1
|
Hurtado P, Espelta JM, Jaime L, Martínez‐Vilalta J, Kokolaki MS, Lindner M, Lloret F. Biodiversity and Management as Central Players in the Network of Relationships Underlying Forest Resilience. GLOBAL CHANGE BIOLOGY 2025; 31:e70196. [PMID: 40351244 PMCID: PMC12067180 DOI: 10.1111/gcb.70196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/06/2025] [Accepted: 03/22/2025] [Indexed: 05/14/2025]
Abstract
Global change is threatening the integrity of forest ecosystems worldwide, amplifying the need for resilience-based management to ensure their conservation and sustain the services they provide. Yet, current efforts are still limited by the lack of implementation of clear frameworks for operationalizing resilience in decision-making processes. To overcome this limitation, we aim to identify reliable and effective drivers of forest resilience, considering their synergies and trade-offs. From a comprehensive review of 342 scientific articles addressing resilience in forests globally, we identified factors shaping forest resilience. We recognized them into two categories that influence forest responses to disturbances: resilience predictors, which can be modified through management, and codrivers, which are measurable but largely unmanageable (e.g., climate). We then performed network analyses based on predictors and codrivers underlying forest resilience. In total, we recognized 5332 such relationships linking predictors or codrivers with forest attributes resilience. Our findings support the central role of biodiversity, with mixed, non-planted, or functionally diverse forests promoting resilience across all contexts and biomes. While management also enhanced resilience, the success of specific interventions was highly context-dependent, suggesting that its application requires a careful analysis of trade-offs. Specifically, practices like cutting and prescribed burning generally enhanced resilience in terms of tree growth, plant diversity, landscape vegetation cover, and stand structure. In contrast, pest and herbivore control reduced the resilience of plant taxonomic diversity while offering only minimal gains for other variables. Even long-term restoration projects showed clear trade-offs in the resilience of different forest attributes, highlighting the need for careful consideration of these effects in practical management decisions. Overall, we emphasize that a reduced number of predictors can be used to effectively promote forest resilience across most attributes. Particularly, enhancing biodiversity and implementing targeted management strategies when biodiversity is impoverished emerge as powerful tools to promote forest resilience.
Collapse
Affiliation(s)
- Pilar Hurtado
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès)CataloniaSpain
- DIFARUniversity of GenoaGenoaItaly
- Department of Biology and Geology, Physics and Inorganic ChemistryRey Juan Carlos UniversityMadridSpain
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales (MNCN‐CSIC)MadridSpain
| | | | - Luciana Jaime
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès)CataloniaSpain
| | - Jordi Martínez‐Vilalta
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès)CataloniaSpain
- Universitat Autònoma de BarcelonaBellaterraSpain
| | - Manto Samou Kokolaki
- Department of Natural Resources Development and Agricultural EngineeringAgricultural University of AthensAthensGreece
| | | | - Francisco Lloret
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès)CataloniaSpain
- Universitat Autònoma de BarcelonaBellaterraSpain
| |
Collapse
|
2
|
Mood BJ, Laroque CP. Forward modelling of white spruce radial growth at trailing edge demonstrates high plasticity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177695. [PMID: 39579906 DOI: 10.1016/j.scitotenv.2024.177695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/29/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
Climate conditions throughout the 21st century across much of western Canada's boreal forest have been drier than normal leading to significant impacts on forest productivity and tree growth. Determining the limiting factors of radial growth in common boreal tree species under current and future conditions is crucial to reconcile how they will continue to respond to climate change. In this study, we used a network of 26 white spruce tree-ring chronologies south of its natural range as an artificially constructed trailing edge to assess climate-growth relationships and limiting factors by identifying seasonal climate relationships and using the Vaganov-Shashkin Lite (VS-Lite) model, respectively. Analysis revealed that white spruce in the study region is positively correlated to precipitation and negatively associated with temperature from the current and previous growing seasons. VS-Lite showed that moisture was the primary limiting factor in growth across the entire study area. The modelled radial growth from the VS-Lite model showed moderate success (14 of 26 site models were significant) and was more variable than measured tree-ring index values. The model systematically overestimated drought-related impacts on radial growth, especially during the middle portion of the growth season (June-August) indicating white spruce likely employs a conservative approach to carbohydrate storage as the region is much more susceptible to moisture deficits. The outcome of our research illustrates that white spruce may be resilient to hotter, drier conditions through environmental plasticity in the Boreal Plains.
