1
|
Zheng Y, Young ND, Wang T, Chang BCH, Song J, Gasser RB. Systems biology of Haemonchus contortus - Advancing biotechnology for parasitic nematode control. Biotechnol Adv 2025; 81:108567. [PMID: 40127743 DOI: 10.1016/j.biotechadv.2025.108567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 03/26/2025]
Abstract
Parasitic nematodes represent a substantial global burden, impacting animal health, agriculture and economies worldwide. Of these worms, Haemonchus contortus - a blood-feeding nematode of ruminants - is a major pathogen and a model for molecular and applied parasitology research. This review synthesises some key advances in understanding the molecular biology, genetic diversity and host-parasite interactions of H. contortus, highlighting its value for comparative studies with the free-living nematode Caenorhabditis elegans. Key themes include recent developments in genomic, transcriptomic and proteomic technologies and resources, which are illuminating critical molecular pathways, including the ubiquitination pathway, protease/protease inhibitor systems and the secretome of H. contortus. Some of these insights are providing a foundation for identifying essential genes and exploring their potential as targets for novel anthelmintics or vaccines, particularly in the face of widespread anthelmintic resistance. Advanced bioinformatic tools, such as machine learning (ML) algorithms and artificial intelligence (AI)-driven protein structure prediction, are enhancing annotation capabilities, facilitating and accelerating analyses of gene functions, and biological pathways and processes. This review also discusses the integration of these tools with cutting-edge single-cell sequencing and spatial transcriptomics to dissect host-parasite interactions at the cellular level. The discussion emphasises the importance of curated databases, improved culture systems and functional genomics platforms to translate molecular discoveries into practical outcomes, such as novel interventions. New research findings and resources not only advance research on H. contortus and related nematodes but may also pave the way for innovative solutions to the global challenges with anthelmintic resistance.
Collapse
Affiliation(s)
- Yuanting Zheng
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bill C H Chang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jiangning Song
- Faculty of IT, Department of Data Science and AI, Monash University, Victoria, Australia; Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia; Monash Data Futures Institute, Monash University, Victoria, Australia
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
2
|
Schell T, Greve C, Podsiadlowski L. Establishing genome sequencing and assembly for non-model and emerging model organisms: a brief guide. Front Zool 2025; 22:7. [PMID: 40247279 PMCID: PMC12004614 DOI: 10.1186/s12983-025-00561-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 03/23/2025] [Indexed: 04/19/2025] Open
Abstract
Reference genome assemblies are the basis for comprehensive genomic analyses and comparisons. Due to declining sequencing costs and growing computational power, genome projects are now feasible in smaller labs. De novo genome sequencing for non-model or emerging model organisms requires knowledge about genome size and techniques for extracting high molecular weight DNA. Next to quality, the amount of DNA obtained from single individuals is crucial, especially, when dealing with small organisms. While long-read sequencing technologies are the methods of choice for creating high quality genome assemblies, pure short-read assemblies might bear most of the coding parts of a genome but are usually much more fragmented and do not well resolve repeat elements or structural variants. Several genome initiatives produce more and more non-model organism genomes and provide rules for standards in genome sequencing and assembly. However, sometimes the organism of choice is not part of such an initiative or does not meet its standards. Therefore, if the scientific question can be answered with a genome of low contiguity in intergenic parts, missing the high standards of chromosome scale assembly should not prevent publication. This review describes how to set up an animal genome sequencing project in the lab, how to estimate costs and resources, and how to deal with suboptimal conditions. Thus, we aim to suggest optimal strategies for genome sequencing that fulfil the needs according to specific research questions, e.g. "How are species related to each other based on whole genomes?" (phylogenomics), "How do genomes of populations within a species differ?" (population genomics), "Are differences between populations relevant for conservation?" (conservation genomics), "Which selection pressure is acting on certain genes?" (identification of genes under selection), "Did repeats expand or contract recently?" (repeat dynamics).
Collapse
Affiliation(s)
- Tilman Schell
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325, Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325, Frankfurt, Germany
| | - Carola Greve
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325, Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325, Frankfurt, Germany
| | - Lars Podsiadlowski
- LIB, Museum Koenig Bonn, Centre for Molecular Biodiversity Research (zmb), Adenauerallee 127, 53113, Bonn, Germany.
| |
Collapse
|
3
|
Liu M, Chambers A, Chambers B, Aleman A, Stift M, Mamonova K, Freeland J, Dorken M. SNP-RFLP Markers for the Study of Arabidopsis lyrata. Ecol Evol 2025; 15:e71056. [PMID: 40270795 PMCID: PMC12015635 DOI: 10.1002/ece3.71056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/07/2025] [Accepted: 02/16/2025] [Indexed: 04/25/2025] Open
Abstract
Arabidopsis lyrata has become a useful system for the study of comparative genomics, hybridization, polyploidization, and evolutionary transitions from outcrossing to selfing. Previous studies of its mating system have used microsatellite loci, but low allelic diversity, particularly in self-compatible populations characterized by low levels of outcrossing, reduces the utility of these markers for more detailed studies. Here, we aimed to develop population-level SNP markers for A. lyrata ssp. lyrata sampled from a self-compatible population at Rondeau Provincial Park, Ontario, Canada. We performed de novo SNP discovery and identified 6808 putative SNPs from genome-wide sequences of 22 individuals originating from a highly selfing population. Further filtering and marker validation enabled the development of 17 SNP marker loci that can be visualized using standard PCR-RFLP protocols. These markers had average minor-allele frequencies of 0.40 in the target population, and four of seven markers were variable in a small sample from nine other A. lyrata populations. These PCR-RFLP markers have the potential to be useful for the analysis of mating patterns within and beyond the inbred self-compatible populations of A. lyrata studied here and enable the continued development of A. lyrata as a model for studying evolutionary transitions from outcrossing to selfing.
Collapse
Affiliation(s)
- Michelle Liu
- Department of BiologyTrent UniversityPeterboroughOntarioCanada
| | - Avery Chambers
- Department of BiologyTrent UniversityPeterboroughOntarioCanada
| | - Braidy Chambers
- Department of BiologyTrent UniversityPeterboroughOntarioCanada
| | - Alberto Aleman
- Environmental and Life Sciences Graduate ProgramTrent UniversityPeterboroughOntarioCanada
| | - Marc Stift
- Ecology, Department of BiologyUniversity of KonstanzKonstanzGermany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
| | - Katya Mamonova
- Ecology, Department of BiologyUniversity of KonstanzKonstanzGermany
| | - Joanna Freeland
- Department of BiologyTrent UniversityPeterboroughOntarioCanada
| | - Marcel Dorken
- Department of BiologyTrent UniversityPeterboroughOntarioCanada
| |
Collapse
|
4
|
An C, Li D, Lu L, Liu C, Xu X, Xie S, Wang J, Liu R, Yang C, Qin Y, Zheng P. Insights into the Genomic Background of Nine Common Chinese Medicinal Plants by Flow Cytometry and Genome Survey. PLANTS (BASEL, SWITZERLAND) 2024; 13:3536. [PMID: 39771235 PMCID: PMC11679336 DOI: 10.3390/plants13243536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
Medicinal plants have long played a crucial role in healthcare systems, but limited genomic information on these species has impeded the integration of modern biological technologies into medicinal plant research. In this study, we selected nine common medicinal plants, each belonging to a different plant family, including Sarcandra glabra (Chloranthaceae), Nekemias grossedentata (Vitaceae), Uraria crinita (Fabaceae), Gynostemma pentaphyllum (Cucurbitaceae), Reynoutria japonica (Polygonaceae), Pseudostellaria heterophylla (Caryophyllaceae), Morinda officinalis (Rubiaceae), Vitex rotundifolia (Lamiaceae), and Gynura formosana (Asteraceae), to estimate their genome sizes and conduct preliminary genomic surveys. The estimated genome sizes by flow cytometry were 3.66 Gb, 0.65 Gb, 0.58 Gb, 1.02 Gb, 3.96 Gb, 2.99 Gb, 0.43 Gb, 0.78 Gb, and 7.27 Gb, respectively. The genome sizes of M. officinalis, R. japonica, and G. pentaphyllum have been previously reported. Comparative analyses suggest that variations in genome size may arise due to differences in measurement methods and sample sources. Therefore, employing multiple approaches to assess genome size is necessary to provide more reliable information for further genomic research. Based on the genome survey, species with considerable genome size variation or polyploidy, such as G. pentaphyllum, should undergo a ploidy analysis in conjunction with population genomics studies to elucidate the development of the diversified genome size. Additionally, a genome survey of U. crinita, a medicinal plant with a relatively small genome size (509.08 Mb) and of considerable interest in southern China, revealed a low heterozygosity rate (0.382%) and moderate repeat content (51.24%). Given the limited research costs, this species represents a suitable candidate for further genomic studies on Leguminous medicinal plants characteristic of southern China. This foundational genomic information will serve as a critical reference for the sustainable development and utilization of these medicinal plants.
Collapse
Affiliation(s)
- Chang An
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.A.); (D.L.); (L.L.); (C.L.); (X.X.); (S.X.); (J.W.); (R.L.)
| | - Denglin Li
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.A.); (D.L.); (L.L.); (C.L.); (X.X.); (S.X.); (J.W.); (R.L.)
| | - Lin Lu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.A.); (D.L.); (L.L.); (C.L.); (X.X.); (S.X.); (J.W.); (R.L.)
| | - Chaojia Liu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.A.); (D.L.); (L.L.); (C.L.); (X.X.); (S.X.); (J.W.); (R.L.)
| | - Xiaowen Xu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.A.); (D.L.); (L.L.); (C.L.); (X.X.); (S.X.); (J.W.); (R.L.)
| | - Shiyu Xie
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.A.); (D.L.); (L.L.); (C.L.); (X.X.); (S.X.); (J.W.); (R.L.)
| | - Jing Wang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.A.); (D.L.); (L.L.); (C.L.); (X.X.); (S.X.); (J.W.); (R.L.)
| | - Ruoyu Liu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.A.); (D.L.); (L.L.); (C.L.); (X.X.); (S.X.); (J.W.); (R.L.)
- Pingtan Science and Technology Research Institute, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengzi Yang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China;
| | - Yuan Qin
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.A.); (D.L.); (L.L.); (C.L.); (X.X.); (S.X.); (J.W.); (R.L.)
- Pingtan Science and Technology Research Institute, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ping Zheng
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.A.); (D.L.); (L.L.); (C.L.); (X.X.); (S.X.); (J.W.); (R.L.)
- Pingtan Science and Technology Research Institute, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
5
|
Kim JH, Park YJ, Jang MJ. Identification of Laccase Family of Auricularia auricula-judae and Structural Prediction Using Alphafold. Int J Mol Sci 2024; 25:11784. [PMID: 39519334 PMCID: PMC11546694 DOI: 10.3390/ijms252111784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Laccase is an enzyme that plays an important role in fungi, including lignin degradation, stress defense, and formation of fruiting bodies. Auricularia auricula-judae is a white-rot fungus in the Basidiomycota phylum, capable of delignifying wood. In this study, seven genes belonging to the laccase family were identified through de novo sequencing, containing Cu-Oxidase, Cu-Oxidase_2, and Cu-Oxidase_3 domains. Subsequently, the physical characteristics, phylogenetic relationships, protein secondary structure, and tertiary structure of the laccase family (AaLac1-AaLac7) were analyzed. Prediction of N-glycosylation sites identified 2 to 10 sites in the laccase family, with AaLac7 having the highest number of sites at 10. Sequence alignment and analysis of the laccase family showed high consistency in signature sequences. Phylogenetic analysis confirmed the relationship among laccases within the family, with AaLac3-AaLac4 and AaLac5-AaLac6 being closely positioned on the tree, exhibiting high similarity in tertiary structure predictions. This study identified and analyzed laccase family genes in Auricularia auricula-judae using de novo sequencing, offering a simple method for identifying and analyzing the laccase family in organisms with unknown genetic information.
Collapse
Affiliation(s)
- Jeong-Heon Kim
- Department of Plant Resources, Kongju National University, Yesan 32439, Republic of Korea;
| | - Youn-Jin Park
- Legumes Green Manure Resource Center, Kongju National University, Yesan 32439, Republic of Korea;
| | - Myoung-Jun Jang
- Department of Plant Resources, Kongju National University, Yesan 32439, Republic of Korea;
| |
Collapse
|
6
|
Islam S, Peart C, Kehlmaier C, Sun YH, Lei F, Dahl A, Klemroth S, Alexopoulou D, Del Mar Delgado M, Laiolo P, Carlos Illera J, Dirren S, Hille S, Lkhagvasuren D, Töpfer T, Kaiser M, Gebauer A, Martens J, Paetzold C, Päckert M. Museomics help resolving the phylogeny of snowfinches (Aves, Passeridae, Montifringilla and allies). Mol Phylogenet Evol 2024; 198:108135. [PMID: 38925425 DOI: 10.1016/j.ympev.2024.108135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 03/25/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024]
Abstract
Historical specimens from museum collections provide a valuable source of material also from remote areas or regions of conflict that are not easily accessible to scientists today. With this study, we are providing a taxon-complete phylogeny of snowfinches using historical DNA from whole skins of an endemic species from Afghanistan, the Afghan snowfinch, Pyrgilauda theresae. To resolve the strong conflict between previous phylogenetic hypotheses, we generated novel mitogenome sequences for selected taxa and genome-wide SNP data using ddRAD sequencing for all extant snowfinch species endemic to the Qinghai-Tibet Plateau (QTP) and for an extended intraspecific sampling of the sole Central and Western Palearctic snowfinch species (Montifringilla nivalis). Our phylogenetic reconstructions unanimously refuted the previously suggested paraphyly of genus Pyrgilauda. Misplacement of one species-level taxon (Onychostruthus tazcanowskii) in previous snowfinch phylogenies was undoubtedly inferred from chimeric mitogenomes that included heterospecific sequence information. Furthermore, comparison of novel and previously generated sequence data showed that the presumed sister-group relationship between M. nivalis and the QTP endemic M. henrici was suggested based on flawed taxonomy. Our phylogenetic reconstructions based on genome-wide SNP data and on mitogenomes were largely congruent and supported reciprocal monophyly of genera Montifringilla and Pyrgilauda with monotypic Onychostruthus being sister to the latter. The Afghan endemic P. theresae likely originated from a rather ancient Pliocene out-of-Tibet dispersal probably from a common ancestor with P. ruficollis. Our extended trans-Palearctic sampling for the white-winged snowfinch, M. nivalis, confirmed strong lineage divergence between an Asian and a European clade dated to 1.5 - 2.7 million years ago (mya). Genome-wide SNP data suggested subtle divergence among European samples from the Alps and from the Cantabrian mountains.
