1
|
Fransson P, Lim H, Zhao P, Tor-ngern P, Peichl M, Laudon H, Henriksson N, Näsholm T, Franklin O. An eco-physiological model of forest photosynthesis and transpiration under combined nitrogen and water limitation. TREE PHYSIOLOGY 2025; 45:tpae168. [PMID: 39789901 PMCID: PMC11979779 DOI: 10.1093/treephys/tpae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/29/2024] [Accepted: 01/13/2025] [Indexed: 01/12/2025]
Abstract
Although the separate effects of water and nitrogen (N) limitations on forest growth are well known, the question of how to predict their combined effects remains a challenge for modeling of climate change impacts on forests. Here, we address this challenge by developing a new eco-physiological model that accounts for plasticity in stomatal conductance and leaf N concentration. Based on optimality principle, our model determines stomatal conductance and leaf N concentration by balancing carbon uptake maximization, hydraulic risk and cost of maintaining photosynthetic capacity. We demonstrate the accuracy of the model predictions by comparing them against gross primary production estimates from eddy covariance flux measurements and sap-flow measurement scaled canopy transpiration in a long-term fertilized and an unfertilized Scots pine (Pinus sylvestris L.) forest in northern Sweden. The model also explains the response to N fertilization as a consequence of (i) reduced carbon cost of N uptake and (ii) increased leaf area per hydraulic conductance. The results suggest that leaves optimally coordinate N concentration and stomatal conductance both on short (weekly) time scales in response to weather conditions and on longer time scales in response to soil water and N availabilities.
Collapse
Affiliation(s)
- Peter Fransson
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, SE-901 83 Umeå, Sweden
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Hyungwoo Lim
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, SE-901 83 Umeå, Sweden
- Biodiversity and Natural Resources Program, International Institute for Applied Systems Analysis, Schlossplatz 1, Laxenburg, A-2361, Austria
| | - Peng Zhao
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, SE-901 83 Umeå, Sweden
| | - Pantana Tor-ngern
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, 254 Payathai Rd, Wang Mai, Pathumwan, Bangkok 10330, Thailand
- Water Science and Technology for Sustainable Environment Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Matthias Peichl
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, SE-901 83 Umeå, Sweden
| | - Hjalmar Laudon
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, SE-901 83 Umeå, Sweden
| | - Nils Henriksson
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, SE-901 83 Umeå, Sweden
| | - Torgny Näsholm
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, SE-901 83 Umeå, Sweden
| | - Oskar Franklin
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, SE-901 83 Umeå, Sweden
- Biodiversity and Natural Resources Program, International Institute for Applied Systems Analysis, Schlossplatz 1, Laxenburg, A-2361, Austria
| |
Collapse
|
2
|
Moreno M, Limousin JM, Simioni G, Badel E, Rodríguez-Calcerrada J, Cochard H, Torres-Ruiz JM, Dupuy JL, Ruffault J, Ormeno E, Delzon S, Fernandez C, Ourcival JM, Martin-StPaul N. Hydraulic plasticity and water use regulation act to maintain the hydraulic safety margins of Mediterranean trees in rainfall exclusion experiments. PLANT, CELL & ENVIRONMENT 2024; 47:4741-4753. [PMID: 39077899 DOI: 10.1111/pce.15066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/14/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
Hydraulic failure due to xylem embolism has been identified as one of the main mechanisms involved in drought-induced forest decline. Trees vulnerability to hydraulic failure depends on their hydraulic safety margin (HSM). While it has been shown that HSM globally converges between tree species and biomes, there is still limited knowledge regarding how HSM can adjust locally to varying drought conditions within species. In this study, we relied on three long-term partial rainfall exclusion experiments to investigate the plasticity of hydraulic traits and HSM for three Mediterranean tree species (Quercus ilex L., Quercus pubescens Willd., and Pinus halepensis Mill.). For all species, a homeostasis of HSM in response to rainfall reduction was found, achieved through different mechanisms. For Q. ilex, the convergence in HSM is attributed to the adjustment of both the turgor loss point (Ψtlp) and the water potential at which 50% of xylem conductivity is lost due to embolism (P50). In contrast, the maintenance of HSM for P. halepensis and Q. pubescens is related to its isohydric behavior for the first and leaf area adjustment for the latter. It remains to be seen whether this HSM homeostasis can be generalized and if it will be sufficient to withstand extreme droughts expected in the Mediterranean region.
