1
|
Zhang C, Xie S, Malek M. SNAP-25: A biomarker of synaptic loss in neurodegeneration. Clin Chim Acta 2025; 571:120236. [PMID: 40058720 DOI: 10.1016/j.cca.2025.120236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 03/18/2025]
Abstract
Synaptic dysfunction is one of the most important markers of neurodegenerative diseases, which contribute to cognitive decline and the loss of neurons. Synaptosomal-associated protein 25 (SNAP-25) is a member of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex, which plays a significant role in the exocytosis of synaptic vesicles and the release of neurotransmitters. Recent studies have shown that expression levels of SNAP-25 are altered in various neurodegenerative disorders, including Alzheimer's disease (AD), Huntington's disease (HD), and Creutzfeldt-Jakob disease (CJD). These investigations led to the consideration of SNAP-25 as a potential biomarker of synaptic degeneration. Understanding the role of SNAP-25 in neurodegeneration will aid in early diagnosis, disease monitoring, and therapeutic development, and will also provide new insights into synaptic dysfunction as a main feature of neurodegenerative diseases. Therefore, this paper explores the physiological role of SNAP-25, its involvement in synaptic pathology, and the implications of its dysregulation in neurodegenerative conditions, such as AD, HD, and CJD. Literature regarding cerebrospinal fluid (CSF) SNAP-25 levels as a diagnostic marker were reviewed and its applications in detecting the progression of the disease have been discussed. Additionally, the limitations of SNAP-25 as a biomarker, including variability across studies and the need for further validation have been addressed.
Collapse
Affiliation(s)
- Chaoqun Zhang
- Department of Neurology, Tiantai People's Hospital of Zhejiang Province, Tiantai Branch of Zhejiang Provincial People's Hospital, Hangzhou Medical College, Taizhou, Zhejiang 317200, China.
| | - Shanshan Xie
- Xinjiang Key Laboratory of Mental Development and Learning Science, Xinjiang Normal University, Urumqi, Xinjiang 830000, China
| | - Melika Malek
- Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Thal DR, Poesen K, Vandenberghe R, De Meyer S. Alzheimer's disease neuropathology and its estimation with fluid and imaging biomarkers. Mol Neurodegener 2025; 20:33. [PMID: 40087672 PMCID: PMC11907863 DOI: 10.1186/s13024-025-00819-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 02/26/2025] [Indexed: 03/17/2025] Open
Abstract
Alzheimer's disease (AD) is neuropathologically characterized by the extracellular deposition of the amyloid-β peptide (Aβ) and the intraneuronal accumulation of abnormal phosphorylated tau (τ)-protein (p-τ). Most frequently, these hallmark lesions are accompanied by other co-pathologies in the brain that may contribute to cognitive impairment, such as vascular lesions, intraneuronal accumulation of phosphorylated transactive-response DNA-binding protein 43 (TDP-43), and/or α-synuclein (αSyn) aggregates. To estimate the extent of these AD and co-pathologies in patients, several biomarkers have been developed. Specific tracers target and visualize Aβ plaques, p-τ and αSyn pathology or inflammation by positron emission tomography. In addition to these imaging biomarkers, cerebrospinal fluid, and blood-based biomarker assays reflecting AD-specific or non-specific processes are either already in clinical use or in development. In this review, we will introduce the pathological lesions of the AD brain, the related biomarkers, and discuss to what extent the respective biomarkers estimate the pathology determined at post-mortem histopathological analysis. It became evident that initial stages of Aβ plaque and p-τ pathology are not detected with the currently available biomarkers. Interestingly, p-τ pathology precedes Aβ deposition, especially in the beginning of the disease when biomarkers are unable to detect it. Later, Aβ takes the lead and accelerates p-τ pathology, fitting well with the known evolution of biomarker measures over time. Some co-pathologies still lack clinically established biomarkers today, such as TDP-43 pathology or cortical microinfarcts. In summary, specific biomarkers for AD-related pathologies allow accurate clinical diagnosis of AD based on pathobiological parameters. Although current biomarkers are excellent measures for the respective pathologies, they fail to detect initial stages of the disease for which post-mortem analysis of the brain is still required. Accordingly, neuropathological studies remain essential to understand disease development especially in early stages. Moreover, there is an urgent need for biomarkers reflecting co-pathologies, such as limbic predominant, age-related TDP-43 encephalopathy-related pathology, which is known to modify the disease by interacting with p-τ. Novel biomarker approaches such as extracellular vesicle-based assays and cryptic RNA/peptides may help to better detect these co-pathologies in the future.
Collapse
Affiliation(s)
- Dietmar Rudolf Thal
- Department of Imaging and Pathology, Laboratory for Neuropathology, Leuven Brain Institute, KU Leuven, Herestraat 49, Leuven, 3000, Belgium.
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium.
| | - Koen Poesen
- Department of Neurosciences, Laboratory for Molecular Neurobiomarker Research, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Rik Vandenberghe
- Department of Neurosciences, Laboratory for Cognitive Neurology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Steffi De Meyer
- Department of Neurosciences, Laboratory for Molecular Neurobiomarker Research, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Neurosciences, Laboratory for Cognitive Neurology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Shimamura MI, Satoh K. Challenges and Revisions in Diagnostic Criteria: Advancing Early Detection of Prion Diseases. Int J Mol Sci 2025; 26:2037. [PMID: 40076658 PMCID: PMC11900056 DOI: 10.3390/ijms26052037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Prion diseases are fatal neurological disorders characterized by abnormal protein accumulation in the brain, leading to neurodegeneration, dementia, and ataxia. Sporadic Creutzfeldt-Jakob disease (sCJD), the most common form, accounts for 80-90% of cases and progresses rapidly, with most patients surviving <6 months to a year after symptom onset, indicating the importance of early diagnosis. The disease is classified into six subtypes based on PRNP gene polymorphisms, with differences in protein degradation patterns contributing to the diversity of clinical symptoms. However, diagnosis remains challenging because of the variability in clinical presentation and disease duration. Traditional diagnostic criteria established by the World Health Organization (WHO) rely on clinical findings, electroencephalogram, and cerebrospinal fluid tests, such as the 14-3-3 protein assay. However, these criteria require pathological confirmation, often delaying diagnosis. The recently proposed Hermann's criteria represent a significant advancement by incorporating newer biomarkers, including magnetic resonance imaging, real-time quaking-induced conversion assay, tau protein, and neurofilament light chain. These criteria improve diagnostic sensitivity and specificity but have a slightly higher risk of false positives. This review compares the effectiveness of these biomarkers with the WHO criteria and highlights the importance of early diagnosis for improving patient care.
Collapse
Affiliation(s)
- Mika Inada Shimamura
- Biomedical Research Support Center, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan;
| | - Katsuya Satoh
- Unit of Medical and Dental Sciences, Department of Health Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
- Leading Medical Research Core Unit, Department of Brain Research Unit, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| |
Collapse
|
4
|
Neal SJ, Chitta S, Magden ER, Simmons JH. Characterizing plasma and cerebrospinal fluid biomarkers relevant to neurodegeneration in captive olive baboons (Papio anubis). PLoS One 2025; 20:e0318173. [PMID: 39946349 PMCID: PMC11825030 DOI: 10.1371/journal.pone.0318173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/12/2025] [Indexed: 02/16/2025] Open
Abstract
Alzheimer's disease and related dementias (ADRD) present a significant global disease burden that is only expected to grow in the future. As such, there is a need to develop and investigate biomarkers that identify individuals at risk of developing ADRD with the goal of providing early interventions and treatments. Non-human primate (NHP) models of neurodegeneration present opportunities to examine such biomarkers in a preclinical model with the ability to control several confounding factors present in research with humans. Baboons naturally develop several ADRD-related neuropathologies that humans also exhibit, including age-related tau and amyloid deposition. However, to our knowledge, there are no data characterizing fluid biomarkers relevant to neurodegeneration or ADRD in baboons. We collected plasma (N = 139) and cerebrospinal fluid (CSF, N = 44) from captive baboons ranging in age from 3-19 years old. We characterized biomarkers as a function of age, sex, and rearing status in baboons using a bead-based bioplex human assay (Thermo Fisher Scientific's Neuroscience 18-Plex Human ProcartaPlex™ Panel). Fluid biomarkers were more detectable in CSF compared to plasma. Additionally, while sex and rearing did not significantly predict biomarkers in baboons, age significantly predicted levels of eight of the 12 biomarkers detected in the assay. Linear regressions showed that CSF levels of total tau, pTau181, NGF-beta, GFAP, NF-H, and S100B were higher in older baboons, as were plasma levels of NGF-beta. Lastly, older baboons showed a higher incidence of co-occurrence of multiple biomarkers as measured in CSF, but not in plasma. These data show that baboons exhibit age-dependent changes in biomarkers used in humans for clinical screening, diagnosis, and prognosis of ADRD, thereby further demonstrating the value of baboons as a model of aging and, possibly, ADRD.
Collapse
Affiliation(s)
- Sarah J. Neal
- Department of Comparative Medicine, Michale E. Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, United States of America
| | - Sriram Chitta
- Department of Comparative Medicine, Michale E. Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, United States of America
| | - Elizabeth R. Magden
- Department of Comparative Medicine, Michale E. Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, United States of America
| | - Joe H. Simmons
- Department of Comparative Medicine, Michale E. Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, United States of America
| |
Collapse
|
5
|
Devarakonda SS, Basha S, Pithakumar A, L B T, Mukunda DC, Rodrigues J, K A, Biswas S, Pai AR, Belurkar S, Mahato KK. Molecular mechanisms of neurofilament alterations and its application in assessing neurodegenerative disorders. Ageing Res Rev 2024; 102:102566. [PMID: 39481763 DOI: 10.1016/j.arr.2024.102566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/04/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
Neurofilaments are intermediate filaments present in neurons. These provide structural support and maintain the size and shape of the neurons. Dysregulation, mutation, and aggregation of neurofilaments raise the levels of these proteins in the blood and cerebrospinal fluid (CSF), which are characteristic features of axonal damage and certain rare neurological diseases, such as Giant Axonal Neuropathy and Charcot-Mare-Tooth disease. Understanding the structure, dynamics, and function of neurofilaments has been greatly enhanced by a diverse range of biochemical and preclinical investigations conducted over more than four decades. Recently, there has been a resurgence of interest in post-translational modifications of neurofilaments, such as phosphorylation, aggregation, mutation, oxidation, etc. Over the past twenty years, several rare disorders have been studied from structural alterations of neurofilaments. These disorders are monitored by fluid biomarkers such as neurofilament light chains. Currently, there are many tools, such as Enzyme-Linked Immunosorbent Assay, Electrochemiluminescence Assay, Single-Molecule Array, Western/immunoblotting, etc., in use to assess the neurofilament proteins in Blood and CSF. However, all these techniques utilize expensive, non-specific, or antibody-based methods, which make them unsuitable for routine screening of neurodegenerative disorders. This provides room to search for newer sensitive, cost-effective, point-of-care tools for rapid screening of the disease. For a long time, the molecular mechanisms of neurofilaments have been poorly understood due to insufficient research attempts, and a deeper understanding of them remains elusive. Therefore, this review aims to highlight the available literature on molecular mechanisms of neurofilaments and the function of neurofilaments in axonal transport, axonal conduction, axonal growth, and neurofilament aggregation, respectively. Further, this review discusses the role of neurofilaments as potential biomarkers for the identification of several neurodegenerative diseases in clinical laboratory practice.
Collapse
Affiliation(s)
| | - Shaik Basha
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Anjana Pithakumar
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Thoshna L B
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | | | - Jackson Rodrigues
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Ameera K
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Shimul Biswas
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Aparna Ramakrishna Pai
- Department of Neurology, Kasturba Medical College-Manipal, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Sushma Belurkar
- Department of Pathology, Kasturba Medical College-Manipal, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India.
| |
Collapse
|
6
|
Kleinveld VEA, Keritam O, Horlings CGC, Cetin H, Wanschitz J, Hotter A, Zirch LS, Zimprich F, Topakian R, Müller P, Oel D, Quasthoff S, Erdler M, Rauschka H, Grinzinger S, Jecel J, Gaulhofer P, Castek B, Stadler K, Löscher WN. Multifocal motor neuropathy as a mimic of amyotrophic lateral sclerosis: Serum neurofilament light chain as a reliable diagnostic biomarker. Muscle Nerve 2024; 69:422-427. [PMID: 38334356 DOI: 10.1002/mus.28054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/10/2024]
Abstract
INTRODUCTION/AIMS The clinical presentation of multifocal motor neuropathy (MMN) may mimic early amyotrophic lateral sclerosis (ALS) with predominant lower motor neuron (LMN) involvement, posing a diagnostic challenge. Both diseases have specific treatments and prognoses, highlighting the importance of early diagnosis. The aim of this study was to assess the diagnostic value of serum neurofilament light chain (NfL) in differentiating MMN from LMN dominant ALS. METHODS NfL was measured in serum in n = 37 patients with MMN and n = 37 age- and sex-matched patients with LMN dominant ALS, to determine the diagnostic accuracy. Clinical and demographic data were obtained at the time of NfL sampling. RESULTS Serum NfL concentration was significantly lower in MMN patients compared to ALS patients (mean 20.7 pg/mL vs. 59.4 pg/mL, p < .01). NfL demonstrated good diagnostic value in discriminating the two groups (AUC 0.985 [95% CI 0.963-1.000], sensitivity 94.6%, specificity 100%, cut-off 44.00 pg/mL). DISCUSSION NfL could be a helpful tool in differentiating MMN from LMN dominant ALS in those patients in whom electrophysiological and clinical examinations remain inconclusive early in the diagnostic process.
Collapse
Affiliation(s)
- Vera E A Kleinveld
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Omar Keritam
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | | | - Hakan Cetin
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Julia Wanschitz
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna Hotter
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Laura S Zirch
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Fritz Zimprich
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Raffi Topakian
- Department of Neurology, Academic Teaching Hospital Wels-Grieskirchen, Wels, Austria
- Klinisches Forschungsinstitut Neurowissenschaften, Johannes Kepler UniversitätLinz, Linz, Austria
| | - Petra Müller
- Department of Neurology, Academic Teaching Hospital Wels-Grieskirchen, Wels, Austria
| | - Dierk Oel
- Department of Neurology, Academic Teaching Hospital Wels-Grieskirchen, Wels, Austria
| | - Stefan Quasthoff
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Marcus Erdler
- Department of Neurology, Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders, Vienna, Austria
| | - Helmut Rauschka
- Department of Neurology, Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders, Vienna, Austria
| | - Susanne Grinzinger
- Department of Neurology, Salzburger Landeskliniken, Paracelsus Medical University, Salzburg, Austria
| | - Julia Jecel
- Department of Neurology, KH Hietzing, Vienna, Austria
| | | | | | | | - Wolfgang N Löscher
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
7
|
Brown Q, Nicholson E, Wang C, Greenlee J, Seger H, Veneziano S, Cassmann E. Temporal serum neurofilament light chain concentrations in sheep inoculated with the agent of classical scrapie. PLoS One 2024; 19:e0299038. [PMID: 38394122 PMCID: PMC10889644 DOI: 10.1371/journal.pone.0299038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
OBJECTIVE Neurofilament light chain (Nf-L) has been used to detect neuroaxonal damage in the brain caused by physical injury or disease. The purpose of this study was to determine if serum Nf-L could be used as a biomarker for pre-symptomatic detection of scrapie in sheep. METHODS Four sheep with prion protein genotype AVQQ were intranasally inoculated with the classical scrapie strain x124. Blood was collected every 4 weeks until 44 weeks post-inoculation, at which point weekly collection commenced. Serum was analyzed using single molecule array (Quanterix SR-X) to evaluate Nf-L concentrations. RESULTS Scrapie was confirmed in each sheep by testing homogenized brainstem at the level of the obex with a commercially available enzyme immunoassay. Increased serum Nf-L concentrations were identified above the determined cutoff during the last tenth of the respective incubation period for each sheep. Throughout the time course study, PrPSc accumulation was not detected antemortem by immunohistochemistry in rectal tissue at any timepoint for any sheep. RT-QuIC results were inconsistently positive throughout the timepoints tested for each sheep; however, each sheep had at least one timepoint detected positive. When assessing serum Nf-L utility using receiver operator characteristic curves against different clinical parameters, such as asymptomatic and symptomatic (pruritus or neurologic signs), results showed that Nf-L was most useful at being an indicator of disease only late in disease progression when neurologic signs were present. CONCLUSION Serum Nf-L concentrations in the cohort of sheep increased as disease progressed; however, serum Nf-L did not increase during the presymptomatic window. The levels increased substantially throughout the final 10% of the animals' scrapie incubation period when other clinical signs were present. Serum Nf-L is not a reliable biomarker for pre-clinical detection of scrapie.