Collapse
Affiliation(s)
- Safiqul Islam
- Senckenberg Natural History Collections, Museum of Zoology, Königsbrücker Landstraße 159, 01109 Dresden, Germany; Max Planck-Genome-Centre Cologne, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829 Köln, Germany; Division of Systematic Zoology, Faculty of Biology, LMU Munich, Biocenter, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Claire Peart
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Biocenter, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Christian Kehlmaier
- Senckenberg Natural History Collections, Museum of Zoology, Königsbrücker Landstraße 159, 01109 Dresden, Germany
| | - Yue-Hua Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Andreas Dahl
- Dresden-Concept Genome Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 1307 Dresden, Germany
| | - Sylvia Klemroth
- Dresden-Concept Genome Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 1307 Dresden, Germany
| | - Dimitra Alexopoulou
- Dresden-Concept Genome Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 1307 Dresden, Germany
| | - Maria Del Mar Delgado
- Biodiversity Research Institute (IMIB, Universidad de Oviedo, CSIC, Principality of Asturias) - Campus de Mieres, Edificio de Investigación - 5ª planta, C. Gonzalo Gutiérrez Quirós s/n, 33600 Mieres, Spain
| | - Paola Laiolo
- Biodiversity Research Institute (IMIB, Universidad de Oviedo, CSIC, Principality of Asturias) - Campus de Mieres, Edificio de Investigación - 5ª planta, C. Gonzalo Gutiérrez Quirós s/n, 33600 Mieres, Spain
| | - Juan Carlos Illera
- Biodiversity Research Institute (IMIB, Universidad de Oviedo, CSIC, Principality of Asturias) - Campus de Mieres, Edificio de Investigación - 5ª planta, C. Gonzalo Gutiérrez Quirós s/n, 33600 Mieres, Spain
| | | | - Sabine Hille
- University of Natural Resources and Life Sciences, Vienna, Gregor Mendel-Strasse 33, 1180 Vienna, Austria
| | - Davaa Lkhagvasuren
- Department of Biology, School of Arts and Sciences, National University of Mongolia, P.O.Box 46A-546, Ulaanbaatar 210646, Mongolia
| | - Till Töpfer
- Leibniz Institute for the Analysis of Biodiversity Change, Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee, Bonn, Germany
| | | | | | - Jochen Martens
- Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, 55099 Mainz, Germany
| | - Claudia Paetzold
- Senckenberg Natural History Collections, Museum of Zoology, Königsbrücker Landstraße 159, 01109 Dresden, Germany
| | - Martin Päckert
- Senckenberg Natural History Collections, Museum of Zoology, Königsbrücker Landstraße 159, 01109 Dresden, Germany.
| |
Collapse
|
7
|
Gutiérrez EG, Maldonado JE, Castellanos-Morales G, Eguiarte LE, Martínez-Méndez N, Ortega J. Unraveling genomic features and phylogenomics through the analysis of three Mexican endemic Myotis genomes. PeerJ 2024; 12:e17651. [PMID: 38993980 PMCID: PMC11238727 DOI: 10.7717/peerj.17651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/07/2024] [Indexed: 07/13/2024] Open
Abstract
Background Genomic resource development for non-model organisms is rapidly progressing, seeking to uncover molecular mechanisms and evolutionary adaptations enabling thriving in diverse environments. Limited genomic data for bat species hinder insights into their evolutionary processes, particularly within the diverse Myotis genus of the Vespertilionidae family. In Mexico, 15 Myotis species exist, with three-M. vivesi, M. findleyi, and M. planiceps-being endemic and of conservation concern. Methods We obtained samples of Myotis vivesi, M. findleyi, and M. planiceps for genomic analysis. Each of three genomic DNA was extracted, sequenced, and assembled. The scaffolding was carried out utilizing the M. yumanensis genome via a genome-referenced approach within the ntJoin program. GapCloser was employed to fill gaps. Repeat elements were characterized, and gene prediction was done via ab initio and homology methods with MAKER pipeline. Functional annotation involved InterproScan, BLASTp, and KEGG. Non-coding RNAs were annotated with INFERNAL, and tRNAscan-SE. Orthologous genes were clustered using Orthofinder, and a phylogenomic tree was reconstructed using IQ-TREE. Results We present genome assemblies of these endemic species using Illumina NovaSeq 6000, each exceeding 2.0 Gb, with over 90% representing single-copy genes according to BUSCO analyses. Transposable elements, including LINEs and SINEs, constitute over 30% of each genome. Helitrons, consistent with Vespertilionids, were identified. Values around 20,000 genes from each of the three assemblies were derived from gene annotation and their correlation with specific functions. Comparative analysis of orthologs among eight Myotis species revealed 20,820 groups, with 4,789 being single copy orthogroups. Non-coding RNA elements were annotated. Phylogenomic tree analysis supported evolutionary chiropterans' relationships. These resources contribute significantly to understanding gene evolution, diversification patterns, and aiding conservation efforts for these endangered bat species.
Collapse
Affiliation(s)
- Edgar G. Gutiérrez
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Jesus E. Maldonado
- Center for Conservation Genomics, Smithsonian’s National Zoo and Conservation Biology Institute, Washington, D.C., United States of America
| | - Gabriela Castellanos-Morales
- Departamento de Conservación de la Biodiversidad, El Colegio de la Frontera Sur, Unidad Villahermosa (ECOSUR-Villahermosa), Villahermosa, Tabasco, Mexico
| | - Luis E. Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Norberto Martínez-Méndez
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Jorge Ortega
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
8
|
Ranjit S, Deblais L, Poelstra JW, Bhandari M, Rotondo F, Scaria J, Miller SA, Rajashekara G. In vitro, in planta, and comparative genomic analyses of Pseudomonas syringae pv. syringae strains of pepper ( Capsicum annuum var. annuum). Microbiol Spectr 2024; 12:e0006424. [PMID: 38712940 PMCID: PMC11237606 DOI: 10.1128/spectrum.00064-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024] Open
Abstract
Pseudomonas syringae pv. syringae (Pss) is an emerging phytopathogen that causes Pseudomonas leaf spot (PLS) disease in pepper plants. Pss can cause serious economic damage to pepper production, yet very little is known about the virulence factors carried by Pss that cause disease in pepper seedlings. In this study, Pss strains isolated from pepper plants showing PLS symptoms in Ohio between 2013 and 2021 (n = 16) showed varying degrees of virulence (Pss populations and disease symptoms on leaves) on 6-week-old pepper seedlings. In vitro studies assessing growth in nutrient-limited conditions, biofilm production, and motility also showed varying degrees of virulence, but in vitro and in planta variation in virulence between Pss strains did not correlate. Comparative whole-genome sequencing studies identified notable virulence genes including 30 biofilm genes, 87 motility genes, and 106 secretion system genes. Additionally, a total of 27 antimicrobial resistance genes were found. A multivariate correlation analysis and Scoary analysis based on variation in gene content (n = 812 variable genes) and single nucleotide polymorphisms within virulence genes identified no significant correlations with disease severity, likely due to our limited sample size. In summary, our study explored the virulence and antimicrobial gene content of Pss in pepper seedlings as a first step toward understanding the virulence and pathogenicity of Pss in pepper seedlings. Further studies with additional pepper Pss strains will facilitate defining genes in Pss that correlate with its virulence in pepper seedlings, which can facilitate the development of effective measures to control Pss in pepper and other related P. syringae pathovars. IMPORTANCE Pseudomonas leaf spot (PLS) caused by Pseudomonas syringae pv. syringae (Pss) causes significant losses to the pepper industry. Highly virulent Pss strains under optimal environmental conditions (cool-moderate temperatures, high moisture) can cause severe necrotic lesions on pepper leaves that consequently can decrease pepper yield if the disease persists. Hence, it is important to understand the virulence mechanisms of Pss to be able to effectively control PLS in peppers. In our study, in vitro, in planta, and whole-genome sequence analyses were conducted to better understand the virulence and pathogenicity characteristics of Pss strains in peppers. Our findings fill a knowledge gap regarding potential virulence and pathogenicity characteristics of Pss in peppers, including virulence and antimicrobial gene content. Our study helps pave a path to further identify the role of specific virulence genes in causing disease in peppers, which can have implications in developing strategies to effectively control PLS in peppers.
Collapse
Affiliation(s)
- Sochina Ranjit
- Department of Animal Sciences, The Ohio State University, Wooster, Ohio, USA
| | - Loïc Deblais
- Department of Animal Sciences, The Ohio State University, Wooster, Ohio, USA
| | | | - Menuka Bhandari
- Department of Animal Sciences, The Ohio State University, Wooster, Ohio, USA
| | - Francesca Rotondo
- Department of Plant Pathology, The Ohio State University, Wooster, Ohio, USA
| | - Joy Scaria
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Sally A. Miller
- Department of Plant Pathology, The Ohio State University, Wooster, Ohio, USA
| | - Gireesh Rajashekara
- Department of Animal Sciences, The Ohio State University, Wooster, Ohio, USA
| |
Collapse
|
9
|
European Food Safety Authority (EFSA), César‐Razquin A, Casacuberta J, Dalmay T, Federici S, Jacchia S, Kagkli DM, Moxon S, Papadopoulou N. Technical Note on the quality of DNA sequencing for the molecular characterisation of genetically modified plants. EFSA J 2024; 22:e8744. [PMID: 38634010 PMCID: PMC11022705 DOI: 10.2903/j.efsa.2024.8744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
As part of the risk assessment (RA) requirements for genetically modified (GM) plants, according to Regulation (EU) No 503/2013 and the EFSA guidance on the RA of food and feed from GM plants (EFSA GMO Panel 2011), applicants need to perform a molecular characterisation of the DNA sequences inserted in the GM plant genome. This Technical Note to the applicants puts together requirements and recommendations for the quality assessment of the methodology, analysis and reporting when DNA sequencing is used for the molecular characterisation of GM plants. In particular, it applies to the use of Sanger sequencing and next-generation sequencing for the characterisation of the inserted genetic material and its flanking regions at each insertion site, the determination of the copy number of all detectable inserts and the analysis of the genetic stability of the inserts. This updated document replaces the EFSA 2018 Technical Note and reflects the current knowledge in scientific-technical methods for generating and verifying, in a standardised manner, DNA sequencing data in the context of RA of GM plants. It does not take into consideration the verification and validation of the detection method which remains under the remit of the Joint Research Centre (JRC).
Collapse
|
10
|
Phu DH, Wongtawan T, Wintachai P, Nhung NT, Yen NTP, Carrique-Mas J, Turni C, Omaleki L, Blackall PJ, Thomrongsuwannakij T. Molecular characterization of Campylobacter spp. isolates obtained from commercial broilers and native chickens in Southern Thailand using whole genome sequencing. Poult Sci 2024; 103:103485. [PMID: 38335668 PMCID: PMC10869288 DOI: 10.1016/j.psj.2024.103485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
Chickens are the primary reservoirs of Campylobacter spp., mainly C. jejuni and C. coli, that cause human bacterial gastrointestinal infections. However, genomic characteristics and antimicrobial resistance of Campylobacter spp. in low- to middle-income countries need more comprehensive exploration. This study aimed to characterize 21 C. jejuni and 5 C. coli isolates from commercial broilers and native chickens using whole genome sequencing and compare them to 28 reference Campylobacter sequences. Among the 26 isolates, 13 sequence types (ST) were identified in C. jejuni and 5 ST in C. coli. The prominent ST was ST 2274 (5 isolates, 19.2%), followed by ST 51, 460, 2409, and 6455 (2 isolates in each ST, 7.7%), while all remaining ST (464, 536, 595, 2083, 6736, 6964, 8096, 10437, 828, 872, 900, 8237, and 13540) had 1 isolate per ST (3.8%). Six types of antimicrobial resistance genes (ant(6)-Ia, aph(3')-III, blaOXA, cat, erm(B), and tet(O)) and one point mutations in the gyrA gene (Threonine-86-Isoleucine) and another in the rpsL gene (Lysine-43-Arginine) were detected. The blaOXA resistance gene was present in all isolates, the gyrA mutations was in 95.2% of C. jejuni and 80.0% of C. coli, and the tet(O) resistance gene in 76.2% of C. jejuni and 80.0% of C. coli. Additionally, 203 virulence-associated genes linked to 16 virulence factors were identified. In terms of phenotypic resistance, the C. jejuni isolates were all resistant to ciprofloxacin, enrofloxacin, and nalidixic acid, with lower levels of resistance to tetracycline (76.2%), tylosin (52.3%), erythromycin (23.8%), azithromycin (22.2%), and gentamicin (11.1%). Most C. coli isolates were resistant to all tested antimicrobials, while 1 C. coli was pan-susceptible except for tylosin. Single-nucleotide polymorphisms concordance varied widely, with differences of up to 13,375 single-nucleotide polymorphisms compared to the reference Campylobacter isolates, highlighting genetic divergence among comparative genomes. This study contributes to a deeper understanding of the molecular epidemiology of Campylobacter spp. in Thai chicken production systems.
