for 180 days. There were five different nutrient treatment levels were used: control (no addition), low nitrogen addition (LN; 100 kg N·ha-1·year-1), high nitrogen addition (HN; 200 kg N·ha-1·year-1), phosphorus addition (P; 50 kg P·ha-1·year-1), and micronutrient addition (M; 50 kg M·ha-1·year-1). According to a repeated-measures analysis of variance, adding N reduced the remaining mass (p < 0.01) by 4.1% compared to the CK group. In contrast, adding M increased the remaining mass (p < 0.01) by 6.8% compared to the CK group. Adding P had no significant effect on the remaining mass. Although the amount of residual carbon (C) was unaffected, adding N increased the level of residual N in the litter. Litter C content, K content, N concentration, and C/N ratio were linearly correlated to the remaining litter (p < 0.01). Although adding nutrients decreased soil enzyme activity later in the decomposition process, no significant correlation was detected between enzyme activity and the remaining mass. N fertilization treatments decreased the soil microbial diversity index. The addition of nitrogen and micronutrients reduced the abundance of Acidobacteria, while HN addition increased the abundance of Actinobacteria. The addition of micronutrients increased the abundance of Proteobacteria. These results imply that N-induced alterations in the element content of the litter regulated the effects of nutrient inputs on litter decomposition. This study can be a reference for the fertilization-induced decomposition of agricultural waste litter.
Collapse
Affiliation(s)
- Huayue Nie
- School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China
- Satellite Application Center for Ecology and Environment, Ministry of Ecology and Environment, Beijing, China
| | - Chunhe You
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Jixi Gao
- Satellite Application Center for Ecology and Environment, Ministry of Ecology and Environment, Beijing, China
| |
Collapse
|
4
|
Sun T, Dong L, Zhang Y, Hättenschwiler S, Schlesinger WH, Zhu J, Berg B, Adair EC, Fang Y, Hobbie SE. General reversal of N-decomposition relationship during long-term decomposition in boreal and temperate forests. Proc Natl Acad Sci U S A 2024; 121:e2401398121. [PMID: 38728227 PMCID: PMC11098082 DOI: 10.1073/pnas.2401398121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Decomposition of dead organic matter is fundamental to carbon (C) and nutrient cycling in terrestrial ecosystems, influencing C fluxes from the biosphere to the atmosphere. Theory predicts and evidence strongly supports that the availability of nitrogen (N) limits litter decomposition. Positive relationships between substrate N concentrations and decomposition have been embedded into ecosystem models. This decomposition paradigm, however, relies on data mostly from short-term studies analyzing controls on early-stage decomposition. We present evidence from three independent long-term decomposition investigations demonstrating that the positive N-decomposition relationship is reversed and becomes negative during later stages of decomposition. First, in a 10-y decomposition experiment across 62 woody species in a temperate forest, leaf litter with higher N concentrations exhibited faster initial decomposition rates but ended up a larger recalcitrant fraction decomposing at a near-zero rate. Second, in a 5-y N-enrichment experiment of two tree species, leaves with experimentally enriched N concentrations had faster decomposition initial rates but ultimately accumulated large slowly decomposing fractions. Measures of amino sugars on harvested litter in two experiments indicated that greater accumulation of microbial residues in N-rich substrates likely contributed to larger slowly decomposing fractions. Finally, a database of 437 measurements from 120 species in 45 boreal and temperate forest sites confirmed that higher N concentrations were associated with a larger slowly decomposing fraction. These results challenge the current treatment of interactions between N and decomposition in many ecosystems and Earth system models and suggest that even the best-supported short-term controls of biogeochemical processes might not predict long-term controls.
Collapse
Affiliation(s)
- Tao Sun
- Chinese Academy of Sciences Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang110016, China
| | - Lili Dong
- College of Land and Environment, Shenyang Agricultural University, Shenyang110866, China
| | - Yunyu Zhang
- Chinese Academy of Sciences Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang110016, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing100049, China
| | - Stephan Hättenschwiler
- Centre d’Ecologie Fonctionnelle et Evolutive, Université de Montpellier, CNRS, Université Paul-Valéry Montpellier 3, Ecole Pratique des Hautes Etudes, Institutde Recherche pour le Développement, Montpellier34293, France
| | - William H. Schlesinger
- Earth and Climate Sciences Division, The Nicholas School of the Environment, Duke University, Durham, NC27710
| | - Jiaojun Zhu
- Chinese Academy of Sciences Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang110016, China
- Qingyuan Forest Chinese Ecosystem Research Network, National Observation and Research Station, Liaoning Province, Shenyang110016, China
- Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Liaoning Province, Shenyang110016, China
| | - Björn Berg
- Department of Forest Sciences, University of Helsinki, HelsinkiFIN-00014, Finland
| | - E. Carol Adair
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, VT05403
| | - Yunting Fang
- Chinese Academy of Sciences Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang110016, China
- Key Laboratory of Isotope Techniques and Applications, Shenyang110016, China
