1
|
Vasileva Y, Zhulanov A, Chertov N, Sboeva Y, Boronnikova S, Pechenkina V, Nechaeva Y, Kalendar R. Identification of SNPs Associated with Drought Resistance in Hybrid Populations of Picea abies (L.) H. Karst.- P. obovata (Ledeb.). Genes (Basel) 2024; 15:1440. [PMID: 39596640 PMCID: PMC11594098 DOI: 10.3390/genes15111440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES The spruces of the Picea abies-P. obovata complex have a total range that is the most extensive in the world flora of woody conifers. Hybridization between the nominative species has led to the formation of a wide introgression zone, which probably increases the adaptive potential of the entire species complex. This study aimed to search the genes associated with drought resistance, develop primers for the informative loci of these genes, identify and analyze SNPs, and establish the parameters of nucleotide diversity in the studied populations. METHODS The objects of this study were eight natural populations of the spruce complex in the Urals. Nucleotide sequences related to drought resistance spruce genes with pronounced single-nucleotide substitutions were selected, based on which 16 pairs of primers to their loci were developed and tested. RESULTS Based on the developed primers, six pairs of primers were chosen to identify SNPs and assess the nucleotide diversity of the studied populations. All selected loci were highly polymorphic (6 to 27 SNPs per locus). It was found that the Pic01 locus is the most variable (Hd = 0.947; π = 0.011) and selectively neutral, and the Pic06 locus is the most conservative (Hd = 0.516; π = 0.002) and has the most significant adaptive value. CONCLUSIONS The nucleotide diversity data for the studied populations reveal similar values among the populations and are consistent with the literature data. The discovered SNPs can be used to identify adaptive genetic changes in spruce populations, which is essential for predicting the effects of climate change.
Collapse
Affiliation(s)
- Yulia Vasileva
- Faculty of Biology, Perm State University, 614990 Perm, Russia; (Y.V.); (A.Z.); (N.C.); (Y.S.); (V.P.); (Y.N.)
| | - Andrei Zhulanov
- Faculty of Biology, Perm State University, 614990 Perm, Russia; (Y.V.); (A.Z.); (N.C.); (Y.S.); (V.P.); (Y.N.)
| | - Nikita Chertov
- Faculty of Biology, Perm State University, 614990 Perm, Russia; (Y.V.); (A.Z.); (N.C.); (Y.S.); (V.P.); (Y.N.)
| | - Yana Sboeva
- Faculty of Biology, Perm State University, 614990 Perm, Russia; (Y.V.); (A.Z.); (N.C.); (Y.S.); (V.P.); (Y.N.)
| | - Svetlana Boronnikova
- Faculty of Biology, Perm State University, 614990 Perm, Russia; (Y.V.); (A.Z.); (N.C.); (Y.S.); (V.P.); (Y.N.)
| | - Victoria Pechenkina
- Faculty of Biology, Perm State University, 614990 Perm, Russia; (Y.V.); (A.Z.); (N.C.); (Y.S.); (V.P.); (Y.N.)
- Perm Agricultural Research Institute, Branch of Perm Federal Research Center Ural Brunch Russian Academy of Sciences, 614990 Perm, Russia
| | - Yulia Nechaeva
- Faculty of Biology, Perm State University, 614990 Perm, Russia; (Y.V.); (A.Z.); (N.C.); (Y.S.); (V.P.); (Y.N.)
| | - Ruslan Kalendar
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
- Institute of Biotechnology HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
2
|
Milesi P, Kastally C, Dauphin B, Cervantes S, Bagnoli F, Budde KB, Cavers S, Fady B, Faivre-Rampant P, González-Martínez SC, Grivet D, Gugerli F, Jorge V, Lesur Kupin I, Ojeda DI, Olsson S, Opgenoorth L, Pinosio S, Plomion C, Rellstab C, Rogier O, Scalabrin S, Scotti I, Vendramin GG, Westergren M, Lascoux M, Pyhäjärvi T. Resilience of genetic diversity in forest trees over the Quaternary. Nat Commun 2024; 15:8538. [PMID: 39402024 PMCID: PMC11473659 DOI: 10.1038/s41467-024-52612-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 09/11/2024] [Indexed: 10/17/2024] Open
Abstract
The effect of past environmental changes on the demography and genetic diversity of natural populations remains a contentious issue and has rarely been investigated across multiple, phylogenetically distant species. Here, we perform comparative population genomic analyses and demographic inferences for seven widely distributed and ecologically contrasting European forest tree species based on concerted sampling of 164 populations across their natural ranges. For all seven species, the effective population size, Ne, increased or remained stable over many glacial cycles and up to 15 million years in the most extreme cases. Surprisingly, the drastic environmental changes associated with the Pleistocene glacial cycles have had little impact on the level of genetic diversity of dominant forest tree species, despite major shifts in their geographic ranges. Based on their trajectories of Ne over time, the seven tree species can be divided into three major groups, highlighting the importance of life history and range size in determining synchronous variation in genetic diversity over time. Altogether, our results indicate that forest trees have been able to retain their evolutionary potential over very long periods of time despite strong environmental changes.
Collapse
Affiliation(s)
- Pascal Milesi
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
- SciLifeLab, Uppsala University, Uppsala, Sweden.
| | - Chedly Kastally
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Benjamin Dauphin
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Sandra Cervantes
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Francesca Bagnoli
- Institute of Biosciences and Bioresources, National Research Council of Italy (IBBR-CNR), Sesto Fiorentino, Italy
| | - Katharina B Budde
- Department of Forest Genetics and Forest Tree Breeding, Georg-August-University Goettingen, Göttingen, Germany
- Department of Forest Genetic Resources, Northwest German Forest Research Institute, Hann. Münden, Germany
| | - Stephen Cavers
- UK Centre for Ecology & Hydrology (UKCEH), Bush Estate, UK
| | - Bruno Fady
- INRAE, URFM, Ecology of Mediterranean Forests, Avignon, France
| | | | | | - Delphine Grivet
- Institute of Forest Sciences (ICIFOR), INIA-CSIC, Madrid, Spain
| | - Felix Gugerli
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | | | - Isabelle Lesur Kupin
- University of Bordeaux, INRAE, BIOGECO, Cestas, France
- Helix Venture, Mérignac, France
| | - Dario I Ojeda
- Department of Forest Biodiversity, Norwegian Institute of Bioeconomy Research (NIBIO), Aas, Norway
| | - Sanna Olsson
- Institute of Forest Sciences (ICIFOR), INIA-CSIC, Madrid, Spain
| | - Lars Opgenoorth
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- Plant Ecology and Geobotany, Philipps-Universität Marburg, Marburg, Germany
| | - Sara Pinosio
- Institute of Biosciences and Bioresources, National Research Council of Italy (IBBR-CNR), Sesto Fiorentino, Italy
- Institute of Applied Genomics (IGA), Udine, Italy
| | | | - Christian Rellstab
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | | | | | - Ivan Scotti
- INRAE, URFM, Ecology of Mediterranean Forests, Avignon, France
| | - Giovanni G Vendramin
- Institute of Biosciences and Bioresources, National Research Council of Italy (IBBR-CNR), Sesto Fiorentino, Italy
| | | | - Martin Lascoux
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
- SciLifeLab, Uppsala University, Uppsala, Sweden.
| | - Tanja Pyhäjärvi
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland.
- Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
3
|
Liu L, James J, Zhang YQ, Wang ZF, Arakaki M, Vadillo G, Zhou QJ, Lascoux M, Ge XJ. The 'queen of the Andes' (Puya raimondii) is genetically fragile and fragmented: a consequence of long generation time and semelparity? THE NEW PHYTOLOGIST 2024; 244:277-291. [PMID: 39135394 DOI: 10.1111/nph.20036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/16/2024] [Indexed: 09/17/2024]
Abstract
Understanding how life history shapes genetic diversity is a fundamental issue in evolutionary biology, with important consequences for conservation. However, we still have an incomplete picture of the impact of life history on genome-wide patterns of diversity, especially in long-lived semelparous plants. Puya raimondii is a high-altitude semelparous species from the Andes that flowers at 40-100 years of age. We sequenced the whole genome and estimated the nucleotide diversity of 200 individuals sampled from nine populations. Coalescent-based approaches were then used to infer past population dynamics. Finally, these results were compared with results obtained for the iteroparous species, Puya macrura. The nine populations of P. raimondii were highly divergent, highly inbred, and carried an exceptionally high genetic load. They are genetically depauperate, although, locally in the genome, balancing selection contributed to the maintenance of genetic polymorphism. While both P. raimondii and P. macrura went through a severe bottleneck during the Pleistocene, P. raimondii did not recover from it and continuously declined, while P. macrura managed to bounce back. Our results demonstrate the importance of life history, in particular generation time and reproductive strategy, in affecting population dynamics and genomic variation, and illustrate the genetic fragility of long-lived semelparous plants.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, 75236, Sweden
| | - Jennifer James
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, 75236, Sweden
- Swedish Collegium of Advanced Study, Uppsala University, Uppsala, 75236, Sweden
| | - Yu-Qu Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712044, China
| | - Zheng-Feng Wang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Mónica Arakaki
- Natural History Museum, Universidad Nacional Mayor de San Marcos, Lima, 15072, Peru
| | - Giovana Vadillo
- Plant Physiology Laboratory, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos, Lima, 15081, Peru
| | - Qiu-Jie Zhou
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, 75236, Sweden
| | - Martin Lascoux
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, 75236, Sweden
| | - Xue-Jun Ge
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| |
Collapse
|
4
|
Zhou Q, Karunarathne P, Andersson-Li L, Chen C, Opgenoorth L, Heer K, Piotti A, Vendramin GG, Nakvasina E, Lascoux M, Milesi P. Recurrent hybridization and gene flow shaped Norway and Siberian spruce evolutionary history over multiple glacial cycles. Mol Ecol 2024; 33:e17495. [PMID: 39148357 DOI: 10.1111/mec.17495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/15/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
Most tree species underwent cycles of contraction and expansion during the Quaternary. These cycles led to an ancient and complex genetic structure that has since been affected by extensive gene flow and by strong local adaptation. The extent to which hybridization played a role in this multi-layered genetic structure is important to be investigated. To study the effect of hybridization on the joint population genetic structure of two dominant species of the Eurasian boreal forest, Picea abies and P. obovata, we used targeted resequencing and obtained around 480 K nuclear SNPs and 87 chloroplast SNPs in 542 individuals sampled across most of their distribution ranges. Despite extensive gene flow and a clear pattern of Isolation-by-Distance, distinct genetic clusters emerged, indicating the presence of barriers and corridors to migration. Two cryptic refugia located in the large hybrid zone between the two species played a critical role in shaping their current distributions. The two species repeatedly hybridized during the Pleistocene and the direction of introgression depended on latitude. Our study suggests that hybridization helped both species to overcome main shifts in their distribution ranges during glacial cycles and highlights the importance of considering whole species complex instead of separate entities to retrieve complex demographic histories.
Collapse
Affiliation(s)
- Qiujie Zhou
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala University, Uppsala, Sweden
| | - Piyal Karunarathne
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala University, Uppsala, Sweden
- Institute of Population Genetics, Heinrich-Heine University, Düsseldorf, Universitäts Straße 1, Düsseldorf, Germany
| | - Lili Andersson-Li
- Department of Microbiology, Tumor and Cell Biology, Karolinska L2:02, Solna, Sweden
| | - Chen Chen
- Plant Pathology Group, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Lars Opgenoorth
- Department of Biology, Plant Ecology and Geobotany, Philipps-Universität Marburg, Marburg, Germany
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Katrin Heer
- Faculty of Environment and Natural Resources, Eva Mayr-Stihl Professorship for Forest Genetics, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany
| | - Andrea Piotti
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Sesto Fiorentino, Italy
| | | | - Elena Nakvasina
- Department of Forestry and Forest Management, Northern (Arctic) Federal University Named after M.V. Lomonosov, Arkhangelsk, Russian Federation
| | - Martin Lascoux
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala University, Uppsala, Sweden
| | - Pascal Milesi
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Capblancq T, Sękiewicz K, Dering M. Forest genomics in the Caucasus through the lens of its dominant tree species - Fagus orientalis. Mol Ecol 2024; 33:e17475. [PMID: 39021282 DOI: 10.1111/mec.17475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024]
Abstract
The last glacial period is known to have greatly influenced the demographic history of temperate forest trees, with important range contractions and post-glacial expansions that led to the formation of multiple genetic lineages and secondary contact zones in the Northern Hemisphere. These dynamics have been extensively studied for European and North American species but are still poorly understood in other temperate regions of rich biodiversity such as the Caucasus. Our study helps filling that gap by deciphering the genomic landscapes of F. orientalis across the South Caucasus. The use of genome-wide data confirmed a past demographic history strongly influenced by the Last Glacial Maximum, revealing two disjunct glacial refugia in the Colchis and Hyrcanian regions. The resulting patterns of genetic diversity, load and differentiation are not always concordant across the region, with genetic load pinpointing the location of the glacial refugia more efficiently than genetic diversity alone. The Hyrcanian forests show depleted genetic diversity and substantial isolation, even if long-distance gene flow is still present with the main centre of diversity in the Greater Caucasus. Finally, we characterize a strong heterogeneity of genetic diversity and differentiation along the species chromosomes, with noticeably a first chromosome showing low diversity and weak differentiation.
Collapse
Affiliation(s)
- Thibaut Capblancq
- Université Grenoble-Alpes, Université Savoie Mont Blanc, CNRS, Laboratoire d'Écologie Alpine, Grenoble, France
| | | | - Monika Dering
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
- Department of Silviculture, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
6
|
Bruxaux J, Zhao W, Hall D, Curtu AL, Androsiuk P, Drouzas AD, Gailing O, Konrad H, Sullivan AR, Semerikov V, Wang XR. Scots pine - panmixia and the elusive signal of genetic adaptation. THE NEW PHYTOLOGIST 2024; 243:1231-1246. [PMID: 38308133 DOI: 10.1111/nph.19563] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/14/2024] [Indexed: 02/04/2024]
Abstract
Scots pine is the foundation species of diverse forested ecosystems across Eurasia and displays remarkable ecological breadth, occurring in environments ranging from temperate rainforests to arid tundra margins. Such expansive distributions can be favored by various demographic and adaptive processes and the interactions between them. To understand the impact of neutral and selective forces on genetic structure in Scots pine, we conducted range-wide population genetic analyses on 2321 trees from 202 populations using genotyping-by-sequencing, reconstructed the recent demography of the species and examined signals of genetic adaptation. We found a high and uniform genetic diversity across the entire range (global FST 0.048), no increased genetic load in expanding populations and minor impact of the last glacial maximum on historical population sizes. Genetic-environmental associations identified only a handful of single-nucleotide polymorphisms significantly linked to environmental gradients. The results suggest that extensive gene flow is predominantly responsible for the observed genetic patterns in Scots pine. The apparent missing signal of genetic adaptation is likely attributed to the intricate genetic architecture controlling adaptation to multi-dimensional environments. The panmixia metapopulation of Scots pine offers a good study system for further exploration into how genetic adaptation and plasticity evolve under gene flow and changing environment.
Collapse
Affiliation(s)
- Jade Bruxaux
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, 901 87, Umeå, Sweden
| | - Wei Zhao
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, 901 87, Umeå, Sweden
| | - David Hall
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, 901 87, Umeå, Sweden
- Forestry Research Institute of Sweden (Skogforsk), 918 21, Sävar, Sweden
| | | | - Piotr Androsiuk
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| | - Andreas D Drouzas
- Laboratory of Systematic Botany and Phytogeography, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Oliver Gailing
- Department of Forest Genetics and Forest Tree Breeding, University of Göttingen, 37077, Göttingen, Germany
| | - Heino Konrad
- Department of Forest Biodiversity and Nature Conservation, Unit of Ecological Genetics, Austrian Research Centre for Forests (BFW), 1140, Vienna, Austria
| | - Alexis R Sullivan
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, 901 87, Umeå, Sweden
| | - Vladimir Semerikov
- Institute of Plant and Animal Ecology, Ural Division of Russian Academy of Sciences, 620144, Ekaterinburg, Russia
| | - Xiao-Ru Wang
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, 901 87, Umeå, Sweden
| |
Collapse
|
7
|
Aitken SN, Jordan R, Tumas HR. Conserving Evolutionary Potential: Combining Landscape Genomics with Established Methods to Inform Plant Conservation. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:707-736. [PMID: 38594931 DOI: 10.1146/annurev-arplant-070523-044239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Biodiversity conservation requires conserving evolutionary potential-the capacity for wild populations to adapt. Understanding genetic diversity and evolutionary dynamics is critical for informing conservation decisions that enhance adaptability and persistence under environmental change. We review how emerging landscape genomic methods provide plant conservation programs with insights into evolutionary dynamics, including local adaptation and its environmental drivers. Landscape genomic approaches that explore relationships between genomic variation and environments complement rather than replace established population genomic and common garden approaches for assessing adaptive phenotypic variation, population structure, gene flow, and demography. Collectively, these approaches inform conservation actions, including genetic rescue, maladaptation prediction, and assisted gene flow. The greatest on-the-ground impacts from such studies will be realized when conservation practitioners are actively engaged in research and monitoring. Understanding the evolutionary dynamics shaping the genetic diversity of wild plant populations will inform plant conservation decisions that enhance the adaptability and persistence of species in an uncertain future.