Collapse
Affiliation(s)
- Doan Hoang Phu
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; Doctoral Program in Health Sciences, College of Graduate Studies, Walailak University, Nakhon Si Thammarat 80160, Thailand; Faculty of Animal Science and Veterinary Medicine, Nong Lam University, Ho Chi Minh City 70000, Vietnam
| | - Tuempong Wongtawan
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; Centre for One Health, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | | | - Nguyen Thi Nhung
- Oxford University Clinical Research Unit, Ho Chi Minh City 70000, Vietnam
| | | | - Juan Carrique-Mas
- Food and Agriculture Organization of the United Nations, Ha Noi 10000, Vietnam
| | - Conny Turni
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Lida Omaleki
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Patrick J Blackall
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Thotsapol Thomrongsuwannakij
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; Centre for One Health, Walailak University, Nakhon Si Thammarat 80160, Thailand.
| |
Collapse
|
11
|
Nagy NA, Tóth GE, Kurucz K, Kemenesi G, Laczkó L. The updated genome of the Hungarian population of Aedes koreicus. Sci Rep 2024; 14:7545. [PMID: 38555322 PMCID: PMC10981705 DOI: 10.1038/s41598-024-58096-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
Vector-borne diseases pose a potential risk to human and animal welfare, and understanding their spread requires genomic resources. The mosquito Aedes koreicus is an emerging vector that has been introduced into Europe more than 15 years ago but only a low quality, fragmented genome was available. In this study, we carried out additional sequencing and assembled and characterized the genome of the species to provide a background for understanding its evolution and biology. The updated genome was 1.1 Gbp long and consisted of 6099 contigs with an N50 value of 329,610 bp and a BUSCO score of 84%. We identified 22,580 genes that could be functionally annotated and paid particular attention to the identification of potential insecticide resistance genes. The assessment of the orthology of the genes indicates a high turnover at the terminal branches of the species tree of mosquitoes with complete genomes, which could contribute to the adaptation and evolutionary success of the species. These results could form the basis for numerous downstream analyzes to develop targets for the control of mosquito populations.
Collapse
Affiliation(s)
- Nikoletta Andrea Nagy
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary.
- HUN-REN-UD Behavioural Ecology Research Group, University of Debrecen, Debrecen, Hungary.
- Institute of Metagenomics, University of Debrecen, Debrecen, Hungary.
| | - Gábor Endre Tóth
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pecs, Hungary
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany
| | - Kornélia Kurucz
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pecs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pecs, Hungary
| | - Gábor Kemenesi
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pecs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pecs, Hungary
| | - Levente Laczkó
- HUN-REN-UD Conservation Biology Research Group, University of Debrecen, Debrecen, Hungary
- One Health Institute, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
12
|
Laczkó L, Jordán S, Póliska S, Rácz HV, Nagy NA, Molnár V A, Sramkó G. The draft genome of Spiraea crenata L. (Rosaceae) - the first complete genome in tribe Spiraeeae. Sci Data 2024; 11:219. [PMID: 38368431 PMCID: PMC10874383 DOI: 10.1038/s41597-024-03046-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/05/2024] [Indexed: 02/19/2024] Open
Abstract
Spiraea crenata L. is a deciduous shrub distributed across the Eurasian steppe zone. The species is of cultural and horticultural importance and occurs in scattered populations throughout its westernmost range. Currently, there is no genomic information on the tribe of Spiraeeae. Therefore we sequenced and assembled the whole genome of S. crenata using second- and third-generation sequencing and a hybrid assembly approach to expand genomic resources for conservation and support research on this horticulturally important lineage. In addition to the organellar genomes (the plastome and the mitochondrion), we present the first draft genome of the species with an estimated size of 220 Mbp, an N50 value of 7.7 Mbp, and a BUSCO score of 96.0%. Being the first complete genome in tribe Spiraeeae, this may not only be the first step in the genomic study of a rare plant but also a contribution to genomic resources supporting the study of biodiversity and evolutionary history of Rosaceae.
Collapse
Affiliation(s)
- Levente Laczkó
- Department of Metagenomics, University of Debrecen, Debrecen, Hungary
- HUN-REN-UD Conservation Biology Research Group, University of Debrecen, Debrecen, Hungary
| | - Sándor Jordán
- Department of Metagenomics, University of Debrecen, Debrecen, Hungary
- HUN-REN-UD Conservation Biology Research Group, University of Debrecen, Debrecen, Hungary
- Juhász-Nagy Pál Doctoral School, University of Debrecen, Debrecen, Hungary
| | - Szilárd Póliska
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Hanna Viktória Rácz
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Nikoletta Andrea Nagy
- Department of Evolutionary Zoology and Human Biology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
- HUN-REN-UD Behavioural Ecology Research Group, University of Debrecen, Debrecen, Hungary
| | - Attila Molnár V
- HUN-REN-UD Conservation Biology Research Group, University of Debrecen, Debrecen, Hungary
- Evolutionary Genomics Research Group, Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Gábor Sramkó
- HUN-REN-UD Conservation Biology Research Group, University of Debrecen, Debrecen, Hungary.
- Evolutionary Genomics Research Group, Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
13
|
Quijano Cardé EM, Anenson K, Waldbieser G, Brown CT, Griffin M, Henderson E, Yun S, Soto E. Acipenserid herpesvirus 2 genome and partial validation of a qPCR for its detection in white sturgeon Acipenser transmontanus. DISEASES OF AQUATIC ORGANISMS 2024; 157:45-59. [PMID: 38299849 DOI: 10.3354/dao03768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
White sturgeon Acipenser transmontanus is the primary species used for caviar and sturgeon meat production in the USA. An important pathogen of white sturgeon is acipenserid herpesvirus 2 (AciHV-2). In this study, 4 archived isolates from temporally discrete natural outbreaks spanning the past 30 yr were sequenced via Illumina and Oxford Nanopore Technologies platforms. Assemblies of approximately 134 kb were obtained for each isolate, and the putative ATPase subunit of the terminase gene was selected as a potential quantitative PCR (qPCR) target based on sequence conservation among AciHV-2 isolates and low sequence homology with other important viral pathogens. The qPCR was repeatable and reproducible, with a linear dynamic range covering 5 orders of magnitude, an efficiency of approximately 96%, an R2 of 0.9872, and an analytical sensitivity of 103 copies per reaction after 35 cycles. There was no cross-reaction with other known viruses or closely related sturgeon species, and no inhibition by sturgeon DNA. Clinical accuracy was assessed from white sturgeon juveniles exposed to AciHV-2 by immersion. Viral culture (gold standard) and qPCR were in complete agreement for both cell culture negative and cell culture positive samples, indicating that this assay has 100% relative accuracy compared to cell culture during an active outbreak. The availability of a whole-genome sequence for AciHV-2 and a highly specific and sensitive qPCR assay for detection of AciHV-2 in white sturgeon lays a foundation for further studies on host-pathogen interactions while providing a specific and rapid test for AciHV-2 in captive and wild populations.
Collapse
Affiliation(s)
| | - Kelsey Anenson
- University of California-Davis, Davis, California 95616, USA
| | - Geoffrey Waldbieser
- United States Department of Agriculture - Agricultural Research Service, Stoneville, Mississippi 38776, USA
| | - C Titus Brown
- University of California-Davis, Davis, California 95616, USA
| | - Matt Griffin
- Mississippi State University, Stoneville, Mississippi 38776, USA
| | | | - Susan Yun
- University of California-Davis, Davis, California 95616, USA
| | - Esteban Soto
- University of California-Davis, Davis, California 95616, USA
| |
Collapse
|
14
|
Deng CH, Naithani S, Kumari S, Cobo-Simón I, Quezada-Rodríguez EH, Skrabisova M, Gladman N, Correll MJ, Sikiru AB, Afuwape OO, Marrano A, Rebollo I, Zhang W, Jung S. Genotype and phenotype data standardization, utilization and integration in the big data era for agricultural sciences. Database (Oxford) 2023; 2023:baad088. [PMID: 38079567 PMCID: PMC10712715 DOI: 10.1093/database/baad088] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/17/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023]
Abstract
Large-scale genotype and phenotype data have been increasingly generated to identify genetic markers, understand gene function and evolution and facilitate genomic selection. These datasets hold immense value for both current and future studies, as they are vital for crop breeding, yield improvement and overall agricultural sustainability. However, integrating these datasets from heterogeneous sources presents significant challenges and hinders their effective utilization. We established the Genotype-Phenotype Working Group in November 2021 as a part of the AgBioData Consortium (https://www.agbiodata.org) to review current data types and resources that support archiving, analysis and visualization of genotype and phenotype data to understand the needs and challenges of the plant genomic research community. For 2021-22, we identified different types of datasets and examined metadata annotations related to experimental design/methods/sample collection, etc. Furthermore, we thoroughly reviewed publicly funded repositories for raw and processed data as well as secondary databases and knowledgebases that enable the integration of heterogeneous data in the context of the genome browser, pathway networks and tissue-specific gene expression. Based on our survey, we recommend a need for (i) additional infrastructural support for archiving many new data types, (ii) development of community standards for data annotation and formatting, (iii) resources for biocuration and (iv) analysis and visualization tools to connect genotype data with phenotype data to enhance knowledge synthesis and to foster translational research. Although this paper only covers the data and resources relevant to the plant research community, we expect that similar issues and needs are shared by researchers working on animals. Database URL: https://www.agbiodata.org.
Collapse
Affiliation(s)
- Cecilia H Deng
- Molecular and Digital Breeding, New Cultivar Innovation, The New Zealand Institute for Plant and Food Research Limited, 120 Mt Albert Road, Auckland 1025, New Zealand
| | - Sushma Naithani
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Sunita Kumari
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, New York, NY 11724, USA
| | - Irene Cobo-Simón
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
- Institute of Forest Science (ICIFOR-INIA, CSIC), Madrid, Spain
| | - Elsa H Quezada-Rodríguez
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Ciudad de México, México
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Maria Skrabisova
- Department of Biochemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Nick Gladman
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, New York, NY 11724, USA
- U.S. Department of Agriculture-Agricultural Research Service, NEA Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY 14853, USA
| | - Melanie J Correll
- Agricultural and Biological Engineering Department, University of Florida, 1741 Museum Rd, Gainesville, FL 32611, USA
| | | | | | - Annarita Marrano
- Phoenix Bioinformatics, 39899 Balentine Drive, Suite 200, Newark, CA 94560, USA
| | | | - Wentao Zhang
- National Research Council Canada, 110 Gymnasium Pl, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Sook Jung
- Department of Horticulture, Washington State University, 303c Plant Sciences Building, Pullman, WA 99164-6414, USA
| |
Collapse
|
15
|
Alghamdi M, Al-Judaibi E, Al-Rashede M, Al-Judaibi A. Comparative De Novo and Pan-Genome Analysis of MDR Nosocomial Bacteria Isolated from Hospitals in Jeddah, Saudi Arabia. Microorganisms 2023; 11:2432. [PMID: 37894090 PMCID: PMC10609288 DOI: 10.3390/microorganisms11102432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Multidrug-resistant (MDR) bacteria are one of the most serious threats to public health, and one of the most important types of MDR bacteria are those that are acquired in a hospital, known as nosocomial. This study aimed to isolate and identify MDR bacteria from selected hospitals in Jeddah and analyze their antibiotic-resistant genes. Bacteria were collected from different sources and wards of hospitals in Jeddah City. Phoenix BD was used to identify the strains and perform susceptibility testing. Identification of selected isolates showing MDR to more than three classes on antibiotics was based on 16S rRNA gene and whole genome sequencing. Genes conferring resistance were characterized using de novo and pan-genome analyses. In total, we isolated 108 bacterial strains, of which 75 (69.44%) were found to be MDR. Taxonomic identification revealed that 24 (32%) isolates were identified as Escherichia coli, 19 (25.3%) corresponded to Klebsiella pneumoniae, and 17 (22.67%) were methicillin-resistant Staphylococcus aureus (MRSA). Among the Gram-negative bacteria, K. pneumoniae isolates showed the highest resistance levels to most antibiotics. Of the Gram-positive bacteria, S. aureus (MRSA) strains were noticed to exhibit the uppermost degree of resistance to the tested antibiotics, which is higher than that observed for K. pneumoniae isolates. Taken together, our results illustrated that MDR Gram-negative bacteria are the most common cause of nosocomial infections, while MDR Gram-positive bacteria are characterized by a wider antibiotic resistance spectrum. Whole genome sequencing found the appearance of antibiotic resistance genes, including SHV, OXA, CTX-M, TEM-1, NDM-1, VIM-1, ere(A), ermA, ermB, ermC, msrA, qacA, qacB, and qacC.
Collapse
Affiliation(s)
- Molook Alghamdi
- Department of Biological Sciences, Microbiology Section, Faculty of Science, Jeddah University, Jeddah 21959, Saudi Arabia; (M.A.); (E.A.-J.)
| | - Effat Al-Judaibi
- Department of Biological Sciences, Microbiology Section, Faculty of Science, Jeddah University, Jeddah 21959, Saudi Arabia; (M.A.); (E.A.-J.)
| | | | - Awatif Al-Judaibi
- Department of Biological Sciences, Microbiology Section, Faculty of Science, Jeddah University, Jeddah 21959, Saudi Arabia; (M.A.); (E.A.-J.)
| |
Collapse
|
16
|
Chiu KP, Stuart L, Ooi HS, Yu J, Smith DG, Pei KJC. Genome sequencing and application of Taiwanese macaque Macaca cyclopis. Sci Rep 2023; 13:11545. [PMID: 37460589 DOI: 10.1038/s41598-023-38402-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
Formosan macaque (Macaca cyclopis) is the only non-human primate in Taiwan Island. We performed de novo hybrid assembly for M. cyclopis using Illumina paired-end short reads, mate-pair reads and Nanopore long reads and obtained 5065 contigs with a N50 of 2.66 megabases. M. cyclopis contigs > = 10 kb were assigned to chromosomes using Indian rhesus macaque (Macaca mulatta mulatta) genome assembly Mmul_10 as reference, resulting in a draft of M. cyclopis genome of 2,846,042,475 bases, distributed in 21 chromosomes. The draft genome contains 23,462 transcriptional origins (genes), capable of expressing 716,231 exons in 59,484 transcripts. Genome-based phylogenetic study using the assembled M. cyclopis genome together with genomes of four other macaque species, human, orangutan and chimpanzee showed similar result as previously reported. However, the M. cyclopis species was found to diverge from Chinese M. mulatta lasiota about 1.8 million years ago. Fossil gene analysis detected the presence of gap and pol endogenous viral elements of simian retrovirus in all macaques tested, including M. fascicularis, M. m. mulatta and M. cyclopis. However, M. cyclopis showed ~ 2 times less in number and more uniform in chromosomal locations. The constrain in foreign genome disturbance, presumably due to geographical isolation, should be able to simplify genomics-related investigations, making M. cyclopis an ideal primate species for medical research.