| | - Sarah E. Hobbie
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN55108
| |
Collapse
|
5
|
Zhao Y, Wang S, Zhang M, Zeng L, Zhang L, Huang S, Zhang R, Zhou W, Ai C. Nitrogen Application and Rhizosphere Effect Exert Opposite Effects on Key Straw-Decomposing Microorganisms in Straw-Amended Soil. Microorganisms 2024; 12:574. [PMID: 38543625 PMCID: PMC10974416 DOI: 10.3390/microorganisms12030574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 11/12/2024] Open
Abstract
Crop residue decomposition is an important part of the carbon cycle in agricultural ecosystems, and microorganisms are widely recognized as key drivers during this process. However, we still know little about how nitrogen (N) input and rhizosphere effects from the next planting season impact key straw-decomposing microbial communities. Here, we combined amplicon sequencing and DNA-Stable Isotope Probing (DNA-SIP) to explore these effects through a time-series wheat pot experiment with four treatments: 13C-labeled maize straw addition with or without N application (S1N1 and S1N0), and no straw addition with or without N application (S0N1 and S0N0). The results showed that straw addition significantly reduced soil microbial alpha diversity in the early stages. Straw addition changed microbial beta diversity and increased absolute abundance in all stages. Growing plants in straw-amended soil further reduced bacterial alpha diversity, weakened straw-induced changes in beta diversity, and reduced bacterial and fungal absolute abundance in later stages. In contrast, N application could only increase the absolute abundance of soil bacteria and fungi while having little effect on alpha and beta diversity. The SIP-based taxonomic analysis of key straw-decomposing bacteria further indicated that the dominant phyla were Actinobacteria and Proteobacteria, with overrepresented genera belonging to Vicinamibacteraceae and Streptomyces. Key straw-decomposing fungi were dominated by Ascomycota, with overrepresented genera belonging to Penicillium and Aspergillus. N application significantly increased the absolute abundance of key straw-decomposing microorganisms; however, this increase was reduced by the rhizosphere effect. Overall, our study identified key straw-decomposing microorganisms in straw-amended soil and demonstrated that they exhibited opposite responses to N application and the rhizosphere effect.
Collapse
Affiliation(s)
- Yuanzheng Zhao
- Soil and Fertilizer Institute, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, China
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Shiyu Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Meiling Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Li Zeng
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Liyu Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Shuyu Huang
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Rong Zhang
- Soil and Fertilizer Institute, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, China
| | - Wei Zhou
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Chao Ai
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| |
Collapse
|
6
|
Wang W, Meng D, Tan X, Zheng M, Xiao J, Li S, Mo Q, Li H. Nitrogen addition accelerates litter decomposition and arsenic release of Pteris vittata in arsenic-contaminated soil from mine. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115959. [PMID: 38232527 DOI: 10.1016/j.ecoenv.2024.115959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/23/2023] [Accepted: 01/06/2024] [Indexed: 01/19/2024]
Abstract
The arsenic (As) release from litter decomposition of As-hyperaccumulator (Pteris vittata L.) in mine areas poses an ecological risk for metal dispersion into the soil. However, the effect of atmospheric nitrogen (N) deposition on the litter decomposition of As-hyperaccumulator in the tailing mine area remains poorly understood. In this study, we conducted a microcosm experiment to investigate the As release during the decomposition of P. vittata litter under four gradients of N addition (0, 5, 10, and 20 mg N g-1). The N10 treatment (10 mg N g-1) enhanced As release from P. vittata litter by 1.2-2.6 folds compared to control. Furthermore, Streptomyces, Pantoea, and Curtobacterium were found to primarily affect the As release during the litter decomposition process. Additionally, N addition decreased the soil pH, subsequently increased the microbial biomass, as well as hydrolase activities (NAG) which regulated N release. Thereby, N addition increased the As release from P. vittata litter and then transferred to the soil. Moreover, this process caused a transformation of non-labile As fractions into labile forms, resulting in an increase of available As concentration by 13.02-20.16% within the soil after a 90-day incubation period. Our findings provide valuable insights into assessing the ecological risk associated with As release from the decomposition of P. vittata litter towards the soil, particularly under elevated atmospheric N deposition.
Collapse
Affiliation(s)
- Wenjuan Wang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture of China, Guangzhou 510642, China
| | - Dele Meng
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture of China, Guangzhou 510642, China
| | - Xiangping Tan
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Mianhai Zheng
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Juanjuan Xiao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shuoyu Li
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture of China, Guangzhou 510642, China
| | - Qifeng Mo
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
| | - Huashou Li
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture of China, Guangzhou 510642, China.