Collapse
Affiliation(s)
- Sally N Aitken
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, Canada; ,
| | | | - Hayley R Tumas
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, Canada; ,
| |
Collapse
|
8
|
Hayatgheibi H, Hallingbäck HR, Lundqvist SO, Grahn T, Scheepers G, Nordström P, Chen ZQ, Kärkkäinen K, Wu HX, García-Gil MR. Implications of accounting for marker-based population structure in the quantitative genetic evaluation of genetic parameters related to growth and wood properties in Norway spruce. BMC Genom Data 2024; 25:60. [PMID: 38877416 PMCID: PMC11177499 DOI: 10.1186/s12863-024-01241-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Forest geneticists typically use provenances to account for population differences in their improvement schemes; however, the historical records of the imported materials might not be very precise or well-aligned with the genetic clusters derived from advanced molecular techniques. The main objective of this study was to assess the impact of marker-based population structure on genetic parameter estimates related to growth and wood properties and their trade-offs in Norway spruce, by either incorporating it as a fixed effect (model-A) or excluding it entirely from the analysis (model-B). RESULTS Our results indicate that models incorporating population structure significantly reduce estimates of additive genetic variance, resulting in substantial reduction of narrow-sense heritability. However, these models considerably improve prediction accuracies. This was particularly significant for growth and solid-wood properties, which showed to have the highest population genetic differentiation (QST) among the studied traits. Additionally, although the pattern of correlations remained similar across the models, their magnitude was slightly lower for models that included population structure as a fixed effect. This suggests that selection, consistently performed within populations, might be less affected by unfavourable genetic correlations compared to mass selection conducted without pedigree restrictions. CONCLUSION We conclude that the results of models properly accounting for population structure are more accurate and less biased compared to those neglecting this effect. This might have practical implications for breeders and forest managers where, decisions based on imprecise selections can pose a high risk to economic efficiency.
Collapse
Affiliation(s)
- Haleh Hayatgheibi
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden.
| | | | | | | | | | | | - Zhi-Qiang Chen
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
| | | | - Harry X Wu
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
- Beijing Advanced Innovation Centre for Tree Breeding By Molecular Design, Beijing Forestry University, Beijing, China
- Black Mountain Laboratory, CSIRO National Collection Research Australia, Canberra, Australia
| | - M Rosario García-Gil
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
| |
Collapse
|
9
|
Karunarathne P, Zhou Q, Schliep K, Milesi P. A comprehensive framework for detecting copy number variants from single nucleotide polymorphism data: 'rCNV', a versatile r package for paralogue and CNV detection. Mol Ecol Resour 2023; 23:1772-1789. [PMID: 37515483 DOI: 10.1111/1755-0998.13843] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/31/2023]
Abstract
Recent studies have highlighted the significant role of copy number variants (CNVs) in phenotypic diversity, environmental adaptation and species divergence across eukaryotes. The presence of CNVs also has the potential to introduce genotyping biases, which can pose challenges to accurate population and quantitative genetic analyses. However, detecting CNVs in genomes, particularly in non-model organisms, presents a formidable challenge. To address this issue, we have developed a statistical framework and an accompanying r software package that leverage allelic-read depth from single nucleotide polymorphism (SNP) data for accurate CNV detection. Our framework capitalises on two key principles. First, it exploits the distribution of allelic-read depth ratios in heterozygotes for individual SNPs by comparing it against an expected distribution based on binomial sampling. Second, it identifies SNPs exhibiting an apparent excess of heterozygotes under Hardy-Weinberg equilibrium. By employing multiple statistical tests, our method not only enhances sensitivity to sampling effects but also effectively addresses reference biases, resulting in optimised SNP classification. Our framework is compatible with various NGS technologies (e.g. RADseq, Exome-capture). This versatility enables CNV calling from genomes of diverse complexities. To streamline the analysis process, we have implemented our framework in the user-friendly r package 'rCNV', which automates the entire workflow seamlessly. We trained our models using simulated data and validated their performance on four datasets derived from different sequencing technologies, including RADseq (Chinook salmon-Oncorhynchus tshawytscha), Rapture (American lobster-Homarus americanus), Exome-capture (Norway spruce-Picea abies) and WGS (Malaria mosquito-Anopheles gambiae).
Collapse
Affiliation(s)
- Piyal Karunarathne
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala, Sweden
- Institute of Population Genetics, Heinrich Heine University, Düsseldorf, Germany
| | - Qiujie Zhou
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala, Sweden
| | - Klaus Schliep
- Institute of Computational Biotechnology, Graz University of Technology, Graz, Austria
| | - Pascal Milesi
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala, Sweden
| |
Collapse
|
10
|
Wang X, Ingvarsson PK. Quantifying adaptive evolution and the effects of natural selection across the Norway spruce genome. Mol Ecol 2023; 32:5288-5304. [PMID: 37622583 DOI: 10.1111/mec.17106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
Detecting natural selection is one of the major goals of evolutionary genomics. Here, we sequenced the whole genome of 25 Picea abies individuals and quantified the amount of selection across the genome. Using an estimate of the distribution of fitness effects, we showed that both negative selection and the rate of positively selected substitutions are very limited in coding regions. We found a positive correlation between the rate of adaptive substitutions and recombination rate and a negative correlation between the rate of adaptive substitutions and gene density, suggesting a widespread influence from Hill-Robertson interference on the efficiency of protein adaptation in P. abies. Finally, the distinct population statistics between genomic regions under either positive or balancing selection with that under neutral regions indicated the impact of natural selection on the genomic architecture of Norway spruce. Further gene ontology enrichment analysis for genes located in regions identified as undergoing either positive or long-term balancing selection also highlighted the specific molecular functions and biological processes that appear to be targets of selection in Norway spruce.
Collapse
Affiliation(s)
- Xi Wang
- Umeå Plant Science Centre, Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Pär K Ingvarsson
- Linnean Centre for Plant Biology, Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
11
|
Liziniewicz M, Berlin M, Solvin T, Hallingbäck HR, Haapanen M, Ruotsalainen S, Steffenrem A. Development of a universal height response model for transfer of Norway spruce ( Picea abies L. Karst) in Fennoscandia. FOREST ECOLOGY AND MANAGEMENT 2023; 528:120628. [PMID: 36650887 PMCID: PMC9720906 DOI: 10.1016/j.foreco.2022.120628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
Norway spruce is a major industrial tree species in Fennoscandia and future productivity of the species must be secured by matching the variation in adaptation of the species with suitable sites for optimized performance. An appropriate transfer model for forest reproductive material (FRM) is crucial for regeneration of productive forests in the changing climatic conditions that are predicted to occur in Fennoscandia. We have developed a transfer model for prediction of height of Norway spruce in Norway, Sweden, and Finland, using data acquired from 438 progeny and provenance trials with 1919 genetic entries of local and transferred origins. Transfer of genetic material at a given site was expressed in terms of the difference in daylength (photoperiod) between the site and its origin. This variable best reflected the nonlinear response to transfer that has been commonly reported in previous studies. Apart from the transfer variable, the height prediction model included the age of material when height measurements were acquired, annual temperature sum over 5 °C, precipitation during the vegetation period, and interaction terms between test site and transfer variables. The results show that long northward transfers (4-5° latitude) seem to be optimal for relatively mild sites in southern parts of the countries where growing season is longer, and shorter northward transfers (2-4° latitude) for harsher northern sites with shorter growing seasons. The transfer model also predicts that southward transfers of Norway spruce would result in height growth reductions. The developed model provides foundations for development of common or national recommendations for genetically improving Norway spruce material in Fennoscandia.
Collapse
Affiliation(s)
| | - Mats Berlin
- The Forestry Research Institute of Sweden (Skogforsk), Uppsala, Sweden
| | - Thomas Solvin
- Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | | | - Matti Haapanen
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | | | - Arne Steffenrem
- Norwegian Institute of Bioeconomy Research (NIBIO), Steinkjer, Norway
| |
Collapse
|
12
|
Tiret M, Olsson L, Grahn T, Karlsson B, Milesi P, Lascoux M, Lundqvist S, García‐Gil MR. Divergent selection predating the Last Glacial Maximum mainly acted on macro-phenotypes in Norway spruce. Evol Appl 2023; 16:163-172. [PMID: 36699125 PMCID: PMC9850012 DOI: 10.1111/eva.13519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/27/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022] Open
Abstract
The current distribution and population structure of many species were, to a large extent, shaped by cycles of isolation in glacial refugia and subsequent population expansions. Isolation in and postglacial expansion through heterogeneous environments led to either neutral or adaptive divergence. Norway spruce is no exception, and its current distribution is the consequence of a constant interplay between evolutionary and demographic processes. We investigated population differentiation and adaptation of Norway spruce for juvenile growth, diameter of the stem, wood density, and tracheid traits at breast height. Data from 4461 phenotyped and genotyped Norway spruce from 396 half-sib families in two progeny tests were used to test for divergent selection in the framework of Q ST vs. F ST. We show that the macroscopic resultant trait (stem diameter), unlike its microscopic components (tracheid dimensions) and juvenile growth, was under divergent selection that predated the Last Glacial Maximum. Altogether, the current variation in these phenotypic traits in Norway spruce is better explained by local adaptation to ancestral environments than to current ones, where populations were partly preadapted, mainly through growth-related traits.