Collapse
Affiliation(s)
- Kuo-Ping Chiu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.
- Top Science Biotechnologies, Inc., 4F, 50-2 Dingping Rd., Sec. 1, Shiding District, New Taipei City, 223002, Taiwan.
| | - Lutimba Stuart
- Top Science Biotechnologies, Inc., 4F, 50-2 Dingping Rd., Sec. 1, Shiding District, New Taipei City, 223002, Taiwan
| | - Hong Sain Ooi
- Top Science Biotechnologies, Inc., 4F, 50-2 Dingping Rd., Sec. 1, Shiding District, New Taipei City, 223002, Taiwan
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, No.5, Fu-Shin St., Kuei Shang, Taoyuan, 333, Taiwan
| | - David Glenn Smith
- Department of Anthropology, University of California Davis, Davis, CA, USA
| | - Kurtis Jai-Chyi Pei
- Institute of Wildlife Conservation, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
17
|
Magdy Mohamed Abdelaziz Barakat S, Sallehuddin R, Yuhaniz SS, R. Khairuddin RF, Mahmood Y. Genome assembly composition of the String "ACGT" array: a review of data structure accuracy and performance challenges. PeerJ Comput Sci 2023; 9:e1180. [PMID: 37547391 PMCID: PMC10403225 DOI: 10.7717/peerj-cs.1180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/27/2023] [Indexed: 08/08/2023]
Abstract
Background The development of sequencing technology increases the number of genomes being sequenced. However, obtaining a quality genome sequence remains a challenge in genome assembly by assembling a massive number of short strings (reads) with the presence of repetitive sequences (repeats). Computer algorithms for genome assembly construct the entire genome from reads in two approaches. The de novo approach concatenates the reads based on the exact match between their suffix-prefix (overlapping). Reference-guided approach orders the reads based on their offsets in a well-known reference genome (reads alignment). The presence of repeats extends the technical ambiguity, making the algorithm unable to distinguish the reads resulting in misassembly and affecting the assembly approach accuracy. On the other hand, the massive number of reads causes a big assembly performance challenge. Method The repeat identification method was introduced for misassembly by prior identification of repetitive sequences, creating a repeat knowledge base to reduce ambiguity during the assembly process, thus enhancing the accuracy of the assembled genome. Also, hybridization between assembly approaches resulted in a lower misassembly degree with the aid of the reference genome. The assembly performance is optimized through data structure indexing and parallelization. This article's primary aim and contribution are to support the researchers through an extensive review to ease other researchers' search for genome assembly studies. The study also, highlighted the most recent developments and limitations in genome assembly accuracy and performance optimization. Results Our findings show the limitations of the repeat identification methods available, which only allow to detect of specific lengths of the repeat, and may not perform well when various types of repeats are present in a genome. We also found that most of the hybrid assembly approaches, either starting with de novo or reference-guided, have some limitations in handling repetitive sequences as it is more computationally costly and time intensive. Although the hybrid approach was found to outperform individual assembly approaches, optimizing its performance remains a challenge. Also, the usage of parallelization in overlapping and reads alignment for genome assembly is yet to be fully implemented in the hybrid assembly approach. Conclusion We suggest combining multiple repeat identification methods to enhance the accuracy of identifying the repeats as an initial step to the hybrid assembly approach and combining genome indexing with parallelization for better optimization of its performance.
Collapse
Affiliation(s)
| | - Roselina Sallehuddin
- Computer Science, School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Siti Sophiayati Yuhaniz
- Advanced Informatics Department, Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Kuala Lumpur, Kuala Lumpur, Malaysia
| | | | - Yasir Mahmood
- Faculty of Information Technology, The University of Lahore, Lahore, Lahore, Pakistan
| |
Collapse
|
18
|
Rather MA, Agarwal D, Bhat TA, Khan IA, Zafar I, Kumar S, Amin A, Sundaray JK, Qadri T. Bioinformatics approaches and big data analytics opportunities in improving fisheries and aquaculture. Int J Biol Macromol 2023; 233:123549. [PMID: 36740117 DOI: 10.1016/j.ijbiomac.2023.123549] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Aquaculture has witnessed an excellent growth rate during the last two decades and offers huge potential to provide nutritional as well as livelihood security. Genomic research has contributed significantly toward the development of beneficial technologies for aquaculture. The existing high throughput technologies like next-generation technologies generate oceanic data which requires extensive analysis using appropriate tools. Bioinformatics is a rapidly evolving science that involves integrating gene based information and computational technology to produce new knowledge for the benefit of aquaculture. Bioinformatics provides new opportunities as well as challenges for information and data processing in new generation aquaculture. Rapid technical advancements have opened up a world of possibilities for using current genomics to improve aquaculture performance. Understanding the genes that govern economically relevant characteristics, necessitates a significant amount of additional research. The various dimensions of data sources includes next-generation DNA sequencing, protein sequencing, RNA sequencing gene expression profiles, metabolic pathways, molecular markers, and so on. Appropriate bioinformatics tools are developed to mine the biologically relevant and commercially useful results. The purpose of this scoping review is to present various arms of diverse bioinformatics tools with special emphasis on practical translation to the aquaculture industry.
Collapse
Affiliation(s)
- Mohd Ashraf Rather
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Ganderbal, Sher-e- Kashmir University of Agricultural Science and Technology, Kashmir, India.
| | - Deepak Agarwal
- Institute of Fisheries Post Graduation Studies OMR Campus, Vaniyanchavadi, Chennai, India
| | | | - Irfan Ahamd Khan
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Ganderbal, Sher-e- Kashmir University of Agricultural Science and Technology, Kashmir, India
| | - Imran Zafar
- Department of Bioinformatics and Computational Biology, Virtual University Punjab, Pakistan
| | - Sujit Kumar
- Department of Bioinformatics and Computational Biology, Virtual University Punjab, Pakistan
| | - Adnan Amin
- Postgraduate Institute of Fisheries Education and Research Kamdhenu University, Gandhinagar-India University of Kurasthra, India; Department of Aquatic Environmental Management, Faculty of Fisheries Rangil- Ganderbel -SKUAST-K, India
| | - Jitendra Kumar Sundaray
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha 751002, India
| | - Tahiya Qadri
- Division of Food Science and Technology, SKUAST-K, Shalimar, India
| |
Collapse
|
19
|
Dalton CS, Workentine ML, Leclerc LM, Kutz S, van der Meer F. Next-generation sequencing approach to investigate genome variability of Parapoxvirus in Canadian muskoxen (Ovibos moschatus). INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 109:105414. [PMID: 36775047 DOI: 10.1016/j.meegid.2023.105414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/20/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
In 2016, the first orf virus, a double-stranded DNA (dsDNA) virus of the genus parapoxvirus, from a muskox was isolated on Victoria Island, Nunavut (NU), Canada. We used deep sequencing on DNA extracted from orf virus-positive tissues from wild muskoxen from locations on Victoria Island and the adjacent mainland. Orf virus sequence reads derived from four samples were nearly identical. The consensus sequences generated from pooled reads of MxOV comprises of a large contiguous sequence (contig) of 131,759 bp and a smaller right terminal contig of 3552 bp, containing all coding sequences identified as Parapoxvirus. Individual gene comparisons reveal that MxOV shares genetic characteristics with reference strains from both sheep and goat origin. Recombination analysis using Bootscan, MAXCHI, GENECONV, CHIMAERA, SISCAN, and RDP algorithms within the RDP4 software predicted recombination events in two virulence factors, and a large 3000 bp segment of the MxOV genome. Partial B2L nucleotide sequences from strains around the world and other North American isolates were compared to MxOV using MUSCLE alignments and RAxML phylogenetic trees. MxOV was identical to our previously characterized isolate, and shared similarity with orf virus isolated from sheep and goats. The phylogenetic grouping of partial B2L nucleotide sequences did not follow the sample geographic distribution. More full genomes of orf virus, or at least full B2L gene squences, in wildlife are needed especially in North America to better understand the epidemiology of the disease in muskoxen.
Collapse
Affiliation(s)
- Chimone S Dalton
- Department of Ecosystem & Public Health, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada.
| | - Matthew L Workentine
- Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada
| | - Lisa-Marie Leclerc
- Department of Environment, Government of Nunavut, P.O. 377, Kugluktuk, NU X0B 0E0, Canada
| | - Susan Kutz
- Department of Ecosystem & Public Health, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada
| | - Frank van der Meer
- Department of Ecosystem & Public Health, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada
| |
Collapse
|
20
|
Treffon J, Prior K, Dreesman J, Egelkamp R, Flieger A, Middendorf-Bauchart B, Projahn M, Richter A, Schuh E, Harmsen D, Mellmann A. Multicenter Preparedness Exercise Enables Rapid Development of Cluster-Specific PCR-Based Screening Assays from Bacterial Genomic Data. J Clin Microbiol 2023; 61:e0187322. [PMID: 36840589 PMCID: PMC10035311 DOI: 10.1128/jcm.01873-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/26/2023] [Indexed: 02/24/2023] Open
Abstract
PCR-based screening assays targeting strain-specific genetic markers allow the timely detection and specific differentiation of bacterial strains. Especially in situations where an infection cluster occurs, fast assay development is crucial for supporting targeted control measures. However, the turnaround times (TATs) for assay setup may be high due to insufficient knowledge about screening assay methods, workflows, and software tools. Here, two blind-coded and quality-controlled ring trials were performed in which five German laboratories established PCR-based screening assays from genomic data that specifically target selected bacterial clusters within two bacterial monospecies sample panels. While the first ring trial was conducted without a time limit to train the participants and assess assay feasibility, in the second ring trial, a challenging time limit of 2 weeks was set to force fast assay development as soon as genomic data were available. During both ring trials, we detected high interlaboratory variability regarding the screening assay methods and targets, the TATs for assay setup, and the number of screening assays. The participants designed between one and four assays per cluster that targeted cluster-specific unique genetic sequences, genes, or single nucleotide variants using conventional PCRs, high-resolution melting assays, or TaqMan PCRs. Assays were established within the 2-week time limit, with TATs ranging from 4 to 13 days. TaqMan probe delivery times strongly influenced TATs. In summary, we demonstrate that a specific exercise improved the preparedness to develop functional cluster-specific PCR-based screening assays from bacterial genomic data. Furthermore, the parallel development of several assays enhances assay availability.
Collapse
Affiliation(s)
- Janina Treffon
- Institute of Hygiene, University Hospital Münster, Münster, Germany
- National Consulting Laboratory for Hemolytic Uremic Syndrome, University Hospital Münster, Münster, Germany
| | - Karola Prior
- Department of Periodontology and Operative Dentistry, University Hospital Münster, Münster, Germany
| | - Johannes Dreesman
- Department of Microbiology, Infection Protection, Hospital Hygiene, and Infection Epidemiology, Public Health Agency of Lower Saxony, Hannover, Germany
| | - Richard Egelkamp
- Department of Microbiology, Infection Protection, Hospital Hygiene, and Infection Epidemiology, Public Health Agency of Lower Saxony, Hannover, Germany
| | - Antje Flieger
- Department of Enteropathogenic Bacteria and Legionella, National Reference Center for Salmonella and other Bacterial Enteric Pathogens, Robert Koch Institute, Wernigerode, Germany
| | - Barbara Middendorf-Bauchart
- Institute of Hygiene, University Hospital Münster, Münster, Germany
- National Consulting Laboratory for Hemolytic Uremic Syndrome, University Hospital Münster, Münster, Germany
| | - Michaela Projahn
- Department of Biological Safety, National Reference Laboratory for Escherichia coli Including VTEC, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Anne Richter
- Department of Enteropathogenic Bacteria and Legionella, National Reference Center for Salmonella and other Bacterial Enteric Pathogens, Robert Koch Institute, Wernigerode, Germany
| | - Elisabeth Schuh
- Department of Biological Safety, National Reference Laboratory for Escherichia coli Including VTEC, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Dag Harmsen
- Department of Periodontology and Operative Dentistry, University Hospital Münster, Münster, Germany
| | - Alexander Mellmann
- Institute of Hygiene, University Hospital Münster, Münster, Germany
- National Consulting Laboratory for Hemolytic Uremic Syndrome, University Hospital Münster, Münster, Germany
| |
Collapse
|
21
|
Hotaling S, Wilcox ER, Heckenhauer J, Stewart RJ, Frandsen PB. Highly accurate long reads are crucial for realizing the potential of biodiversity genomics. BMC Genomics 2023; 24:117. [PMID: 36927511 PMCID: PMC10018877 DOI: 10.1186/s12864-023-09193-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/17/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Generating the most contiguous, accurate genome assemblies given available sequencing technologies is a long-standing challenge in genome science. With the rise of long-read sequencing, assembly challenges have shifted from merely increasing contiguity to correctly assembling complex, repetitive regions of interest, ideally in a phased manner. At present, researchers largely choose between two types of long read data: longer, but less accurate sequences, or highly accurate, but shorter reads (i.e., >Q20 or 99% accurate). To better understand how these types of long-read data as well as scale of data (i.e., mean length and sequencing depth) influence genome assembly outcomes, we compared genome assemblies for a caddisfly, Hesperophylax magnus, generated with longer, but less accurate, Oxford Nanopore (ONT) R9.4.1 and highly accurate PacBio HiFi (HiFi) data. Next, we expanded this comparison to consider the influence of highly accurate long-read sequence data on genome assemblies across 6750 plant and animal genomes. For this broader comparison, we used HiFi data as a surrogate for highly accurate long-reads broadly as we could identify when they were used from GenBank metadata. RESULTS HiFi reads outperformed ONT reads in all assembly metrics tested for the caddisfly data set and allowed for accurate assembly of the repetitive ~ 20 Kb H-fibroin gene. Across plants and animals, genome assemblies that incorporated HiFi reads were also more contiguous. For plants, the average HiFi assembly was 501% more contiguous (mean contig N50 = 20.5 Mb) than those generated with any other long-read data (mean contig N50 = 4.1 Mb). For animals, HiFi assemblies were 226% more contiguous (mean contig N50 = 20.9 Mb) versus other long-read assemblies (mean contig N50 = 9.3 Mb). In plants, we also found limited evidence that HiFi may offer a unique solution for overcoming genomic complexity that scales with assembly size. CONCLUSIONS Highly accurate long-reads generated with HiFi or analogous technologies represent a key tool for maximizing genome assembly quality for a wide swath of plants and animals. This finding is particularly important when resources only allow for one type of sequencing data to be generated. Ultimately, to realize the promise of biodiversity genomics, we call for greater uptake of highly accurate long-reads in future studies.