Collapse
Affiliation(s)
- Quazetta Brown
- United States Department of Agriculture, Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, Ames, Iowa, United States of America
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, United States of America
- Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Christensen, Ames, United States of America
| | - Eric Nicholson
- United States Department of Agriculture, Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, Ames, Iowa, United States of America
| | - Chong Wang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Justin Greenlee
- United States Department of Agriculture, Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, Ames, Iowa, United States of America
| | - Hannah Seger
- United States Department of Agriculture, Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, Ames, Iowa, United States of America
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, United States of America
| | - Susan Veneziano
- United States Department of Agriculture, Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, Ames, Iowa, United States of America
| | - Eric Cassmann
- United States Department of Agriculture, Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, Ames, Iowa, United States of America
| |
Collapse
|
8
|
Faraz Ahmed T, Bilal Azmi M, Imtiaz F, Zaman U, Ahmed A, Shahbaz N. Plasma levels of phosphorylated tau and neurofilament light chain as potential biomarkers for Alzheimer's disease: A biochemical analysis in Pakistani population. Saudi Pharm J 2023; 31:1202-1209. [PMID: 37273267 PMCID: PMC10236364 DOI: 10.1016/j.jsps.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/10/2023] [Indexed: 06/06/2023] Open
Abstract
The National Institute on Aging-Alzheimer's Association's research framework in 2018 proposed a molecular construct for the diagnosis of Alzheimer's disease (AD). Nonetheless, the clinical exclusionary strategy is still the mainstay of AD diagnosis in Pakistan. We looked at the plasma levels of amyloid beta-42 (Aβ-42), phosphorylated tau (P-tau), and neurofilament light (NFL) in patients with Alzheimer's clinical syndrome (ACS) and healthy controls (HC) from the Pakistani population to keep pace with the global efforts towards establishing accessible and affordable biochemical diagnostic markers for AD in Pakistan. Consultant neurologists screened patients who presented with cognitive impairment to three large tertiary care hospitals in Karachi, and after receiving informed consent, recruited participants with ACS and HC from the same facilities. We collected 5cc of blood in EDTA tubes along with demographic and lifestyle information of the subjects. Plasma aliquots were stored at -80°C after centrifugation. For analysis it was thawed at 4℃ and levels of the three proteins were measured through ELISA. Data from 28 ACS patients and 28 age matched healthy controls were evaluated. Among demographic factors, education and depression were related with health status (p = 0.03 and 0.003, respectively). NFL and P-tau mean values demonstrated a significant difference between the ACS and control groups (p = 0.003 and 0.006), however Aβ42 did not (p = 0.114). ROC analysis showed that plasma P-tau and NFL, with AUCs of 0.717 and 0.735, respectively, could substantially distinguish ACS from the HC group (p = 0.007 and 0.003, respectively). Both plasma P-tau (r = -0.389; p = 0.004) and NFL (r = -0.424; p = 0.001) levels were significantly and negatively correlated with individuals' MMSE scores. NFL and plasma P-tau show promise in differentiating AD patients from healthy individuals. However, similar larger studies are needed to validate our findings.
Collapse
Affiliation(s)
- Tehniat Faraz Ahmed
- Department of Biochemistry, Dow International Dental College, Dow University of Health Sciences (DUHS), 74200 Karachi, Pakistan
| | - Muhammad Bilal Azmi
- Department of Biochemistry, Dow Medical College, Dow University of Health Sciences (DUHS), 74200 Karachi, Pakistan
| | - Fauzia Imtiaz
- Department of Biochemistry, Dow Medical College, Dow University of Health Sciences (DUHS), 74200 Karachi, Pakistan
| | - Uzma Zaman
- Department of Biochemistry, Dow International Medical College, Dow University of Health Sciences (DUHS), 74200 Karachi, Pakistan
| | - Affan Ahmed
- Dow Medical College, Dow University of Health Sciences (DUHS), 74200 Karachi, Pakistan
| | - Naila Shahbaz
- Department of Neurology, Dr Ruth Pfau Civil Hospital Karachi, 74400 Karachi, Pakistan
| |
Collapse
|
9
|
Gu L, Shu H, Wang Y, Wang P. Blood Neurofilament Light Chain in Different Types of Dementia. Curr Alzheimer Res 2023; 20:149-160. [PMID: 37264656 DOI: 10.2174/1567205020666230601123123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 06/03/2023]
Abstract
AIMS The study aimed to evaluate diagnostic values of circulating neurofilament light chain (NFL) levels in different types of dementia. BACKGROUND Previous studies reported inconsistent change of blood NFL for different types of dementia, including Alzheimer's disease (AD), frontotemporal dementia (FTD), Parkinson's disease dementia (PDD) and Creutzfeldt-Jakob disease (CJD) and Lewy body dementia (LBD). OBJECTIVE Meta-analysis was conducted to summarize the results of studies evaluating diagnostic values of circulating NFL levels in different types of dementia to enhance the strength of evidence. METHODS Articles evaluating change in blood NFL levels in dementia and published before July 2022 were searched on the following databases (PubMed, Web of Science, EMBASE, Medline and Google Scholar). The computed results were obtained by using STATA 12.0 software. RESULTS AD patients showed increased NFL concentrations in serum and plasma, compared to healthy controls (HC) (standard mean difference (SMD) = 1.09, 95% confidence interval (CI): 0.48, 1.70, I2 = 97.4%, p < 0.001). In AD patients, higher NFL concentrations in serum and plasma were associated with reduced cerebrospinal fluid (CSF) Aβ1-42, increased CSF t-tau, increased CSF p-tau, reduced Mini-Mental State Examination (MMSE) and decreased memory. Additionally, mild cognitive impairment (MCI) showed elevated NFL concentrations in serum and plasma, compared to HC (SMD = 0.53, 95% CI: 0.18, 0.87, I2 = 93.8%, p < 0.001). However, in MCI, no significant association was found between NFL concentrations in serum, plasma and memory or visuospatial function. No significant difference was found between preclinical AD and HC (SMD = 0.18, 95% CI: -0.10, 0.47, I2 = 0.0%, p = 0.438). FTD patients showed increased NFL concentrations in serum and plasma, compared to HC (SMD = 1.08, 95% CI: 0.72, 1.43, I2 = 83.3%, p < 0.001). Higher NFL concentrations in serum and plasma were associated with increased CSF NFL in FTD. Additionally, the pooled parameters calculated were as follows: sensitivity, 0.82 (95% CI: 0.72, 0.90); specificity, 0.91 (95% CI: 0.83, 0.96). CJD patients showed increased NFL concentrations in serum and plasma, compared to HC. No significant difference in NFL level in serum and plasma was shown between AD and FTD (SMD = -0.03, 95% CI: -0.77, 0.72, I2 = 83.3%, p = 0.003). CONCLUSION In conclusion, the study suggested abnormal blood NFL level in AD and MCI, but not in preclinical AD. FTD and CJD showed abnormal blood NFL levels.
Collapse
Affiliation(s)
- Lihua Gu
- Department of Neurology, Tianjin Huanhu Hospital, 300222, Tianjin, China
| | - Hao Shu
- Department of Neurology, the Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210031, Jiangsu, China
| | - Yanjuan Wang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Pan Wang
- Department of Neurology, Tianjin Huanhu Hospital, 300222, Tianjin, China
| |
Collapse
|
10
|
Rodrigues Martins D, Vandermeeren M, Van Kolen K, Brepoels E, Borgers M, Wintmolders C, Delay C, Bottelbergs A, Mercken M, Theunis C. Development and Characterization of Mouse-Specific Anti-Tau Monoclonal Antibodies: Relevance for Analysis of Murine Tau in Cerebrospinal Fluid. J Alzheimers Dis 2023; 93:151-167. [PMID: 36970909 DOI: 10.3233/jad-221266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND Clearance of tau seeds by immunization with tau antibodies is currently evaluated as therapeutic strategy to block the spreading of tau pathology in Alzheimer's disease and other tauopathies. Preclinical evaluation of passive immunotherapy is performed in different cellular culture systems and in wild-type and human tau transgenic mouse models. Depending on the preclinical model used, tau seeds or induced aggregates can either be of mouse, human or mixed origin. OBJECTIVE We aimed to develop human and mouse tau-specific antibodies to discriminate between the endogenous tau and the introduced form in preclinical models. METHODS Using hybridoma technology, we developed human and mouse tau-specific antibodies that were then used to develop several assays to specifically detect mouse tau. RESULTS Four antibodies, mTau3, mTau5, mTau8, and mTau9, with a high degree of specificity for mouse tau were identified. Additionally, their potential application in highly sensitive immunoassays to measure tau in mouse brain homogenate and cerebrospinal fluid is illustrated, as well as their application for specific endogenous mouse tau aggregation detection. CONCLUSION The antibodies reported here can be very important tools to better interpret the results obtained from different model systems as well as to study the role of endogenous tau in tau aggregation and pathology observed in the diverse mouse models available.
Collapse
Affiliation(s)
- Dina Rodrigues Martins
- Neuroscience Department, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Marc Vandermeeren
- Neuroscience Department, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Kristof Van Kolen
- Neuroscience Department, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Eddy Brepoels
- Biologics Research, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Marianne Borgers
- Neuroscience Department, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Cindy Wintmolders
- Neuroscience Department, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Charlotte Delay
- Neuroscience Department, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Astrid Bottelbergs
- Neuroscience Department, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Marc Mercken
- Neuroscience Department, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Clara Theunis
- Neuroscience Department, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| |
Collapse
|
11
|
Chong JR, Hilal S, Ashton NJ, Karikari TK, Reilhac A, Vrooman H, Schöll M, Zetterberg H, Blennow K, Chen CP, Lai MKP. Brain atrophy and white matter hyperintensities are independently associated with plasma neurofilament light chain in an Asian cohort of cognitively impaired patients with concomitant cerebral small vessel disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12396. [PMID: 36994314 PMCID: PMC10040495 DOI: 10.1002/dad2.12396] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 03/28/2023]
Abstract
Introduction Plasma neurofilament light chain (NfL) is a potential biomarker for neurodegeneration in Alzheimer's disease (AD), ischemic stroke, and non-dementia cohorts with cerebral small vessel disease (CSVD). However, studies of AD in populations with high prevalence of concomitant CSVD to evaluate associations of brain atrophy, CSVD, and amyloid beta (Aβ) burden on plasma NfL are lacking. Methods Associations were tested between plasma NfL and brain Aβ, medial temporal lobe atrophy (MTA) as well as neuroimaging features of CSVD, including white matter hyperintensities (WMH), lacunes, and cerebral microbleeds. Results We found that participants with either MTA (defined as MTA score ≥2; neurodegeneration [N]+WMH-) or WMH (cut-off for log-transformed WMH volume at 50th percentile; N-WMH+) manifested increased plasma NfL levels. Participants with both pathologies (N+WMH+) showed the highest NfL compared to N+WMH-, N-WMH+, and N-WMH- individuals. Discussion Plasma NfL has potential utility in stratifying individual and combined contributions of AD pathology and CSVD to cognitive impairment.
Collapse
Affiliation(s)
- Joyce R. Chong
- Department of PharmacologyYong Loo Lin School of MedicineNational University of SingaporeKent RidgeSingapore
- Memory, Aging and Cognition CentreNational University Health SystemsKent RidgeSingapore
| | - Saima Hilal
- Department of PharmacologyYong Loo Lin School of MedicineNational University of SingaporeKent RidgeSingapore
- Memory, Aging and Cognition CentreNational University Health SystemsKent RidgeSingapore
- Saw Swee Hock School of Public HealthNational University of Singapore and National University Health SystemKent RidgeSingapore
| | - Nicholas J. Ashton
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
- Wallenberg Centre for Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden
- King's College LondonInstitute of PsychiatryPsychology and NeuroscienceMaurice Wohl Institute Clinical Neuroscience InstituteLondonUK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS FoundationLondonUK
| | - Thomas K. Karikari
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Anthonin Reilhac
- Clinical Imaging Research CentreYong Loo Lin School of MedicineNational University of SingaporeKent RidgeSingapore
| | - Henri Vrooman
- Department of Radiology and Nuclear MedicineErasmus Medical CenterRotterdamthe Netherlands
| | - Michael Schöll
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
- Wallenberg Centre for Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalGothenburgSweden
- Hong Kong Center for Neurodegenerative Diseasesthe Hong Kong University of Science and TechnologyHong Kong Science ParkShatinNew TerritoriesHong Kong SARChina
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalGothenburgSweden
| | - Christopher P. Chen
- Department of PharmacologyYong Loo Lin School of MedicineNational University of SingaporeKent RidgeSingapore
- Memory, Aging and Cognition CentreNational University Health SystemsKent RidgeSingapore
- Department of Psychological MedicineYong Loo Lin School of MedicineNational University of SingaporeKent RidgeSingapore
| | - Mitchell K. P. Lai
- Department of PharmacologyYong Loo Lin School of MedicineNational University of SingaporeKent RidgeSingapore
- Memory, Aging and Cognition CentreNational University Health SystemsKent RidgeSingapore
| |
Collapse
|
12
|
Sheng ZH, Ma LZ, Liu JY, Ou YN, Zhao B, Ma YH, Tan L. Cerebrospinal fluid neurofilament dynamic profiles predict cognitive progression in individuals with de novo Parkinson's disease. Front Aging Neurosci 2022; 14:1061096. [PMID: 36589544 PMCID: PMC9802677 DOI: 10.3389/fnagi.2022.1061096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
Background Neurofilament light chain protein (NfL) in cerebrospinal fluid (CSF) reflects the severity of neurodegeneration, with its altered concentrations discovered in Parkinson's disease (PD) and Parkinson's disease dementia (PD-D). Objective To determine whether CSF NfL, a promising biomarker of neuronal/axonal damage, can be used to monitor cognitive progression in de novo Parkinson's disease and predict future cognitive decline. Methods A total of 259 people were recruited in this study, including 85 healthy controls (HC) and 174 neonatal PD patients from the Parkinson's Progression Markers Initiative (PPMI). Multiple linear regression and linear mixed effects models were used to examine the associations of baseline/longitudinal CSF NfL with cognitive decline and other CSF biomarkers. Kaplan-Meier analysis and log-rank test were used to compare the cumulative probability risk of cognition progression during the follow-up. Multivariate cox regression was used to detect cognitive progression in de novo PD. Results We found PD patients with mild cognitive impairment (PD-MCI) was higher than with normal cognition (PD-NC) in terms of CSF NfL baseline levels (p = 0.003) and longitudinal increase rate (p = 0.034). Both baseline CSF NfL and its rate of change predicted measurable cognitive decline in de novo PD (MoCA, β = -0.010, p = 0.011; β = -0.0002, p < 0.001, respectively). The predictive effects in de novo PD patients aged >65, male, ill-educated (<13 years) and without carrying Apolipoprotein E ε4 (APOE ε4) seemed to be more obvious and reflected in more domains investigated. We also observed that CSF NfL levels predicted progression in de novo PD patients with different cognitive diagnosis and amyloid status. After an average follow-up of 6.66 ± 2.54 years, higher concentration above the median of baseline CSF NfL was associated with a future high risk of PD with dementia (adjusted HR 2.82, 95% CI: 1.11-7.20, p = 0.030). Conclusion Our results indicated that CSF NfL is a promising prognostic predictor of PD, and its concentration and dynamics can monitor the severity and progression of cognitive decline in de novo PD patients.