Collapse
Affiliation(s)
- Mathieu Tiret
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, EBC and SciLife LabUppsala UniversityUppsalaSweden
- Department of Forest Genetics and Plant PhysiologySLU, Umeå Plant Science Centre (UPSC)UmeåSweden
- IGEPP, INRAE, Institut Agro, Université de RennesDomaine de la MotteLe RheuFrance
| | | | | | | | - Pascal Milesi
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, EBC and SciLife LabUppsala UniversityUppsalaSweden
| | - Martin Lascoux
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, EBC and SciLife LabUppsala UniversityUppsalaSweden
| | | | - Maria Rosario García‐Gil
- Department of Forest Genetics and Plant PhysiologySLU, Umeå Plant Science Centre (UPSC)UmeåSweden
| |
Collapse
|
13
|
Salmona J, Dresen A, Ranaivoson AE, Manzi S, Le Pors B, Hong-Wa C, Razanatsoa J, Andriaholinirina NV, Rasoloharijaona S, Vavitsara ME, Besnard G. How ancient forest fragmentation and riparian connectivity generate high levels of genetic diversity in a microendemic Malagasy tree. Mol Ecol 2023; 32:299-315. [PMID: 36320175 PMCID: PMC10100191 DOI: 10.1111/mec.16759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022]
Abstract
Understanding landscape changes is central to predicting evolutionary trajectories and defining conservation practices. While human-driven deforestation is intense throughout Madagascar, exceptions in areas such as the Loky-Manambato region (north) raise questions regarding the causes and age of forest fragmentation. The Loky-Manambato region also harbours a rich and endemic flora, whose evolutionary origin remains poorly understood. We assessed the genetic diversity of an endangered microendemic Malagasy olive species (Noronhia spinifolia Hong-Wa) to better understand the vegetation dynamics in the Loky-Manambato region and its influence on past evolutionary processes. We characterized 72 individuals sampled across eight forests through nuclear and mitochondrial restriction-associated DNA sequencing data and chloroplast microsatellites. Combined population and landscape genetics analyses indicate that N. spinifolia diversity is largely explained by the current forest cover, highlighting a long-standing habitat mosaic in the region. This sustains a major and long-term role of riparian corridors in maintaining connectivity across these antique mosaic habitats, calling for the study of organismal interactions that promote gene flow.
Collapse
Affiliation(s)
- Jordi Salmona
- CNRS-UPS-IRD, UMR5174, Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier, Toulouse, France
| | - Axel Dresen
- CNRS-UPS-IRD, UMR5174, Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier, Toulouse, France
| | - Anicet E Ranaivoson
- CNRS-UPS-IRD, UMR5174, Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier, Toulouse, France.,Faculté des Sciences, Université de Mahajanga, Mahajanga, Madagascar
| | - Sophie Manzi
- CNRS-UPS-IRD, UMR5174, Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier, Toulouse, France
| | | | - Cynthia Hong-Wa
- Claude E. Phillips Herbarium, Delaware State University, Dover, Delaware, USA
| | - Jacqueline Razanatsoa
- Herbier, Département Flore, Parc Botanique et Zoologique de Tsimbazaza, Antananarivo, Madagascar
| | | | | | | | - Guillaume Besnard
- CNRS-UPS-IRD, UMR5174, Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
14
|
Li L, Milesi P, Tiret M, Chen J, Sendrowski J, Baison J, Chen Z, Zhou L, Karlsson B, Berlin M, Westin J, Garcia‐Gil MR, Wu HX, Lascoux M. Teasing apart the joint effect of demography and natural selection in the birth of a contact zone. THE NEW PHYTOLOGIST 2022; 236:1976-1987. [PMID: 36093739 PMCID: PMC9828440 DOI: 10.1111/nph.18480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/23/2022] [Indexed: 05/26/2023]
Abstract
Vast population movements induced by recurrent climatic cycles have shaped the genetic structure of plant species. During glacial periods species were confined to low-latitude refugia from which they recolonized higher latitudes as the climate improved. This multipronged recolonization led to many lineages that later met and formed large contact zones. We utilize genomic data from 5000 Picea abies trees to test for the presence of natural selection during recolonization and establishment of a contact zone in Scandinavia. Scandinavian P. abies is today made up of a southern genetic cluster originating from the Baltics, and a northern one originating from Northern Russia. The contact zone delineating them closely matches the limit between two major climatic regions. We show that natural selection contributed to its establishment and maintenance. First, an isolation-with-migration model with genome-wide linked selection fits the data better than a purely neutral one. Second, many loci show signatures of selection or are associated with environmental variables. These loci, regrouped in clusters on chromosomes, are often related to phenology. Altogether, our results illustrate how climatic cycles, recolonization and selection can establish strong local adaptation along contact zones and affect the genetic architecture of adaptive traits.
Collapse
Affiliation(s)
- Lili Li
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, EBC and SciLife LabUppsala University75236UppsalaSweden
| | - Pascal Milesi
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, EBC and SciLife LabUppsala University75236UppsalaSweden
| | - Mathieu Tiret
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, EBC and SciLife LabUppsala University75236UppsalaSweden
| | - Jun Chen
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, EBC and SciLife LabUppsala University75236UppsalaSweden
- College of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Janek Sendrowski
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, EBC and SciLife LabUppsala University75236UppsalaSweden
| | - John Baison
- Department Forest Genetics and Plant Physiology, Umeå Plant Science CentreSwedish University of Agricultural SciencesUmeåSE‐90183Sweden
| | - Zhi‐qiang Chen
- Department Forest Genetics and Plant Physiology, Umeå Plant Science CentreSwedish University of Agricultural SciencesUmeåSE‐90183Sweden
| | - Linghua Zhou
- Department Forest Genetics and Plant Physiology, Umeå Plant Science CentreSwedish University of Agricultural SciencesUmeåSE‐90183Sweden
| | | | - Mats Berlin
- SkogforskUppsala Science Park751 83UppsalaSweden
| | - Johan Westin
- Unit for Field‐Based Forest ResearchSwedish University of Agricultural SciencesSE‐922 91VindelnSweden
| | - Maria Rosario Garcia‐Gil
- Department Forest Genetics and Plant Physiology, Umeå Plant Science CentreSwedish University of Agricultural SciencesUmeåSE‐90183Sweden
| | - Harry X. Wu
- Department Forest Genetics and Plant Physiology, Umeå Plant Science CentreSwedish University of Agricultural SciencesUmeåSE‐90183Sweden
- CSIRO National Collection Research AustraliaBlack Mountain LaboratoryCanberraACT2601Australia
| | - Martin Lascoux
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, EBC and SciLife LabUppsala University75236UppsalaSweden
| |
Collapse
|
15
|
Bina H, Yousefzadeh H, Venon A, Remoué C, Rousselet A, Falque M, Faramarzi S, Chen X, Samanchina J, Gill D, Kabaeva A, Giraud T, Hosseinpour B, Abdollahi H, Gabrielyan I, Nersesyan A, Cornille A. Evidence of an additional centre of apple domestication in Iran, with contributions from the Caucasian crab apple Malus orientalis Uglitzk. to the cultivated apple gene pool. Mol Ecol 2022; 31:5581-5601. [PMID: 35984725 DOI: 10.1111/mec.16667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/08/2022] [Accepted: 08/09/2022] [Indexed: 12/29/2022]
Abstract
Divergence processes in crop-wild fruit tree complexes in pivotal regions for plant domestication such as the Caucasus and Iran remain little studied. We investigated anthropogenic and natural divergence processes in apples in these regions using 26 microsatellite markers amplified in 550 wild and cultivated samples. We found two genetically distinct cultivated populations in Iran that are differentiated from Malus domestica, the standard cultivated apple worldwide. Coalescent-based inferences showed that these two cultivated populations originated from specific domestication events of Malus orientalis in Iran. We found evidence of substantial wild-crop and crop-crop gene flow in the Caucasus and Iran, as has been described in apple in Europe. In addition, we identified seven genetically differentiated populations of wild apple (M. orientalis), not introgressed by the cultivated apple. Niche modelling combined with genetic diversity estimates indicated that these wild populations likely resulted from range changes during past glaciations. This study identifies Iran as a key region in the domestication of apple and M. orientalis as an additional contributor to the cultivated apple gene pool. Domestication of the apple tree therefore involved multiple origins of domestication in different geographic locations and substantial crop-wild hybridization, as found in other fruit trees. This study also highlights the impact of climate change on the natural divergence of a wild fruit tree and provides a starting point for apple conservation and breeding programmes in the Caucasus and Iran.