Collapse
Affiliation(s)
- Scott Hotaling
- Department of Watershed Sciences, Utah State University, Logan, UT, USA.
| | - Edward R Wilcox
- DNA Sequencing Center, Department of Biology, Brigham Young University, Provo, UT, USA
| | - Jacqueline Heckenhauer
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
- Department of Terrestrial Zoology, Senckenberg Research Institute and Natural History Museum Frankfurt, 60325, Frankfurt, Germany
| | - Russell J Stewart
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Paul B Frandsen
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany.
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA.
- Data Science Lab, Smithsonian Institution, Washington, DC, USA.
| |
Collapse
|
22
|
Ramesh B, Small CM, Healey H, Johnson B, Barker E, Currey M, Bassham S, Myers M, Cresko WA, Jones AG. Improvements to the Gulf pipefish Syngnathus scovelli genome. GIGABYTE 2023; 2023:gigabyte76. [PMID: 36969711 PMCID: PMC10038202 DOI: 10.46471/gigabyte.76] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/03/2023] [Indexed: 02/22/2023] Open
Abstract
The Gulf pipefish Syngnathus scovelli has emerged as an important species for studying sexual selection, development, and physiology. Comparative evolutionary genomics research involving fishes from Syngnathidae depends on having a high-quality genome assembly and annotation. However, the first S. scovelli genome assembled using short-read sequences and a smaller RNA-sequence dataset has limited contiguity and a relatively poor annotation. Here, using PacBio long-read high-fidelity sequences and a proximity ligation library, we generate an improved assembly to obtain 22 chromosome-level scaffolds. Compared to the first assembly, the gaps in the improved assembly are smaller, the N75 is larger, and our genome is ~95% BUSCO complete. Using a large body of RNA-Seq reads from different tissue types and NCBI's Eukaryotic Annotation Pipeline, we discovered 28,162 genes, of which 8,061 are non-coding genes. Our new genome assembly and annotation are tagged as a RefSeq genome by NCBI and provide enhanced resources for research work involving S. scovelli..
Collapse
Affiliation(s)
- Balan Ramesh
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Clay M. Small
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
- Presidential Initiative in Data Science, University of Oregon, Eugene, OR 97403, USA
| | - Hope Healey
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Bernadette Johnson
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Elyse Barker
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Mark Currey
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Susan Bassham
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Megean Myers
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - William A. Cresko
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
- Presidential Initiative in Data Science, University of Oregon, Eugene, OR 97403, USA
| | - Adam Gregory Jones
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
23
|
Kumar L, Brenner N, Sledzieski S, Olaosebikan M, Roger LM, Lynn-Goin M, Klein-Seetharaman R, Berger B, Putnam H, Yang J, Lewinski NA, Singh R, Daniels NM, Cowen L, Klein-Seetharaman J. Transfer of knowledge from model organisms to evolutionarily distant non-model organisms: The coral Pocillopora damicornis membrane signaling receptome. PLoS One 2023; 18:e0270965. [PMID: 36735673 PMCID: PMC9897584 DOI: 10.1371/journal.pone.0270965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
With the ease of gene sequencing and the technology available to study and manipulate non-model organisms, the extension of the methodological toolbox required to translate our understanding of model organisms to non-model organisms has become an urgent problem. For example, mining of large coral and their symbiont sequence data is a challenge, but also provides an opportunity for understanding functionality and evolution of these and other non-model organisms. Much more information than for any other eukaryotic species is available for humans, especially related to signal transduction and diseases. However, the coral cnidarian host and human have diverged over 700 million years ago and homologies between proteins in the two species are therefore often in the gray zone, or at least often undetectable with traditional BLAST searches. We introduce a two-stage approach to identifying putative coral homologues of human proteins. First, through remote homology detection using Hidden Markov Models, we identify candidate human homologues in the cnidarian genome. However, for many proteins, the human genome alone contains multiple family members with similar or even more divergence in sequence. In the second stage, therefore, we filter the remote homology results based on the functional and structural plausibility of each coral candidate, shortlisting the coral proteins likely to have conserved some of the functions of the human proteins. We demonstrate our approach with a pipeline for mapping membrane receptors in humans to membrane receptors in corals, with specific focus on the stony coral, P. damicornis. More than 1000 human membrane receptors mapped to 335 coral receptors, including 151 G protein coupled receptors (GPCRs). To validate specific sub-families, we chose opsin proteins, representative GPCRs that confer light sensitivity, and Toll-like receptors, representative non-GPCRs, which function in the immune response, and their ability to communicate with microorganisms. Through detailed structure-function analysis of their ligand-binding pockets and downstream signaling cascades, we selected those candidate remote homologues likely to carry out related functions in the corals. This pipeline may prove generally useful for other non-model organisms, such as to support the growing field of synthetic biology.
Collapse
Affiliation(s)
- Lokender Kumar
- Department of Chemistry, Colorado School of Mines, Golden, CO, United States of America
| | - Nathanael Brenner
- Department of Chemistry, Colorado School of Mines, Golden, CO, United States of America
| | - Samuel Sledzieski
- MIT Computer Science & Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Monsurat Olaosebikan
- Department of Computer Science, Tufts University, Medford, MA, United States of America
| | - Liza M. Roger
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Matthew Lynn-Goin
- Department of Chemistry, Colorado School of Mines, Golden, CO, United States of America
| | | | - Bonnie Berger
- MIT Computer Science & Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Hollie Putnam
- Department of Biological Sciences, University of Rhode Island, South Kingstown, RI, United States of America
| | - Jinkyu Yang
- Department of Department of Aeronautics & Astronautics, University of Washington, Seattle, WA, United States of America
| | - Nastassja A. Lewinski
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Rohit Singh
- MIT Computer Science & Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Noah M. Daniels
- Department of Computer Science and Statistics, University of Rhode Island, South Kingstown, RI, United States of America
| | - Lenore Cowen
- Department of Computer Science, Tufts University, Medford, MA, United States of America
| | - Judith Klein-Seetharaman
- Department of Chemistry, Colorado School of Mines, Golden, CO, United States of America
- * E-mail:
| |
Collapse
|
24
|
GALA: a computational framework for de novo chromosome-by-chromosome assembly with long reads. Nat Commun 2023; 14:204. [PMID: 36639368 PMCID: PMC9839709 DOI: 10.1038/s41467-022-35670-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 12/16/2022] [Indexed: 01/15/2023] Open
Abstract
High-quality genome assembly has wide applications in genetics and medical studies. However, it is still very challenging to achieve gap-free chromosome-scale assemblies using current workflows for long-read platforms. Here we report on GALA (Gap-free long-read Assembly tool), a computational framework for chromosome-based sequencing data separation and de novo assembly implemented through a multi-layer graph that identifies discordances within preliminary assemblies and partitions the data into chromosome-scale scaffolding groups. The subsequent independent assembly of each scaffolding group generates a gap-free assembly likely free from the mis-assembly errors which usually hamper existing workflows. This flexible framework also allows us to integrate data from various technologies, such as Hi-C, genetic maps, and even motif analyses to generate gap-free chromosome-scale assemblies. As a proof of principle we de novo assemble the C. elegans genome using combined PacBio and Nanopore sequencing data and a rice cultivar genome using Nanopore sequencing data from publicly available datasets. We also demonstrate the proposed method's applicability with a gap-free assembly of the human genome using PacBio high-fidelity (HiFi) long reads. Thus, our method enables straightforward assembly of genomes with multiple data sources and overcomes barriers that at present restrict the application of de novo genome assembly technology.
Collapse
|
25
|
Schäfer L, Volk F, Kleespies RG, Jehle JA, Wennmann JT. Elucidating the genomic history of commercially used Bacillus thuringiensis subsp. tenebrionis strain NB176. Front Cell Infect Microbiol 2023; 13:1129177. [PMID: 37021121 PMCID: PMC10067926 DOI: 10.3389/fcimb.2023.1129177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/17/2023] [Indexed: 04/07/2023] Open
Abstract
Bacillus thuringiensis subsp. tenebrionis (Btt) produces a coleopteran-specific crystal protoxin protein (Cry3Aa δ-endotoxin). After its discovery in 1982, the strain NB125 (DSM 5526) was eventually registered in 1990 to control the Colorado potato beetle (Leptinotarsa decemlineata). Gamma-irradiation of NB125 resulted in strain NB176-1 (DSM 5480) that exhibited higher cry3Aa production and became the active ingredient of the plant protection product Novodor® FC. Here, we report a comparative genome analysis of the parental strain NB125, its derivative NB176-1 and the current commercial production strain NB176. The entire genome sequences of the parental and derivative strains were deciphered by a hybrid de novo approach using short (Illumina) and long (Nanopore) read sequencing techniques. Genome assembly revealed a chromosome of 5.4 to 5.6 Mbp and six plasmids with a size range from 14.9 to 250.5 kbp for each strain. The major differences among the original NB125 and the derivative strains NB176-1 and NB176 were an additional copy of the cry3Aa gene, which translocated to another plasmid as well as a chromosomal deletion (~ 178 kbp) in NB176. The assembled genome sequences were further analyzed in silico for the presence of virulence and antimicrobial resistance (AMR) genes.
Collapse
Affiliation(s)
- Lea Schäfer
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Biological Control, Dossenheim, Germany
| | | | - Regina G. Kleespies
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Biological Control, Dossenheim, Germany
| | - Johannes A. Jehle
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Biological Control, Dossenheim, Germany
| | - Jörg T. Wennmann
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Biological Control, Dossenheim, Germany
- *Correspondence: Jörg T. Wennmann,
| |
Collapse
|
26
|
Chavda VP, Mishra T, Vuppu S. Immunological Studies to Understand Hybrid/Recombinant Variants of SARS-CoV-2. Vaccines (Basel) 2022; 11:45. [PMID: 36679891 PMCID: PMC9867374 DOI: 10.3390/vaccines11010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The zoonotic SARS-CoV-2 virus was present before the onset of the pandemic. It undergoes evolution, adaptation, and selection to develop variants that gain high transmission rates and virulence, resulting in the pandemic. Structurally, the spike protein of the virus is required for binding to ACE2 receptors of the host cells. The gene coding for the spike is known to have a high propensity of mutations, as a result generating numerous variants. The variants can be generated by random point mutations or recombination during replication. However, SARS-CoV-2 can also produce hybrid variants on co-infection of the host by two distinct lineages of the virus. The genomic sequences of the two variants undergo recombination to produce the hybrid variants. Additionally, these sub-variants also contain numerous mutations from both the parent variants, as well as some novel mutations unique to the hybrids. The hybrid variants (XD, XE, and XF) can be identified through numerous techniques, such as peak PCR, NAAT, and hybrid capture SARS-CoV-2 NGS (next generation sequencing) assay, etc., but the most accurate approach is genome sequencing. There are numerous immunological diagnostic assays, such as ELISA, chemiluminescence immunoassay, flow-cytometry-based approaches, electrochemiluminescence immunoassays, neutralization assays, etc., that are also designed and developed to provide an understanding of the hybrid variants, their pathogenesis, and other reactions. The objective of our study is to comprehensively analyze the variants of SARS-CoV-2, especially the hybrid variants. We have also discussed the techniques available for the identification of hybrids, as well as the immunological assays and studies for analyzing the hybrid variants.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, LM College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Toshika Mishra
- Department of Biotechnology, Science, Innovation, and Society Research Lab. 115, Hexagon (SMV), Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Suneetha Vuppu
- Department of Biotechnology, Science, Innovation, and Society Research Lab. 115, Hexagon (SMV), Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| |
Collapse
|
27
|
Alkaloid production and response to natural adverse conditions in Peganum harmala: in silico transcriptome analyses. BIOTECHNOLOGIA 2022; 103:355-384. [PMID: 36685700 PMCID: PMC9837557 DOI: 10.5114/bta.2022.120706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 07/25/2022] [Accepted: 09/16/2022] [Indexed: 01/06/2023] Open
Abstract
Peganum harmala is a valuable wild plant that grows and survives under adverse conditions and produces pharmaceutical alkaloid metabolites. Using different assemblers to develop a transcriptome improves the quality of assembled transcriptome. In this study, a concrete and accurate method for detecting stress-responsive transcripts by comparing stress-related gene ontology (GO) terms and public domains was designed. An integrated transcriptome for P. harmala including 42 656 coding sequences was created by merging de novo assembled transcriptomes. Around 35 000 transcripts were annotated with more than 90% resemblance to three closely related species of Citrus, which confirmed the robustness of the assembled transcriptome; 4853 stress-responsive transcripts were identified. CYP82 involved in alkaloid biosynthesis showed a higher number of transcripts in P. harmala than in other plants, indicating its diverse alkaloid biosynthesis attributes. Transcription factors (TFs) and regulatory elements with 3887 transcripts comprised 9% of the transcriptome. Among the TFs of the integrated transcriptome, cystein2/histidine2 (C2H2) and WD40 repeat families were the most abundant. The Kyoto Encyclopedia of Genes and Genomes (KEGG) MAPK (mitogen-activated protein kinase) signaling map and the plant hormone signal transduction map showed the highest assigned genes to these pathways, suggesting their potential stress resistance. The P. harmala whole-transcriptome survey provides important resources and paves the way for functional and comparative genomic studies on this plant to discover stress-tolerance-related markers and response mechanisms in stress physiology, phytochemistry, ecology, biodiversity, and evolution. P. harmala can be a potential model for studying adverse environmental cues and metabolite biosynthesis and a major source for the production of various alkaloids.