| |
Collapse
|
7
|
Vannini A, Carbognani M, Chiari G, Forte TGW, Rodolfi M, Ganino T, Petraglia A. Biochar effects on early decomposition of standard litter in a European beech forest (northern Italy). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166224. [PMID: 37572925 DOI: 10.1016/j.scitotenv.2023.166224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
The release of biochar (BC) on forest soil is a strategy aimed at increasing carbon reserves and forest productivity. The effect of BC amendments on the decomposition of different quality litter is, however, poorly understood. With this study we investigate the effects of wood-derived BC applications on early decomposition in a European beech (Fagus sylvatica L.) forest through the burial of standard material, i.e. green tea and rooibos tea (high- and low-quality litter surrogates, respectively). Two main questions were addressed: 1) Do BC applications influence the decomposition of high- and low-quality standard litter and, if so, in what way? and 2) Does this effect (if measurable) depend on where the sample is placed with respect to the BC application layer? To test BC amendment effects, four application percentages were employed (0, 10, 20 and 100 %), after which standard litter mass loss was recorded. To investigate the effects of sample position, only three BC application percentages were used (0, 10 and 20 %), with teabags buried at three different depths - within the BC amended layer, between this layer and the unamended soil, and below the latter. Results show that early decomposition of high-quality standard litter was not influenced by BC applications, while a significant reduction in mass loss of low-quality standard litter was observed when the percentage of BC application was higher, specifically of litter within the 20 % and 100 % BC amended layers. Decomposition was also affected by sample position relative to the BC layer, exhibiting higher levels of mass loss when samples were placed within the BC amended layer. Overall, BC applications on beech forest soils not only seem to produce negligible effects on the early decomposition rate of high-quality standard litter, but such applications also seem to have the ability to reduce carbon loss following plant material degradation.
Collapse
Affiliation(s)
- Andrea Vannini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Michele Carbognani
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Giorgio Chiari
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - T'ai G W Forte
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy.
| | - Margherita Rodolfi
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Tommaso Ganino
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy; National Research Council, Institute of BioEconomy (IBE-CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Alessandro Petraglia
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| |
Collapse
|
8
|
Wang Z, Xing A, Shen H. Effects of nitrogen addition on the combined global warming potential of three major soil greenhouse gases: A global meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:121848. [PMID: 37244533 DOI: 10.1016/j.envpol.2023.121848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/01/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
Increased nitrogen (N) deposition has a great impact on soil greenhouse gas (GHG) emissions, and numerous studies have revealed the individual effects of N addition on three major GHGs (CO2, CH4, and N2O). Nevertheless, quantitative evaluation of the effects of N addition on the global warming potential (GWP) of GHGs based on simultaneous measurements is needed not only to better understand the comprehensive effect of N deposition on GHGs but also for precise estimation of ecosystem GHG fluxes in response to N deposition. Here, we conducted a meta-analysis using a dataset with 124 simultaneous measurements of the three major GHGs from 54 studies to assess the effects of N addition on the combined global warming potential (CGWP) of these soil GHGs. The results showed that the relative sensitivity of the CGWP to N addition was 0.43%/kg N ha-1 yr-1, indicating an increase in the CGWP. Among the ecosystems studied, wetlands are considerable GHG sources with the highest relative sensitivity to N addition. Overall, CO2 contributed the most to the N addition-induced CGWP change (72.61%), followed by N2O (27.02%) and CH4 (0.37%), but the contributions of the three GHGs varied across ecosystems. Moreover, the effect size of the CGWP had a positive relationship with N addition rate and mean annual temperature and a negative relationship with mean annual precipitation. Our findings suggest that N deposition may influence global warming from the perspective of the CGWP of CO2, CH4, and N2O. Our results also provide reference values that may reduce uncertainties in future projections of the effects of N deposition on GHGs.
Collapse
Affiliation(s)
- Zixuan Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aijun Xing
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Haihua Shen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
9
|
Zhang Y, Zhang Q, Yang W, Zhang Y, Wang N, Fan P, You C, Yu L, Gao Q, Wang H, Zheng P, Wang R. Response mechanisms of 3 typical plants nitrogen and phosphorus nutrient cycling to nitrogen deposition in temperate meadow grasslands. FRONTIERS IN PLANT SCIENCE 2023; 14:1140080. [PMID: 37484465 PMCID: PMC10361690 DOI: 10.3389/fpls.2023.1140080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/09/2023] [Indexed: 07/25/2023]
Abstract
The increase of nitrogen (N) deposition and the diversity of its components lead to significant changes in the structure and function of temperate meadow steppe, which could affect plant nutrient uptake, nutrient resorption and litter decomposition, thus affecting the biogeochemical cycle process. The distribution and metabolism of nitrogen and phosphorus in plants determine the growth process and productivity of plants. Plant nutrient uptake, nutrient resorption and litter decomposition play an important role in the nutrient cycling process of ecosystem. This study closely combined these three processes to carry out experiments with different nitrogen dosages and types, and systematically explored the response of nitrogen and phosphorus nutrient cycling to nitrogen deposition. The results showed that nitrogen deposition can greatly affect ecosystem nutrient cycle of nitrogen and phosphorus. Firstly, Nitrogen deposition has significant effect on plant nutrient uptake. Nitrogen uptake of stems and leaves increased with the increase of nitrogen addition dosage, while phosphorus uptake of stems and leaves showed a downward trend or no significant effect. Besides, nitrogen addition type had a significant effect on nitrogen and phosphorus content of stems. Secondly, Nitrogen addition dosage had a significant effect on plant nutrient resorption, while nitrogen addition type had no significant effect on it. Thirdly, nitrogen deposition has significant effect on litter decomposition. With the increase of nitrogen addition dosage, the initial nitrogen content of litters increased and the decomposition rate of litters accelerated. Nitrogen application type had significant effect on stem litter decomposition. These results indicated that nitrogen deposition significantly affects plant nutrient cycling, and thus affects the structure and function of grassland ecosystem.