Collapse
Affiliation(s)
- Hamid Bina
- Department of Forestry, Tarbiat Modares University, Noor, Iran
| | - Hamed Yousefzadeh
- Department of Environmental Science, Biodiversity Branch, Natural Resources Faculty, Tarbiat Modares University, Noor, Iran
| | - Anthony Venon
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Gif-sur-Yvette, France
| | - Carine Remoué
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Gif-sur-Yvette, France
| | - Agnès Rousselet
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Gif-sur-Yvette, France
| | - Matthieu Falque
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Gif-sur-Yvette, France
| | - Shadab Faramarzi
- Department of Plant Production and Genetics, Faculty of Agriculture, Razi University, Kermanshah, Iran
| | - Xilong Chen
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Gif-sur-Yvette, France
| | | | - David Gill
- Fauna & Flora International, Cambridge, UK
| | | | - Tatiana Giraud
- Ecologie Systematique Evolution, Universite Paris-Saclay, CNRS, AgroParisTech, Gif-sur-Yvette, France
| | - Batool Hosseinpour
- Department of Agriculture, Iranian Research Organization for Science and Technology (IROST), Institute of Agriculture, Tehran, Iran
| | - Hamid Abdollahi
- Temperate Fruits Research Centre, Horticultural Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Ivan Gabrielyan
- Department of Palaeobotany, A. Takhtajyan Institute of Botany, Armenian National Academy of Sciences, Yerevan, Armenia
| | - Anush Nersesyan
- Department of Conservation of Genetic Resources of Armenian Flora, A. Takhtajyan Institute of Botany, Armenian National Academy of Sciences, Yerevan, Armenia
| | - Amandine Cornille
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Gif-sur-Yvette, France
| |
Collapse
|
16
|
Borthakur D, Busov V, Cao XH, Du Q, Gailing O, Isik F, Ko JH, Li C, Li Q, Niu S, Qu G, Vu THG, Wang XR, Wei Z, Zhang L, Wei H. Current status and trends in forest genomics. FORESTRY RESEARCH 2022; 2:11. [PMID: 39525413 PMCID: PMC11524260 DOI: 10.48130/fr-2022-0011] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2024]
Abstract
Forests are not only the most predominant of the Earth's terrestrial ecosystems, but are also the core supply for essential products for human use. However, global climate change and ongoing population explosion severely threatens the health of the forest ecosystem and aggravtes the deforestation and forest degradation. Forest genomics has great potential of increasing forest productivity and adaptation to the changing climate. In the last two decades, the field of forest genomics has advanced quickly owing to the advent of multiple high-throughput sequencing technologies, single cell RNA-seq, clustered regularly interspaced short palindromic repeats (CRISPR)-mediated genome editing, and spatial transcriptomes, as well as bioinformatics analysis technologies, which have led to the generation of multidimensional, multilayered, and spatiotemporal gene expression data. These technologies, together with basic technologies routinely used in plant biotechnology, enable us to tackle many important or unique issues in forest biology, and provide a panoramic view and an integrative elucidation of molecular regulatory mechanisms underlying phenotypic changes and variations. In this review, we recapitulated the advancement and current status of 12 research branches of forest genomics, and then provided future research directions and focuses for each area. Evidently, a shift from simple biotechnology-based research to advanced and integrative genomics research, and a setup for investigation and interpretation of many spatiotemporal development and differentiation issues in forest genomics have just begun to emerge.
Collapse
Affiliation(s)
- Dulal Borthakur
- Dulal Borthakur, Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI 96822, USA
| | - Victor Busov
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Xuan Hieu Cao
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Qingzhang Du
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Oliver Gailing
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Fikret Isik
- Cooperative Tree Improvement Program, North Carolina State University, Raleigh, NC 27695, USA
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Yongin 17104, Republic of Korea
| | - Chenghao Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, P.R. China
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100093, P.R. China
| | - Shihui Niu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Guanzheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, P.R. China
| | - Thi Ha Giang Vu
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Xiao-Ru Wang
- Department of Ecology and Environmental Science, Umeå Plant Science Centre, Umeå University, Umeå 90187, Sweden
| | - Zhigang Wei
- College of Life Sciences, Heilongjiang University, Harbin 150080, P. R. China
| | - Lin Zhang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, Hunan Province, P.R. China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
17
|
Mader M, Blanc-Jolivet C, Kersten B, Liesebach H, Degen B. A novel and diverse set of SNP markers for rangewide genetic studies in Picea abies. CONSERV GENET RESOUR 2022. [DOI: 10.1007/s12686-022-01276-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractWe used Double Digest Restriction site associated DNA sequencing (ddRADseq), exome sequencing (exome-seq) and targeted genotyping by sequencing (GBS) to develop new geographically informative nuclear SNP markers in Picea abies. This set of 518 loci consists of 397 loci specifically designed for the geographic differentiation of populations and 121 loci of adaptive markers for drought stress which all were identified from 26 samples in 23 populations distributed over Central Europe. This set of novel markers represents a valuable basis to study the geographic population structure and genetic differentiation of Picea abies in its natural distribution range as well as outside of its native range with a focus on Central Europe.
Collapse
|
18
|
Redondo MA, Oliva J, Elfstrand M, Boberg J, Capador-Barreto HD, Karlsson B, Berlin A. Host genotype interacts with aerial spore communities and influences the needle mycobiome of Norway spruce. Environ Microbiol 2022; 24:3640-3654. [PMID: 35315253 PMCID: PMC9544151 DOI: 10.1111/1462-2920.15974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/28/2022]
Abstract
The factors shaping the composition of the tree mycobiome are still under investigation. We tested the effects of host genotype, site, host phenotypic traits, and air fungal spore communities on the assembly of the fungi inhabiting Norway spruce needles. We used Norway spruce clones and spore traps within the collection sites and characterized both needle and air mycobiome communities by high‐throughput sequencing of the ITS2 region. The composition of the needle mycobiome differed between Norway spruce clones, and clones with high genetic similarity had a more similar mycobiome. The needle mycobiome also varied across sites and was associated with the composition of the local air mycobiome and climate. Phenotypic traits such as diameter at breast height or crown health influenced the needle mycobiome to a lesser extent than host genotype and air mycobiome. Altogether, our results suggest that the needle mycobiome is mainly driven by the host genotype in combination with the composition of the local air spore communities. Our work highlights the role of host intraspecific variation in shaping the mycobiome of trees and provides new insights on the ecological processes structuring fungal communities inhabiting woody plants.
Collapse
Affiliation(s)
- Miguel A Redondo
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Box 7026, 750 07, Sweden
| | - Jonàs Oliva
- Department of Crop and Forest Sciences, University of Lleida, Alcalde Rovira Roure 191, Lleida, 25198, Spain.,Joint Research Unit CTFC-AGROTECNIO, Alcalde Rovira Roure 191, Lleida, 25198, Spain
| | - Malin Elfstrand
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Box 7026, 750 07, Sweden
| | - Johanna Boberg
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Box 7026, 750 07, Sweden
| | - Hernán D Capador-Barreto
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Box 7026, 750 07, Sweden
| | - Bo Karlsson
- Skogforsk, Svalöv, Ekebo 2250, 268 90, Sweden
| | - Anna Berlin
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Box 7026, 750 07, Sweden
| |
Collapse
|
19
|
Nota K, Klaminder J, Milesi P, Bindler R, Nobile A, van Steijn T, Bertilsson S, Svensson B, Hirota SK, Matsuo A, Gunnarsson U, Seppä H, Väliranta MM, Wohlfarth B, Suyama Y, Parducci L. Norway spruce postglacial recolonization of Fennoscandia. Nat Commun 2022; 13:1333. [PMID: 35288569 PMCID: PMC8921311 DOI: 10.1038/s41467-022-28976-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 02/18/2022] [Indexed: 01/25/2023] Open
Abstract
Contrasting theories exist regarding how Norway spruce (Picea abies) recolonized Fennoscandia after the last glaciation and both early Holocene establishments from western microrefugia and late Holocene colonization from the east have been postulated. Here, we show that Norway spruce was present in southern Fennoscandia as early as 14.7 ± 0.1 cal. kyr BP and that the millennia-old clonal spruce trees present today in central Sweden likely arrived with an early Holocene migration from the east. Our findings are based on ancient sedimentary DNA from multiple European sites (N = 15) combined with nuclear and mitochondrial DNA analysis of ancient clonal (N = 135) and contemporary spruce forest trees (N = 129) from central Sweden. Our other findings imply that Norway spruce was present shortly after deglaciation at the margins of the Scandinavian Ice Sheet, and support previously disputed finds of pollen in southern Sweden claiming spruce establishment during the Lateglacial.
Collapse
Affiliation(s)
- Kevin Nota
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden
| | - Jonatan Klaminder
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Pascal Milesi
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden
- Scilifelab, Uppsala, Sweden
| | - Richard Bindler
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Alessandro Nobile
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden
| | - Tamara van Steijn
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Stefan Bertilsson
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Brita Svensson
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden
| | - Shun K Hirota
- Field Science Center, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi, 989-6711, Japan
| | - Ayumi Matsuo
- Field Science Center, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi, 989-6711, Japan
| | - Urban Gunnarsson
- Swedish Environmental Protection Agency, SE-106 48, Stockholm, Sweden
| | - Heikki Seppä
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland
| | - Minna M Väliranta
- Environmental Change Research Unit (ECRU), Ecosystems, Environment Research Programme, University of Helsinki, Helsinki, Finland
| | - Barbara Wohlfarth
- Department of Geological Sciences, Stockholm University, and Bolin Centre for Climate Research, SE-10691, Stockholm, Sweden
| | - Yoshihisa Suyama
- Field Science Center, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi, 989-6711, Japan
| | - Laura Parducci
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden.