Collapse
|
28
|
Barlow LD, Maciejowski W, More K, Terry K, Vargová R, Záhonová K, Dacks JB. Comparative Genomics for Evolutionary Cell Biology Using AMOEBAE: Understanding the Golgi and Beyond. Methods Mol Biol 2022; 2557:431-452. [PMID: 36512230 DOI: 10.1007/978-1-0716-2639-9_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Taking an evolutionary approach to cell biology can yield important new information about how the cell works and how it evolved to do so. This is true of the Golgi apparatus, as it is of all systems within the cell. Comparative genomics is one of the crucial first steps to this line of research, but comes with technical challenges that must be overcome for rigor and robustness. We here introduce AMOEBAE, a workflow for mid-range scale comparative genomic analyses. It allows for customization of parameters, queries, and taxonomic sampling of genomic and transcriptomics data. This protocol article covers the rationale for an evolutionary approach to cell biological study (i.e., when would AMOEBAE be useful), how to use AMOEBAE, and discussion of limitations. It also provides an example dataset, which demonstrates that the Golgi protein AP4 Epsilon is present as the sole retained subunit of the AP4 complex in basidiomycete fungi. AMOEBAE can facilitate comparative genomic studies by balancing reproducibility and speed with user-input and interpretation. It is hoped that AMOEBAE or similar tools will encourage cell biologists to incorporate an evolutionary context into their research.
Collapse
Affiliation(s)
- Lael D Barlow
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada. .,Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK.
| | - William Maciejowski
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Kiran More
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Kara Terry
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Romana Vargová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Kristína Záhonová
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Joel B Dacks
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada. .,Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, AB, Canada. .,Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia. .,Centre for Life's Origin and Evolution, Department of Genetics, Evolution and Environment, University College of London, London, UK.
| |
Collapse
|
29
|
Wang H, Jia G, Zhang N, Zhi H, Xing L, Zhang H, Sui Y, Tang S, Li M, Zhang H, Feng B, Wu C, Diao X. Domestication-associated PHYTOCHROME C is a flowering time repressor and a key factor determining Setaria as a short-day plant. THE NEW PHYTOLOGIST 2022; 236:1809-1823. [PMID: 36178253 DOI: 10.1111/nph.18493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Phytochromes play vital roles in the regulation of flowering time, but little is known in Panicoideae species, especially the C4 model Setaria. Here, genomic variations of PHYTOCHROME C (PHYC) between wild and cultivated Setaria gene pools were analysed and three SiphyC mutants were identified. The function of SiPHYC was verified by CRISPR-Cas9 approach and transcriptome sequencing. Furthermore, efficiency of indoor cultivation of SiphyC mutants were systematically evaluated. An extreme purified selection of PHYC was detected in wild to cultivated domestication process of Setaria. SiphyC mutants and knockout transgenic plants showed an early heading date and a loss of response to short-day photoperiod. Furthermore, variable expression of SiFTa, SiMADS14 and SiMADS15 might be responsible for promoting flowering of SiphyC mutants. Moreover, SiphyC mutant was four times that of the indoor plot ratio of wild-type and produced over 200 seeds within 45 d per individual. Our results suggest that domestication-associated SiPHYC repressed flowering and determined Setaria as a short-day plant, and SiphyC mutants possess the potential for creating efficient indoor cultivation system suitable for research on Setaria as a model, and either for maize or sorghum as well.
Collapse
Affiliation(s)
- Hailong Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712000, China
| | - Guanqing Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ning Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hui Zhi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lihe Xing
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haoshan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yi Sui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Sha Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mingzhe Li
- Institute of Dry-land Agriculture, Hebei Academy of Agricultural and Forestry Sciences, Hengshui, Hebei, 053000, China
| | - Haijin Zhang
- Institute of Dry Land Agroforestry, Liaoning Academy of Agricultural Sciences, Chaoyang, Liaoning, 122000, China
| | - Baili Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712000, China
| | - Chuanyin Wu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xianmin Diao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
30
|
Zhao J, Wu Y, Chen MJ, Xu Y, Zhong W, Wang MZ. Characterization of driver mutations in Chinese non-small cell lung cancer patients using a novel targeted sequencing panel. J Thorac Dis 2022; 14:4669-4684. [PMID: 36647494 PMCID: PMC9840037 DOI: 10.21037/jtd-22-909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/04/2022] [Indexed: 12/05/2022]
Abstract
Background The identification of driver mutations has greatly promoted the precise diagnosis and treatment of non-small cell lung cancer (NSCLC), but there is lack of targeted sequencing panels specifically designed and applied to Chinese NSCLC patients. This study aimed to design and validate of a novel sequencing panel for comprehensive characterization of driver mutations in Chinese NSCLC patients, facilitating further exploration of downstream pathway alterations and therapeutic utility. Methods A novel target sequencing panel including 21 driver genes was designed and examined in a cohort of 260 Chinese NSCLC patients who underwent surgery in Peking Union Medical College Hospital (PUMCH). Genetic alterations were identified and further analyzed for driver mutations, downstream pathways and therapeutic utilities. Results The most frequently identified driver mutations in PUMCH NSCLC cohort were on genes TP53 (28%), EGFR (27%) and PIK3CA (19%) for lung adenocarcinoma (LUAD), and TP53 (41%), PIK3CA (14%) and CDKN2A (13%) for lung squamous cell carcinoma (LUSC), respectively. Downstream pathway analysis revealed common pathways like G1_AND_S1_PHASES pathway were shared not only between LUAD and LUSC patients, but also among three different NSCLC cohorts, while other pathways were subtype-specific, like the unique enrichment of SHC1_EVENT_IN_EGFR_SIGNALING pathway in LUAD patients, and P38_ALPHA_BETA_DOWNSTREAM pathway in LUSC patients, respectively. About 60% of both LUAD and LUSC patients harbored driver mutations as sensitive biomarkers for different targeted therapies, covering not only frequent mutations like EGFR L858R mutation, but also rare mutations like BRAF D594N mutation. Conclusions Our study provides a novel target sequencing panel suitable for Chinese NSCLC patients, which can effectively identify driver mutations, analyze downstream pathway alterations and predict therapeutic utility. Overall it is promising to further optimize and apply this panel in clinic with convenience and effectiveness.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Yang Wu
- School of Medicine, Tsinghua University, Beijing, China
| | - Min-Jiang Chen
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Yan Xu
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Wei Zhong
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Meng-Zhao Wang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
31
|
Rayamajhi N, Cheng CHC, Catchen JM. Evaluating Illumina-, Nanopore-, and PacBio-based genome assembly strategies with the bald notothen, Trematomus borchgrevinki. G3 (BETHESDA, MD.) 2022; 12:jkac192. [PMID: 35904764 PMCID: PMC9635638 DOI: 10.1093/g3journal/jkac192] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022]
Abstract
For any genome-based research, a robust genome assembly is required. De novo assembly strategies have evolved with changes in DNA sequencing technologies and have been through at least 3 phases: (1) short-read only, (2) short- and long-read hybrid, and (3) long-read only assemblies. Each of the phases has its own error model. We hypothesized that hidden short-read scaffolding errors and erroneous long-read contigs degrade the quality of short- and long-read hybrid assemblies. We assembled the genome of Trematomus borchgrevinki from data generated during each of the 3 phases and assessed the quality problems we encountered. We developed strategies such as k-mer-assembled region replacement, parameter optimization, and long-read sampling to address the error models. We demonstrated that a k-mer-based strategy improved short-read assemblies as measured by Benchmarking Universal Single-Copy Ortholog while mate-pair libraries introduced hidden scaffolding errors and perturbed Benchmarking Universal Single-Copy Ortholog scores. Furthermore, we found that although hybrid assemblies can generate higher contiguity they tend to suffer from lower quality. In addition, we found long-read-only assemblies can be optimized for contiguity by subsampling length-restricted raw reads. Our results indicate that long-read contig assembly is the current best choice and that assemblies from phase I and phase II were of lower quality.
Collapse
Affiliation(s)
- Niraj Rayamajhi
- Department of Evolution, Ecology, and Behavior, University of Illinois, Urbana-Champaign, Champaign, IL 61801, USA
| | - Chi-Hing Christina Cheng
- Department of Evolution, Ecology, and Behavior, University of Illinois, Urbana-Champaign, Champaign, IL 61801, USA
| | - Julian M Catchen
- Department of Evolution, Ecology, and Behavior, University of Illinois, Urbana-Champaign, Champaign, IL 61801, USA
| |
Collapse
|
32
|
Magid M, Wold JR, Moraga R, Cubrinovska I, Houston DM, Gartrell BD, Steeves TE. Leveraging an existing whole-genome resequencing population data set to characterize toll-like receptor gene diversity in a threatened bird. Mol Ecol Resour 2022; 22:2810-2825. [PMID: 35635119 PMCID: PMC9543821 DOI: 10.1111/1755-0998.13656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/29/2022] [Accepted: 05/26/2022] [Indexed: 11/27/2022]
Abstract
Species recovery programs are increasingly using genomic data to measure neutral genetic diversity and calculate metrics like relatedness. While these measures can inform conservation management, determining the mechanisms underlying inbreeding depression requires information about functional genes associated with adaptive or maladaptive traits. Toll-like receptors (TLRs) are one family of functional genes, which play a crucial role in recognition of pathogens and activation of the immune system. Previously, these genes have been analysed using species-specific primers and PCR. Here, we leverage an existing short-read reference genome, whole-genome resequencing population data set, and bioinformatic tools to characterize TLR gene diversity in captive and wild tchūriwat'/tūturuatu/shore plover (Thinornis novaeseelandiae), a threatened bird endemic to Aotearoa New Zealand. Our results show that TLR gene diversity in tchūriwat'/tūturuatu is low, and forms two distinct captive and wild genetic clusters. The bioinformatic approach presented here has broad applicability to other threatened species with existing genomic resources in Aotearoa New Zealand and beyond.
Collapse
Affiliation(s)
- Molly Magid
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| | - Jana R. Wold
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| | - Roger Moraga
- Tea Break Bioinformatics, LtdPalmerston NorthNew Zealand
| | - Ilina Cubrinovska
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| | - Dave M. Houston
- Department of ConservationBiodiversity GroupAucklandNew Zealand
| | - Brett D. Gartrell
- Institute of Veterinary, Animal, and Biomedical SciencesWildbase, Massey UniversityPalmerston NorthNew Zealand
| | - Tammy E. Steeves
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| |
Collapse
|
33
|
Development of Genomic Resources in Mexican Bursera (Section: Bullockia: Burseraceae): Genome Assembly, Annotation, and Marker Discovery for Three Copal Species. Genes (Basel) 2022; 13:genes13101741. [PMID: 36292626 PMCID: PMC9601875 DOI: 10.3390/genes13101741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Bursera comprises ~100 tropical shrub and tree species, with the center of the species diversification in Mexico. The genomic resources developed for the genus are scarce, and this has limited the study of the gene flow, local adaptation, and hybridization dynamics. In this study, based on ~155 million Illumina paired-end reads per species, we performed a de novo genome assembly and annotation of three Bursera species of the Bullockia section: Bursera bipinnata, Bursera cuneata, and Bursera palmeri. The total lengths of the genome assemblies were 253, 237, and 229 Mb for B. cuneata, B. palmeri, and B. bipinnata, respectively. The assembly of B. palmeri retrieved the most complete and single-copy BUSCOs (87.3%) relative to B. cuneata (86.5%) and B. bipinnata (76.6%). The ab initio gene prediction recognized between 21,000 and 32,000 protein-coding genes. Other genomic features, such as simple sequence repeats (SSRs), were also detected. Using the de novo genome assemblies as a reference, we identified single-nucleotide polymorphisms (SNPs) for a set of 43 Bursera individuals. Moreover, we mapped the filtered reads of each Bursera species against the chloroplast genomes of five Burseraceae species, obtaining consensus sequences ranging from 156 to 160 kb in length. Our work contributes to the generation of genomic resources for an important but understudied genus of tropical-dry-forest species.
Collapse
|
34
|
Ko BJ, Lee C, Kim J, Rhie A, Yoo DA, Howe K, Wood J, Cho S, Brown S, Formenti G, Jarvis ED, Kim H. Widespread false gene gains caused by duplication errors in genome assemblies. Genome Biol 2022; 23:205. [PMID: 36167596 PMCID: PMC9516828 DOI: 10.1186/s13059-022-02764-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/02/2022] [Indexed: 12/22/2022] Open
Abstract
Background False duplications in genome assemblies lead to false biological conclusions. We quantified false duplications in popularly used previous genome assemblies for platypus, zebra finch, and Anna’s Hummingbird, and their new counterparts of the same species generated by the Vertebrate Genomes Project, of which the Vertebrate Genomes Project pipeline attempted to eliminate false duplications through haplotype phasing and purging. These assemblies are among the first generated by the Vertebrate Genomes Project where there was a prior chromosomal level reference assembly to compare with. Results Whole genome alignments revealed that 4 to 16% of the sequences are falsely duplicated in the previous assemblies, impacting hundreds to thousands of genes. These lead to overestimated gene family expansions. The main source of the false duplications is heterotype duplications, where the haplotype sequences were relatively more divergent than other parts of the genome leading the assembly algorithms to classify them as separate genes or genomic regions. A minor source is sequencing errors. Ancient ATP nucleotide binding gene families have a higher prevalence of false duplications compared to other gene families. Although present in a smaller proportion, we observe false duplications remaining in the Vertebrate Genomes Project assemblies that can be identified and purged. Conclusions This study highlights the need for more advanced assembly methods that better separate haplotypes and sequence errors, and the need for cautious analyses on gene gains. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02764-1.