Collapse
Affiliation(s)
- Myriam Moreno
- INRAE, URFM, Avignon, France
- French Environment and Energy Management Agency, Angers, France
| | | | | | - Eric Badel
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand, France
| | - Jesus Rodríguez-Calcerrada
- Research Group Functioning of Forest Systems in a Changing Environment, Universidad Politécnica de Madrid, Madrid, Spain
| | - Hervé Cochard
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand, France
| | | | | | | | - Elena Ormeno
- Aix Marseille University, Avignon University, CNRS, IRD, IMBE, Marseille, France
| | | | - Catherine Fernandez
- Aix Marseille University, Avignon University, CNRS, IRD, IMBE, Marseille, France
| | | | | |
Collapse
|
3
|
Towers IR, O'Reilly-Nugent A, Sabot MEB, Vesk PA, Falster DS. Optimising height-growth predicts trait responses to water availability and other environmental drivers. PLANT, CELL & ENVIRONMENT 2024; 47:4849-4869. [PMID: 39101679 DOI: 10.1111/pce.15042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/14/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024]
Abstract
Future changes in climate, together with rising atmosphericCO 2 , may reorganise the functional composition of ecosystems. Without long-term historical data, predicting how traits will respond to environmental conditions-in particular, water availability-remains a challenge. While eco-evolutionary optimality theory (EEO) can provide insight into how plants adapt to their environment, EEO approaches to date have been formulated on the assumption that plants maximise carbon gain, which omits the important role of tissue construction and size in determining growth rates and fitness. Here, we show how an expanded optimisation framework, focussed on individual growth rate, enables us to explain shifts in four key traits: leaf mass per area, sapwood area to leaf area ratio (Huber value), wood density and sapwood-specific conductivity in response to soil moisture, atmospheric aridity,CO 2 and light availability. In particular, we predict that as conditions become increasingly dry, height-growth optimising traits shift from resource-acquisitive strategies to resource-conservative strategies, consistent with empirical responses across current environmental gradients of rainfall. These findings can explain both the shift in traits and turnover of species along existing environmental gradients and changing future conditions and highlight the importance of both carbon assimilation and tissue construction in shaping the functional composition of vegetation across climates.
Collapse
Affiliation(s)
- Isaac R Towers
- Evolution & Ecology Research Centre, The University of New South Wales, Sydney, New South Wales, Australia
| | - Andrew O'Reilly-Nugent
- Evolution & Ecology Research Centre, The University of New South Wales, Sydney, New South Wales, Australia
- Climate Friendly, Sydney, New South Wales, Australia
| | - Manon E B Sabot
- Max Planck Institute for Biogeochemistry, Jena, Germany
- ARC Centre of Excellence for Climate Extremes and Climate Change Research Centre, The University of New South Wales, Sydney, New South Wales, Australia
| | - Peter A Vesk
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Daniel S Falster
- Evolution & Ecology Research Centre, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Paligi SS, Lichter J, Kotowska M, Schwutke RL, Audisio M, Mrak K, Penanhoat A, Schuldt B, Hertel D, Leuschner C. Water status dynamics and drought tolerance of juvenile European beech, Douglas fir and Norway spruce trees as dependent on neighborhood and nitrogen supply. TREE PHYSIOLOGY 2024; 44:tpae044. [PMID: 38662576 DOI: 10.1093/treephys/tpae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/14/2024] [Indexed: 05/31/2024]
Abstract
To increase the resilience of forests to drought and other hazards, foresters are increasingly planting mixed stands. This requires knowledge about the drought response of tree species in pure and mixed-culture neighborhoods. In addition, drought frequently interacts with continued atmospheric nitrogen (N) deposition. To disentangle these factors for European beech, Norway spruce and Douglas fir, we conducted a replicated 3-factorial sapling growth experiment with three moisture levels, (high, medium, and low), two N levels (high and ambient), and pure and mixed-culture neighborhoods. We measured biomass, stomatal conductance (GS), shoot water potential (at predawn: ΨPD, midday, and turgor loss point: ΨTLP), branch xylem embolism resistance (Ψ50) and minimum epidermal conductance (Gmin). The three species differed most with respect to Gmin (10-fold higher in beech than in the conifers), hydroscape area (larger in beech), and the time elapsed to reach stomatal closure (TΨGS90) and ΨTLP (TTLP; shorter in beech), while Ψ50 and ΨTLP were remarkably similar. Neighborhood (pure vs mixed-culture) influenced biomass production, water status and hydraulic traits, notably GS (higher in Douglas fir, but lower in spruce and beech, in mixtures than pure culture), hydraulic safety margin (smaller for beech in mixtures), and TΨGS90 and TTLP (shorter for spruce in mixture). High N generally increased GS, but no consistent N effects on leaf water status and hydraulic traits were detected, suggesting that neighbor identity had a larger effect on plant water relations than N availability. We conclude that both tree neighborhood and N availability modulate the drought response of beech, spruce, and Douglas fir. Species mixing can alleviate the drought stress of some species, but often by disadvantaging other species. Thus, our study suggests that stabilizing and building resilience of production forests against a drier and warmer climate may depend primarily on the right species choice; species mixing can support the agenda.