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
20
|
Sanderson MJ, Búrquez A, Copetti D, McMahon MM, Zeng Y, Wojciechowski MF. Origin and diversification of the saguaro cactus (Carnegiea gigantea): a within-species phylogenomic analysis. Syst Biol 2022; 71:1178-1194. [PMID: 35244183 DOI: 10.1093/sysbio/syac017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 02/18/2022] [Accepted: 02/25/2022] [Indexed: 11/14/2022] Open
Abstract
Reconstructing accurate historical relationships within a species poses numerous challenges, not least in many plant groups in which gene flow is high enough to extend well beyond species boundaries. Nonetheless, the extent of tree-like history within a species is an empirical question on which it is now possible to bring large amounts of genome sequence to bear. We assess phylogenetic structure across the geographic range of the saguaro cactus, an emblematic member of Cactaceae, a clade known for extensive hybridization and porous species boundaries. Using 200 Gb of whole genome resequencing data from 20 individuals sampled from 10 localities, we assembled two data sets comprising 150,000 biallelic single nucleotide polymorphisms (SNPs) from protein coding sequences. From these we inferred within-species trees and evaluated their significance and robustness using five qualitatively different inference methods. Despite the low sequence diversity, large census population sizes, and presence of wide-ranging pollen and seed dispersal agents, phylogenetic trees were well resolved and highly consistent across both data sets and all methods. We inferred that the most likely root, based on marginal likelihood comparisons, is to the east and south of the region of highest genetic diversity, which lies along the coast of the Gulf of California in Sonora, Mexico. Together with striking decreases in marginal likelihood found to the north, this supports hypotheses that saguaro's current range reflects post-glacial expansion from the refugia in the south of its range. We conclude with observations about practical and theoretical issues raised by phylogenomic data sets within species, in which SNP-based methods must be used rather than gene tree methods that are widely used when sequence divergence is higher. These include computational scalability, inference of gene flow, and proper assessment of statistical support in the presence of linkage effects.
Collapse
Affiliation(s)
- Michael J Sanderson
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Alberto Búrquez
- Instituto de Ecología, Unidad Hermosillo, Universidad Nacional Autónoma de México, Hermosillo, Sonora, Mexico
| | - Dario Copetti
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, 85721 USA
| | | | - Yichao Zeng
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | | |
Collapse
|
21
|
Sønstebø JH, Trucchi E, Nordén J, Skrede I, Miettinen O, Haridas S, Pangilinan J, Grigoriev IV, Martin F, Kauserud H, Maurice S. Population genomics of a forest fungus reveals high gene flow and climate adaptation signatures. Mol Ecol 2022; 31:1963-1979. [PMID: 35076968 DOI: 10.1111/mec.16369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/30/2022]
Abstract
Genome sequencing of spatially distributed individuals sheds light on how evolution structures genetic variation. Populations of Phellopilus nigrolimitatus, a red-listed wood-inhabiting fungus associated with old-growth coniferous forests, have decreased in size over the last century due to a loss of suitable habitats. We assessed the population genetic structure and investigated local adaptation in P. nigrolimitatus, by establishing a reference genome and genotyping 327 individuals sampled from 24 locations in Northern Europe by RAD sequencing. We revealed a shallow population genetic structure, indicating large historical population sizes and high levels of gene flow. Despite this weak sub-structuring, two genetic groups were recognized; a western group distributed mostly in Norway and an eastern group covering most of Finland, Poland and Russia. This sub-structuring may reflect co-immigration with the main host, Norway spruce (Picea abies), into Northern Europe after the last ice age. We found evidence of low levels of genetic diversity in southwestern Finland, which has a long history of intensive forestry and urbanization. Numerous loci were significantly associated with one or more environmental factors, indicating adaptation to specific environments. These loci clustered into two groups with different associations with temperature and precipitation. Overall, our findings indicate that the current population genetic structure of P. nigrolimitatus results from a combination of gene flow, genetic drift and selection. The acquisition of similar knowledge especially over broad geographic scales, linking signatures of adaptive genetic variation to evolutionary processes and environmental variation, for other fungal species will undoubtedly be useful for assessment of the combined effects of habitat fragmentation and climate change on fungi strongly bound to old-growth forests.
Collapse
Affiliation(s)
- Jørn Henrik Sønstebø
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Blindernveien 31, 0316, Oslo, Norway
| | - Emiliano Trucchi
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131, Ancona, Italy
| | - Jenni Nordén
- Norwegian Institute for Nature Research, Gaustadalléen 21, NO-0349, Oslo, Norway
| | - Inger Skrede
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Blindernveien 31, 0316, Oslo, Norway
| | - Otto Miettinen
- Finnish Museum of Natural History, University of Helsinki, P.O. Box 7, FI-00014, Finland
| | - Sajeet Haridas
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Jasmyn Pangilinan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA.,Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Francis Martin
- Université de Lorraine, INRAE, UMR 'Interactions Arbres/Microorganismes', Laboratoire d'Excellence ARBRE, INRAE GrandEst-Nancy, 54280, Champenoux, France
| | - Håvard Kauserud
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Blindernveien 31, 0316, Oslo, Norway
| | - Sundy Maurice
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Blindernveien 31, 0316, Oslo, Norway
| |
Collapse
|
22
|
Genetic diversity of Norway spruce ecotypes assessed by GBS-derived SNPs. Sci Rep 2021; 11:23119. [PMID: 34848793 PMCID: PMC8632914 DOI: 10.1038/s41598-021-02545-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/11/2021] [Indexed: 11/08/2022] Open
Abstract
We investigated the genetic structure of three phenotypically distinct ecotypic groups of Norway spruce (Picea abies) belonging to three elevational classes; namely, low- (acuminata), medium- (europaea), and high-elevation (obovata) form, each represented by 150 trees. After rigorous filtering, we used 1916 Genotyping-by-Sequencing generated SNPs for analysis. Outputs from three multivariate analysis methods (Bayesian clustering algorithm implemented in STRUCTURE, Principal Component Analysis, and the Discriminant Analysis of Principal Components) indicated the presence of a distinct genetic cluster representing the high-elevation ecotypic group. Our findings bring a vital message to forestry practice affirming that artificial transfer of forest reproductive material, especially for stands under harsh climate conditions, should be considered with caution.
Collapse
|
23
|
Capador-Barreto HD, Bernhardsson C, Milesi P, Vos I, Lundén K, Wu HX, Karlsson B, Ingvarsson PK, Stenlid J, Elfstrand M. Killing two enemies with one stone? Genomics of resistance to two sympatric pathogens in Norway spruce. Mol Ecol 2021; 30:4433-4447. [PMID: 34218489 DOI: 10.1111/mec.16058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 12/31/2022]
Abstract
Trees must cope with the attack of multiple pathogens, often simultaneously during their long lifespan. Ironically, the genetic and molecular mechanisms controlling this process are poorly understood. The objective of this study was to compare the genetic component of resistance in Norway spruce to Heterobasidion annosum s.s. and its sympatric congener Heterobasidion parviporum. Heterobasidion root- and stem-rot is a major disease of Norway spruce caused by members of the Heterobasidion annosum species complex. Resistance to both pathogens was measured using artificial inoculations in half-sib families of Norway spruce trees originating from central to northern Europe. The genetic component of resistance was analysed using 63,760 genome-wide exome-capture sequenced SNPs and multitrait genome-wide associations. No correlation was found for resistance to the two pathogens; however, associations were found between genomic variants and resistance traits with synergic or antagonist pleiotropic effects to both pathogens. Additionally, a latitudinal cline in resistance in the bark to H. annosum s.s. was found; trees from southern latitudes, with a later bud-set and thicker stem diameter, allowed longer lesions, but this was not the case for H. parviporum. In summary, this study detects genomic variants with pleiotropic effects which explain multiple disease resistance from a genic level and could be useful for selection of resistant trees to both pathogens. Furthermore, it highlights the need for additional research to understand the evolution of resistance traits to multiple pathogens in trees.
Collapse
Affiliation(s)
- Hernán D Capador-Barreto
- Uppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Carolina Bernhardsson
- Uppsala Biocentre, Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Pascal Milesi
- Department of Ecology and Genetics, Evolutionary Biology Centre, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ingrid Vos
- Forestry Research Institute of Sweden (Skogforsk), Ekebo, Sweden
| | - Karl Lundén
- Uppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Harry X Wu
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Bo Karlsson
- Forestry Research Institute of Sweden (Skogforsk), Ekebo, Sweden
| | - Pär K Ingvarsson
- Uppsala Biocentre, Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jan Stenlid
- Uppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Malin Elfstrand
- Uppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
24
|
Chen ZQ, Zan Y, Milesi P, Zhou L, Chen J, Li L, Cui B, Niu S, Westin J, Karlsson B, García-Gil MR, Lascoux M, Wu HX. Leveraging breeding programs and genomic data in Norway spruce (Picea abies L. Karst) for GWAS analysis. Genome Biol 2021; 22:179. [PMID: 34120648 PMCID: PMC8201819 DOI: 10.1186/s13059-021-02392-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) identify loci underlying the variation of complex traits. One of the main limitations of GWAS is the availability of reliable phenotypic data, particularly for long-lived tree species. Although an extensive amount of phenotypic data already exists in breeding programs, accounting for its high heterogeneity is a great challenge. We combine spatial and factor-analytics analyses to standardize the heterogeneous data from 120 field experiments of 483,424 progenies of Norway spruce to implement the largest reported GWAS for trees using 134 605 SNPs from exome sequencing of 5056 parental trees. RESULTS We identify 55 novel quantitative trait loci (QTLs) that are associated with phenotypic variation. The largest number of QTLs is associated with the budburst stage, followed by diameter at breast height, wood quality, and frost damage. Two QTLs with the largest effect have a pleiotropic effect for budburst stage, frost damage, and diameter and are associated with MAP3K genes. Genotype data called from exome capture, recently developed SNP array and gene expression data indirectly support this discovery. CONCLUSION Several important QTLs associated with growth and frost damage have been verified in several southern and northern progeny plantations, indicating that these loci can be used in QTL-assisted genomic selection. Our study also demonstrates that existing heterogeneous phenotypic data from breeding programs, collected over several decades, is an important source for GWAS and that such integration into GWAS should be a major area of inquiry in the future.