Collapse
|
13
|
Eratne D, Loi SM, Li QX, Stehmann C, Malpas CB, Santillo A, Janelidze S, Cadwallader C, Walia N, Ney B, Lewis V, Senesi M, Fowler C, McGlade A, Varghese S, Ravanfar P, Kelso W, Farrand S, Keem M, Kang M, Goh AMY, Dhiman K, Gupta V, Watson R, Yassi N, Kaylor-Hughes C, Kanaan R, Perucca P, Dobson H, Vivash L, Ali R, O'Brien TJ, Hansson O, Zetterberg H, Blennow K, Walterfang M, Masters CL, Berkovic SF, Collins S, Velakoulis D. Cerebrospinal fluid neurofilament light chain differentiates primary psychiatric disorders from rapidly progressive, Alzheimer's disease and frontotemporal disorders in clinical settings. Alzheimers Dement 2022; 18:2218-2233. [PMID: 35102694 DOI: 10.1002/alz.12549] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Many patients with cognitive and neuropsychiatric symptoms face diagnostic delay and misdiagnosis. We investigated whether cerebrospinal fluid (CSF) neurofilament light (NfL) and total-tau (t-tau) could assist in the clinical scenario of differentiating neurodegenerative (ND) from psychiatric disorders (PSY), and rapidly progressive disorders. METHODS Biomarkers were examined in patients from specialist services (ND and PSY) and a national Creutzfeldt-Jakob registry (Creutzfeldt-Jakob disease [CJD] and rapidly progressive dementias/atypically rapid variants of common ND, RapidND). RESULTS A total of 498 participants were included: 197 ND, 67 PSY, 161 CJD, 48 RapidND, and 20 controls. NfL was elevated in ND compared to PSY and controls, with highest levels in CJD and RapidND. NfL distinguished ND from PSY with 95%/78% positive/negative predictive value, 92%/87% sensitivity/specificity, 91% accuracy. NfL outperformed t-tau in most real-life clinical diagnostic dilemma scenarios, except distinguishing CJD from RapidND. DISCUSSION We demonstrated strong generalizable evidence for the diagnostic utility of CSF NfL in differentiating ND from psychiatric disorders, with high accuracy.
Collapse
Affiliation(s)
- Dhamidhu Eratne
- Neuropsychiatry, Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Psychiatry & Melbourne Neuropsychiatry Centre, University of Melbourne, Parkville, Victoria, Australia.,National Dementia Diagnostics Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Samantha M Loi
- Neuropsychiatry, Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Psychiatry & Melbourne Neuropsychiatry Centre, University of Melbourne, Parkville, Victoria, Australia.,National Dementia Diagnostics Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Qiao-Xin Li
- National Dementia Diagnostics Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Christiane Stehmann
- National Dementia Diagnostics Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Australian National Creutzfeldt-Jakob Disease Registry, Florey Institute of Neuroscience and Mental Health and Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Charles B Malpas
- Department of Medicine, Department of Neurology, Clinical Outcomes Research Unit (CORe), Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Alexander Santillo
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmo, Sweden
| | - Shorena Janelidze
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmo, Sweden
| | - Claire Cadwallader
- Neuropsychiatry, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Nirbaanjot Walia
- Neuropsychiatry, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Blair Ney
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,St. Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
| | - Victoria Lewis
- Australian National Creutzfeldt-Jakob Disease Registry, Florey Institute of Neuroscience and Mental Health and Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Matteo Senesi
- Australian National Creutzfeldt-Jakob Disease Registry, Florey Institute of Neuroscience and Mental Health and Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Christopher Fowler
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Amelia McGlade
- National Dementia Diagnostics Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Shiji Varghese
- National Dementia Diagnostics Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Parsa Ravanfar
- Neuropsychiatry, Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Psychiatry & Melbourne Neuropsychiatry Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Wendy Kelso
- Neuropsychiatry, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Sarah Farrand
- Neuropsychiatry, Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Psychiatry & Melbourne Neuropsychiatry Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Michael Keem
- Neuropsychiatry, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Matthew Kang
- Neuropsychiatry, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Anita M Y Goh
- Neuropsychiatry, Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Psychiatry & Melbourne Neuropsychiatry Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Kunal Dhiman
- School of Medicine, Deakin University, Geelong, Victoria, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, Geelong, Victoria, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Rosie Watson
- Population Health and Immunity Division, the Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Nawaf Yassi
- Population Health and Immunity Division, the Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Departments of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - Cath Kaylor-Hughes
- Department of General Practice, Integrated Mental Health Team, University of Melbourne, Parkville, Victoria, Australia
| | - Richard Kanaan
- Department of Psychiatry, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Piero Perucca
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia.,Comprehensive Epilepsy Program, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia.,Department of Neuroscience, Central Clinical School, The Alfred Hospital, Monash University, Melbourne, Victoria, Australia
| | - Hannah Dobson
- Neuropsychiatry, Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Psychiatry, Alfred Health, Melbourne, Victoria, Australia
| | - Lucy Vivash
- Department of Neuroscience, Central Clinical School, The Alfred Hospital, Monash University, Melbourne, Victoria, Australia
| | - Rashida Ali
- Department of Neuroscience, Central Clinical School, The Alfred Hospital, Monash University, Melbourne, Victoria, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, The Alfred Hospital, Monash University, Melbourne, Victoria, Australia
| | - Oskar Hansson
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmo, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Mark Walterfang
- Neuropsychiatry, Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Psychiatry & Melbourne Neuropsychiatry Centre, University of Melbourne, Parkville, Victoria, Australia.,The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Colin L Masters
- National Dementia Diagnostics Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Samuel F Berkovic
- Department of Medicine, Austin Health, Epilepsy Research Centre, The University of Melbourne, Heidelberg, Victoria, Australia
| | - Steven Collins
- Australian National Creutzfeldt-Jakob Disease Registry, Florey Institute of Neuroscience and Mental Health and Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Dennis Velakoulis
- Neuropsychiatry, Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Psychiatry & Melbourne Neuropsychiatry Centre, University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
14
|
Jiang L, Ding X, Wang W, Yang X, Li T, Lei P. Head-to-Head Comparison of Different Blood Collecting Tubes for Quantification of Alzheimer’s Disease Biomarkers in Plasma. Biomolecules 2022; 12:biom12091194. [PMID: 36139033 PMCID: PMC9496121 DOI: 10.3390/biom12091194] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 12/01/2022] Open
Abstract
To examine whether the type of blood collection tubes affects the quantification of plasma biomarkers for Alzheimer’s disease analyzed with a single-molecule array (Simoa), we recruited a healthy cohort (n = 34, 11 males, mean age = 28.7 ± 7.55) and collected plasma in the following tubes: dipotassium ethylenediaminetetraacetic acid (K2-EDTA), heparin lithium (Li-Hep), and heparin sodium (Na-Hep). Plasma tau, phosphorylated tau 181 (p-tau181), amyloid β (1–40) (Aβ40), and amyloid β (1–42) (Aβ42) were quantified using Simoa. We compared the value of plasma analytes, as well as the effects of sex on the measurements. We found that plasma collected in Li-Hep and Na-Hep tubes yielded significantly higher tau and p-tau181 levels compared to plasma collected in K2-EDTA tubes from the same person, but there was no difference in the measured values of the Aβ40, Aβ42, and Aβ42/40 ratio. Therefore, the type of blood collecting tubes should be considered when planning studies that measure plasma tau.
Collapse
Affiliation(s)
- Lijun Jiang
- Mental Health Center and Department of Neurology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xulong Ding
- Mental Health Center and Department of Neurology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou 215125, China
| | - Wenxiao Wang
- Deyang Mental Health Center, Deyang 618099, China
| | - Xiaobin Yang
- Deyang Mental Health Center, Deyang 618099, China
| | - Tao Li
- Mental Health Center and Department of Neurology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310063, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310012, China
- Correspondence: (T.L.); (P.L.)
| | - Peng Lei
- Mental Health Center and Department of Neurology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (T.L.); (P.L.)
| |
Collapse
|
15
|
Neuro-Axonal Damage and Alteration of Blood–Brain Barrier Integrity in COVID-19 Patients. Cells 2022; 11:cells11162480. [PMID: 36010557 PMCID: PMC9406414 DOI: 10.3390/cells11162480] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 01/08/2023] Open
Abstract
Neurofilament light chain (NfL) is a specific biomarker of neuro-axonal damage. Matrix metalloproteinases (MMPs) are zinc-dependent enzymes involved in blood–brain barrier (BBB) integrity. We explored neuro-axonal damage, alteration of BBB integrity and SARS-CoV-2 RNA presence in COVID-19 patients with severe neurological symptoms (neuro-COVID) as well as neuro-axonal damage in COVID-19 patients without severe neurological symptoms according to disease severity and after recovery, comparing the obtained findings with healthy donors (HD). Overall, COVID-19 patients (n = 55) showed higher plasma NfL levels compared to HD (n = 31) (p < 0.0001), especially those who developed ARDS (n = 28) (p = 0.0005). After recovery, plasma NfL levels were still higher in ARDS patients compared to HD (p = 0.0037). In neuro-COVID patients (n = 12), higher CSF and plasma NfL, and CSF MMP-2 levels in ARDS than non-ARDS group were observed (p = 0.0357, p = 0.0346 and p = 0.0303, respectively). SARS-CoV-2 RNA was detected in four CSF and two plasma samples. SARS-CoV-2 RNA detection was not associated to increased CSF NfL and MMP levels. During COVID-19, ARDS could be associated to CNS damage and alteration of BBB integrity in the absence of SARS-CoV-2 RNA detection in CSF or blood. CNS damage was still detectable after discharge in blood of COVID-19 patients who developed ARDS during hospitalization.
Collapse
|
16
|
Garcia‐Moreno H, Prudencio M, Thomas‐Black G, Solanky N, Jansen‐West KR, Hanna AL‐Shaikh R, Heslegrave A, Zetterberg H, Santana MM, Pereira de Almeida L, Vasconcelos‐Ferreira A, Januário C, Infante J, Faber J, Klockgether T, Reetz K, Raposo M, Ferreira AF, Lima M, Schöls L, Synofzik M, Hübener‐Schmid J, Puschmann A, Gorcenco S, Wszolek ZK, Petrucelli L, Giunti P. Tau and neurofilament light-chain as fluid biomarkers in spinocerebellar ataxia type 3. Eur J Neurol 2022; 29:2439-2452. [PMID: 35478426 PMCID: PMC9543545 DOI: 10.1111/ene.15373] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/06/2022] [Accepted: 04/24/2022] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND PURPOSE Clinical trials in spinocerebellar ataxia type 3 (SCA3) will require biomarkers for use as outcome measures. METHODS To evaluate total tau (t-tau), glial fibrillary acidic protein (GFAP), ubiquitin carboxy-terminal hydrolase L1 (UCHL1) and neurofilament light-chain (NfL) as fluid biomarkers in SCA3, ATXN3 mutation carriers (n = 143) and controls (n = 172) were clinically assessed, and the plasma concentrations of the four proteins were analysed on the Simoa HD-1 platform. Eleven ATXN3 mutation carrier cerebrospinal fluid samples were analysed for t-tau and phosphorylated tau (p-tau181 ). A transgenic SCA3 mouse model (MJDTg) was used to measure cerebellar t-tau levels. RESULTS Plasma t-tau levels were higher in mutation carriers below the age of 50 compared to controls, and the Inventory of Non-Ataxia Signs was associated with t-tau in ataxic patients (p = 0.004). Pre-ataxic carriers showed higher cerebrospinal fluid t-tau and p-tau181 concentrations compared to ataxic patients (p = 0.025 and p = 0.014, respectively). Cerebellar t-tau was elevated in MJDTg mice compared to wild-type (p = 0.033) only in the early stages of the disease. GFAP and UCHL1 did not show higher levels in mutation carriers compared to controls. Plasma NfL concentrations were higher in mutation carriers compared to controls, and differences were greater for younger carriers. The Scale for the Assessment and Rating of Ataxia was the strongest predictor of NfL in ataxic patients (p < 0.001). CONCLUSION Our results suggest that tau might be a marker of early disease stages in SCA3. NfL can discriminate mutation carriers from controls and is associated with different clinical variables. Longitudinal studies are required to confirm their potential role as biomarkers in clinical trials.
Collapse
Affiliation(s)
- Hector Garcia‐Moreno
- Ataxia CentreDepartment of Clinical and Movement NeurosciencesUCL Queen Square Institute of NeurologyUniversity College LondonLondonUK,Department of NeurogeneticsNational Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS Foundation TrustLondonUK
| | - Mercedes Prudencio
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA,Neuroscience Graduate ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFloridaUSA
| | - Gilbert Thomas‐Black
- Ataxia CentreDepartment of Clinical and Movement NeurosciencesUCL Queen Square Institute of NeurologyUniversity College LondonLondonUK,Department of NeurogeneticsNational Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS Foundation TrustLondonUK
| | - Nita Solanky
- Ataxia CentreDepartment of Clinical and Movement NeurosciencesUCL Queen Square Institute of NeurologyUniversity College LondonLondonUK,Department of NeurogeneticsNational Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS Foundation TrustLondonUK
| | | | | | - Amanda Heslegrave
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK,UK Dementia Research Institute at UCLLondonUK
| | - Henrik Zetterberg
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK,UK Dementia Research Institute at UCLLondonUK,Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden,Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Magda M. Santana
- Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
| | | | | | | | - Jon Infante
- Neurology ServiceUniversity Hospital Marqués de Valdecilla‐IDIVALUniversity of CantabriaCentro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED)SantanderSpain
| | - Jennifer Faber
- Department of NeurologyUniversity Hospital BonnBonnGermany,German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Thomas Klockgether
- Department of NeurologyUniversity Hospital BonnBonnGermany,German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Kathrin Reetz
- Department of NeurologyRWTH Aachen UniversityAachenGermany,JARA‐BRAIN Institute Molecular Neuroscience and NeuroimagingForschungszentrum JülichRWTH Aachen UniversityAachenGermany
| | - Mafalda Raposo
- Faculdade de Ciências e TecnologiaUniversidade dos AçoresPonta DelgadaPortugal,Instituto de Biologia Molecular e Celular (IBMC)Instituto de Investigação e Inovação em Saúde (i3S)Universidade do PortoPortoPortugal
| | - Ana F. Ferreira
- Faculdade de Ciências e TecnologiaUniversidade dos AçoresPonta DelgadaPortugal,Instituto de Biologia Molecular e Celular (IBMC)Instituto de Investigação e Inovação em Saúde (i3S)Universidade do PortoPortoPortugal
| | - Manuela Lima
- Faculdade de Ciências e TecnologiaUniversidade dos AçoresPonta DelgadaPortugal,Instituto de Biologia Molecular e Celular (IBMC)Instituto de Investigação e Inovação em Saúde (i3S)Universidade do PortoPortoPortugal
| | - Ludger Schöls
- Department for Neurodegenerative DiseasesHertie‐Institute for Clinical Brain Research and Center for NeurologyUniversity of TübingenTübingenGermany,German Center for Neurodegenerative Diseases (DZNE)TübingenGermany
| | - Matthis Synofzik
- Department for Neurodegenerative DiseasesHertie‐Institute for Clinical Brain Research and Center for NeurologyUniversity of TübingenTübingenGermany,German Center for Neurodegenerative Diseases (DZNE)TübingenGermany
| | | | - Andreas Puschmann
- Lund University, Skåne University HospitalClinical Sciences, NeurologyLundSweden
| | - Sorina Gorcenco
- Lund University, Skåne University HospitalClinical Sciences, NeurologyLundSweden
| | | | - Leonard Petrucelli
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA,Neuroscience Graduate ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFloridaUSA
| | - Paola Giunti
- Ataxia CentreDepartment of Clinical and Movement NeurosciencesUCL Queen Square Institute of NeurologyUniversity College LondonLondonUK,Department of NeurogeneticsNational Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS Foundation TrustLondonUK
| |
Collapse
|
17
|
Carrasco AE, Appleby BS, Cali I, Okhravi HR. Atypical Case of VV1 Creutzfeldt–Jakob Disease Subtype: Case Report. Front Neurol 2022; 13:875370. [PMID: 35614914 PMCID: PMC9124891 DOI: 10.3389/fneur.2022.875370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/28/2022] [Indexed: 11/21/2022] Open
Abstract
Creutzfeldt–Jakob disease (CJD) is a rare form of rapidly progressive, neurodegenerative disease that results from the misfolding and accumulation of an aberrant, disease-associated prion protein (PrPD). CJD affects 1–1.5 cases per million per year with the sporadic-type accounting for an estimated 85% of these cases. Sporadic CJD (sCJD) is further subdivided into five subtypes based on genetic polymorphisms; the rarest subtype, sCJDVV1, occurs at a rate of 1 case per one-hundredth million population per year. Clinical characteristics of the sCJDVV1 subtype have been reported to show, early age of onset (44 years), average disease duration of 21 months, absent PSWCs on electroencephalography (EEG), and MRI hyperintensities in the cerebral cortex with usual negative signal in the basal ganglia or thalamus. We present a case of the sCJDVV1 subtype with uncommon features. Contrary to current data on sCJDVV1, our patient presented with an unusual age at onset (61 years) and longer disease duration (32 months). The highly sensitive and specific real-time quaking-induced conversion (RT-QuIC) assay was negative. Presenting clinical symptoms included paranoid thoughts and agitation, rapidly progressive memory decline, prosopagnosia, and late development of myoclonus and mutism. Other findings showed positive antithyroid peroxidase antibodies (anti-TPO), and absent PSWCs on EEG. High-dose steroid therapy treatment was administered based on positive anti-TPO findings, which failed to elicit any improvement and the patient continued to decline. To our knowledge, only four cases with the sCJDVV1 subtype, including our patient, have been reported to have a negative result on RT-QuIC. This may suggest varied sensitivity across sCJD subtypes. However, given the rarity of our patient's subtype, and the relatively novel RT-QuIC, current data are based on a small number of cases and larger cohorts of confirmed VV1 cases with RT-QuIC testing need to be reported.