Collapse
Affiliation(s)
- Yang Zhang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Qing Zhang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Wenjun Yang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Yan Zhang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Ning Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Peixian Fan
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Chao You
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Linqian Yu
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Qun Gao
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Hui Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Peiming Zheng
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Renqing Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| |
Collapse
|
10
|
Wang L, Shen Y, Cheng R, Xiao W, Zeng L, Sun P, Chen T, Zhang M. Nitrogen addition promotes early-stage and inhibits late-stage decomposition of fine roots in Pinus massoniana plantation. FRONTIERS IN PLANT SCIENCE 2022; 13:1048153. [PMID: 36452109 PMCID: PMC9701838 DOI: 10.3389/fpls.2022.1048153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Abstract
Increasing atmospheric nitrogen (N) deposition has a profound impact on the ecosystem functions and processes. Fine root decomposition is an important pathway for the reentry of nutrients into the soil. However, the effect of N addition on root decomposition and its potential mechanism is not well understood with respect to root branch orders. In this study, we conducted a 30-month decomposition experiment of fine roots under different concentrations of N addition treatments (0, 30, 60, and 90 kg N ha-1 year-1, respectively) in a typical Pinus massoniana plantation in the Three Gorges Reservoir Area of China. In the early stage of decomposition (0-18 months), N addition at all concentrations promoted the decomposition of fine roots, and the average decomposition rates of order 1-2, order 3-4, order 5-6 fine roots were increased by 13.54%, 6.15% and 7.96% respectively. In the late stage of decomposition (18-30 months), high N addition inhibited the decomposition of fine root, and the average decomposition rates of order 1-2, order 3-4, order 5-6 fine roots were decreased by 58.35%, 35.43% and 47.56% respectively. At the same time, N addition promoted the release of lignin, carbon (C), N, and phosphorus (P) in the early-stage, whereas high N addition inhibited the release of lignin, C, N, and the activities of lignin-degrading enzyme (peroxidase and polyphenol oxidase) in the late-stage. The decomposition constant (k) was significantly correlated with the initial chemical quality of the fine roots and lignin-degrading enzyme activities. The higher-order (order 3-4 and order 5-6) fine roots decomposed faster than lower-order (order 1-2) fine roots due to higher initial cellulose, starch, sugar, C concentrations and higher C/N, C/P, lignin/N ratios and lower N, P concentrations. In addition, low N (30 kg N ha-1 year-1) treatments decreased soil organic matter content, whereas high N (90 kg N ha-1 year-1) treatment had the opposite effect. All the N treatments reduced soil pH and total P content, indicating that increased N deposition may led to soil acidification. Our findings indicated that the effect of N addition on decomposition varied with the decomposition stages. The decomposition difference between the lower-order and higher-order fine roots were controlled strongly by the initial chemical quality of the fine roots. This study provides new insights into understanding and predicting possible changes in plant root decomposition and soil properties in the future atmospheric N deposition increase scenarios.
Collapse
Affiliation(s)
- Lijun Wang
- Key Laboratory of Forest Ecology and Environment, National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Yafei Shen
- Key Laboratory of Forest Ecology and Environment, National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Ruimei Cheng
- Key Laboratory of Forest Ecology and Environment, National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Wenfa Xiao
- Key Laboratory of Forest Ecology and Environment, National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Lixiong Zeng
- Key Laboratory of Forest Ecology and Environment, National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Pengfei Sun
- Key Laboratory of Forest Ecology and Environment, National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Tian Chen
- Key Laboratory of Forest Ecology and Environment, National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Meng Zhang
- Key Laboratory of Forest Ecology and Environment, National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
11
|
Niu G, Wang Y, Dai G, Xie S, Jin Y, Yang J, Huang J. Effects of 12-Year Nitrogen Addition and Mowing on Plant-Soil Micronutrients in a Typical Steppe. PLANTS (BASEL, SWITZERLAND) 2022; 11:3042. [PMID: 36432772 PMCID: PMC9697658 DOI: 10.3390/plants11223042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Changes in soil micronutrient availability may have adverse consequences on grassland productivity, yet it’s still largely unclear how concurrent human practices, such as fertilization and mowing, affect micronutrient cycling in the plant-soil systems. Here, we measured six essential micronutrient (Fe, Mn, Cu, Zn, Co and Mo) contents in both plant pool (separated as aboveground plant parts, litter, and belowground roots) at the community level and soil pool (0−10 cm depth) after 12-year consecutive nitrogen (N) addition (0, 2, 10, and 50 g N m−2 year−1) and mowing in a typical steppe of the Mongolian Plateau. The results show that (i) medium-N (10 g m−2 year−1) and high-N (50 g m−2 year−1) addition rates significantly increased contents of soil-available Fe (+310.0%, averaging across the two N addition rates), Mn (+149.2%), Co (+123.6%) and Mo (+73.9%) irrespective of mowing treatment, whereas these addition treatments usually decreased contents of soil total Fe (−8.9%), Mn (−21.6%), Cu (−15.9%), Zn (−19.5%), Co (−16.4%) and Mo (−34.7%). (ii) Contents of Fe in aboveground plant parts, litter, and roots significantly decreased, whereas plant Mn increased with N addition. Contents of above ground plant Cu, Zn, Co, and Mo significantly decreased at high-N addition rate, whereas contents of micronutrients in roots and litters, except for Fe, generally increased with N addition. Moreover, the total amount of micronutrients in the plant pool (contents × biomass) significantly increased at the medium-N addition rate but decreased at the high-N addition rate. All N addition rates significantly enlarged the pool of litter micronutrients, and roots could hold more micronutrients under N addition, especially combined with mowing treatment. Importantly, although mowing could regulate the effects of N addition on variables (i) and (ii), the effects were weaker overall than those of N addition. (iii) Changes in root micronutrients, except for Mn, could explain corresponding changes in plant micronutrients (R2: 0.19−0.56, all p < 0.01), and significant linear correlations were also observed between soil-available Fe and Fe in plant and roots. Aboveground plant Mn was significantly correlated with soil-available Mn, while Co and Mo in roots were also significantly correlated with soil-available Co and Mo. These results indicate that soil micronutrient supply capacity may decrease due to a decrease in total micronutrient contents after long-term N addition and mowing. They also suggest that different magnitude responses of soil micronutrients in plants (i.e., litters, roots) and soil should be considered when comprehensively examining nutrient cycling in grassland ecosystems.