Collapse
Affiliation(s)
- Bryan J Mood
- Mistik Askwin Dendrochronology Laboratory, Department of Soil Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Colin P Laroque
- Mistik Askwin Dendrochronology Laboratory, Department of Soil Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
3
|
Depardieu C, Lenz P, Marion J, Nadeau S, Girardin MP, Marchand W, Bégin C, Treydte K, Gessler A, Bousquet J, Savard MM, Isabel N. Contrasting physiological strategies explain heterogeneous responses to severe drought conditions within local populations of a widespread conifer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171174. [PMID: 38402972 DOI: 10.1016/j.scitotenv.2024.171174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/12/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Understanding how trees prioritize carbon gain at the cost of drought vulnerability under severe drought conditions is crucial for predicting which genetic groups and individuals will be resilient to future climate conditions. In this study, we investigated variations in growth, tree-ring anatomy as well as carbon and oxygen isotope ratios to assess the sensitivity and the xylem formation process in response to an episode of severe drought in 29 mature white spruce (Picea glauca [Moench] Voss) families grown in a common garden trial. During the drought episode, the majority of families displayed decreased growth and exhibited either sustained or increased intrinsic water-use efficiency (iWUE), which was largely influenced by reduced stomatal conductance as revealed by the dual carbon‑oxygen isotope approach. Different water-use strategies were detected within white spruce populations in response to drought conditions. Our results revealed intraspecific variation in the prevailing physiological mechanisms underlying drought response within and among populations of Picea glauca. The presence of different genetic groups reflecting diverse water-use strategies within this largely-distributed conifer is likely to lessen the negative effects of drought and decrease the overall forest ecosystems' sensitivity to it.
Collapse
Affiliation(s)
- Claire Depardieu
- Canada Research Chair in Forest Genomics, Institute for Systems and Integrative Biology, Université Laval, Québec, QC G1V 0A6, Canada; Forest Research Centre, Département des sciences du bois et de la forêt, Université Laval, Québec, QC G1V 0A6, Canada; Natural Ressources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 rue du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC G1V 4C7, Canada.
| | - Patrick Lenz
- Canada Research Chair in Forest Genomics, Institute for Systems and Integrative Biology, Université Laval, Québec, QC G1V 0A6, Canada; Natural Resources Canada, Canadian Forest Service, Canadian Wood Fibre Centre, 1055 rue du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC G1V 4C7, Canada
| | - Joelle Marion
- Geological Survey of Canada, Natural Resources Canada, 490 rue de la Couronne, Québec, QC G1K 9A9, Canada
| | - Simon Nadeau
- Canada Research Chair in Forest Genomics, Institute for Systems and Integrative Biology, Université Laval, Québec, QC G1V 0A6, Canada; Natural Resources Canada, Canadian Forest Service, Canadian Wood Fibre Centre, 1055 rue du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC G1V 4C7, Canada
| | - Martin P Girardin
- Natural Ressources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 rue du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC G1V 4C7, Canada; Centre d'étude de la forêt, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal, QC H3C 3P8, Canada; Forest Research Institute, Université du Québec en Abitibi-Témiscamingue, 445 boul. de l'Université, Rouyn-Noranda, QC J9X 5E4, Canada
| | - William Marchand
- Natural Ressources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 rue du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC G1V 4C7, Canada; Centre d'étude de la forêt, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal, QC H3C 3P8, Canada; Forest Research Institute, Université du Québec en Abitibi-Témiscamingue, 445 boul. de l'Université, Rouyn-Noranda, QC J9X 5E4, Canada
| | - Christian Bégin
- Geological Survey of Canada, Natural Resources Canada, 490 rue de la Couronne, Québec, QC G1K 9A9, Canada
| | - Kerstin Treydte
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Arthur Gessler
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland; Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, Switzerland
| | - Jean Bousquet
- Canada Research Chair in Forest Genomics, Institute for Systems and Integrative Biology, Université Laval, Québec, QC G1V 0A6, Canada; Forest Research Centre, Département des sciences du bois et de la forêt, Université Laval, Québec, QC G1V 0A6, Canada
| | - Martine M Savard
- Geological Survey of Canada, Natural Resources Canada, 490 rue de la Couronne, Québec, QC G1K 9A9, Canada
| | - Nathalie Isabel