Collapse
Affiliation(s)
| | - Brian S. Appleby
- Department of Neurology, Case Western Reserve University, Cleveland, OH, United States
| | - Ignazio Cali
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Hamid R. Okhravi
- Department of Internal Medicine, Glennan Center for Geriatrics and Gerontology, Eastern Virginia Medical School, Norfolk, VA, United States
- *Correspondence: Hamid R. Okhravi
| |
Collapse
|
18
|
Affiliation(s)
- Inga Zerr
- From the National Reference Center for Human Prion Diseases, Clinical Dementia Center, Department of Neurology, University Medical Center, Georg August University, Göttingen, Germany
| |
Collapse
|
19
|
Heshmatollah A, Fani L, Koudstaal PJ, Ghanbari M, Ikram MA, Ikram MK. Plasma Amyloid Beta, Total-Tau and Neurofilament Light Chain Levels and the Risk of Stroke: A Prospective Population-Based Study. Neurology 2022; 98:e1729-e1737. [PMID: 35232820 DOI: 10.1212/wnl.0000000000200004] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 01/03/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES To unravel whether Alzheimer's disease-related pathology or neurodegeneration play a role in stroke etiology, we determined the effect of plasma levels amyloid β (Aβ), total-tau and neurofilament light chain (NfL) on risk of stroke and its subtypes. METHODS Between 2002 and 2005, we measured plasma Aβ40, Aβ42, total-tau, and NfL in 4,661 stroke-free participants from the population-based Rotterdam Study. We used Cox proportional-hazards models to determine the association between these markers with incident stroke for the entire cohort, per stroke subtype, and by median age, sex, Apolipoprotein E (APOE) ε4 carriership, and education. RESULTS After a mean follow-up of 10.8 ± 3.3 years, 379 participants suffered a first-ever stroke. Log2 total-tau at baseline showed a non-linear association with risk of any stroke and ischemic stroke: compared to the first (lowest) quartile the adjusted hazard ratio for the highest quartile total-tau was 1.68, 95% CI: 1.18-2.40 for any stroke. Log2 NfL was associated with an increased risk of any stroke (HR per SD increase 1.27, 95% CI: 1.12-1.44), ischemic stroke, and hemorrhagic stroke (HR 1.56, 95% CI: 1.14-2.12). Log2 Aβ40, Aβ42, and Aβ42/40 ratio levels were not associated with stroke risk.Discussion Participants with higher total-tau and NfL at baseline had a higher risk of stroke and several stroke subtypes. These findings support the role of markers of neurodegeneration in the etiology of stroke. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that higher plasma levels of total-tau and NfL are associated with an increased risk of subsequent stroke.
Collapse
Affiliation(s)
- Alis Heshmatollah
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands.,Department of Neurology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Lana Fani
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Peter J Koudstaal
- Department of Neurology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - M Kamran Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands.,Department of Neurology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
20
|
CSF biomarkers for prion diseases. Neurochem Int 2022; 155:105306. [PMID: 35176437 DOI: 10.1016/j.neuint.2022.105306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/15/2021] [Accepted: 02/13/2022] [Indexed: 11/22/2022]
Abstract
Recently, clinical trials of human prion disease (HPD) treatments have begun in many countries, and the therapeutic window of these trials focuses mainly on the early stage of the disease. Furthermore, few studies have examined the role of biomarkers at the early stage. According to the World Health Organization, the clinical diagnostic criteria for HPDs include clinical findings, cerebrospinal fluid (CSF) protein markers, and electroencephalography (EEG). In contrast, the UK and European clinical diagnostic criteria include a combination of clinical findings, 14-3-3 protein in the CSF, magnetic resonance imaging-diffusion-weighted imaging (MRI-DWI), and EEG. Moreover, recent advancements in laboratory testing and MRI-DWI have improved the accuracy of diagnostics used for prion diseases. However, according to MRI-DWI data, patients with rapidly progressing dementia are sometimes misdiagnosed with HPD due to the high-intensity areas detected in their brains. Thus, analyzing the CSF biomarkers is critical to diagnose accurately different diseases. CSF biomarkers are investigated using a biochemical approach or the protein amplification methods that utilize the unique properties of prion proteins and the ability of PrPSc to induce a conformational change. The biochemical markers include the 14-3-3 and total tau proteins of the CSF. In contrast, the protein amplification methods include the protein misfolding cyclic amplification assay and real-time quaking-induced conversion (RT-QuIC) assay. The RT-QuIC analysis of the CSF has been proved to be a highly sensitive and specific test for identifying sporadic HPD forms; for this reason, it was included in the diagnostic criteria.
Collapse
|
21
|
Halbgebauer S, Abu-Rumeileh S, Oeckl P, Steinacker P, Roselli F, Wiesner D, Mammana A, Beekes M, Kortazar-Zubizarreta I, Perez de Nanclares G, Capellari S, Giese A, Castilla J, Ludolph AC, Žáková D, Parchi P, Otto M. Blood β-Synuclein and Neurofilament Light Chain During the Course of Prion Disease. Neurology 2022; 98:e1434-e1445. [PMID: 35110380 DOI: 10.1212/wnl.0000000000200002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 01/03/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES For early diagnosis and disease monitoring of neurodegenerative diseases (NDs) reliable blood biomarkers are needed. Elevated levels of neurofilament light chain protein (NfL), an axonal damage marker, have been described across different NDs with highest values in prion diseases and amyotrophic lateral sclerosis (ALS). Synaptic degeneration is a common early feature in most NDs and seems to precede neuronal degeneration in prion disease. However, synaptic markers in blood are still missing. Here we investigated if the brain specific protein beta-synuclein might be a suitable blood biomarker for early diagnosis and evaluation of synaptic integrity in prion disease. METHODS We analyzed blood beta-synuclein with a newly established digital ELISA and NfL with single molecule array in samples obtained from human subjects and prion and ALS animal models. Furthermore, beta-synuclein was investigated in brain tissue of Creutzfeldt-Jakob disease (CJD) and control cases. RESULTS We investigated 308 patients including 129 prion disease cases, 8 presymptomatic PRNP mutation carriers, 60 ALS, 68 other ND and 43 control patients. In CJD symptomatic cases beta-synuclein and NfL were markedly increased compared to all other diagnostic groups (p<0.001). In the large majority of pre-symptomatic PRNP mutation carriers beta-synuclein and NfL levels were within normal range. In prion disease animal models, beta-synuclein and NfL displayed normal levels in the pre-symptomatic phase with a sudden elevation at disease onset and a plateau in the symptomatic phase. In contrast to NfL, beta-synuclein was neither elevated in symptomatic ALS patients nor in an ALS animal model. In the discrimination between prion disease and all other groups beta-synuclein (AUC: 0.97, 95% CI: 0.94-0.99, p<0.001) was superior to NfL (AUC: 0.91, 95% CI: 0.88-0.94, p<0.001). Additionally, brain tissue beta-synuclein showed significantly reduced levels in CJD compared to control patients (p<0.001). DISCUSSION Blood beta-synuclein was significantly elevated in CJD patients reflecting ongoing synaptic damage and showed good discriminative characteristics. We therefore propose it as a candidate blood marker for early diagnosis and monitoring of synaptic integrity in prion disease. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that serum beta synuclein concentration accurately distinguishes patients with symptomatic CJD from controls.
Collapse
Affiliation(s)
- Steffen Halbgebauer
- Department of Neurology, Ulm University Hospital, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Samir Abu-Rumeileh
- Department of Neurology, Ulm University Hospital, Oberer Eselsberg 45, 89081 Ulm, Germany.,Department of Neurology, Halle University Hospital, Martin Luther University Halle/Wittenberg, Ernst-Grube Strasse 49, 06120 Halle (Saale), Germany
| | - Patrick Oeckl
- Department of Neurology, Ulm University Hospital, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Petra Steinacker
- Department of Neurology, Ulm University Hospital, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Francesco Roselli
- Department of Neurology, Ulm University Hospital, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Diana Wiesner
- Department of Neurology, Ulm University Hospital, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Angela Mammana
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Michael Beekes
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | | | | | - Sabina Capellari
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Armin Giese
- Department of Neuropathology, Ludwig-Maximilians-University, Munich, Germany
| | | | - Albert C Ludolph
- Department of Neurology, Ulm University Hospital, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Dana Žáková
- Department of Prion Diseases, Slovak Medical University, Bratislava, Slovakia
| | - Piero Parchi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Experimental Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Markus Otto
- Department of Neurology, Ulm University Hospital, Oberer Eselsberg 45, 89081 Ulm, Germany .,Department of Neurology, Halle University Hospital, Martin Luther University Halle/Wittenberg, Ernst-Grube Strasse 49, 06120 Halle (Saale), Germany
| |
Collapse
|
22
|
NT1-Tau Is Increased in CSF and Plasma of CJD Patients, and Correlates with Disease Progression. Cells 2021; 10:cells10123514. [PMID: 34944022 PMCID: PMC8700417 DOI: 10.3390/cells10123514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/04/2021] [Accepted: 12/08/2021] [Indexed: 11/21/2022] Open
Abstract
This study investigates the diagnostic and prognostic potential of different forms of tau in biofluids from patients with Creutzfeldt-Jakob disease (CJD). Extracellular tau, which is molecularly heterogeneous, was measured using ultra-sensitive custom-made Simoa assays for N-terminal (NT1), mid-region, and full-length tau. We assessed cross-sectional CSF and plasma from healthy controls, patients with Alzheimer’s disease (AD) and CJD patients. Then, we evaluated the correlation of the best-performing tau assay (NT1-tau) with clinical severity and functional decline (using the MRC Prion Disease Rating Scale) in a longitudinal CJD cohort (n = 145). In a cross-sectional study, tau measured in CSF with the NT1 and mid-region Simoa assays, separated CJD (n = 15) from AD (n = 18) and controls (n = 21) with a diagnostic accuracy (AUCs: 0.98–1.00) comparable to or better than neurofilament light chain (NfL; AUCs: 0.96–0.99). In plasma, NT1-measured tau was elevated in CJD (n = 5) versus AD (n = 15) and controls (n = 15). Moreover, in CJD plasma (n = 145) NT1-tau levels correlated with stage and rate of disease progression, and the effect on clinical progression was modified by the PRNP codon 129. Our findings suggest that plasma NT1-tau shows promise as a minimally invasive diagnostic and prognostic biomarker of CJD, and should be further investigated for its potential to monitor disease progression and response to therapies.
Collapse
|
23
|
Cazzaniga FA, Bistaffa E, De Luca CMG, Bufano G, Indaco A, Giaccone G, Moda F. Sporadic Creutzfeldt-Jakob disease: Real-Time Quaking Induced Conversion (RT-QuIC) assay represents a major diagnostic advance. Eur J Histochem 2021; 65:3298. [PMID: 34657408 PMCID: PMC8529530 DOI: 10.4081/ejh.2021.3298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/07/2021] [Indexed: 12/23/2022] Open
Abstract
Sporadic Creutzfeldt-Jakob disease (sCJD) is a rare and fatal neurodegenerative disorder with an incidence of 1.5 to 2 cases per million population/year. The disease is caused by a proteinaceous infectious agent, named prion (or PrPSc), which arises from the conformational conversion of the cellular prion protein (PrPC). Once formed, PrPSc interacts with the normally folded PrPC coercing it to undergo similar structural rearrangement. The disease is highly heterogeneous from a clinical and neuropathological point of view. The origin of this variability lies in the aberrant structures acquired by PrPSc. At least six different sCJD phenotypes have been described and each of them is thought to be caused by a peculiar PrPSc strain. Definitive sCJD diagnosis requires brain analysis with the aim of identifying intracerebral accumulation of PrPSc which currently represents the only reliable biomarker of the disease. Clinical diagnosis of sCJD is very challenging and is based on the combination of several clinical, instrumental and laboratory tests representing surrogate disease biomarkers. Thanks to the advent of the ultrasensitive Real-Time Quaking-Induced Conversion (RT-QuIC) assay, PrPSc was found in several peripheral tissues of sCJD patients, sometimes even before the clinical onset of the disease. This discovery represents an important step forward for the clinical diagnosis of sCJD. In this manuscript, we present an overview of the current applications and future perspectives of RT-QuIC in the field of sCJD diagnosis.
Collapse
Affiliation(s)
| | - Edoardo Bistaffa
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5-Neuropathology, Milan.
| | | | - Giuseppe Bufano
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5-Neuropathology, Milan, Italy.
| | - Antonio Indaco
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5-Neuropathology, Milan.
| | - Giorgio Giaccone
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5-Neuropathology, Milan, Italy.
| | - Fabio Moda
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5-Neuropathology, Milan, Italy.
| |
Collapse
|
24
|
Thompson AGB, Anastasiadis P, Druyeh R, Whitworth I, Nayak A, Nihat A, Mok TH, Rudge P, Wadsworth JDF, Rohrer J, Schott JM, Heslegrave A, Zetterberg H, Collinge J, Jackson GS, Mead S. Evaluation of plasma tau and neurofilament light chain biomarkers in a 12-year clinical cohort of human prion diseases. Mol Psychiatry 2021; 26:5955-5966. [PMID: 33674752 PMCID: PMC8758487 DOI: 10.1038/s41380-021-01045-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 01/20/2021] [Accepted: 02/02/2021] [Indexed: 11/09/2022]
Abstract
Prion diseases are fatal neurodegenerative conditions with highly accurate CSF and imaging diagnostic tests, but major unmet needs for blood biomarkers. Using ultrasensitive immuno-assays, we measured tau and neurofilament light chain (NfL) protein concentrations in 709 plasma samples taken from 377 individuals with prion disease during a 12 year prospective clinical study, alongside healthy and neurological control groups. This provides an unprecedented opportunity to evaluate their potential as biomarkers. Plasma tau and NfL were increased across all prion disease types. For distinguishing sCJD from control groups including clinically-relevant "CJD mimics", both show considerable diagnostic value. In sCJD, NfL was substantially elevated in every sample tested, including during early disease with minimal functional impairment and in all follow-up samples. Plasma tau was independently associated with rate of clinical progression in sCJD, while plasma NfL showed independent association with severity of functional impairment. In asymptomatic PRNP mutation carriers, plasma NfL was higher on average in samples taken within 2 years of symptom onset than in samples taken earlier. We present biomarker trajectories for nine mutation carriers healthy at enrolment who developed symptoms during follow-up. NfL started to rise as early as 2 years before onset in those with mutations typically associated with more slowly progressive clinical disease. This shows potential for plasma NfL as a "proximity marker", but further work is needed to establish predictive value on an individual basis, and how this varies across different PRNP mutations. We conclude that plasma tau and NfL have potential to fill key unmet needs for biomarkers in prion disease: as a secondary outcome for clinical trials (NfL and tau); for predicting onset in at-risk individuals (NfL); and as an accessible test for earlier identification of patients that may have CJD and require more definitive tests (NfL). Further studies should evaluate their performance directly in these specific roles.
Collapse
Affiliation(s)
| | | | - Ronald Druyeh
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
| | - Ines Whitworth
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
| | - Annapurna Nayak
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
| | - Akin Nihat
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust (UCLH), London, UK
| | - Tze How Mok
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust (UCLH), London, UK
| | - Peter Rudge
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust (UCLH), London, UK
| | | | - Jonathan Rohrer
- Dementia Research Centre, Department of Neurodegeneration, University College London (UCL) Institute of Neurology, London, UK
| | - Jonathan M Schott
- Dementia Research Centre, Department of Neurodegeneration, University College London (UCL) Institute of Neurology, London, UK
| | - Amanda Heslegrave
- UK Dementia Research Institute at University College London (UCL), London, UK
| | - Henrik Zetterberg
- UK Dementia Research Institute at University College London (UCL), London, UK
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| | - John Collinge
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust (UCLH), London, UK
| | | | - Simon Mead
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK.