Collapse
Affiliation(s)
- Guoxiang Niu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
| | - Yinliu Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China
| | - Guangyi Dai
- South China National Botanical Garden, Guangzhou 510650, China
- Opening public laboratory, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Siwei Xie
- College of Sciences, University of Strathclyde, Glasgow G4 0LZ, UK
| | - Yiqian Jin
- International department, High School Affiliated to South China Normal University, Guangzhou 510650, China
| | - Junjie Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China
| | - Jianhui Huang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China
| |
Collapse
|
12
|
Li Z, Peng Q, Dong Y, Guo Y. The influence of increased precipitation and nitrogen deposition on the litter decomposition and soil microbial community structure in a semiarid grassland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157115. [PMID: 35787902 DOI: 10.1016/j.scitotenv.2022.157115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/09/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Litter decomposition is a major method in which nutrients are recycled, especially carbon and nitrogen elements, in terrestrial ecosystems. However, how the responses of litter quality and soil microbial communities to global changes alter litter decomposition remains unclear. A 4-year field manipulative experiment based on the litterbag method was conducted in a typical temperate semiarid grassland in China to explore how increased precipitation and nitrogen deposition affect decomposition processes via litter quality and soil microbial communities. Our results showed that water and nitrogen addition treatments could accelerate litter carbon release and promote mass loss through different pathways. Water addition had a direct positive effect on litter decomposition. However, nitrogen addition could indirectly promote litter decomposition by improving litter quality and increasing the bacterial and fungal ratios. The water addition treatment increased litter mass loss by 7.37 %, and the N addition treatments increased litter mass loss by 5.83 %-16.93 %. Moreover, water and nitrogen additions had antagonistic effects on litter decomposition. These findings revealed that litter quality and the soil bacterial to fungal ratio were the factors controlling litter decomposition. The changes in precipitation and nitrogen deposition will impact ecosystem carbon and nitrogen cycling by altering litter decomposition processes in semiarid grassland ecosystems under the context of climate change.
Collapse
Affiliation(s)
- ZhaoLin Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qin Peng
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - YunShe Dong
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu Guo
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Xu MP, Zhi RC, Jian JN, Feng YZ, Han XH, Zhang W. Changes in Soil Organic C Fractions and C Pool Stability Are Mediated by C-Degrading Enzymes in Litter Decomposition of Robinia pseudoacacia Plantations. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02113-6. [PMID: 36123554 DOI: 10.1007/s00248-022-02113-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Litter decomposition is the main source of soil organic carbon (SOC) pool, regarding as an important part of terrestrial ecosystem C dynamics. The turnover of SOC is mainly regulated by extracellular enzymes secreted by microorganisms. However, the response mechanism of soil C-degrading enzymes and SOC in litter decomposition remains unclear. To clarify how SOC fraction dynamics respond to C-degrading enzymes in litter decomposition, we used field experiments to collect leaf litter and SOC fractions from the underlying layer in Robinia pseudoacacia plantations on the Loess Plateau. Our results showed that SOC, easily oxidizable organic C, dissolved organic C, and microbial biomass C increased significantly during the decomposition process. Litter decomposition significantly decreased soil hydrolase activity, but slightly increased oxidase activity. Correlation analysis results showed that SOC fractions were significantly positively correlated with the litter mass, lignin, soil moisture, and oxidase activity, but significantly negatively correlated with cellulose content and soil pH. Partial least squares path models revealed that soil C-degrading enzymes can directly or indirectly affect the changes of soil C fractions. The most direct factors affecting the SOC fractions of topsoil during litter decomposition were litter lignin and cellulose degradation, soil pH, and C-degrading enzymes. Furthermore, regression analysis showed that the decrease of SOC stability in litter decomposition was closely related to the decrease of soil hydrolase to oxidase ratio. These results highlighted that litter degradation-induced changes in C-degrading enzyme activity significantly affected SOC fractions. Furthermore, the distribution of soil hydrolases and oxidases affected the stability of SOC during litter decomposition. These findings provided a theoretical framework for a more comprehensive understanding of C turnover and stabilization mechanisms between plant and soil.