- Canada Research Chair in Forest Genomics, Institute for Systems and Integrative Biology, Université Laval, Québec, QC G1V 0A6, Canada; Natural Ressources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 rue du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC G1V 4C7, Canada
| |
Collapse
|
4
|
Candido-Ribeiro R, Aitken SN. Weak local adaptation to drought in seedlings of a widespread conifer. THE NEW PHYTOLOGIST 2024; 241:2395-2409. [PMID: 38247230 DOI: 10.1111/nph.19543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
Tree seedlings from populations native to drier regions are often assumed to be more drought tolerant than those from wetter provenances. However, intraspecific variation in drought tolerance has not been well-characterized despite being critical for developing climate change mitigation and adaptation strategies, and for predicting the effects of drought on forests. We used a large-scale common garden drought-to-death experiment to assess range-wide variation in drought tolerance, measured by decline of photosynthetic efficiency, growth, and plastic responses to extreme summer drought in seedlings of 73 natural populations of the two main varieties of Douglas-fir (Pseudotsuga menziesii var. menziesii and var. glauca). Local adaptation to drought was weak in var. glauca and nearly absent in menziesii. Var. glauca showed higher tolerance to drought but slower growth than var. menziesii. Clinal variation in drought tolerance and growth species-wide was mainly associated with temperature rather than precipitation. A higher degree of plasticity for growth was observed in var. menziesii in response to extreme drought. Genetic variation for drought tolerance in seedlings within varieties is maintained primarily within populations. Selective breeding within populations may facilitate adaptation to drought more than assisted gene flow.
Collapse
Affiliation(s)
- Rafael Candido-Ribeiro
- Department of Forest and Conservation Sciences, Centre for Forest Conservation Genetics, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Sally N Aitken
- Department of Forest and Conservation Sciences, Centre for Forest Conservation Genetics, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
5
|
Tiret M, Olsson L, Grahn T, Karlsson B, Milesi P, Lascoux M, Lundqvist S, García‐Gil MR. Divergent selection predating the Last Glacial Maximum mainly acted on macro-phenotypes in Norway spruce. Evol Appl 2023; 16:163-172. [PMID: 36699125 PMCID: PMC9850012 DOI: 10.1111/eva.13519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/27/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022] Open
Abstract
The current distribution and population structure of many species were, to a large extent, shaped by cycles of isolation in glacial refugia and subsequent population expansions. Isolation in and postglacial expansion through heterogeneous environments led to either neutral or adaptive divergence. Norway spruce is no exception, and its current distribution is the consequence of a constant interplay between evolutionary and demographic processes. We investigated population differentiation and adaptation of Norway spruce for juvenile growth, diameter of the stem, wood density, and tracheid traits at breast height. Data from 4461 phenotyped and genotyped Norway spruce from 396 half-sib families in two progeny tests were used to test for divergent selection in the framework of Q ST vs. F ST. We show that the macroscopic resultant trait (stem diameter), unlike its microscopic components (tracheid dimensions) and juvenile growth, was under divergent selection that predated the Last Glacial Maximum. Altogether, the current variation in these phenotypic traits in Norway spruce is better explained by local adaptation to ancestral environments than to current ones, where populations were partly preadapted, mainly through growth-related traits.
Collapse
Affiliation(s)
- Mathieu Tiret
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, EBC and SciLife LabUppsala UniversityUppsalaSweden
- Department of Forest Genetics and Plant PhysiologySLU, Umeå Plant Science Centre (UPSC)UmeåSweden
- IGEPP, INRAE, Institut Agro, Université de RennesDomaine de la MotteLe RheuFrance
| | | | | | | | - Pascal Milesi
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, EBC and SciLife LabUppsala UniversityUppsalaSweden
| | - Martin Lascoux
- Program in Plant Ecology and Evolution, Department of Ecology and Genetics, EBC and SciLife LabUppsala UniversityUppsalaSweden
| | | | - Maria Rosario García‐Gil
- Department of Forest Genetics and Plant PhysiologySLU, Umeå Plant Science Centre (UPSC)UmeåSweden
| |
Collapse
|
6
|
Ribeyre Z, Messier C, Nolet P. No stress memory pattern was detected in sugar maple and white spruce seedlings subjected to experimental droughts. Ecosphere 2022. [DOI: 10.1002/ecs2.4332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Zoé Ribeyre
- Département des Sciences Naturelles, Institut des Sciences de la Forêt Tempérée (ISFORT), Centre d'étude de la Forêt (CEF) University of Québec en Outaouais (UQO) Ripon Quebec Canada
| | - Christian Messier