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust (UCLH), London, UK.
| |
Collapse
|
25
|
Developing the ATX(N) classification for use across the Alzheimer disease continuum. Nat Rev Neurol 2021; 17:580-589. [PMID: 34239130 DOI: 10.1038/s41582-021-00520-w] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 02/06/2023]
Abstract
Breakthroughs in the development of highly accurate fluid and neuroimaging biomarkers have catalysed the conceptual transformation of Alzheimer disease (AD) from the traditional clinical symptom-based definition to a clinical-biological construct along a temporal continuum. The AT(N) system is a symptom-agnostic classification scheme that categorizes individuals using biomarkers that chart core AD pathophysiological features, namely the amyloid-β (Aβ) pathway (A), tau-mediated pathophysiology (T) and neurodegeneration (N). This biomarker matrix is now expanding towards an ATX(N) system, where X represents novel candidate biomarkers for additional pathophysiological mechanisms such as neuroimmune dysregulation, synaptic dysfunction and blood-brain barrier alterations. In this Perspective, we describe the conceptual framework and clinical importance of the existing AT(N) system and the evolving ATX(N) system. We provide a state-of-the-art summary of the potential contexts of use of these systems in AD clinical trials and future clinical practice. We also discuss current challenges related to the validation, standardization and qualification process and provide an outlook on the real-world application of the AT(N) system.
Collapse
|
26
|
Ma LZ, Zhang C, Wang H, Ma YH, Shen XN, Wang J, Tan L, Dong Q, Yu JT. Serum Neurofilament Dynamics Predicts Cognitive Progression in de novo Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2021; 11:1117-1127. [PMID: 33935105 DOI: 10.3233/jpd-212535] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Neurofilament light (NfL) can reflect the extent of neuron/axon damage, thus providing an opportunity to examine the severity and progression of the diseases with such damage. OBJECTIVE Whether serum NfL can be used as an indicator to monitor the cognitive progress of de novo Parkinson's disease (PD) remains unclear. METHODS In this research, 144 healthy controls and 301 de novo PD patients from Parkinson's Progression Markers Initiative (PPMI) were recruited. Linear mixed effects models were used to examine the associations of baseline/longitudinal serum NfL with cognitive decline. Cox regression was used to detect cognitive progression in PD participants. RESULTS We found PD patients had higher serum NfL than controls at baseline (p = 0.031), and NfL increase was faster in PD group (p < 0.001). Both baseline serum NfL and its rate of change predicted measurable cognitive decline in early PD (MoCA, β= -0.014, p < 0.001; β= -0.002, p < 0.001, respectively). Additionally, we observed that NfL levels were also able to predict progression in different diagnostic groups and Amyloid- PD and Amyloid+PD groups. After an average follow-up of 6.37±1.84 years, the baseline NfL of the third tertile of high concentrations was associated with a future high risk of PD dementia (adjusted HR 6.33, 95% CI 2.62-15.29, p < 0.001). CONCLUSION In conclusion, our results indicated that the serum NfL concentration could function as an easily accessible biomarker to monitor the severity and progression of cognitive decline in PD.
Collapse
Affiliation(s)
- Ling-Zhi Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, China
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Han Wang
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, China
| | - Xue-Ning Shen
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Wang
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Mastrangelo A, Baiardi S, Zenesini C, Poleggi A, Mammana A, Polischi B, Ladogana A, Capellari S, Parchi P. Diagnostic and prognostic performance of CSF α-synuclein in prion disease in the context of rapidly progressive dementia. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12214. [PMID: 34222611 PMCID: PMC8240124 DOI: 10.1002/dad2.12214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Surrogate cerebrospinal fluid (CSF) biomarkers of neurodegeneration still have a central role in the first-line screening of patients with suspected Creutzfeldt-Jakob disease (CJD). Recently, CSF α-synuclein, a marker of synaptic damage, showed a close to optimal performance in distinguishing between CJD and other neurodegenerative dementias. METHODS We evaluated the diagnostic value of CSF α-synuclein in patients with prion disease, non-prion rapidly progressive dementias, and non-neurodegenerative controls. Additionally, we studied its distribution across the different prion disease subtypes and evaluated its association with survival. RESULTS CSF α-synuclein levels were significantly higher in patients with prion disease than in the other groups but showed a lower diagnostic value than CSF total tau or 14-3-3. Moreover, CSF α-synuclein was significantly associated with survival in the whole prion cohort and the most frequent clinicopathological subtypes. DISCUSSION In the clinical setting, CSF α-synuclein does not exceed the diagnostic performance of currently used surrogate markers, but it might constitute a robust prognostic indicator.
Collapse
Affiliation(s)
- Andrea Mastrangelo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaBolognaItaly
| | - Simone Baiardi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaBolognaItaly
- IRCCSIstituto delle Scienze Neurologiche di BolognaBolognaItaly
| | | | - Anna Poleggi
- Department of NeuroscienceIstituto Superiore di SanitàRomeItaly
| | - Angela Mammana
- IRCCSIstituto delle Scienze Neurologiche di BolognaBolognaItaly
| | | | - Anna Ladogana
- Department of NeuroscienceIstituto Superiore di SanitàRomeItaly
| | - Sabina Capellari
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaBolognaItaly
- Department of Biomedical and Neuromotor SciencesUniversity of Bologna (DIBINEM)BolognaItaly
| | - Piero Parchi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaBolognaItaly
- IRCCSIstituto delle Scienze Neurologiche di BolognaBolognaItaly
| |
Collapse
|
28
|
Diaz-Lucena D, Kruse N, Thüne K, Schmitz M, Villar-Piqué A, da Cunha JEG, Hermann P, López-Pérez Ó, Andrés-Benito P, Ladogana A, Calero M, Vidal E, Riggert J, Pineau H, Sim V, Zetterberg H, Blennow K, Del Río JA, Marín-Moreno A, Espinosa JC, Torres JM, Sánchez-Valle R, Mollenhauer B, Ferrer I, Zerr I, Llorens F. TREM2 expression in the brain and biological fluids in prion diseases. Acta Neuropathol 2021; 141:841-859. [PMID: 33881612 PMCID: PMC8113222 DOI: 10.1007/s00401-021-02296-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022]
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) is an innate immune cell surface receptor that regulates microglial function and is involved in the pathophysiology of several neurodegenerative diseases. Its soluble form (sTREM2) results from shedding of the TREM2 ectodomain. The role of TREM2 in prion diseases, a group of rapidly progressive dementias remains to be elucidated. In the present study, we analysed the expression of TREM2 and its main sheddase ADAM10 in the brain of sporadic Creutzfeldt-Jakob disease (sCJD) patients and evaluated the role of CSF and plasma sTREM2 as a potential diagnostic marker of prion disease. Our data indicate that, compared to controls, TREM2 is increased in sCJD patient brains at the mRNA and protein levels in a regional and subtype dependent fashion, and expressed in a subpopulation of microglia. In contrast, ADAM10 is increased at the protein, but not the mRNA level, with a restricted neuronal expression. Elevated CSF sTREM2 is found in sCJD, genetic CJD with mutations E200K and V210I in the prion protein gene (PRNP), and iatrogenic CJD, as compared to healthy controls (HC) (AUC = 0.78–0.90) and neurological controls (AUC = 0.73–0.85), while CSF sTREM2 is unchanged in fatal familial insomnia. sTREM2 in the CSF of cases with Alzheimer’s disease, and multiple sclerosis was not significantly altered in our series. CSF sTREM2 concentrations in sCJD are PRNP codon 129 and subtype-related, correlate with CSF 14-3-3 positivity, total-tau and YKL-40, and increase with disease progression. In plasma, sTREM2 is increased in sCJD compared with HC (AUC = 0.80), displaying positive correlations with plasma total-tau, neurofilament light, and YKL-40. We conclude that comparative study of TREM2 in brain and biological fluids of prion diseases reveals TREM2 to be altered in human prion diseases with a potential value in target engagement, patient stratification, and disease monitoring.
Collapse
Affiliation(s)
- Daniela Diaz-Lucena
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), L'Hospitalet de Llobregat, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Niels Kruse
- University Medical Center Göttingen, Institute of Neuropathology, Göttingen, Germany
| | - Katrin Thüne
- Department of Neurology, University Medical Center Göttingen, Gern August University, Robert Koch Strasse 40, 37075, Göttingen, Germany
| | - Matthias Schmitz
- Department of Neurology, University Medical Center Göttingen, Gern August University, Robert Koch Strasse 40, 37075, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Anna Villar-Piqué
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), L'Hospitalet de Llobregat, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain
| | | | - Peter Hermann
- Department of Neurology, University Medical Center Göttingen, Gern August University, Robert Koch Strasse 40, 37075, Göttingen, Germany
| | - Óscar López-Pérez
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), L'Hospitalet de Llobregat, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Pol Andrés-Benito
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), L'Hospitalet de Llobregat, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Anna Ladogana
- Department of Neurosciences, Istituto Superiore Di Sanità, Rome, Italy
| | - Miguel Calero
- Alzheimer Disease Research Unit, CIEN Foundation, Chronic Disease Programme, Queen Sofia Foundation Alzheimer Center, Instituto de Salud Carlos III, Madrid, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Enric Vidal
- Centre de Recerca en Sanitat Animal, Campus Universitat Autònoma de Barcelona, Institut de Recerca I Tecnologia Agroalimentàries, Bellaterra, Spain
| | - Joachim Riggert
- Department of Transfusion Medicine, University Medical School, Göttingen, Germany
| | - Hailey Pineau
- Department of Medicine-Division of Neurology, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada
| | - Valerie Sim
- Department of Medicine-Division of Neurology, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Institute of Neuroscience and Physiology, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Institute of Neuroscience and Physiology, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Jose Antonio Del Río
- Molecular and Cellular Neurobiotechnology, Scientific Park of Barcelona, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
- University of Barcelona, Institute of Neuroscience, Barcelona, Spain
| | | | | | | | - Raquel Sánchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Department, Hospital Clinic de Barcelona, Institut D'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Brit Mollenhauer
- Paracelsus-Elena Klinik, Kassel, Germany
- Department of Neurology, University Medical Centre Göttingen, Göttingen, Germany
| | - Isidre Ferrer
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), L'Hospitalet de Llobregat, Spain.
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain.
- Department of Pathology and Experimental Therapeutics, Hospitalet de Llobregat, University of Barcelona, Feixa Llarga S/N, 08907, Barcelona, Spain.
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen, Gern August University, Robert Koch Strasse 40, 37075, Göttingen, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.
| | - Franc Llorens
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), L'Hospitalet de Llobregat, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain
- Department of Neurology, University Medical Center Göttingen, Gern August University, Robert Koch Strasse 40, 37075, Göttingen, Germany
| |
Collapse
|
29
|
Willemse EAJ, Scheltens P, Teunissen CE, Vijverberg EGB. A neurologist's perspective on serum neurofilament light in the memory clinic: a prospective implementation study. ALZHEIMERS RESEARCH & THERAPY 2021; 13:101. [PMID: 34006321 PMCID: PMC8132439 DOI: 10.1186/s13195-021-00841-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/04/2021] [Indexed: 11/10/2022]
Abstract
Background Neurofilament light in serum (sNfL) is a biomarker for axonal damage with elevated levels in many neurological disorders, including neurodegenerative dementias. Since within-group variation of sNfL is large and concentrations increase with aging, sNfL’s clinical use in memory clinic practice remains to be established. The objective of the current study was to evaluate the clinical use of serum neurofilament light (sNfL), a cross-disease biomarker for axonal damage, in a tertiary memory clinic cohort. Methods Six neurologists completed questionnaires regarding the usefulness of sNfL (n = 5–42 questionnaires/neurologist). Patients that visited the Alzheimer Center Amsterdam for the first time between May and October 2019 (n = 109) were prospectively included in this single-center implementation study. SNfL levels were analyzed on Simoa and reported together with normal values in relation to age, as part of routine diagnostic work-up and in addition to cerebrospinal fluid (CSF) biomarker analysis. Results SNfL was perceived as useful in 53% (n = 58) of the cases. SNfL was more often perceived as useful in patients < 62 years (29/48, 60%, p = 0.05) and males (41/65, 63%, p < 0.01). Availability of CSF biomarker results at time of result discussion had no influence. We observed non-significant trends for increased perceived usefulness of sNfL for patients with the diagnosis subjective cognitive decline (64%), psychiatric disorder (71%), or uncertain diagnosis (67%). SNfL was mostly helpful to neurologists in confirming or excluding neurodegeneration. Whether sNfL was regarded as useful strongly depended on which neurologist filled out the questionnaire (ranging from 0 to 73% of useful cases/neurologist). Discussion Regardless of the availability of CSF biomarker results, sNfL was perceived as a useful tool in more than half of the evaluated cases in a tertiary memory clinic practice. Based on our results, we recommend the analysis of the biomarker sNfL to confirm or exclude neurodegeneration in patients below 62 years old and in males. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-021-00841-4.
Collapse
Affiliation(s)
- E A J Willemse
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Center, Vrije Universiteit, De Boelelaan, 1117, Amsterdam, The Netherlands.
| | - P Scheltens
- Alzheimer Center, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center, Vrije Universiteit, De Boelelaan, 1117, Amsterdam, The Netherlands
| | - C E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Center, Vrije Universiteit, De Boelelaan, 1117, Amsterdam, The Netherlands
| | - E G B Vijverberg
- Alzheimer Center, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center, Vrije Universiteit, De Boelelaan, 1117, Amsterdam, The Netherlands.,Brain Research Center, Amsterdam, The Netherlands
| |
Collapse
|
30
|
Figgie MP, Appleby BS. Clinical Use of Improved Diagnostic Testing for Detection of Prion Disease. Viruses 2021; 13:v13050789. [PMID: 33925126 PMCID: PMC8146465 DOI: 10.3390/v13050789] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Prion diseases are difficult to recognize as many symptoms are shared among other neurologic pathologies and the full spectra of symptoms usually do not appear until late in the disease course. Additionally, many commonly used laboratory markers are non-specific to prion disease. The recent introduction of second-generation real time quaking induced conversion (RT-QuIC) has revolutionized pre-mortem diagnosis of prion disease due to its extremely high sensitivity and specificity. However, RT-QuIC does not provide prognostic data and has decreased diagnostic accuracy in some rarer, atypical prion diseases. The objective of this review is to provide an overview of the current clinical utility of fluid-based biomarkers, neurodiagnostic testing, and brain imaging in the diagnosis of prion disease and to suggest guidelines for their clinical use, with a focus on rarer prion diseases with atypical features. Recent advancements in laboratory-based testing and imaging criteria have shown improved diagnostic accuracy and prognostic potential in prion disease, but because these diagnostic tests are not sensitive in some prion disease subtypes and diagnostic test sensitivities are unknown in the event that CWD transmits to humans, it is important to continue investigations into the clinical utility of various testing modalities.
Collapse
Affiliation(s)
- Mark P. Figgie
- Department of Neurology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Brian S. Appleby
- Department of Neurology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA;
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Correspondence:
| |
Collapse
|
31
|
Zerr I, Villar-Piqué A, Hermann P, Schmitz M, Varges D, Ferrer I, Riggert J, Zetterberg H, Blennow K, Llorens F. Diagnostic and prognostic value of plasma neurofilament light and total-tau in sporadic Creutzfeldt-Jakob disease. Alzheimers Res Ther 2021; 13:86. [PMID: 33883011 PMCID: PMC8059191 DOI: 10.1186/s13195-021-00815-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/23/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Blood neurofilament light (Nfl) and total-tau (t-tau) have been described to be increased in several neurological conditions, including prion diseases and other neurodegenerative dementias. Here, we aim to determine the accuracy of plasma Nfl and t-tau in the differential diagnosis of neurodegenerative dementias and their potential value as prognostic markers of disease severity. METHODS Plasma Nfl and t-tau were measured in healthy controls (HC, n = 70), non-neurodegenerative neurological disease with (NND-Dem, n = 17) and without dementia syndrome (NND, n = 26), Alzheimer's disease (AD, n = 44), Creutzfeldt-Jakob disease (CJD, n = 83), dementia with Lewy bodies/Parkinson's disease with dementia (DLB/PDD, n = 35), frontotemporal dementia (FTD, n = 12), and vascular dementia (VaD, n = 22). Biomarker diagnostic accuracies and cutoff points for the diagnosis of CJD were calculated, and associations between Nfl and t-tau concentrations with other fluid biomarkers, demographic, genetic, and clinical data in CJD cases were assessed. Additionally, the value of Nfl and t-tau predicting disease survival in CJD was evaluated. RESULTS Among diagnostic groups, highest plasma Nfl and t-tau concentrations were detected in CJD (fold changes of 38 and 18, respectively, compared to HC). Elevated t-tau was able to differentiate CJD from all other groups, whereas elevated Nfl concentrations were also detected in NND-Dem, AD, DLB/PDD, FTD, and VaD compared to HC. Both biomarkers discriminated CJD from non-CJD dementias with an AUC of 0.93. In CJD, plasma t-tau, but not Nfl, was associated with PRNP codon 129 genotype and CJD subtype. Positive correlations were observed between plasma Nfl and t-tau concentrations, as well as between plasma and CSF concentrations of both biomarkers (p < 0.001). Nfl was increased in rapidly progressive AD (rpAD) compared to slow progressive AD (spAD) and associated to Mini-Mental State Examination results. However, Nfl displayed higher accuracy than t-tau discriminating CJD from rpAD and spAD. Finally, plasma t-tau, but not plasma Nfl, was significantly associated with disease duration, offering a moderate survival prediction capacity. CONCLUSIONS Plasma Nfl and t-tau are useful complementary biomarkers for the differential diagnosis of CJD. Additionally, plasma t-tau emerges as a potential prognostic marker of disease duration.