Collapse
Affiliation(s)
- Miao-Ping Xu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Xianyang, China
- College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Ruo-Chen Zhi
- College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Jun-Nan Jian
- College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Yong-Zhong Feng
- College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Xin-Hui Han
- College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100, China.
| | - Wei Zhang
- College of Grassland Agriculture, Northwest A&F University, Yangling, Xianyang, China
| |
Collapse
|
14
|
Xie H, Li X, Tang Y, Pile Knapp LS, Jin S. Multi-nutrient stoichiometry of Chinese hickory (Carya cathayensis) saplings: plant organs vary in their response to nitrogen fertilization. TREE PHYSIOLOGY 2022; 42:1786-1798. [PMID: 35313354 DOI: 10.1093/treephys/tpac030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) enrichment from excessive fertilization in managed forests affects biogeochemical cycles on multiple scales, but our knowledge of how N availability shifts multi-nutrient stoichiometries (including macronutrients: N, phosphorus, potassium, calcium, magnesium and micronutrients: manganese, iron and zinc) within and among organs (root, stem and leaf) remains limited. To understand the difference among organs in terms of multi-nutrient stoichiometric homeostasis responding to N fertilization, a six-level N supply experiment was conducted through a hydroponic system to examine stem growth, multi-nutrient concentrations and stoichiometric ratios in roots, stems and leaves of 2-year-old Chinese hickory (Carya cathayensis Sarg.) saplings. Results showed that N supply significantly enhanced leaf length, width, basal diameter and sapling height. Increasing the rates of N also significantly altered multi-nutrient concentrations in roots, stems and leaves. Macronutrients generally respond more positively than micronutrients within organs. Among organs, leaves and stems generally responded more actively to N supply than roots. The stoichiometric ratios of nutrients within different organs changed significantly with N supply, but their direction and degree of change varied by organ. Specifically, increased N supply reduced the ratios of both macronutrients and micronutrients to N in plant organs, while increased N supply elevated the ratios of P to other nutrients. With N fertilization, ratios of micronutrients decreased in leaves and stems and increased in roots. In particular, leaf N and stem Mn stoichiometries responded strongly to N availability, indicating stimulated N uptake but a decreased risk of Mn2+ accumulation to excessive N. Overall, Chinese hickory saplings responded positively to increasing N availability in terms of stem growth, but the multi-nutrient stoichiometric homeostasis was distinctively organ-dependent. These results are expected to enhance our understanding of N-induced changes in homeostasis of multiple nutrients at the organ level and may offer new insights into how plants adapt to increasing N fertilization.
Collapse
Affiliation(s)
- Hongtao Xie
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
| | - Xueqin Li
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
| | - Yu Tang
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
| | - Lauren S Pile Knapp
- USDA Forest Service, Northern Research Station, 202 ABNR Building, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Songheng Jin
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
| |
Collapse
|
15
|
Wilcots ME, Schroeder KM, DeLancey LC, Kjaer SJ, Hobbie SE, Seabloom EW, Borer ET. Realistic rates of nitrogen addition increase carbon flux rates but do not change soil carbon stocks in a temperate grassland. GLOBAL CHANGE BIOLOGY 2022; 28:4819-4831. [PMID: 35593000 PMCID: PMC9545222 DOI: 10.1111/gcb.16272] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 05/22/2023]
Abstract
Changes in the biosphere carbon (C) sink are of utmost importance given rising atmospheric CO2 levels. Concurrent global changes, such as increasing nitrogen (N) deposition, are affecting how much C can be stored in terrestrial ecosystems. Understanding the extent of these impacts will help in predicting the fate of the biosphere C sink. However, most N addition experiments add N in rates that greatly exceed ambient rates of N deposition, making inference from current knowledge difficult. Here, we leveraged data from a 13-year N addition gradient experiment with addition rates spanning realistic rates of N deposition (0, 1, 5, and 10 g N m-2 year-1 ) to assess the rates of N addition at which C uptake and storage were stimulated in a temperate grassland. Very low rates of N addition stimulated gross primary productivity and plant biomass, but also stimulated ecosystem respiration such that there was no net change in C uptake or storage. Furthermore, we found consistent, nonlinear relationships between N addition rate and plant responses such that intermediate rates of N addition induced the greatest ecosystem responses. Soil pH and microbial biomass and respiration all declined with increasing N addition indicating that negative consequences of N addition have direct effects on belowground processes, which could then affect whole ecosystem C uptake and storage. Our work demonstrates that experiments that add large amounts of N may be underestimating the effect of low to intermediate rates of N deposition on grassland C cycling. Furthermore, we show that plant biomass does not reliably indicate rates of C uptake or soil C storage, and that measuring rates of C loss (i.e., ecosystem and soil respiration) in conjunction with rates of C uptake and C pools are crucial for accurately understanding grassland C storage.