- Département des Sciences Naturelles, Institut des Sciences de la Forêt Tempérée (ISFORT), Centre d'étude de la Forêt (CEF) University of Québec en Outaouais (UQO) Ripon Quebec Canada
- Département des Sciences Biologiques, Centre d'Étude de la Forêt (CEF) University of Québec à Montréal (UQAM) Montreal Quebec Canada
| | - Philippe Nolet
- Département des Sciences Naturelles, Institut des Sciences de la Forêt Tempérée (ISFORT), Centre d'étude de la Forêt (CEF) University of Québec en Outaouais (UQO) Ripon Quebec Canada
| |
Collapse
|
7
|
Climate Change Effects on Height–Diameter Allometric Relationship Vary with Tree Species and Size for Larch Plantations in Northern and Northeastern China. FORESTS 2022. [DOI: 10.3390/f13030468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tree height–diameter relationship is very important in forest investigation, describing forest structure and estimating carbon storage. Climate change may modify the relationship. However, our understanding of the effects of climate change on the height–diameter allometric relationship is still limited at large scales. In this study, we explored how climate change effects on the relationship varied with tree species and size for larch plantations in northern and northeastern China. Based on the repeated measurement data of 535 plots from the 6th to 8th national forest inventory of China, climate-sensitive tree height–diameter models of larch plantations in north and northeast China were developed using two-level nonlinear mixed effect (NLME) method. The final model was used to analyze the height–diameter relationship of different larch species under RCP2.6, RCP 4.5, and RCP8.5 climate change scenarios from 2010 to 2100. The adjusted coefficient of determination Radj2, mean absolute error (MAE) and root mean squared error (RMSE) of the NLME models for calibration data were 0.92, 0.76 m and 1.06 m, respectively. The inclusion of climate variables mean annual temperature (MAT) and Hargreaves climatic moisture deficit (CMD) with random effects was able to increase Radj2 by 19.5% and reduce the AIC (Akaike’s information criterion), MAE and RMSE by 22.2%, 44.5% and 41.8%, respectively. The climate sensitivity of larch species was ranked as L. gmelinii > the unidentified species group > L. principis > L. kaempferi > L. olgensis under RCP4.5, but L. gmelinii > L. principis > the unidentified species group > L. olgensis > L. kaempferi under RCP2.6 and RCP8.5. Large trees were more sensitive to climate change than small trees.
Collapse
|
8
|
Laverdière J, Lenz P, Nadeau S, Depardieu C, Isabel N, Perron M, Beaulieu J, Bousquet J. Breeding for adaptation to climate change: genomic selection for drought response in a white spruce multi-site polycross test. Evol Appl 2022; 15:383-402. [PMID: 35386396 PMCID: PMC8965362 DOI: 10.1111/eva.13348] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 11/30/2022] Open
Abstract
With climate change, increasingly intense and frequent drought episodes will be affecting water availability for boreal tree species, prompting tree breeders and forest managers to consider adaptation to drought stress as a priority in their reforestation efforts. We used a 19-year-old polycross progeny test of the model conifer white spruce (Picea glauca) replicated on two sites affected by distinct drought episodes at different ages to estimate the genetic control and the potential for improvement of drought response in addition to conventional cumulative growth and wood quality traits. Drought response components were measured from dendrochronological signatures matching drought episodes in wood ring increment cores. We found that trees with more vigorous growth during their lifespan resisted better during the current year of a drought episode when the drought had more severe effects. Phenotypic data were also analyzed using genomic prediction (GBLUP) relying on the genomic relationship matrix of multi-locus gene SNP marker information, and conventional analysis (ABLUP) based on validated pedigree information. The accuracy of predicted breeding values for drought response components was marginally lower than that for conventional traits and comparable between GBLUP and ABLUP. Genetic correlations were generally low and nonsignificant between drought response components and conventional traits, except for resistance which was positively correlated to tree height. Heritability estimates for the components of drought response were slightly lower than for conventional traits, but similar single-trait genetic gains could be obtained. Multi-trait genomic selection simulations indicated that it was possible to improve simultaneously for all traits on both sites while sacrificing little on gain in tree height. In a context of rapid climate change, our results suggest that with careful phenotypic assessment, drought response may be considered in multi-trait improvement of white spruce, with accelerated screening of large numbers of candidates and selection at young age with genomic selection.