Collapse
Affiliation(s)
- Inga Zerr
- Department of Neurology, National Reference Center for TSE Surveillance, University Medical Center, Robert-Koch Street 40, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Anna Villar-Piqué
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), L'Hospitalet de Llobregat, Feixa Llarga s/n, Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Peter Hermann
- Department of Neurology, National Reference Center for TSE Surveillance, University Medical Center, Robert-Koch Street 40, Göttingen, Germany.
| | - Matthias Schmitz
- Department of Neurology, National Reference Center for TSE Surveillance, University Medical Center, Robert-Koch Street 40, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Daniela Varges
- Department of Neurology, National Reference Center for TSE Surveillance, University Medical Center, Robert-Koch Street 40, Göttingen, Germany
| | - Isidre Ferrer
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), L'Hospitalet de Llobregat, Feixa Llarga s/n, Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain
- Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat, Spain
| | - Joachim Riggert
- Department of Transfusion Medicine, University Medical School, Göttingen, Germany
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Franc Llorens
- Department of Neurology, National Reference Center for TSE Surveillance, University Medical Center, Robert-Koch Street 40, Göttingen, Germany.
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), L'Hospitalet de Llobregat, Feixa Llarga s/n, Barcelona, Spain.
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain.
| |
Collapse
|
32
|
Prediction of Outcome After Endovascular Embolectomy in Anterior Circulation Stroke Using Biomarkers. Transl Stroke Res 2021; 13:65-76. [PMID: 33723754 PMCID: PMC8766380 DOI: 10.1007/s12975-021-00905-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 02/23/2021] [Accepted: 02/28/2021] [Indexed: 10/29/2022]
Abstract
Stroke is a major public health problem that can cause a long-term disability or death due to brain damage. Serious stroke is frequently caused by a large vessel occlusion in the anterior circulation, which should be treated by endovascular embolectomy if possible. In this study, we investigated the use of the brain damage biomarkers tau, NFL, NSE, GFAp, and S100B to understand the progression of nervous tissue damage and their relationship to outcome in such stroke after endovascular treatment. Blood samples were taken from 90 patients pre-treatment and 2 h, 24 h, 48 h, 72 h and 3 months after endovascular treatment. Stroke-related neurological deficit was estimated using the National Institute of Health Stroke Scale (NIHSS) at admission and at 24 h. Neurological outcome was evaluated at 3 months. After stroke, tau, NFL, GFAp and S100B increased in a time dependent manner, while NSE remained constant over time. At 3 months, tau and GFAp levels were back to normal whereas NFL was still high. Tau, NFL and GFAp correlated well to outcome, as well as to infarct volume and NIHSS at 24 h. The best time for prediction of poor outcome was different for each biomarker. However, the combination of NIHSS at 24 h with either tau, NFL or GFAp at 48 h gave the best prediction. The use of biomarkers in the early setting after endovascular treatment of stroke will lead to a simplified and standardized way to estimate the nervous tissue damage and possibly complement the clinical judgement in foreseeing the need of rehabilitation measures.
Collapse
|
33
|
Ding X, Zhang S, Jiang L, Wang L, Li T, Lei P. Ultrasensitive assays for detection of plasma tau and phosphorylated tau 181 in Alzheimer's disease: a systematic review and meta-analysis. Transl Neurodegener 2021; 10:10. [PMID: 33712071 PMCID: PMC7953695 DOI: 10.1186/s40035-021-00234-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/24/2021] [Indexed: 02/08/2023] Open
Abstract
A lack of convenient and reliable biomarkers for diagnosis and prognosis is a common challenge for neurodegenerative diseases such as Alzheimer's disease (AD). Recent advancement in ultrasensitive protein assays has allowed the quantification of tau and phosphorylated tau proteins in peripheral plasma. Here we identified 66 eligible studies reporting quantification of plasma tau and phosphorylated tau 181 (ptau181) using four ultrasensitive methods. Meta-analysis of these studies confirmed that the AD patients had significantly higher plasma tau and ptau181 levels compared with controls, and that the plasma tau and ptau181 could predict AD with high-accuracy area under curve of the Receiver Operating Characteristic. Therefore, plasma tau and plasma ptau181 can be considered as biomarkers for AD diagnosis.
Collapse
Affiliation(s)
- Xulong Ding
- Department of Neurology and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shuting Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lijun Jiang
- Mental Health Center and West China Brain Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lu Wang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tao Li
- Mental Health Center and West China Brain Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
34
|
Abu-Rumeileh S, Parchi P. Cerebrospinal Fluid and Blood Neurofilament Light Chain Protein in Prion Disease and Other Rapidly Progressive Dementias: Current State of the Art. Front Neurosci 2021; 15:648743. [PMID: 33776643 PMCID: PMC7994519 DOI: 10.3389/fnins.2021.648743] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
Rapidly progressive dementia (RPD) is an umbrella term referring to several conditions causing a rapid neurological deterioration associated with cognitive decline and short disease duration. They comprise Creutzfeldt–Jakob disease (CJD), the archetypal RPD, rapidly progressive variants of the most common neurodegenerative dementias (NDs), and potentially treatable conditions such as infectious or autoimmune encephalitis and cerebrovascular disease. Given the significant clinical and, sometimes, neuroradiological overlap between these different disorders, biofluid markers also contribute significantly to the differential diagnosis. Among them, the neurofilament light chain protein (NfL) has attracted growing attention in recent years as a biofluid marker of neurodegeneration due to its sensitivity to axonal damage and the reliability of its measurement in both cerebrospinal fluid (CSF) and blood. Here, we summarize current knowledge regarding biological and clinical implications of NfL evaluation in biofluids across RPDs, emphasizing CJD, and other prion diseases. In the latter, NfL demonstrated a good diagnostic and prognostic accuracy and a potential value as a marker of proximity to clinical onset in pre-symptomatic PRNP mutation carriers. Similarly, in Alzheimer’s disease and other NDs, higher NfL concentrations seem to predict a faster disease progression. While increasing evidence indicates a potential clinical value of NfL in monitoring cerebrovascular disease, the association between NfL and prediction of outcome and/or disease activity in autoimmune encephalitis and infectious diseases has only been investigated in few cohorts and deserves confirmatory studies. In the era of precision medicine and evolving therapeutic options, CSF and blood NfL might aid the diagnostic and prognostic assessment of RPDs and the stratification and management of patients according to disease progression in clinical trials.
Collapse
Affiliation(s)
| | - Piero Parchi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto delle Sciente Neurologiche di Bologna, Bologna, Italy.,Department of Experimental Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| |
Collapse
|
35
|
Hermann P, Appleby B, Brandel JP, Caughey B, Collins S, Geschwind MD, Green A, Haïk S, Kovacs GG, Ladogana A, Llorens F, Mead S, Nishida N, Pal S, Parchi P, Pocchiari M, Satoh K, Zanusso G, Zerr I. Biomarkers and diagnostic guidelines for sporadic Creutzfeldt-Jakob disease. Lancet Neurol 2021; 20:235-246. [PMID: 33609480 DOI: 10.1016/s1474-4422(20)30477-4] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/19/2020] [Accepted: 12/04/2020] [Indexed: 12/19/2022]
Abstract
Sporadic Creutzfeldt-Jakob disease is a fatal neurodegenerative disease caused by misfolded prion proteins (PrPSc). Effective therapeutics are currently not available and accurate diagnosis can be challenging. Clinical diagnostic criteria use a combination of characteristic neuropsychiatric symptoms, CSF proteins 14-3-3, MRI, and EEG. Supportive biomarkers, such as high CSF total tau, could aid the diagnostic process. However, discordant studies have led to controversies about the clinical value of some established surrogate biomarkers. Development and clinical application of disease-specific protein aggregation and amplification assays, such as real-time quaking induced conversion (RT-QuIC), have constituted major breakthroughs for the confident pre-mortem diagnosis of sporadic Creutzfeldt-Jakob disease. Updated criteria for the diagnosis of sporadic Creutzfeldt-Jakob disease, including application of RT-QuIC, should improve early clinical confirmation, surveillance, assessment of PrPSc seeding activity in different tissues, and trial monitoring. Moreover, emerging blood-based, prognostic, and potentially pre-symptomatic biomarker candidates are under investigation.
Collapse
Affiliation(s)
- Peter Hermann
- National Reference Center for Transmissible Spongiform Encephalopathies, Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.
| | - Brian Appleby
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University, Cleveland, OH, USA; Departments of Neurology, Psychiatry, and Pathology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | - Jean-Philippe Brandel
- Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob, Groupe Hospitalier Pitié-Salpêtrière, Paris, France; Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France
| | - Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Steven Collins
- Australian National Creutzfeldt-Jakob disease Registry, Florey Institute of Neuroscience and Mental Health and Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| | | | - Alison Green
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Stephane Haïk
- Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob, Groupe Hospitalier Pitié-Salpêtrière, Paris, France; Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| | - Anna Ladogana
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Franc Llorens
- National Reference Center for Transmissible Spongiform Encephalopathies, Department of Neurology, University Medical Center Göttingen, Göttingen, Germany; Network Center For Biomedical Research Of Neurodegenerative Diseases, Institute Carlos III, L'Hospitalet de Llobregat, Barcelona, Spain; Bellvitge Biomedical Research Institute, Hospitalet de Llobregat, Barcelona, Spain
| | - Simon Mead
- National Prion Clinic, University College London Hospitals NHS Foundation Trust, London, UK; Medical Research Council Prion Unit at University College London, Institute of Prion Diseases, London, UK
| | - Noriyuki Nishida
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Suvankar Pal
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Piero Parchi
- Istituto di Ricovero e Cura e Carattere Scientifico, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | | | - Katsuya Satoh
- Department of Locomotive Rehabilitation Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Gianluigi Zanusso
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Inga Zerr
- National Reference Center for Transmissible Spongiform Encephalopathies, Department of Neurology, University Medical Center Göttingen, Göttingen, Germany; German Center for Neurodegenerative Diseases, Göttingen, Germany
| |
Collapse
|
36
|
Compta Y, Revesz T. Neuropathological and Biomarker Findings in Parkinson's Disease and Alzheimer's Disease: From Protein Aggregates to Synaptic Dysfunction. JOURNAL OF PARKINSONS DISEASE 2021; 11:107-121. [PMID: 33325398 PMCID: PMC7990431 DOI: 10.3233/jpd-202323] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is mounting evidence that Parkinson’s disease (PD) and Alzheimer’s disease (AD) share neuropathological hallmarks, while similar types of biomarkers are being applied to both. In this review we aimed to explore similarities and differences between PD and AD at both the neuropathology and the biomarker levels, specifically focusing on protein aggregates and synapse dysfunction. Thus, amyloid-β peptide (Aβ) and tau lesions of the Alzheimer-type are common in PD and α-synuclein Lewy-type aggregates are frequent findings in AD. Modern neuropathological techniques adding to routine immunohistochemistry might take further our knowledge of these diseases beyond protein aggregates and down to their presynaptic and postsynaptic terminals, with potential mechanistic and even future therapeutic implications. Translation of neuropathological discoveries to the clinic remains challenging. Cerebrospinal fluid (CSF) and positron emission tomography (PET) markers of Aβ and tau have been shown to be reliable for AD diagnosis. Conversely, CSF markers of α-synuclein have not been that consistent. In terms of PET markers, there is no PET probe available for α-synuclein yet, while the AD PET markers range from consistent evidence of their specificity (amyloid imaging) to greater uncertainty of their reliability due to off-target binding (tau imaging). CSF synaptic markers are attractive, still needing more evidence, which currently suggests those might be non-specific markers of disease progression. It can be summarized that there is neuropathological evidence that protein aggregates of AD and PD are present both at the soma and the synapse. Thus, a number of CSF and PET biomarkers beyond α-synuclein, tau and Aβ might capture these different faces of protein-related neurodegeneration. It remains to be seen what the longitudinal outcomes and the potential value as surrogate markers of these biomarkers are.
Collapse
Affiliation(s)
- Yaroslau Compta
- Parkinson's Disease & Movement Disorders Unit, Neurology Service, Hospital Clínic / IDIBAPS / CIBERNED, Barcelona, Catalonia, Spain.,Institut de Neurociències, Maextu's excellence center, University of Barcelona, Barcelona, Catalonia, Spain
| | - Tamas Revesz
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, UK.,Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, UK.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, UK
| |
Collapse
|
37
|
Qu Y, Tan CC, Shen XN, Li HQ, Cui M, Tan L, Dong Q, Yu JT. Association of Plasma Neurofilament Light With Small Vessel Disease Burden in Nondemented Elderly: A Longitudinal Study. Stroke 2021; 52:896-904. [PMID: 33517704 DOI: 10.1161/strokeaha.120.030302] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Neurofilament light chain (NfL) is a promising predictive biomarker of active axonal injury and neuronal degeneration diseases. We aimed to evaluate if an increase in plasma NfL levels could play a monitoring role in the progression of cerebral small vessel disease (CSVD) among the nondemented elders, which are highly prevalent in elderly individuals and associated with an increased risk of stroke and dementia. METHODS The study included 496 nondemented participants from the Alzheimer disease neuroimaging initiative database. All participants underwent plasma NfL measurements and 3.0-Tesla magnetic resonance imaging of the brain; 387 (78.0%) underwent longitudinal measurements. The number of cerebral microbleeds, lacunar infarcts, and volumetric white matter hyperintensities, as well as Fazekas scores, were measured. Cross-sectional and longitudinal associations between CSVD burden and NfL levels were evaluated using multivariable-adjusted models. RESULTS Plasma NfL was higher in the moderate-severe CSVD burden group (45.2±16.0 pg/mL) than in the nonburden group (34.3±15.1 pg/mL; odds ratio [OR]=1.71 [95% CI, 1.24-2.35]) at baseline. NfL was positively associated with the presence of cerebral microbleeds (OR=1.29 [95% CI, 1.01-1.64]), lacunar infarcts (OR=1.43 [95% CI, 1.06-1.93]), and moderate-severe white matter hyperintensities (OR=1.67 [95% CI, 1.24-2.25]). Longitudinally, a higher change rate of NfL could predict more progression of CSVD burden (OR=1.38 [95% CI, 1.08-1.76]), white matter hyperintensities (OR=1.41 [95% CI, 1.10-1.79]), and lacunar infarcts (OR=1.99 [95% CI, 1.42-2.77]). CONCLUSIONS Plasma NfL level is a valuable noninvasive biomarker that supplements magnetic resonance imaging scans and possibly reflects the severity of CSVD burden. Furthermore, high plasma NfL levels tend to represent an increased CSVD risk, and dynamic increases in NfL levels might predict a greater progression of CSVD.
Collapse
Affiliation(s)
- Yi Qu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, China (Y.Q., C.-C.T., L.T.)
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, China (Y.Q., C.-C.T., L.T.)
| | - Xue-Ning Shen
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, China (X.-N.S., H.-Q.L., M.C., Q.D., J.-T.Y.)
| | - Hong-Qi Li
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, China (X.-N.S., H.-Q.L., M.C., Q.D., J.-T.Y.)
| | - Mei Cui
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, China (X.-N.S., H.-Q.L., M.C., Q.D., J.-T.Y.)