Collapse
Affiliation(s)
- Byung June Ko
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Chul Lee
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Juwan Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Arang Rhie
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, USA
| | - Dong Ahn Yoo
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | | | | | - Seoae Cho
- eGnome, Inc, Seoul, Republic of Korea
| | - Samara Brown
- Laboratory of the Neurogenetics of Language, The Rockefeller University, New York, NY, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Giulio Formenti
- Laboratory of the Neurogenetics of Language, The Rockefeller University, New York, NY, USA
| | - Erich D Jarvis
- Laboratory of the Neurogenetics of Language, The Rockefeller University, New York, NY, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Heebal Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea. .,Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea. .,eGnome, Inc, Seoul, Republic of Korea.
| |
Collapse
|
35
|
Zhou X, Arslan M, Liu Z, Li D, Xi H, Feng Y, Li S, Wei J, Rong X, Liang Z, Wang X, Wu Z, Gamal El-Din M. Low carbon-to-nitrogen ratio digestate from high-rate anaerobic baffled reactor facilitates heterotrophic/autotrophic nitrifiers involved in nitrogen removal. BIORESOURCE TECHNOLOGY 2022; 359:127346. [PMID: 35605776 DOI: 10.1016/j.biortech.2022.127346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
In this study, baffled anaerobic-aerobic reactors (AOBRs) with modified basalt fiber (MBF) carriers and felt were used to treat domestic wastewater (DWW). The influent was first treated in anaerobic compartments, with the NH4+-N containing digestate refluxed into aerobic compartment for nitrification. The nitrified liquid was channeled to the anaerobic compartments for further denitrification. Under optimal conditions, AOBR with MBF carriers could remove 91% chemical oxygen demand (COD) and 81% total nitrogen (TN), with biomass production increased by 7.6%, 4.5% and 8.7% in three successive anaerobic compartments compared to the control. Biological viability analysis showed that live cells outnumbered dead cells in bio-nests. Metagenomics analysis showed that multiple metabolic pathways accounted for nitrogen conversion in anaerobic and aerobic compartments. More importantly, low COD/TN ratio digestate facilitated heterotrophic nitrification-aerobic denitrification (HN-AD) species growth in aerobic compartment. This study provides a promising strategy to source treatment of DWW from urban communities.
Collapse
Affiliation(s)
- Xiangtong Zhou
- Institute of Environmental Health and Ecological Safety, Jiangsu University, Zhenjiang 212013, China
| | - Muhammad Arslan
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Zhigang Liu
- Institute of Environmental Health and Ecological Safety, Jiangsu University, Zhenjiang 212013, China
| | - Da Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Haipeng Xi
- Institute of Environmental Health and Ecological Safety, Jiangsu University, Zhenjiang 212013, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China.
| | - Shanwei Li
- Institute of Environmental Health and Ecological Safety, Jiangsu University, Zhenjiang 212013, China
| | - Jing Wei
- Institute of Environmental Health and Ecological Safety, Jiangsu University, Zhenjiang 212013, China
| | - Xinshan Rong
- Institute of Environmental Health and Ecological Safety, Jiangsu University, Zhenjiang 212013, China
| | - Zhishui Liang
- School of Civil Engineering, Southeast University, No. 2 Sipailou, Nanjing, Jiangsu 210096, China
| | - Xiaochun Wang
- Institute of Environmental Health and Ecological Safety, Jiangsu University, Zhenjiang 212013, China
| | - Zhiren Wu
- Institute of Environmental Health and Ecological Safety, Jiangsu University, Zhenjiang 212013, China
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
36
|
Guo R, Papanicolaou A, Fritz ML. Validation of reference-assisted assembly using existing and novel Heliothine genomes. Genomics 2022; 114:110441. [PMID: 35931274 DOI: 10.1016/j.ygeno.2022.110441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 07/19/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022]
Abstract
Chloridea subflexa and Chloridea virescens are a pair of closely related noctuid species exhibiting pheromone-based sexual isolation and divergent host plant preferences. We produced a novel Illumina short read C. subflexa genome assembly and an improved C. virescens genome assembly, which offer opportunities to study the genomic basis for evolutionarily important traits in this lepidopteran family with few genomic resources. We then examined the feasibility of reference-assisted assembly, an approach that leverages existing high quality genomic resources for genome improvement in closely related taxa and applied it to our Heliothine genomes. Our work demonstrates that reference-assisted assembly has the potential to enhance contiguity and completeness of existing insect genomic resources with minimal additional laboratory costs. We conclude by discussing both the potential and pitfalls of reference-assisted assembly according to the intended downstream assembly application.
Collapse
Affiliation(s)
- Rong Guo
- Department of Entomology, University of Maryland, College Park, MD 20742, USA; Computational Biology, Bioinformatics and Genomics Program, Department of Biological Sciences, University of Maryland, College Park, MD 20742, USA
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753, Australia.
| | - Megan L Fritz
- Department of Entomology, University of Maryland, College Park, MD 20742, USA; Computational Biology, Bioinformatics and Genomics Program, Department of Biological Sciences, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
37
|
Khani-Juyabad F, Mohammadi P, Zarrabi M. Insights from cyanobacterial genomic and transcriptomic analyses into adaptation strategies in terrestrial environments. Genomics 2022; 114:110438. [PMID: 35902068 DOI: 10.1016/j.ygeno.2022.110438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 07/11/2022] [Accepted: 07/24/2022] [Indexed: 11/26/2022]
Abstract
Phylogenomic analysis of Nostoc sp. MG11, a terrestrial cyanobacterium, and some terrestrial and freshwater Nostoc strains showed that the terrestrial strains grouped together in a distinctive clade, which reveals the effect of habitat on shaping Nostoc genomes. Terrestrial strains showed larger genomes and had higher predicted CDS contents than freshwater strains. Comparative genomic analysis demonstrated that genome expansion in the terrestrial Nostoc is supported by an increase in copy number of the core genes and acquisition of shared genes. Transcriptomic profiling analysis under desiccation stress revealed that Nostoc sp. MG11 protected its cell by induction of catalase, proteases, sucrose synthase, trehalose biosynthesis and maltodextrin utilization genes and maintained its normal metabolism during this condition by up-regulation of genes related to phycobilisomes and light reactions of photosynthesis, CO2 fixation and protein metabolism. These results provide insights into the strategies related to survival and adaptation of Nostoc strains to terrestrial environments.
Collapse
Affiliation(s)
- Fatemeh Khani-Juyabad
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Parisa Mohammadi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran; Research Center for Applied Microbiology and Microbial Biotechnology, Alzahra University, Tehran, Iran.
| | - Mahbubeh Zarrabi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| |
Collapse
|
38
|
Laczkó L, Jordán S, Sramkó G. The
RadOrgMiner
pipeline: Automated genotyping of organellar loci from
RADseq
data. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Levente Laczkó
- MTA‐DE “Lendület” Evolutionary Phylogenomics Research Group, Egyetem tér 1 H‐4032 Debrecen Hungary
- Department of Botany University of Debrecen Egyetem tér 1, Debrecen, H‐4032 Hungary
- ELKH‐ DE Conservation Biology Research Group, Egyetem tér 1, Debrecen, H‐4032 Hungary
- Department of Metagenomics University of Debrecen Nagyerdei körút 98., Debrecen, H‐4032 Hungary
| | - Sándor Jordán
- Department of Botany University of Debrecen Egyetem tér 1, Debrecen, H‐4032 Hungary
- Juhász‐Nagy Pál Doctoral School University of Debrecen Egyetem tér 1, Debrecen, H‐4032 Hungary
| | - Gábor Sramkó
- MTA‐DE “Lendület” Evolutionary Phylogenomics Research Group, Egyetem tér 1 H‐4032 Debrecen Hungary
- Department of Botany University of Debrecen Egyetem tér 1, Debrecen, H‐4032 Hungary
- ELKH‐ DE Conservation Biology Research Group, Egyetem tér 1, Debrecen, H‐4032 Hungary
| |
Collapse
|
39
|
Dash HR, Arora M. CRISPR-CasB technology in forensic DNA analysis: challenges and solutions. Appl Microbiol Biotechnol 2022; 106:4367-4374. [PMID: 35704073 DOI: 10.1007/s00253-022-12016-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 01/23/2023]
Abstract
CRISPR-Cas technology has revolutionized the field of biotechnology with its precise therapeutic use from genetic as well as infectious diseases point of view. This technology is rapidly evolving to single tool enabling site-directed cut in the genome and highly specific activation or inhibition of gene expression or the exchange of single bases. Besides clinical applications, CRISPR-Cas technology has also shown promising use in the field of forensic DNA analysis. Enrichment of targeted genetic marker for identification followed by sequencing and non-PCR-dependent technique ensures the use of CRISPR-Cas technology in challenging forensic biological samples. The use of this advanced technology is also deemed helpful in mixed profile attribution, mostly in LCN contributors and the generation of a useful DNA profile in degraded samples. Besides its useful applications in forensic DNA analysis, CRISPR-Cas technology poses a huge threat from the generation of ghost DNA profiles by modification/alteration of target genetic markers. Forensic DNA analysts should carry out analysis of additional markers such as non-CODIS markers, Y-, X-chromosome markers, and mitochondrial DNA sequencing in a suspected ghost DNA profile case. KEY POINTS: • CRISPR-Cas9 technique is useful in analyzing LCN, mixed and degraded samples • Alteration of DNA using this technique can lead to generation of ghost DNA profiles • Alternative genetic markers and methylation pattern may detect a ghost DNA profile.
Collapse
Affiliation(s)
- Hirak Ranjan Dash
- School of Forensic Sciences, National Forensic Sciences University, Delhi Campus, Sector-3, Rohini, New Delhi, 110085, India.
| | - Mansi Arora
- School of Forensic Sciences, National Forensic Sciences University, Delhi Campus, Sector-3, Rohini, New Delhi, 110085, India
| |
Collapse
|
40
|
Wong ATC, Lam DK, Poon ESK, Chan DTC, Sin SYW. Intra-specific copy number variation of MHC class II genes in the Siamese fighting fish. Immunogenetics 2022; 74:327-346. [PMID: 35229174 DOI: 10.1007/s00251-022-01255-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 02/04/2022] [Indexed: 11/28/2022]
Abstract
Duplicates of genes for major histocompatibility complex (MHC) molecules can be subjected to selection independently and vary markedly in their evolutionary rates, sequence polymorphism, and functional roles. Therefore, without a thorough understanding of their copy number variation (CNV) in the genome, the MHC-dependent fitness consequences within a species could be misinterpreted. Studying the intra-specific CNV of this highly polymorphic gene, however, has long been hindered by the difficulties in assigning alleles to loci and the lack of high-quality genomic data. Here, using the high-quality genome of the Siamese fighting fish (Betta splendens), a model for mate choice studies, and the whole-genome sequencing (WGS) data of 17 Betta species, we achieved locus-specific amplification of their three classical MHC class II genes - DAB1, DAB2, and DAB3. By performing quantitative PCR and depth-of-coverage analysis using the WGS data, we revealed intra-specific CNV at the DAB3 locus. We identified individuals that had two allelic copies (i.e., heterozygous or homozygous) or one allele (i.e., hemizygous) and individuals without this gene. The CNV was due to the deletion of a 20-kb-long genomic region harboring both the DAA3 and DAB3 genes. We further showed that the three DAB genes were under different modes of selection, which also applies to their corresponding DAA genes that share similar pattern of polymorphism. Our study demonstrates a combined approach to study CNV within a species, which is crucial for the understanding of multigene family evolution and the fitness consequences of CNV.
Collapse
Affiliation(s)
- Anson Tsz Chun Wong
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China
| | - Derek Kong Lam
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China
| | - Emily Shui Kei Poon
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China
| | - David Tsz Chung Chan
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China
| | - Simon Yung Wa Sin
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China.
| |
Collapse
|
41
|
Ng CS, Lai CK, Ke HM, Lee HH, Chen CF, Tang PC, Cheng HC, Lu MJ, Li WH, Tsai IJ. Genome Assembly and Evolutionary Analysis of the Mandarin Duck Aix galericulata Reveal Strong Genome Conservation among Ducks. Genome Biol Evol 2022; 14:evac083. [PMID: 35640266 PMCID: PMC9189614 DOI: 10.1093/gbe/evac083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
The mandarin duck, Aix galericulata, is popular in East Asian cultures and displays exaggerated sexual dimorphism, especially in feather traits during breeding seasons. We generated and annotated the first mandarin duck de novo assembly, which was 1.08 Gb in size and encoded 16,615 proteins. Using a phylogenomic approach calibrated with fossils and molecular divergences, we inferred that the last common ancestor of ducks occurred 13.3-26.7 Ma. The majority of the mandarin duck genome repetitive sequences belonged to the chicken repeat 1 (CR1) retroposon CR1-J2_Pass, which underwent a duck lineage-specific burst. Synteny analyses among ducks revealed infrequent chromosomal rearrangements in which breaks were enriched in LINE retrotransposons and DNA transposons. The calculation of the dN/dS ratio revealed that the majority of duck genes were under strong purifying selection. The expanded gene families in the mandarin duck are primarily involved in olfactory perception as well as the development and morphogenesis of feather and branching structures. This new reference genome will improve our understanding of the morphological and physiological characteristics of ducks and provide a valuable resource for functional genomics studies to investigate the feather traits of the mandarin duck.
Collapse
Affiliation(s)
- Chen Siang Ng
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
- Bioresource Conservation Research Center, National Tsing Hua University, Hsinchu, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Cheng-Kuo Lai
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Huei-Mien Ke
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsin-Han Lee
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Chih-Feng Chen
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - Pin-Chi Tang
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - Hsu-Chen Cheng
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Department of Life Science, National Chung Hsing University, Taichung, Taiwan
| | - Meiyeh J. Lu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Wen-Hsiung Li
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Ecology and Evolution, University of Chicago, Illinois, USA
| | | |
Collapse
|
42
|
Gong T, Borgard H, Zhang Z, Chen S, Gao Z, Deng Y. Analysis and Performance Assessment of the Whole Genome Bisulfite Sequencing Data Workflow: Currently Available Tools and a Practical Guide to Advance DNA Methylation Studies. SMALL METHODS 2022; 6:e2101251. [PMID: 35064762 PMCID: PMC8963483 DOI: 10.1002/smtd.202101251] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/30/2021] [Indexed: 05/09/2023]
Abstract
DNA methylation is associated with transcriptional repression, genomic imprinting, stem cell differentiation, embryonic development, and inflammation. Aberrant DNA methylation can indicate disease states, including cancer and neurological disorders. Therefore, the prevalence and location of 5-methylcytosine in the human genome is a topic of interest. Whole-genome bisulfite sequencing (WGBS) is a high-throughput method for analyzing DNA methylation. This technique involves library preparation, alignment, and quality control. Advancements in epigenetic technology have led to an increase in DNA methylation studies. This review compares the detailed experimental methodology of WGBS using accessible and up-to-date analysis tools. Practical codes for WGBS data processing are included as a general guide to assist progress in DNA methylation studies through a comprehensive case study.