Collapse
Affiliation(s)
- Zhi-Qiang Chen
- Umeå Plant Science Centre, Department Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183, Umeå, Sweden
| | - Yanjun Zan
- Umeå Plant Science Centre, Department Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183, Umeå, Sweden
| | - Pascal Milesi
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Linghua Zhou
- Umeå Plant Science Centre, Department Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183, Umeå, Sweden
| | - Jun Chen
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and SciLifeLab, Uppsala University, Uppsala, Sweden
- College of Life Sciences, Zhejiang University, Zhejiang, 310058, Hangzhou, China
| | - Lili Li
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and SciLifeLab, Uppsala University, Uppsala, Sweden
| | - BinBin Cui
- College of Biochemistry and Environmental Engineering, Baoding University, Baoding, 071000, Hebei, China
| | - Shihui Niu
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Johan Westin
- Skogforsk, Box 3, SE-91821, Sävar, Sweden
- Unit for Field-Based Forest Research, Swedish University of Agricultural Sciences, SE-90183, Umeå, Sweden
| | - Bo Karlsson
- Skogforsk, Ekebo, 2250, SE-26890, Svalöv, Sweden
| | - Maria Rosario García-Gil
- Umeå Plant Science Centre, Department Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183, Umeå, Sweden
| | - Martin Lascoux
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Harry X Wu
- Umeå Plant Science Centre, Department Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183, Umeå, Sweden.
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.
- CSIRO National Collection Research Australia, Black Mountain Laboratory, Canberra, ACT, 2601, Australia.
| |
Collapse
|
25
|
Hall D, Olsson J, Zhao W, Kroon J, Wennström U, Wang XR. Divergent patterns between phenotypic and genetic variation in Scots pine. PLANT COMMUNICATIONS 2021; 2:100139. [PMID: 33511348 PMCID: PMC7816077 DOI: 10.1016/j.xplc.2020.100139] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 12/12/2020] [Accepted: 12/25/2020] [Indexed: 05/06/2023]
Abstract
In boreal forests, autumn frost tolerance in seedlings is a critical fitness component because it determines survival rates during regeneration. To understand the forces that drive local adaptation in this trait, we conducted freezing tests in a common garden setting for 54 Pinus sylvestris (Scots pine) populations (>5000 seedlings) collected across Scandinavia into western Russia, and genotyped 24 of these populations (>900 seedlings) at >10 000 SNPs. Variation in cold hardiness among populations, as measured by QST , was above 80% and followed a distinct cline along latitude and longitude, demonstrating significant adaptation to climate at origin. In contrast, the genetic differentiation was very weak (mean FST 0.37%). Despite even allele frequency distribution in the vast majority of SNPs among all populations, a few rare alleles appeared at very high or at fixation in marginal populations restricted to northwestern Fennoscandia. Genotype-environment associations showed that climate variables explained 2.9% of the genetic differentiation, while genotype-phenotype associations revealed a high marker-estimated heritability of frost hardiness of 0.56, but identified no major loci. Very extensive gene flow, strong local adaptation, and signals of complex demographic history across markers are interesting topics of forthcoming studies on this species to better clarify signatures of selection and demography.
Collapse
Affiliation(s)
- David Hall
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, Umeå, Sweden
| | - Jenny Olsson
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, Umeå, Sweden
| | - Wei Zhao
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, Umeå, Sweden
- Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Johan Kroon
- The Forestry Research Institute of Sweden (Skogforsk), Uppsala Sweden
| | | | - Xiao-Ru Wang
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, Umeå, Sweden
- Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Corresponding author
| |
Collapse
|
26
|
Wang X, Bernhardsson C, Ingvarsson PK. Demography and Natural Selection Have Shaped Genetic Variation in the Widely Distributed Conifer Norway Spruce (Picea abies). Genome Biol Evol 2020; 12:3803-3817. [PMID: 31958121 PMCID: PMC7046165 DOI: 10.1093/gbe/evaa005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2020] [Indexed: 12/13/2022] Open
Abstract
Under the neutral theory, species with larger effective population size are expected to harbor higher genetic diversity. However, across a wide variety of organisms, the range of genetic diversity is orders of magnitude more narrow than the range of effective population size. This observation has become known as Lewontin’s paradox and although aspects of this phenomenon have been extensively studied, the underlying causes for the paradox remain unclear. Norway spruce (Picea abies) is a widely distributed conifer species across the northern hemisphere, and it consequently plays a major role in European forestry. Here, we use whole-genome resequencing data from 35 individuals to perform population genomic analyses in P. abies in an effort to understand what drives genome-wide patterns of variation in this species. Despite having a very wide geographic distribution and an corresponding enormous current population size, our analyses find that genetic diversity of P. abies is low across a number of populations (π = 0.0049 in Central-Europe, π = 0.0063 in Sweden-Norway, π = 0.0063 in Finland). To assess the reasons for the low levels of genetic diversity, we infer the demographic history of the species and find that it is characterized by several reoccurring bottlenecks with concomitant decreases in effective population size can, at least partly, provide an explanation for low polymorphism we observe in P. abies. Further analyses suggest that recurrent natural selection, both purifying and positive selection, can also contribute to the loss of genetic diversity in Norway spruce by reducing genetic diversity at linked sites. Finally, the overall low mutation rates seen in conifers can also help explain the low genetic diversity maintained in Norway spruce.
Collapse
Affiliation(s)
- Xi Wang
- Umeå Plant Science Centre, Department of Ecology and Environmental Science, Umeå University, Sweden.,Linnean Centre for Plant Biology, Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Carolina Bernhardsson
- Umeå Plant Science Centre, Department of Ecology and Environmental Science, Umeå University, Sweden.,Linnean Centre for Plant Biology, Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Pär K Ingvarsson
- Linnean Centre for Plant Biology, Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
27
|
Capblancq T, Butnor JR, Deyoung S, Thibault E, Munson H, Nelson DM, Fitzpatrick MC, Keller SR. Whole-exome sequencing reveals a long-term decline in effective population size of red spruce ( Picea rubens). Evol Appl 2020; 13:2190-2205. [PMID: 33005218 PMCID: PMC7513712 DOI: 10.1111/eva.12985] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/26/2020] [Accepted: 04/09/2020] [Indexed: 01/02/2023] Open
Abstract
Understanding the factors influencing the current distribution of genetic diversity across a species range is one of the main questions of evolutionary biology, especially given the increasing threat to biodiversity posed by climate change. Historical demographic processes such as population expansion or bottlenecks and decline are known to exert a predominant influence on past and current levels of genetic diversity, and revealing this demo-genetic history can have immediate conservation implications. We used a whole-exome capture sequencing approach to analyze polymorphism across the gene space of red spruce (Picea rubens Sarg.), an endemic and emblematic tree species of eastern North America high-elevation forests that are facing the combined threat of global warming and increasing human activities. We sampled a total of 340 individuals, including populations from the current core of the range in northeastern USA and southeastern Canada and from the southern portions of its range along the Appalachian Mountains, where populations occur as highly fragmented mountaintop "sky islands." Exome capture baits were designed from the closely relative white spruce (P. glauca Voss) transcriptome, and sequencing successfully captured most regions on or near our target genes, resulting in the generation of a new and expansive genomic resource for studying standing genetic variation in red spruce applicable to its conservation. Our results, based on over 2 million exome-derived variants, indicate that red spruce is structured into three distinct ancestry groups that occupy different geographic regions of its highly fragmented range. Moreover, these groups show small Ne , with a temporal history of sustained population decline that has been ongoing for thousands (or even hundreds of thousands) of years. These results demonstrate the broad potential of genomic studies for revealing details of the demographic history that can inform management and conservation efforts of nonmodel species with active restoration programs, such as red spruce.