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, China (Y.Q., C.-C.T., L.T.)
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, China (X.-N.S., H.-Q.L., M.C., Q.D., J.-T.Y.)
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, China (X.-N.S., H.-Q.L., M.C., Q.D., J.-T.Y.)
| | | |
Collapse
|
38
|
Serum levels of total human Tau associated with axonal damage among severe malaria patients in Central India. Acta Trop 2020; 212:105675. [PMID: 32828917 DOI: 10.1016/j.actatropica.2020.105675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 01/30/2023]
Abstract
Tau is a microtubule-associated protein (MAP) that is abundant in the axonal part of neurons of the central nervous system. Previous studies among African children and Vietnamese adults suffering from cerebral malaria (CM) showed the pathological significance of measuring circulatory total Tau levels. A pilot investigation was carried out to better characterise neurological pathogenesis among severe malaria patients in Central India. Serum levels of total human Tau (pg/ml) were measured by ELISA following manufacturer guidelines among hospital admitted P. falciparum malaria patients classified with different degree of severity (mild malaria = MM, non-cerebral severe malaria = NCSM, cerebral malaria survivors = CM-S and cerebral malaria non-survivors = CM-NS) using WHO, 2000 definitions, including healthy controls (HC) enroled from the hospital's blood bank. Categorical and numerical variables were analysed by applying appropriate statistical test using Stata 11.0 software. A total of 139 subjects (14 HC, 25 MM, 29 NCSM, 44 CM-S and 27 CM-NS) were included in this preliminary investigation. Serum levels of total human Tau were detected in 0% HC, 4.0% MM, 20.7% NCSM, 43.2% CM-S and 48.2% CM-NS patients. Compared to MM, percent Tau detection was significantly higher among severe malaria patients (p = 0.001). Further, compared to NCSM,% Tau detection was significantly higher in CM-S patients (Chi2 = 3.9, p = 0.048) & CM-NS patients (Chi2 = 4.7, p = 0.030). Percent Tau detection was also significantly higher among severe malaria cases presenting with multiple complications compared to those without multiple complications (p = 0.006). ROC analysis of serum Tau levels (pg/ml) revealed a fair AUC value (0.75) to distinguish CM-NS group (but not CM-S) from NCSM group. In conclusion, serum percent detection of total human Tau is associated with axonal damage among patients with different degree of P. falciparum malaria severity in Central India.
Collapse
|
39
|
Fani L, Ahmad S, Ikram MK, Ghanbari M, Ikram MA. Immunity and amyloid beta, total tau and neurofilament light chain: Findings from a community-based cohort study. Alzheimers Dement 2020; 17:446-456. [PMID: 33215849 PMCID: PMC8048997 DOI: 10.1002/alz.12212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 12/24/2022]
Abstract
Introduction We investigated how components of immunity relate to biomarkers of Alzheimer's disease (AD) in plasma and explored the influence of AD genetic risk factors in the population‐based Rotterdam Study. Methods In 7397 persons, we calculated the granulocyte‐to‐lymphocyte ratio (GLR), platelet‐to‐lymphocyte ratio (PLR), and systemic immune‐inflammation index (SII). In 3615 of these persons, plasma amyloid‐beta (Aβ)42 and Aβ40 were measured. Next, we constructed an overall genetic risk score (GRS) based on genome‐wide significant variants, both including and excluding APOE ε4. Results All innate immunity phenotypes were related to higher Aβ, most strongly with a doubling in GLR leading to a 1.9% higher Aβ42 (95% confidence interval [95% CI] 0.4 to 3.3%) and 3.2% higher Aβ40 (95% CI 2.0 to 4.3%). Higher AD GRS including APOE ε4 was associated with higher immunity markers. Discussion Higher levels of immunity markers were associated with higher Aβ in plasma. Participants with a higher genetic predisposition to AD had higher immunity markers, where these effects were mainly driven by APOE ε4.
Collapse
Affiliation(s)
- Lana Fani
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Shahzad Ahmad
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands.,Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - M Kamran Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands.,Erasmus MC, Department of Neurology, the Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
40
|
Mead S. Marked abnormalities of plasma protein biomarkers in Creutzfeldt-Jakob disease (CJD). J Neurol Neurosurg Psychiatry 2020; 91:1137. [PMID: 32928938 DOI: 10.1136/jnnp-2020-324307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/15/2020] [Indexed: 11/04/2022]
Affiliation(s)
- Simon Mead
- MRC Prion Unit at UCL, UCL Institute of Neurology, London, London, UK
| |
Collapse
|
41
|
Abu-Rumeileh S, Baiardi S, Ladogana A, Zenesini C, Bartoletti-Stella A, Poleggi A, Mammana A, Polischi B, Pocchiari M, Capellari S, Parchi P. Comparison between plasma and cerebrospinal fluid biomarkers for the early diagnosis and association with survival in prion disease. J Neurol Neurosurg Psychiatry 2020; 91:1181-1188. [PMID: 32928934 DOI: 10.1136/jnnp-2020-323826] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To compare the diagnostic accuracy and the prognostic value of blood and cerebrospinal fluid (CSF) tests across prion disease subtypes. METHODS We used a single-molecule immunoassay to measure tau and neurofilament light chain (NfL) protein levels in the plasma and assessed CSF total(t)-tau, NfL and protein 14-3-3 levels in patients with prion disease (n=336), non-prion rapidly progressive dementias (n=106) and non-neurodegenerative controls (n=37). We then evaluated each plasma and CSF marker for diagnosis and their association with survival, taking into account the disease subtype, which is a strong independent prognostic factor in prion disease. RESULTS Plasma tau and NfL concentrations were higher in patients with prion disease than in non-neurodegenerative controls and non-prion rapidly progressive dementias. Plasma tau showed higher diagnostic value than plasma NfL, but a lower accuracy than the CSF proteins t-tau and 14-3-3. In the whole prion cohort, both plasma (tau and NfL) and CSF (t-tau, 14-3-3 and NfL) markers were significantly associated with survival and showed similar prognostic values. However, the intrasubtype analysis revealed that only CSF t-tau in sporadic Creutzfeldt-Jakob disease (sCJD) MM(V)1, plasma tau and CSF t-tau in sCJD VV2, and plasma NfL in slowly progressive prion diseases were significantly associated with survival after accounting for covariates. CONCLUSIONS Plasma markers have lower diagnostic accuracy than CSF biomarkers. Plasma tau and NfL and CSF t-tau are significantly associated with survival in prion disease in a subtype-specific manner and can be used to improve clinical trial stratification and clinical care.
Collapse
Affiliation(s)
- Samir Abu-Rumeileh
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Simone Baiardi
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Anna Ladogana
- Dipartimento di Neuroscienze, Istituto Superiore di Sanità, Roma, Italy
| | - Corrado Zenesini
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
| | | | - Anna Poleggi
- Dipartimento di Neuroscienze, Istituto Superiore di Sanità, Roma, Italy
| | - Angela Mammana
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Barbara Polischi
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
| | | | - Sabina Capellari
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy.,IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Piero Parchi
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy .,Dipartimento di Medicina Specialistica Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| |
Collapse
|
42
|
Different Clinical Contexts of Use of Blood Neurofilament Light Chain Protein in the Spectrum of Neurodegenerative Diseases. Mol Neurobiol 2020; 57:4667-4691. [PMID: 32772223 DOI: 10.1007/s12035-020-02035-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022]
Abstract
One of the most pressing challenges in the clinical research of neurodegenerative diseases (NDDs) is the validation and standardization of pathophysiological biomarkers for different contexts of use (CoUs), such as early detection, diagnosis, prognosis, and prediction of treatment response. Neurofilament light chain (NFL) concentration is a particularly promising candidate, an indicator of axonal degeneration, which can be analyzed in peripheral blood with advanced ultrasensitive methods. Serum/plasma NFL concentration is closely correlated with cerebrospinal fluid NFL and directly reflects neurodegeneration within the central nervous system. Here, we provide an update on the feasible CoU of blood NFL in NDDs and translate recent findings to potentially valuable clinical practice applications. As NFL is not a disease-specific biomarker, however, blood NFL is an easily accessible biomarker with promising different clinical applications for several NDDs: (1) early detection and diagnosis (i.e., amyotrophic lateral sclerosis, Creutzfeldt-Jakob disease, atypical parkinsonisms, sporadic late-onset ataxias), (2) prognosis (Huntington's disease and Parkinson's disease), and (3) prediction of time to symptom onset (presymptomatic mutation carriers in genetic Alzheimer's disease and spinocerebellar ataxia type 3).
Collapse
|
43
|
Hakkers CS, Hermans AM, van Maarseveen EM, Teunissen CE, Verberk IMW, Arends JE, Hoepelman AIM. High efavirenz levels but not neurofilament light plasma levels are associated with poor neurocognitive functioning in asymptomatic HIV patients. J Neurovirol 2020; 26:572-580. [PMID: 32524424 PMCID: PMC7438296 DOI: 10.1007/s13365-020-00860-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 05/10/2020] [Accepted: 05/19/2020] [Indexed: 11/29/2022]
Abstract
The aim of this study is to assess the effect of efavirenz exposure on neurocognitive functioning and investigate plasma neurofilament light (Nfl) as a biomarker for neurocognitive damage. Sub-analysis of the ESCAPE-study, a randomised controlled trial where virologically suppressed, cognitively asymptomatic HIV patients were randomised (2:1) to switch to rilpivirine or continue on efavirenz. At baseline and week 12, patients underwent an extensive neuropsychological assessment (NPA), and serum efavirenz concentration and plasma Nfl levels were measured. Subgroups of elevated (≥ 4.0 mg/L) and therapeutic (0.74 to< 4.0 mg/L) baseline efavirenz concentration were made. Differences between these groups in baseline NPA Z-scores and in delta scores after efavirenz discontinuation were assessed. Nfl level was measured using an ELISA analysis using single molecule array (Simoa) technology. Correlation of plasma NFL with NPA Z-scores was evaluated using a linear mixed model. The elevated group consisted of 6 patients and the therapeutic group of 48. At baseline, the elevated group showed lower composite Z-scores (median - 1.03; IQR 0.87 versus 0.27; 0.79. p 0.02). This effect was also seen on the subdomains verbal (p 0.01), executive functioning (p 0.02), attention (p < 0.01) and speed (p 0.01). In the switch group, the elevated group improved more on composite scores after discontinuing efavirenz (mean 0.58; SD 0.32 versus 0.22; 0.54, p 0.15). No association between plasma Nfl and composite Z-score was found. High efavirenz exposure is associated with worse cognitive functioning compared with patients with therapeutic concentrations. Plasma Nfl is not a suitable biomarker to measure cognitive damage in this group.
Collapse
Affiliation(s)
- Charlotte S Hakkers
- Department of Internal Medicine, section Infectious Diseases, University Medical Center (UMC) Utrecht, Utrecht University, PO Box 85500, 3508, GA, Utrecht, the Netherlands.
| | - Anne Marie Hermans
- Department of Internal Medicine, section Infectious Diseases, University Medical Center (UMC) Utrecht, Utrecht University, PO Box 85500, 3508, GA, Utrecht, the Netherlands
| | - Erik M van Maarseveen
- Division of Laboratory and Pharmacy, Clinical Pharmacy, University Medical Center (UMC) Utrecht, Utrecht, the Netherlands
| | - Charlotte E Teunissen
- Department of Clinical Chemistry, Amsterdam Neuroscience Neurochemistry laboratory, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Inge M W Verberk
- Department of Clinical Chemistry, Amsterdam Neuroscience Neurochemistry laboratory, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Joop E Arends
- Department of Internal Medicine, section Infectious Diseases, University Medical Center (UMC) Utrecht, Utrecht University, PO Box 85500, 3508, GA, Utrecht, the Netherlands
| | - Andy I M Hoepelman
- Department of Internal Medicine, section Infectious Diseases, University Medical Center (UMC) Utrecht, Utrecht University, PO Box 85500, 3508, GA, Utrecht, the Netherlands
| |
Collapse
|
44
|
Mattsson N, Cullen NC, Andreasson U, Zetterberg H, Blennow K. Association Between Longitudinal Plasma Neurofilament Light and Neurodegeneration in Patients With Alzheimer Disease. JAMA Neurol 2020; 76:791-799. [PMID: 31009028 DOI: 10.1001/jamaneurol.2019.0765] [Citation(s) in RCA: 486] [Impact Index Per Article: 97.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Importance Plasma neurofilament light (NfL) has been suggested as a noninvasive biomarker to monitor neurodegeneration in Alzheimer disease (AD), but studies are lacking. Objective To examine whether longitudinal plasma NfL levels are associated with other hallmarks of AD. Design, Setting, and Participants This North American cohort study used data from 1583 individuals in the multicenter Alzheimer's Disease Neuroimaging Initiative study from September 7, 2005, through June 16, 2016. Patients were eligible for inclusion if they had NfL measurements. Annual plasma NfL samples were collected for up to 11 years and were analyzed in 2018. Exposures Clinical diagnosis, Aβ and tau cerebrospinal fluid (CSF) biomarkers, imaging measures (magnetic resonance imaging and fluorodeoxyglucose-positron emission tomography), and tests on cognitive scores. Main Outcomes and Measures The primary outcome was the association between baseline exposures (diagnosis, CSF biomarkers, imaging measures, and cognition) and longitudinal plasma NfL levels, analyzed by an ultrasensitive assay. The secondary outcomes were the associations between a multimodal classification scheme with Aβ, tau, and neurodegeneration (ie, the ATN system) and plasma NfL levels and between longitudinal changes in plasma NfL levels and changes in the other measures. Results Of the included 1583 participants, 716 (45.2%) were women, and the mean (SD) age was 72.9 (7.1) years; 401 had no cognitive impairment, 855 had mild cognitive impairment, and 327 had AD dementia. The NfL level was increased at baseline in patients with mild cognitive impairment and AD dementia (mean levels: cognitive unimpairment, 32.1 ng/L; mild cognitive impairment, 37.9 ng/L; and AD dementia, 45.9 ng/L; P < .001) and increased in all diagnostic groups, with the greatest increase in patients with AD dementia. A longitudinal increase in NfL level correlated with baseline CSF biomarkers (low Aβ42 [P = .001], high total tau [P = .02], and high phosphorylated tau levels [P = .02]), magnetic resonance imaging measures (small hippocampal volumes [P < .001], thin regional cortices [P = .009], and large ventricular volumes [P = .002]), low fluorodeoxyglucose-positron emission tomography uptake (P = .01), and poor cognitive performance (P < .001) for a global cognitive score. With use of the ATN system, increased baseline NfL levels were seen in A-T+N+ (P < .001), A+T-N+ (P < .001), and A+T+N+ (P < .001), and increased rates of NfL levels were seen in A-T+N- (P = .009), A-T+N+ (P = .02), A+T-N+ (P = .04), and A+T+N+ (P = .002). Faster increase in NfL levels correlated with faster increase in CSF biomarkers of neuronal injury, faster rates of atrophy and hypometabolism, and faster worsening in global cognition (all P < .05 in patients with mild cognitive impairment; associations differed slightly in cognitively unimpaired controls and patients with AD dementia). Conclusions and Relevance The findings suggest that plasma NfL can be used as a noninvasive biomarker associated with neurodegeneration in patients with AD and may be useful to monitor effects in trials of disease-modifying drugs.