Collapse
Affiliation(s)
- Megan E. Wilcots
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Katie M. Schroeder
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMinnesotaUSA
- Odum School of EcologyUniversity of GeorgiaAthensGeorgiaUSA
| | - Lang C. DeLancey
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Savannah J. Kjaer
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Sarah E. Hobbie
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Eric W. Seabloom
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Elizabeth T. Borer
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMinnesotaUSA
| |
Collapse
|
16
|
Zhang J, Tang Z, Wang W, Zhang H, Liu Y, Xin Y, Zhao L, Li H. Nutrient resorption responses of plant life forms to nitrogen addition in temperate shrublands. Ecosphere 2022. [DOI: 10.1002/ecs2.4143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Jianhua Zhang
- Department of Biology Xinzhou Teachers University Xinzhou China
| | - Zhiyao Tang
- Department of Ecology, College of Urban and Environmental Sciences, and Key Lab for Earth Surface Processes of the Ministry of Education Peking University Beijing China
| | - Wenting Wang
- Department of Biology Xinzhou Teachers University Xinzhou China
| | - Hufang Zhang
- Department of Biology Xinzhou Teachers University Xinzhou China
| | - Yong Liu
- Institute of Loess Plateau Shanxi University Taiyuan China
| | - Yanhua Xin
- Department of Biology Xinzhou Teachers University Xinzhou China
| | - Lijuan Zhao
- Department of Biology Xinzhou Teachers University Xinzhou China
| | - He Li
- Department of Geographical Sciences, School of Geography, Geomatics and Planning Jiangsu Normal University Xuzhou China
| |
Collapse
|
17
|
Mazzorato ACM, Esch EH, MacDougall AS. Prospects for soil carbon storage on recently retired marginal farmland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150738. [PMID: 34606864 DOI: 10.1016/j.scitotenv.2021.150738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Soil organic carbon (SOC) is strongly affected by farm cropping, which covers >10% of the earth's surface. Land retirement of marginal fields, now a global initiative, can increase SOC storage but reported accumulation rates are variable. Here, we quantify SOC in crop fields and retired marginal land in an intensely farmed 10,000 km 2 region of central North America, testing nutrients, soil texture and management as drivers of SOC storage. Overwhelmingly, SOC was associated with farm management with among-farm differences varying >fourfold (17.4-81 t ha -1) in the top 15 cm. Total farm SOC averaged 502.2 t farm -1 but again ranged widely (216-1611 t farm -1). Farm-specific SOC was often, but not always, higher on farms with N-rich silt-clay soils, and lower on sandy soils with higher P relating to former tobacco production. In contrast, within-farm SOC between crop fields and retired land did not significantly differ with time. Low SOC on retired lands was associated with persistently high soil N and P and elevated microbial respiration. Retired soils did possess substantially larger pools of lignin-rich root biomass to depths of 60 cm, which may signify eventual SOC accumulation possibly as nutrient legacies diminish. Our work shows that management legacy, interacting with soil texture and nutrients, predicts SOC more than short-term retirement. Indeed, crop fields averaged 67% of farm SOC because they represented up to 94% of total farm area - SOC retention on cropland remains a management priority, above and beyond gains with retirement. Interestingly, the largest per-volume SOC levels were in remnant forest that contained 25% of farm SOC despite only averaging 11% of farm area. Maintaining SOC stocks in farm landscapes may be more quickly attained by protecting remnant forest, with retired lands needing time to re-build SOC stocks.
Collapse
Affiliation(s)
- Annalisa C M Mazzorato
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph N1G2W1, Ontario, Canada
| | - Ellen H Esch
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph N1G2W1, Ontario, Canada
| | - Andrew S MacDougall
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph N1G2W1, Ontario, Canada.
| |
Collapse
|
18
|
Zhang Y, Jin Y, Xu J, He H, Tao Y, Yang Z, Bai Y. Effects of exogenous N and endogenous nutrients on alpine tundra litter decomposition in an area of high nitrogen deposition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150388. [PMID: 34818765 DOI: 10.1016/j.scitotenv.2021.150388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
The effects of N deposition on the C and N cycles via altered litter decomposition rates are an important aspect of global environmental change. The Changbai Mountain region experienced a high N deposition (2.7 g·m-2·year-1 in 2015) and corresponding expansion of Deyeuxia purpurea into the alpine tundra, resulting in changes in endogenous nutrients. However, the relative contributions of the N deposition and endogenous litter nutrients to litter decompositions remain unclear. Therefore, a 5-year N addition and 2-year litter decomposition experiments were conducted. Exogenous N reduced the remaining litter mass of Rhododendron aureum at the early stage (30-240 d) by promoting soluble sugar release, and increased it at the late stage (360-720 d) by suppressing lignin release and decreasing soil microbial community and enzyme activity. A higher proportion of D. purpurea litter (representing higher N, lower lignin, and C:N ratio) decreased remaining litter mass and increased net N release. Exogenous N decreased decomposition rate from 0.32 to 0.21 and net N release from 34% to 24%, whereas litter compositions increased decomposition rates from 0.32 to 0.69 and net litter N release from 34% to 69%. Endogenous litter nutrients directly explained 62% and 40% of the litter decomposition and net N release variables, respectively, whereas exogenous N indirectly explained 12% and 9%, respectively. Thus, we infer that the reductions in C and N storage following D. purpurea expansion may offset the increases of C and N storage under N deposition and the expansion of D. purpurea has a potential long-term negative impact on the ability of tundra plants to sequester C and N in the alpine tundra of the Changbai Mountains. These findings highlight how shifting plant expansion, through changes endogenous nutrients, can influence tundra litter decomposition and C and N storage responses to N deposition.