Collapse
Affiliation(s)
| | - John R Butnor
- USDA Forest Service Southern Research Station University of Vermont Burlington VT USA
| | - Sonia Deyoung
- Department of Plant Biology University of Vermont Burlington VT USA
| | - Ethan Thibault
- Department of Plant Biology University of Vermont Burlington VT USA
| | - Helena Munson
- Department of Plant Biology University of Vermont Burlington VT USA
| | - David M Nelson
- Appalachian Laboratory University of Maryland Center for Environmental Science Frostburg MD USA
| | - Matthew C Fitzpatrick
- Appalachian Laboratory University of Maryland Center for Environmental Science Frostburg MD USA
| | - Stephen R Keller
- Department of Plant Biology University of Vermont Burlington VT USA
| |
Collapse
|
28
|
Koenen EJM, Ojeda DI, Bakker FT, Wieringa JJ, Kidner C, Hardy OJ, Pennington RT, Herendeen PS, Bruneau A, Hughes CE. The Origin of the Legumes is a Complex Paleopolyploid Phylogenomic Tangle Closely Associated with the Cretaceous-Paleogene (K-Pg) Mass Extinction Event. Syst Biol 2020; 70:508-526. [PMID: 32483631 PMCID: PMC8048389 DOI: 10.1093/sysbio/syaa041] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/06/2020] [Accepted: 05/25/2020] [Indexed: 12/17/2022] Open
Abstract
The consequences of the Cretaceous–Paleogene (K–Pg) boundary (KPB) mass extinction for the evolution of plant diversity remain poorly understood, even though evolutionary turnover of plant lineages at the KPB is central to understanding assembly of the Cenozoic biota. The apparent concentration of whole genome duplication (WGD) events around the KPB may have played a role in survival and subsequent diversification of plant lineages. To gain new insights into the origins of Cenozoic biodiversity, we examine the origin and early evolution of the globally diverse legume family (Leguminosae or Fabaceae). Legumes are ecologically (co-)dominant across many vegetation types, and the fossil record suggests that they rose to such prominence after the KPB in parallel with several well-studied animal clades including Placentalia and Neoaves. Furthermore, multiple WGD events are hypothesized to have occurred early in legume evolution. Using a recently inferred phylogenomic framework, we investigate the placement of WGDs during early legume evolution using gene tree reconciliation methods, gene count data and phylogenetic supernetwork reconstruction. Using 20 fossil calibrations we estimate a revised timeline of legume evolution based on 36 nuclear genes selected as informative and evolving in an approximately clock-like fashion. To establish the timing of WGDs we also date duplication nodes in gene trees. Results suggest either a pan-legume WGD event on the stem lineage of the family, or an allopolyploid event involving (some of) the earliest lineages within the crown group, with additional nested WGDs subtending subfamilies Papilionoideae and Detarioideae. Gene tree reconciliation methods that do not account for allopolyploidy may be misleading in inferring an earlier WGD event at the time of divergence of the two parental lineages of the polyploid, suggesting that the allopolyploid scenario is more likely. We show that the crown age of the legumes dates to the Maastrichtian or early Paleocene and that, apart from the Detarioideae WGD, paleopolyploidy occurred close to the KPB. We conclude that the early evolution of the legumes followed a complex history, in which multiple auto- and/or allopolyploidy events coincided with rapid diversification and in association with the mass extinction event at the KPB, ultimately underpinning the evolutionary success of the Leguminosae in the Cenozoic. [Allopolyploidy; Cretaceous–Paleogene (K–Pg) boundary; Fabaceae, Leguminosae; paleopolyploidy; phylogenomics; whole genome duplication events]
Collapse
Affiliation(s)
- Erik J M Koenen
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, CH-8008, Zurich, Switzerland
| | - Dario I Ojeda
- Service Évolution Biologique et Écologie, Faculté des Sciences, Université Libre de Bruxelles, Avenue Franklin Roosevelt 50, 1050, Brussels, Belgium.,Norwegian Institute of Bioeconomy Research, Høgskoleveien 8, 1433 Ås, Norway
| | - Freek T Bakker
- Biosystematics Group, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Jan J Wieringa
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR, Leiden, The Netherlands
| | - Catherine Kidner
- Royal Botanic Gardens Edinburgh, 20a Inverleith Row, Edinburgh EH3 5LR, UK.,School of Biological Sciences, University of Edinburgh, King's Buildings, Mayfield Rd, Edinburgh, EH9 3JU, UK
| | - Olivier J Hardy
- Service Évolution Biologique et Écologie, Faculté des Sciences, Université Libre de Bruxelles, Avenue Franklin Roosevelt 50, 1050, Brussels, Belgium
| | - R Toby Pennington
- Royal Botanic Gardens Edinburgh, 20a Inverleith Row, Edinburgh EH3 5LR, UK.,Geography, University of Exeter, Amory Building, Rennes Drive, Exeter, EX4 4RJ, UK
| | | | - Anne Bruneau
- Institut de Recherche en Biologie Végétale and Département de Sciences Biologiques, Université de Montréal, 4101 Sherbrooke St E, Montreal, QC H1X 2B2, Canada
| | - Colin E Hughes
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, CH-8008, Zurich, Switzerland
| |
Collapse
|
29
|
Genomics of Clinal Local Adaptation in Pinus sylvestris Under Continuous Environmental and Spatial Genetic Setting. G3-GENES GENOMES GENETICS 2020; 10:2683-2696. [PMID: 32546502 PMCID: PMC7407466 DOI: 10.1534/g3.120.401285] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Understanding the consequences of local adaptation at the genomic diversity is a central goal in evolutionary genetics of natural populations. In species with large continuous geographical distributions the phenotypic signal of local adaptation is frequently clear, but the genetic basis often remains elusive. We examined the patterns of genetic diversity in Pinus sylvestris, a keystone species in many Eurasian ecosystems with a huge distribution range and decades of forestry research showing that it is locally adapted to the vast range of environmental conditions. Making P. sylvestris an even more attractive subject of local adaptation study, population structure has been shown to be weak previously and in this study. However, little is known about the molecular genetic basis of adaptation, as the massive size of gymnosperm genomes has prevented large scale genomic surveys. We generated a both geographically and genomically extensive dataset using a targeted sequencing approach. By applying divergence-based and landscape genomics methods we identified several loci contributing to local adaptation, but only few with large allele frequency changes across latitude. We also discovered a very large (ca. 300 Mbp) putative inversion potentially under selection, which to our knowledge is the first such discovery in conifers. Our results call for more detailed analysis of structural variation in relation to genomic basis of local adaptation, emphasize the lack of large effect loci contributing to local adaptation in the coding regions and thus point out the need for more attention toward multi-locus analysis of polygenic adaptation.
Collapse
|
30
|
Milesi P, Berlin M, Chen J, Orsucci M, Li L, Jansson G, Karlsson B, Lascoux M. Assessing the potential for assisted gene flow using past introduction of Norway spruce in southern Sweden: Local adaptation and genetic basis of quantitative traits in trees. Evol Appl 2019; 12:1946-1959. [PMID: 31700537 PMCID: PMC6824079 DOI: 10.1111/eva.12855] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 07/05/2019] [Accepted: 07/11/2019] [Indexed: 12/20/2022] Open
Abstract
Norway spruce (Picea abies) is a dominant conifer species of major economic importance in northern Europe. Extensive breeding programs were established to improve phenotypic traits of economic interest. In southern Sweden, seeds used to create progeny tests were collected on about 3,000 trees of outstanding phenotype ('plus' trees) across the region. In a companion paper, we showed that some were of local origin but many were recent introductions from the rest of the natural range. The mixed origin of the trees together with partial sequencing of the exome of >1,500 of these trees and phenotypic data retrieved from the Swedish breeding program offered a unique opportunity to dissect the genetic basis of local adaptation of three quantitative traits (height, diameter and bud-burst) and assess the potential of assisted gene flow. Through a combination of multivariate analyses and genome-wide association studies, we showed that there was a very strong effect of geographical origin on growth (height and diameter) and phenology (bud-burst) with trees from southern origins outperforming local provenances. Association studies revealed that growth traits were highly polygenic and bud-burst somewhat less. Hence, our results suggest that assisted gene flow and genomic selection approaches could help to alleviate the effect of climate change on P. abies breeding programs in Sweden.
Collapse
Affiliation(s)
- Pascal Milesi
- Department of Ecology and Genetics, Evolutionary Biology CentreUppsala UniversityUppsalaSweden
| | - Mats Berlin
- The Forestry Research Institute of Sweden (Skogforsk)UppsalaSweden
| | - Jun Chen
- Department of Ecology and Genetics, Evolutionary Biology CentreUppsala UniversityUppsalaSweden
| | - Marion Orsucci
- Department of Ecology and Genetics, Evolutionary Biology CentreUppsala UniversityUppsalaSweden
| | - Lili Li
- Department of Ecology and Genetics, Evolutionary Biology CentreUppsala UniversityUppsalaSweden
| | - Gunnar Jansson
- The Forestry Research Institute of Sweden (Skogforsk)UppsalaSweden
| | - Bo Karlsson
- The Forestry Research Institute of Sweden (Skogforsk)EkeboSweden
| | - Martin Lascoux
- Department of Ecology and Genetics, Evolutionary Biology CentreUppsala UniversityUppsalaSweden
| |
Collapse
|
31
|
Admixture in Mammals and How to Understand Its Functional Implications. Bioessays 2019; 41:e1900123. [DOI: 10.1002/bies.201900123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/03/2019] [Indexed: 12/13/2022]
|