Collapse
Affiliation(s)
- Niklas Mattsson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden.,Department of Neurology, Skåne University Hospital, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Nicholas C Cullen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Ulf Andreasson
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, University College London Institute of Neurology, Queen Square, London, United Kingdom.,UK Dementia Research Institute at University College London, London, United Kingdom
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
45
|
Vallabh SM, Minikel EV, Williams VJ, Carlyle BC, McManus AJ, Wennick CD, Bolling A, Trombetta BA, Urick D, Nobuhara CK, Gerber J, Duddy H, Lachmann I, Stehmann C, Collins SJ, Blennow K, Zetterberg H, Arnold SE. Cerebrospinal fluid and plasma biomarkers in individuals at risk for genetic prion disease. BMC Med 2020; 18:140. [PMID: 32552681 PMCID: PMC7302371 DOI: 10.1186/s12916-020-01608-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/27/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Prion disease is neurodegenerative disease that is typically fatal within months of first symptoms. Clinical trials in this rapidly declining symptomatic patient population have proven challenging. Individuals at high lifetime risk for genetic prion disease can be identified decades before symptom onset and provide an opportunity for early therapeutic intervention. However, randomizing pre-symptomatic carriers to a clinical endpoint is not numerically feasible. We therefore launched a cohort study in pre-symptomatic genetic prion disease mutation carriers and controls with the goal of evaluating biomarker endpoints that may enable informative trials in this population. METHODS We collected cerebrospinal fluid (CSF) and blood from pre-symptomatic individuals with prion protein gene (PRNP) mutations (N = 27) and matched controls (N = 16), in a cohort study at Massachusetts General Hospital. We quantified total prion protein (PrP) and real-time quaking-induced conversion (RT-QuIC) prion seeding activity in CSF and neuronal damage markers total tau (T-tau) and neurofilament light chain (NfL) in CSF and plasma. We compared these markers cross-sectionally, evaluated short-term test-retest reliability over 2-4 months, and conducted a pilot longitudinal study over 10-20 months. RESULTS CSF PrP levels were stable on test-retest with a mean coefficient of variation of 7% for both over 2-4 months in N = 29 participants and over 10-20 months in N = 10 participants. RT-QuIC was negative in 22/23 mutation carriers. The sole individual with positive RT-QuIC seeding activity at two study visits had steady CSF PrP levels and slightly increased tau and NfL concentrations compared with the others, though still within the normal range, and remained asymptomatic 1 year later. T-tau and NfL showed no significant differences between mutation carriers and controls in either CSF or plasma. CONCLUSIONS CSF PrP will be interpretable as a pharmacodynamic readout for PrP-lowering therapeutics in pre-symptomatic individuals and may serve as an informative surrogate biomarker in this population. In contrast, markers of prion seeding activity and neuronal damage do not reliably cross-sectionally distinguish mutation carriers from controls. Thus, as PrP-lowering therapeutics for prion disease advance, "secondary prevention" based on prodromal pathology may prove challenging; instead, "primary prevention" trials appear to offer a tractable paradigm for trials in pre-symptomatic individuals.
Collapse
Affiliation(s)
- Sonia M Vallabh
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, 415 Main St., Cambridge, MA, 02142, USA.
- Prion Alliance, Cambridge, MA, 02139, USA.
| | - Eric Vallabh Minikel
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, 415 Main St., Cambridge, MA, 02142, USA
- Prion Alliance, Cambridge, MA, 02139, USA
| | - Victoria J Williams
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Becky C Carlyle
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Alison J McManus
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Chase D Wennick
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Anna Bolling
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Bianca A Trombetta
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - David Urick
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Chloe K Nobuhara
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Jessica Gerber
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Holly Duddy
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | | | - Christiane Stehmann
- Australian National CJD Registry, University of Melbourne, Parkville, 3010, Australia
| | - Steven J Collins
- Australian National CJD Registry, University of Melbourne, Parkville, 3010, Australia
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, S-431 80, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, S-431 80, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80, Mölndal, Sweden
- UK Dementia Research Institute, University College London, London, WC1N 3BG, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, WC1N 3BG, UK
| | - Steven E Arnold
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA.
| |
Collapse
|
46
|
Cerroni R, Liguori C, Stefani A, Conti M, Garasto E, Pierantozzi M, Mercuri NB, Bernardini S, Fucci G, Massoud R. Increased Noradrenaline as an Additional Cerebrospinal Fluid Biomarker in PSP-Like Parkinsonism. Front Aging Neurosci 2020; 12:126. [PMID: 32612521 PMCID: PMC7308889 DOI: 10.3389/fnagi.2020.00126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Academic centers utilize sequential clinical and neuroimaging assessments, including morphometric ratios, to obtain an unequivocal diagnosis of the non-synucleinopathic forms of Parkinsonism, such as progressive supranuclear palsy (PSP), however, a 1-2 year follow-up is required. The on-going long-lasting trials using anti-tau antibodies for PSP patients might therefore be biased by the incorrect enrollment of Parkinson's disease (PD) patients manifesting early axial signs. This perspective study aimed at achieving two major goals: first, to summarize the established biomarker candidates found in cerebrospinal fluid (CSF) in probable PSP patients, including low p-tau and altered neurofilaments. Second, we share our recent data, from CSF samples of well-selected PSP subjects, attributable to both main variants (and revisited in light of MDS criteria), who were followed for 1 year before and 2 years after lumbar puncture. We found a significantly high level of noradrenaline (NE) in these patients, similar to controls, when compared to PD patients. In contrast, CSF samples, in PD, showed a significant reduction in CSF NE and its major metabolite, which confirmed that PD is a multi-system disease involving several endogenous pathways. The NE axis impairments were prominent in PSP featuring worse NPI. It might represent a counterpart to the early and peculiar psycho-pathological profiles that are observed in tauopathies. In conclusion, we highlight that CSF biomarkers, which are easy to collect, can provide rapid insights as diagnostic tools. Early alterations in endogenous NE machinery in atypical Parkinsonism may represent a specific risk trait in forms characterized by a worse prognosis.
Collapse
Affiliation(s)
- Rocco Cerroni
- Parkinson Center, Department of System Medicine, University Tor Vergata, Rome, Italy
| | - Claudio Liguori
- Parkinson Center, Department of System Medicine, University Tor Vergata, Rome, Italy
| | - Alessandro Stefani
- Parkinson Center, Department of System Medicine, University Tor Vergata, Rome, Italy
| | - Matteo Conti
- Parkinson Center, Department of System Medicine, University Tor Vergata, Rome, Italy
| | - Elena Garasto
- Parkinson Center, Department of System Medicine, University Tor Vergata, Rome, Italy
| | | | - Nicola B. Mercuri
- UOC Neurology, Department of System Medicine, University Tor Vergata, Rome, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine and Surgery, Faculty of Medicine and Surgery, University Tor Vergata, Rome, Italy
| | - Giorgio Fucci
- Department of Experimental Medicine and Surgery, Faculty of Medicine and Surgery, University Tor Vergata, Rome, Italy
| | - Renato Massoud
- Department of Experimental Medicine and Surgery, Faculty of Medicine and Surgery, University Tor Vergata, Rome, Italy
| |
Collapse
|
47
|
Fourier A, Formaglio M, Kaczorowski F, Mollion H, Perret‐Liaudet A, Sauvee M, Quadrio I. A combination of total tau and neurofilaments discriminates between neurodegenerative and primary psychiatric disorders. Eur J Neurol 2020; 27:1164-1169. [DOI: 10.1111/ene.14247] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/24/2020] [Indexed: 12/13/2022]
Affiliation(s)
- A. Fourier
- Biochemistry Department Lyon University Hospital Lyon France
- Lyon Neuroscience Research Center BIORAN Team – CNRS UMR 5292 INSERM U1028 Université de Lyon Lyon France
| | - M. Formaglio
- Neurocognition and Neuro‐ophthalmology Department Lyon University Hospital Lyon France
- Centre Mémoire de Ressources et de Recherche de Lyon Lyon France
| | - F. Kaczorowski
- Biochemistry Department Lyon University Hospital Lyon France
- Lyon Neuroscience Research Center BIORAN Team – CNRS UMR 5292 INSERM U1028 Université de Lyon Lyon France
| | - H. Mollion
- Centre Mémoire de Ressources et de Recherche de Lyon Lyon France
- Neuropsychology Department Lyon University Hospital LyonFrance
| | - A. Perret‐Liaudet
- Biochemistry Department Lyon University Hospital Lyon France
- Lyon Neuroscience Research Center BIORAN Team – CNRS UMR 5292 INSERM U1028 Université de Lyon Lyon France
| | - M. Sauvee
- Neurology Department Grenoble Alpes University Hospital Grenoble France
| | - I. Quadrio
- Biochemistry Department Lyon University Hospital Lyon France
- Lyon Neuroscience Research Center BIORAN Team – CNRS UMR 5292 INSERM U1028 Université de Lyon Lyon France
| |
Collapse
|
48
|
Burnham SC, Fandos N, Fowler C, Pérez-Grijalba V, Dore V, Doecke JD, Shishegar R, Cox T, Fripp J, Rowe C, Sarasa M, Masters CL, Pesini P, Villemagne VL. Longitudinal evaluation of the natural history of amyloid-β in plasma and brain. Brain Commun 2020; 2:fcaa041. [PMID: 32954297 PMCID: PMC7425352 DOI: 10.1093/braincomms/fcaa041] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/26/2020] [Accepted: 03/04/2020] [Indexed: 01/03/2023] Open
Abstract
Plasma amyloid-β peptide concentration has recently been shown to have high accuracy to predict amyloid-β plaque burden in the brain. These amyloid-β plasma markers will allow wider screening of the population and simplify and reduce screening costs for therapeutic trials in Alzheimer's disease. The aim of this study was to determine how longitudinal changes in blood amyloid-β track with changes in brain amyloid-β. Australian Imaging, Biomarker and Lifestyle study participants with a minimum of two assessments were evaluated (111 cognitively normal, 7 mild cognitively impaired, 15 participants with Alzheimer's disease). Amyloid-β burden in the brain was evaluated through PET and was expressed in Centiloids. Total protein amyloid-β 42/40 plasma ratios were determined using ABtest® assays. We applied our method for obtaining natural history trajectories from short term data to measures of total protein amyloid-β 42/40 plasma ratios and PET amyloid-β. The natural history trajectory of total protein amyloid-β 42/40 plasma ratios appears to approximately mirror that of PET amyloid-β, with both spanning decades. Rates of change of 7.9% and 8.8%, were observed for total protein amyloid-β 42/40 plasma ratios and PET amyloid-β, respectively. The trajectory of plasma amyloid-β preceded that of brain amyloid-β by a median value of 6 years (significant at 88% confidence interval). These findings, showing the tight association between changes in plasma and brain amyloid-β, support the use of plasma total protein amyloid-β 42/40 plasma ratios as a surrogate marker of brain amyloid-β. Also, that plasma total protein amyloid-β 42/40 plasma ratios has potential utility in monitoring trial participants, and as an outcome measure.
Collapse
Affiliation(s)
- Samantha C Burnham
- The Australian e-Health Research Centre, CSIRO Health & Biosecurity, Parkville, VIC 3052, Australia
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | | | - Christopher Fowler
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Vincent Dore
- The Australian e-Health Research Centre, CSIRO Health & Biosecurity, Parkville, VIC 3052, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC 3084, Australia
| | - James D Doecke
- The Australian e-Health Research Centre, CSIRO Health and Biosecurity, Herston 4029, Australia
| | - Rosita Shishegar
- The Australian e-Health Research Centre, CSIRO Health & Biosecurity, Parkville, VIC 3052, Australia
| | - Timothy Cox
- The Australian e-Health Research Centre, CSIRO Health & Biosecurity, Parkville, VIC 3052, Australia
| | - Jurgen Fripp
- The Australian e-Health Research Centre, CSIRO Health and Biosecurity, Herston 4029, Australia
| | - Christopher Rowe
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC 3084, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC 3052, Australia
| | | | - Colin L Masters
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Victor L Villemagne
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC 3084, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
49
|
Towards a treatment for genetic prion disease: trials and biomarkers. Lancet Neurol 2020; 19:361-368. [PMID: 32199098 DOI: 10.1016/s1474-4422(19)30403-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 01/19/2023]
Abstract
Prion disease is a rare, fatal, and exceptionally rapid neurodegenerative disease. Although incurable, prion disease follows a clear pathogenic mechanism, in which a single gene gives rise to a single prion protein (PrP) capable of converting into the sole causal disease agent, the misfolded prion. As efforts progress to leverage this mechanistic knowledge toward rational therapies, a principal challenge will be the design of clinical trials. Previous trials in prion disease have been done in symptomatic patients who are often profoundly debilitated at enrolment. About 15% of prion disease cases are genetic, creating an opportunity for early therapeutic intervention to delay or prevent disease. Highly variable age of onset and absence of established prodromal biomarkers might render infeasible existing models for testing drugs before disease onset. Advancement of near-term targeted therapeutics could crucially depend on thoughtful design of rigorous presymptomatic trials.
Collapse
|
50
|
Llorens F, Villar-Piqué A, Hermann P, Schmitz M, Calero O, Stehmann C, Sarros S, Moda F, Ferrer I, Poleggi A, Pocchiari M, Catania M, Klotz S, O’Regan C, Brett F, Heffernan J, Ladogana A, Collins SJ, Calero M, Kovacs GG, Zerr I. Diagnostic Accuracy of Prion Disease Biomarkers in Iatrogenic Creutzfeldt-Jakob Disease. Biomolecules 2020; 10:E290. [PMID: 32059611 PMCID: PMC7072321 DOI: 10.3390/biom10020290] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/30/2020] [Accepted: 02/08/2020] [Indexed: 12/13/2022] Open
Abstract
Human prion diseases are classified into sporadic, genetic, and acquired forms. Within this last group, iatrogenic Creutzfeldt-Jakob disease (iCJD) is caused by human-to-human transmission through surgical and medical procedures. After reaching an incidence peak in the 1990s, it is believed that the iCJD historical period is probably coming to an end, thanks to lessons learnt from past infection sources that promoted new prion prevention and decontamination protocols. At this point, we sought to characterise the biomarker profile of iCJD and compare it to that of sporadic CJD (sCJD) for determining the value of available diagnostic tools in promptly recognising iCJD cases. To that end, we collected 23 iCJD samples from seven national CJD surveillance centres and analysed the electroencephalogram and neuroimaging data together with a panel of seven CSF biomarkers: 14-3-3, total tau, phosphorylated/total tau ratio, alpha-synuclein, neurofilament light, YKL-40, and real-time quaking induced conversion of prion protein. Using the cut-off values established for sCJD, we found the sensitivities of these biomarkers for iCJD to be similar to those described for sCJD. Given the limited relevant information on this issue to date, the present study validates the use of current sCJD biomarkers for the diagnosis of future iCJD cases.
Collapse
Affiliation(s)
- Franc Llorens
- Department of Neurology, National Reference Center for CJD Surveillance, University Medical Centre Göttingen, 37075 Göttingen, Germany
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), L’Hospitalet de Llobregat, 08908 Llobregat, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Llobregat, Spain
| | - Anna Villar-Piqué
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), L’Hospitalet de Llobregat, 08908 Llobregat, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Llobregat, Spain
| | - Peter Hermann
- Department of Neurology, National Reference Center for CJD Surveillance, University Medical Centre Göttingen, 37075 Göttingen, Germany
| | - Matthias Schmitz
- Department of Neurology, National Reference Center for CJD Surveillance, University Medical Centre Göttingen, 37075 Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
| | - Olga Calero
- Chronic Disease Programme (UFIEC)-CROSADIS, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Christiane Stehmann
- Australian National Creutzfeldt-Jakob Disease Registry, Florey Institute, The University of Melbourne, Melbourne 3010, Australia
| | - Shannon Sarros
- Australian National Creutzfeldt-Jakob Disease Registry, Florey Institute, The University of Melbourne, Melbourne 3010, Australia
| | - Fabio Moda
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Neurology 5 and Neuropathology, 20133 Milan, Italy
| | - Isidre Ferrer
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), L’Hospitalet de Llobregat, 08908 Llobregat, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Llobregat, Spain
- Department of Pathology and Experimental Therapeutics, University of Barcelona, L’Hospitalet de Llobregat, 08907 Llobregat, Spain
| | - Anna Poleggi
- Department of Neuroscience, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Maurizio Pocchiari
- Department of Neuroscience, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Marcella Catania
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Neurology 5 and Neuropathology, 20133 Milan, Italy
| | - Sigrid Klotz
- Institute of Neurology, Medical University of Vienna, Vienna 1097, Austria
| | - Carl O’Regan
- Department of Neuropathology, Beaumont Hospital, Dublin 9, Ireland
| | - Francesca Brett
- Department of Neuropathology, Beaumont Hospital, Dublin 9, Ireland
| | | | - Anna Ladogana
- Department of Neuroscience, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Steven J. Collins
- Australian National Creutzfeldt-Jakob Disease Registry, Florey Institute, The University of Melbourne, Melbourne 3010, Australia
- Department of Medicine (RMH), The University of Melbourne, Melbourne 3050, Australia
| | - Miguel Calero
- Chronic Disease Programme (UFIEC)-CROSADIS, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Gabor G. Kovacs
- Institute of Neurology, Medical University of Vienna, Vienna 1097, Austria
- Department of Laboratory Medicine and Pathobiology and Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON M5T 0S8, Canada
- Laboratory Medicine Program, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Inga Zerr
- Department of Neurology, National Reference Center for CJD Surveillance, University Medical Centre Göttingen, 37075 Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
| |
Collapse
|