Collapse
Affiliation(s)
- Ting Gong
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu HI 96813, USA
| | - Heather Borgard
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu HI 96813, USA
| | - Zao Zhang
- Department of Medicine, The Queen’s Medical Center, Honolulu HI 96813, USA
| | - Shaoqiu Chen
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu HI 96813, USA
| | - Zitong Gao
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu HI 96813, USA
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu HI 96813, USA
| |
Collapse
|
43
|
Gunasekara AWACWR, Rajapaksha LGTG, Tung TL. Whole-genome sequence analysis through online web interfaces: a review. Genomics Inform 2022; 20:e3. [PMID: 35399002 PMCID: PMC9002002 DOI: 10.5808/gi.20038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 01/01/2022] [Indexed: 11/20/2022] Open
Abstract
The recent development of whole-genome sequencing technologies paved the way for understanding the genomes of microorganisms. Every whole-genome sequencing (WGS) project requires a considerable cost and a massive effort to address the questions at hand. The final step of WGS is data analysis. The analysis of whole-genome sequence is dependent on highly sophisticated bioinformatics tools that the research personal have to buy. However, many laboratories and research institutions do not have the bioinformatics capabilities to analyze the genomic data and therefore, are unable to take maximum advantage of whole-genome sequencing. In this aspect, this study provides a guide for research personals on a set of bioinformatics tools available online that can be used to analyze whole-genome sequence data of bacterial genomes. The web interfaces described here have many advantages and, in most cases exempting the need for costly analysis tools and intensive computing resources.
Collapse
Affiliation(s)
- A W A C W R Gunasekara
- Veterinary Medical Center and College of Veterinary Medicine, Jeonbuk National University, Jeonju 54596, Korea
| | - L G T G Rajapaksha
- Veterinary Medical Center and College of Veterinary Medicine, Jeonbuk National University, Jeonju 54596, Korea
| | - T L Tung
- Department of Botany, Dagon University, 11422 Yangon, Myanmar
| |
Collapse
|
44
|
Palevich N, Maclean PH. Sequencing and Reconstructing Helminth Mitochondrial Genomes Directly from Genomic Next-Generation Sequencing Data. Methods Mol Biol 2022; 2369:27-40. [PMID: 34313982 DOI: 10.1007/978-1-0716-1681-9_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
We present a detailed method for extraction of high-molecular weight genomic DNA suitable for numerous DNA sequencing applications, and a straightforward in silico approach for reconstructing novel mitochondrial (mt) genomes directly from total genomic DNA extracts derived from next-generation sequencing (NGS) data sets. The in silico post-sequencing pipeline described is fast, accurate, and highly efficient, with modest memory requirements that can be performed using a standard desktop computer. The approach is particularly effective for obtaining mitochondrial genomes for species with little or no mitochondrial sequence information currently available and overcomes many of the limitations of traditional strategies. The described methodologies are also applicable for metagenomics sequencing from mixed or pooled samples containing multiple species and subsequent specific assembly of specific mitochondrial genomes.
Collapse
Affiliation(s)
- Nikola Palevich
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand.
| | - Paul Haydon Maclean
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| |
Collapse
|
45
|
Genome assembly and annotation. Bioinformatics 2022. [DOI: 10.1016/b978-0-323-89775-4.00013-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
46
|
Xie F, Pathom-aree W. Actinobacteria From Desert: Diversity and Biotechnological Applications. Front Microbiol 2021; 12:765531. [PMID: 34956128 PMCID: PMC8696123 DOI: 10.3389/fmicb.2021.765531] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/08/2021] [Indexed: 12/25/2022] Open
Abstract
Deserts, as an unexplored extreme ecosystem, are known to harbor diverse actinobacteria with biotechnological potential. Both multidrug-resistant (MDR) pathogens and environmental issues have sharply raised the emerging demand for functional actinobacteria. From 2000 to 2021, 129 new species have been continuously reported from 35 deserts worldwide. The two largest numbers are of the members of the genera Streptomyces and Geodermatophilus, followed by other functional extremophilic strains such as alkaliphiles, halotolerant species, thermophiles, and psychrotolerant species. Improved isolation strategies for the recovery of culturable and unculturable desert actinobacteria are crucial for the exploration of their diversity and offer a better understanding of their survival mechanisms under extreme environmental stresses. The main bioprospecting processes involve isolation of target actinobacteria on selective media and incubation and selection of representatives from isolation plates for further investigations. Bioactive compounds obtained from desert actinobacteria are being continuously explored for their biotechnological potential, especially in medicine. To date, there are more than 50 novel compounds discovered from these gifted actinobacteria with potential antimicrobial activities, including anti-MDR pathogens and anti-inflammatory, antivirus, antifungal, antiallergic, antibacterial, antitumor, and cytotoxic activities. A range of plant growth-promoting abilities of the desert actinobacteria inspired great interest in their agricultural potential. In addition, several degradative, oxidative, and other functional enzymes from desert strains can be applied in the industry and the environment. This review aims to provide a comprehensive overview of desert environments as a remarkable source of diverse actinobacteria while such rich diversity offers an underexplored resource for biotechnological exploitations.
Collapse
Affiliation(s)
- Feiyang Xie
- Doctor of Philosophy Program in Applied Microbiology (International Program), Faculty of Science, Chiang Mai University, under the CMU Presidential Scholarship, Chiang Mai, Thailand
| | - Wasu Pathom-aree
- Research Center of Microbial Diversity and Sustainable Utilization, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
47
|
Shokravi H, Shokravi Z, Heidarrezaei M, Ong HC, Rahimian Koloor SS, Petrů M, Lau WJ, Ismail AF. Fourth generation biofuel from genetically modified algal biomass: Challenges and future directions. CHEMOSPHERE 2021; 285:131535. [PMID: 34329137 DOI: 10.1016/j.chemosphere.2021.131535] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/27/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Genetic engineering applications in the field of biofuel are rapidly expanding due to their potential to boost biomass productivity while lowering its cost and enhancing its quality. Recently, fourth-generation biofuel (FGB), which is biofuel obtained from genetically modified (GM) algae biomass, has gained considerable attention from academic and industrial communities. However, replacing fossil resources with FGB is still beset with many challenges. Most notably, technical aspects of genetic modification operations need to be more fully articulated and elaborated. However, relatively little attention has been paid to GM algal biomass. There is a limited number of reviews on the progress and challenges faced in the algal genetics of FGB. Therefore, the present review aims to fill this gap in the literature by recapitulating the findings of recent studies and achievements on safe and efficient genetic manipulation in the production of FGB. Then, the essential issues and parameters related to genome editing in algal strains are highlighted. Finally, the main challenges to FGB pertaining to the diffusion risk and regulatory frameworks are addressed. This review concluded that the technical and biosafety aspects of FGB, as well as the complexity and diversity of the related regulations, legitimacy concerns, and health and environmental risks, are among the most important challenges that require a strong commitment at the national/international levels to reach a global consensus.
Collapse
Affiliation(s)
- Hoofar Shokravi
- School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM Skudai, Johor Bahru, Johor, Malaysia
| | - Zahra Shokravi
- Department of Microbiology, Faculty of Basic Science, Islamic Azad University, Science and Research Branch of Tehran, Markazi, Iran
| | - Mahshid Heidarrezaei
- School of Chemical & Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM Skudai, Johor Bahru, Johor, Malaysia; Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia, Johor Bahru, 81310, Malaysia
| | - Hwai Chyuan Ong
- Centre for Green Technology, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW, 2007, Australia.
| | - Seyed Saeid Rahimian Koloor
- Institute for Nanomaterials, Advanced Technologies, and Innovation (CXI), Technical University of Liberec (TUL), Studentska 2, 461 17, Liberec, Czech Republic
| | - Michal Petrů
- Institute for Nanomaterials, Advanced Technologies, and Innovation (CXI), Technical University of Liberec (TUL), Studentska 2, 461 17, Liberec, Czech Republic
| | - Woei Jye Lau
- School of Chemical & Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM Skudai, Johor Bahru, Johor, Malaysia; Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Ahmad Fauzi Ismail
- School of Chemical & Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM Skudai, Johor Bahru, Johor, Malaysia; Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| |
Collapse
|
48
|
Santos SHD, Peery RM, Miller JM, Dao A, Lyu FH, Li X, Li MH, Coltman DW. Ancient hybridization patterns between bighorn and thinhorn sheep. Mol Ecol 2021; 30:6273-6288. [PMID: 34845798 DOI: 10.1111/mec.16136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 07/27/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022]
Abstract
Whole-genome sequencing has advanced the study of species evolution, including the detection of genealogical discordant events such as ancient hybridization and incomplete lineage sorting (ILS). The evolutionary history of bighorn (Ovis canadensis) and thinhorn (Ovis dalli) sheep present an ideal system to investigate evolutionary discordance due to their recent and rapid radiation and putative secondary contact between bighorn and thinhorn sheep subspecies, specifically the dark pelage Stone sheep (O. dalli stonei) and predominately white Dall sheep (O. dalli dalli), during the last ice age. Here, we used multiple genomes of bighorn and thinhorn sheep, together with snow (O. nivicola) and the domestic sheep (O. aries) as outgroups, to assess their phylogenomic history, potential introgression patterns and their adaptive consequences. Among the Pachyceriforms (snow, bighorn and thinhorn sheep) a consistent monophyletic species tree was retrieved; however, many genealogical discordance patterns were observed. Alternative phylogenies frequently placed Stone and bighorn as sister clades. This relationship occurred more often and was less divergent than that between Dall and bighorn. We also observed many blocks containing introgression signal between Stone and bighorn genomes in which coat colour genes were present. Introgression signals observed between Dall and bighorn were more random and less frequent, and therefore probably due to ILS or intermediary secondary contact. These results strongly suggest that Stone sheep originated from a complex series of events, characterized by multiple, ancient periods of secondary contact with bighorn sheep.
Collapse
Affiliation(s)
- Sarah H D Santos
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Rhiannon M Peery
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Joshua M Miller
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Anh Dao
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Feng-Hua Lyu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xin Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Meng-Hua Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Chinese Academy of Sciences (CAS), Beijing, China
| | - David W Coltman
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
49
|
Friel J, Bombarely A, Fornell CD, Luque F, Fernández-Ocaña AM. Comparative Analysis of Genotyping by Sequencing and Whole-Genome Sequencing Methods in Diversity Studies of Olea europaea L. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112514. [PMID: 34834877 PMCID: PMC8622120 DOI: 10.3390/plants10112514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/27/2021] [Accepted: 11/11/2021] [Indexed: 05/11/2023]
Abstract
Olive, Olea europaea L., is a tree of great economic and cultural importance in the Mediterranean basin. Thousands of cultivars have been described, of which around 1200 are conserved in the different olive germplasm banks. The genetic characterisation of these cultivars can be performed in different ways. Whole-genome sequencing (WGS) provides more information than the reduced representation methods such as genotype by sequencing (GBS), but at a much higher cost. This may change as the cost of sequencing continues to drop, but, currently, genotyping hundreds of cultivars using WGS is not a realistic goal for most research groups. Our aim is to systematically compare both methodologies applied to olive genotyping and summarise any possible recommendations for the geneticists and molecular breeders of the olive scientific community. In this work, we used a selection of 24 cultivars from an olive core collection from the World Olive Germplasm Collection of the Andalusian Institute of Agricultural and Fisheries Research and Training (WOGBC), which represent the most of the cultivars present in cultivated fields over the world. Our results show that both methodologies deliver similar results in the context of phylogenetic analysis and popular population genetic analysis methods such as clustering. Furthermore, WGS and GBS datasets from different experiments can be merged in a single dataset to perform these analytical methodologies with proper filtering. We also tested the influence of the different olive reference genomes in this type of analysis, finding that they have almost no effect when estimating genetic relationships. This work represents the first comparative study between both sequencing techniques in olive. Our results demonstrate that the use of GBS is a perfectly viable option for replacing WGS and reducing research costs when the goal of the experiment is to characterise the genetic relationship between different accessions. Besides this, we show that it is possible to combine variants from GBS and WGS datasets, allowing the reuse of publicly available data.
Collapse
Affiliation(s)
- James Friel
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20122 Milan, Italy; (J.F.); (A.B.)
| | - Aureliano Bombarely
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20122 Milan, Italy; (J.F.); (A.B.)
- Instituto de Biologıa Molecular y Celular de Plantas (IBMCP), CSIC, Universitat Politecnica de Valencia, 46011 Valencia, Spain
| | - Carmen Dorca Fornell
- Departamento de Didáctica de las Matemáticas y las Ciencias Experimentales, Facultad de Educación, Universidad Internacional de la Rioja (UNIR), 26006 Logroño, Spain;
| | - Francisco Luque
- Instituto Universitario de Investigación en Olivar y Aceites de Oliva (INUO), Universidad de Jaén, 23071 Jaén, Spain;
| | - Ana Maria Fernández-Ocaña
- Departamento de Biología Animal, Biologia Vegetal y Ecología, Facultad de Ciencias Experimentales, Campus de Las Lagunillas s/n, Universidad de Jaén UJA, 23071 Jaén, Spain
- Correspondence:
| |
Collapse
|
50
|
Schielzeth H, Wolf JBW. Community genomics: a community-wide perspective on within-species genetic diversity. AMERICAN JOURNAL OF BOTANY 2021; 108:2108-2111. [PMID: 34767249 DOI: 10.1002/ajb2.1796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Holger Schielzeth
- Institute of Ecology and Evolution, Friedrich Schiller University Jena, Germany
| | - Jochen B W Wolf
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Germany
| |
Collapse
|