Collapse
Affiliation(s)
- Yingjie Zhang
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China.
| | - Yinghua Jin
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China.
| | - Jiawei Xu
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China.
| | - Hongshi He
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA.
| | - Yan Tao
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China.
| | - Zhipeng Yang
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China.
| | - Yunyu Bai
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
19
|
Ding Z, Liu X, Gong L, Chen X, Zhao J, Chen W. Response of litter decomposition and the soil environment to one-year nitrogen addition in a Schrenk spruce forest in the Tianshan Mountains, China. Sci Rep 2022; 12:648. [PMID: 35027603 PMCID: PMC8758753 DOI: 10.1038/s41598-021-04623-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/28/2021] [Indexed: 11/09/2022] Open
Abstract
Human activities have increased the input of nitrogen (N) to forest ecosystems and have greatly affected litter decomposition and the soil environment. But differences in forests with different nitrogen deposition backgrounds. To better understand the response of litter decomposition and soil environment of N-limited forest to nitrogen deposition. We established an in situ experiment to simulate the effects of N deposition on soil and litter ecosystem processes in a Picea schrenkiana forest in the Tianshan Mountains, China. This study included four N treatments: control (no N addition), low N addition (LN: 5 kg N ha-1 a-1), medium N addition (MN: 10 kg N ha-1 a-1) and high N addition (HN: 20 kg N ha-1 a-1). Our results showed that N addition had a significant effect on litter decomposition and the soil environment. Litter mass loss in the LN treatment and in the MN treatment was significantly higher than that in the control treatment. In contrast, the amount of litter lost in the HN treatment was significantly lower than the other treatments. N application inhibited the degradation of lignin but promoted the breakdown of cellulose. The carbon (C), N, and phosphorus (P) contents of litter did not differ significantly among the treatments, but LN promoted the release of C and P. Our results also showed that soil pH decreased with increasing nitrogen application rates, while soil enzyme activity showed the opposite trend. In addition, the results of redundancy analysis (RDA) and correlation analyses showed that the soil environment was closely related to litter decomposition. Soil enzymes had a positive effect on litter decomposition rates, and N addition amplified these correlations. Our study confirmed that N application had effects on litter decomposition and the soil environment in a N-limited P. schrenkiana forest. LN had a strong positive effect on litter decomposition and the soil environment, while HN was significantly negative. Therefore, increased N deposition may have a negative effect on material cycling of similar forest ecosystems in the near future.
Collapse
Affiliation(s)
- Zhaolong Ding
- College of Resources and Environment Science, Xinjiang University, Urumqi, 830046, China.,Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, 830046, China
| | - Xu Liu
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, 222 Tianshui Road, Lanzhou, 730000, Gansu, China
| | - Lu Gong
- College of Resources and Environment Science, Xinjiang University, Urumqi, 830046, China. .,Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, 830046, China.
| | - Xin Chen
- College of Resources and Environment Science, Xinjiang University, Urumqi, 830046, China.,Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, 830046, China
| | - Jingjing Zhao
- College of Resources and Environment Science, Xinjiang University, Urumqi, 830046, China.,Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, 830046, China
| | - Wenjing Chen
- College of Resources and Environment Science, Xinjiang University, Urumqi, 830046, China.,Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, 830046, China
| |
Collapse
|
20
|
Xing A, Du E, Shen H, Xu L, de Vries W, Zhao M, Liu X, Fang J. Nonlinear responses of ecosystem carbon fluxes to nitrogen deposition in an old-growth boreal forest. Ecol Lett 2021; 25:77-88. [PMID: 34694058 DOI: 10.1111/ele.13906] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/06/2021] [Accepted: 10/04/2021] [Indexed: 12/23/2022]
Abstract
Nitrogen (N) deposition is known to increase carbon (C) sequestration in N-limited boreal forests. However, the long-term effects of N deposition on ecosystem carbon fluxes have been rarely investigated in old-growth boreal forests. Here we show that decade-long experimental N additions significantly stimulated net primary production (NPP) but the effect decreased with increasing N loads. The effect on soil heterotrophic respiration (Rh) shifted from a stimulation at low-level N additions to an inhibition at higher levels of N additions. Consequently, low-level N additions resulted in a neutral effect on net ecosystem productivity (NEP), due to a comparable stimulating effect on NPP and Rh, while NEP was increased by high-level N additions. Moreover, we found nonlinear temporal responses of NPP, Rh and NEP to low-level N additions. Our findings imply that actual N deposition in boreal forests likely exerts a minor contribution to their soil C storage.
Collapse
Affiliation(s)
- Aijun Xing
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Enzai Du
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Haihua Shen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Longchao Xu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Wim de Vries
- Wageningen University and Research, Environmental Research, Wageningen, the Netherlands
| | - Mengying Zhao
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiuyuan Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jingyun Fang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Institute of Ecology, Peking University, Beijing, China
| |
Collapse
|