Collapse
Affiliation(s)
- Jean‐Philippe Laverdière
- Canada Research Chair in Forest GenomicsInstitute for Systems and Integrative Biology and Centre for Forest ResearchUniversité LavalQuébecQCCanada
| | - Patrick Lenz
- Canada Research Chair in Forest GenomicsInstitute for Systems and Integrative Biology and Centre for Forest ResearchUniversité LavalQuébecQCCanada
- Natural Resources CanadaCanadian Forest ServiceCanadian Wood Fibre CentreQuébecQCCanada
| | - Simon Nadeau
- Natural Resources CanadaCanadian Forest ServiceCanadian Wood Fibre CentreQuébecQCCanada
| | - Claire Depardieu
- Canada Research Chair in Forest GenomicsInstitute for Systems and Integrative Biology and Centre for Forest ResearchUniversité LavalQuébecQCCanada
| | - Nathalie Isabel
- Canada Research Chair in Forest GenomicsInstitute for Systems and Integrative Biology and Centre for Forest ResearchUniversité LavalQuébecQCCanada
- Natural Resources CanadaCanadian Forest ServiceLaurentian Forestry CentreQuébecQCCanada
| | - Martin Perron
- Canada Research Chair in Forest GenomicsInstitute for Systems and Integrative Biology and Centre for Forest ResearchUniversité LavalQuébecQCCanada
- Direction de la Recherche ForestièreMinistère des Forêts, de la Faune et des Parc du QuébecQuébecQCCanada
| | - Jean Beaulieu
- Canada Research Chair in Forest GenomicsInstitute for Systems and Integrative Biology and Centre for Forest ResearchUniversité LavalQuébecQCCanada
| | - Jean Bousquet
- Canada Research Chair in Forest GenomicsInstitute for Systems and Integrative Biology and Centre for Forest ResearchUniversité LavalQuébecQCCanada
| |
Collapse
|
9
|
Martínez-Sancho E, Rellstab C, Guillaume F, Bigler C, Fonti P, Wohlgemuth T, Vitasse Y. Post-glacial re-colonization and natural selection have shaped growth responses of silver fir across Europe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146393. [PMID: 34030256 DOI: 10.1016/j.scitotenv.2021.146393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 05/22/2023]
Abstract
Warmer climate and more frequent extreme droughts will pose major threats to forest ecosystems. Past demography processes due to post-glacial recolonization and adaptation to local environmental conditions are among the main contributors to genetic differentiation processes among provenances. Assessing the intra-specific variability of tree growth responses to such changes is crucial to explore a species' potential to cope with climate warming. We combined growth-related traits derived from tree-ring width series with neutral genetic information of 18 European provenances of silver fir (Abies alba Mill.) growing in two common garden experiments in Switzerland. Analyses based on neutral single nucleotide polymorphisms revealed that the studied provenances grouped into three longitudinal clusters. These three genetic clusters showed differences in growth traits (height and DBH), with the provenances from the eastern cluster exhibiting the highest growth. The Pyrenees cluster showed significantly lower recovery and resilience to the extreme drought of 2003 as well as lower values of growth autocorrelation. QST-FST and correlation analyses with climate of provenance origin suggest that the differences among provenances found in some traits result from natural selection. Our study suggests that the last post-glacial re-colonization and natural selection are the major drivers explaining the intra-specific variability in growth of silver fir across Europe. These findings highlight the importance of combining dendroecology and genetic analyses on fitness-related traits to assess the potential of a species to cope with global environmental change and provide insights to support assisted gene flow to ensure the persistence of the species in European forests.
Collapse
Affiliation(s)
- Elisabet Martínez-Sancho
- Swiss Federal Institute for Forest Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland.