Collapse
Affiliation(s)
- Sharath S Paligi
- Plant Ecology and Ecosystems Research, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, 37073 Goettingen, Germany
| | - Jens Lichter
- Chair of Statistics, University of Goettingen, Humboldtallee 3, 37073 Goettingen, Germany
| | - Martyna Kotowska
- Plant Ecology and Ecosystems Research, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, 37073 Goettingen, Germany
- School of Natural Sciences, Wallumattagal Campus, Macquarie University, 4-6 Eastern Road Macquarie Park NSW 2109, Sydney, Australia
| | - Rebecca L Schwutke
- Plant Ecology and Ecosystems Research, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, 37073 Goettingen, Germany
| | - Michela Audisio
- Forest Botany and Tree Physiology, University of Goettingen, Büsgenweg 2, D-37077 Goettingen, Germany
| | - Klara Mrak
- Soil Science of Temperate Ecosystems, University of Goettingen, Büsgenweg 2, D-37077 Göttingen, Germany
| | - Alice Penanhoat
- Department of Spatial Structures and Digitization of Forests, University of Goettingen, Büsgenweg 1, 37077 Goettingen, Germany
| | - Bernhard Schuldt
- Chair of Forest Botany, Institute of Forest Botany and Forest Zoology, Technical University of Dresden, Pienner Street 7, 01737 Tharandt, Germany
| | - Dietrich Hertel
- Plant Ecology and Ecosystems Research, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, 37073 Goettingen, Germany
| | - Christoph Leuschner
- Plant Ecology and Ecosystems Research, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, 37073 Goettingen, Germany
- Centre for Biodiversity and Sustainable Land Use (CBL), University of Goettingen, 37075 Goettingen, Germany
| |
Collapse
|
5
|
Zhang Y, Pereira L, Kaack L, Liu J, Jansen S. Gold perfusion experiments support the multi-layered, mesoporous nature of intervessel pit membranes in angiosperm xylem. THE NEW PHYTOLOGIST 2024; 242:493-506. [PMID: 38404029 DOI: 10.1111/nph.19608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
Fluid transport across intervessel pit membranes of angiosperm xylem plays a major role in plant transpiration, with transport resistance largely depending on pore constriction sizes. Traditionally, fluid particles traversing pit membranes are assumed to cross a single instead of multiple pore constrictions. We tested a multi-layered pit membrane model in xylem of eight angiosperm species by estimating the size frequency of pore constrictions in relation to pit membrane thickness and compared modelled data with perfusion characteristics of nanoscale gold particles based on transmission electron microscopy. The size frequency of modelled pore constrictions showed similar patterns to the measured number of perfused particle sizes inside pit membranes, although frequency values measured were 10-50 times below modelled data. Small particles enter pit membranes most easily, especially when injected in thin pit membranes. The trapping of gold particles by pore constrictions becomes more likely with increasing pore constriction number and pit membrane thickness. While quantitative differences between modelled and experimental data are due to various practical limitations, their qualitative agreement supports a multi-layered pit membrane model with multiple pore constrictions. Pore constrictions between 5 and 50 nm are realistic, and confirm the mesoporous nature of pit membranes.
Collapse
Affiliation(s)
- Ya Zhang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Beijingzhong Road 2, Wuhu, 241000, China
| | - Luciano Pereira
- Institute of Botany, Ulm University, Albert-Einstein-Allee 11, Ulm, D-89081, Germany
| | - Lucian Kaack
- Institute of Botany, Ulm University, Albert-Einstein-Allee 11, Ulm, D-89081, Germany
| | - Jiabao Liu
- College of Ecology and Environment, Anhui Normal University, Beijingzhong Road 2, Wuhu, 241000, China
| | - Steven Jansen
- Institute of Botany, Ulm University, Albert-Einstein-Allee 11, Ulm, D-89081, Germany
| |
Collapse
|