| | - Christian Rellstab
- Swiss Federal Institute for Forest Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Frédéric Guillaume
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | - Patrick Fonti
- Swiss Federal Institute for Forest Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Thomas Wohlgemuth
- Swiss Federal Institute for Forest Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Yann Vitasse
- Swiss Federal Institute for Forest Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| |
Collapse
|
10
|
Ishizuka W, Kon H, Kita K, Kuromaru M, Goto S. Local adaptation to contrasting climatic conditions in Sakhalin fir (
Abies sachalinensis
) revealed by long‐term provenance trials. Ecol Res 2021. [DOI: 10.1111/1440-1703.12232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wataru Ishizuka
- Forestry Research Institute, Hokkaido Research Organization Bibai Japan
| | - Hirokazu Kon
- Forestry Research Institute, Hokkaido Research Organization Bibai Japan
| | - Kazuhito Kita
- Forestry Research Institute, Hokkaido Research Organization Bibai Japan
| | - Makoto Kuromaru
- Forestry Research Institute, Hokkaido Research Organization Bibai Japan
| | - Susumu Goto
- Education and Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo Tokyo Japan
| |
Collapse
|
11
|
Csilléry K, Buchmann N, Fady B. Adaptation to drought is coupled with slow growth, but independent from phenology in marginal silver fir ( Abies alba Mill.) populations. Evol Appl 2020; 13:2357-2376. [PMID: 33042220 PMCID: PMC7539328 DOI: 10.1111/eva.13029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/01/2020] [Accepted: 05/05/2020] [Indexed: 12/20/2022] Open
Abstract
Drought is one of the most important selection pressures for forest trees in the context of climate change. Yet, the different evolutionary mechanisms, and their environmental drivers, by which certain populations become more drought tolerant than others is still little understood. We studied adaptation to drought in 16 silver fir (Abies alba Mill.) populations from the French Mediterranean Alps by combining observations on seedlings from a greenhouse experiment (N = 8,199) and on adult tress in situ (N = 315). In the greenhouse, we followed half-sib families for four growing seasons for growth and phenology traits, and tested their water stress response in a "drought until death" experiment. Adult trees in the field were assessed for δ 13C, a proxy for water use efficiency, and genotyped at 357 SNP loci. SNP data was used to generate a null expectation for seedling trait divergence between populations in order to detect the signature of selection, and 31 environmental variables were used to identify the selective environment. We found that seedlings originating from populations with low soil water capacity grew more slowly, attained a smaller stature, and resisted water stress for a longer period of time in the greenhouse. Additionally, adult trees of these populations exhibited a higher water use efficiency as evidenced by their δ 13C. These results suggest a correlated evolution of the growth-drought tolerance trait complex. Population divergence in bud break phenology was adaptive only in the second growing season, and evolved independently from the growth-drought tolerance trait complex. Adaptive divergence in bud break phenology was principally driven by the inter- and intra-annual variation in temperature at the geographic origin of the population. Our results illustrate the different evolutionary strategies used by populations to cope with drought stress at the range limits across a highly heterogeneous landscape, and can be used to inform assisted migration programs.
Collapse
Affiliation(s)
- Katalin Csilléry
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZürichZürichSwitzerland
- Biodiversity & Conservation BiologySwiss Federal Research Institute WSLBirmensdorfSwitzerland
| | - Nina Buchmann
- Institute of Agricultural SciencesETH ZürichZürichSwitzerland
| | - Bruno Fady
- INRAEcology of Mediterranean Forests (URFM)UR629AvignonFrance
| |
Collapse
|
12
|
Sebastian-Azcona J, Hacke U, Hamann A. Xylem Anomalies as Indicators of Maladaptation to Climate in Forest Trees: Implications for Assisted Migration. FRONTIERS IN PLANT SCIENCE 2020; 11:208. [PMID: 32174948 PMCID: PMC7057245 DOI: 10.3389/fpls.2020.00208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
Xylem anomalies that are caused by unusual climate events have long been used to aid cross-dating in tree ring research. Here, we analyzed a range of xylem anomalies in a 39-year-old common garden experiment of white spruce (Picea glauca [Moench] Voss) in central Alberta, Canada, designed to investigate local adaptation. We extracted wood cores from trees representing 24 provenances covering much of the species range across the Canadian boreal forest. Using a double stain and light microscopy analysis, four xylem anomalies and their causes could be distinguished: (1) frost rings indicate issues with synchronizing the onset of growth with the start of the growing season, and were prevalent in young trees; (2) light rings represent thin cell walls caused by an insufficient growing season length, most prevalent in southern sources; (3) blue rings were caused by a failure to complete lignification of new wood due to an early end of the growing season; and (4) double rings represent density fluctuations due to drier than normal summers. Local provenances showed the least amount of xylem anomalies, indicating that they are correctly adapted to the environment in which they occur. In contrast, trees moved to the test site from other climate regions showed various types of xylem anomalies depending on their origin. In particular, populations originating from warmer regions showed an increased presence of latewood anomalies, consistent with a more extensive use of the growing season in the fall. We conclude that xylem anomalies may serve as a sensitive early indicator of maladaptation to climate before populations experience tree dieback or mortality. They may therefore be useful to monitor the health of natural populations, or to evaluate the success of assisted migration in reforestation to address climate change.
Collapse
Affiliation(s)
| | | | - Andreas Hamann
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|