1
|
Vasquez A, Belsky J, Khanal N, Puri H, Balakrishnan D, Joshi NK, Louis J, Studebaker G, Kariyat R. Melanaphis sacchari/sorghi complex: current status, challenges and integrated strategies for managing the invasive sap-feeding insect pest of sorghum. PEST MANAGEMENT SCIENCE 2025; 81:2427-2441. [PMID: 39001705 PMCID: PMC11981987 DOI: 10.1002/ps.8291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
Melanaphis sacchari (Zehntner;Hemiptera: Aphididae), sugarcane aphid (SCA), is an invasive phloem-feeder found worldwide with a wide host range of economically important plants including sorghum and sugarcane. Given its high reproductive capacity and ability to rapidly spread over long distances, SCA presents challenges for effective control, leading to substantial economic losses. Recent studies have identified two multiloci SCA genotypes specialized in feeding on sugarcane (MLL-D) and sorghum (MLL-F) in the USA, which raises concerns as the USA is the second largest sorghum-producing country. This has encouraged research towards identifying these two biotypes where some research has stated them as two species; MLL-D clade to be M. sacchari and MLL-F clade to be M. sorghi Theobald (Hemiptera: Aphididae), sorghum aphid (SA). This review aims at compiling research progress that has been made on understanding the SCA/SA species complex. Furthermore, this review also highlights a wide range of management strategies against SCA/SA that includes both biological and chemical methods. In addition, the review emphasizes studies examining host plant resistance to understand and evaluate the role of R-genes and phytohormones such as jasmonic acid, salicylic acid and ethylene against SCA. Beside this, plant volatiles and other secondary metabolites such as flavonoids, terpenes and phytanes are also explored as potential control agents. Being an invasive pest, a single management tactic is inadequate to control SCA population and hence, integrated pest management practices incorporating physical, cultural and biological control methods should be implemented with exclusive chemical control as a last resort, which this review examines in detail. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Alejandro Vasquez
- Department of Entomology and Plant PathologyUniversity of ArkansasFayettevilleARUSA
| | - Joseph Belsky
- Department of Entomology and Plant PathologyUniversity of ArkansasFayettevilleARUSA
| | - Neetu Khanal
- Department of BiologyUniversity of Texas Rio Grande ValleyEdinburgTXUSA
| | - Heena Puri
- Department of EntomologyUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Devi Balakrishnan
- Department of Entomology and Plant PathologyUniversity of ArkansasFayettevilleARUSA
| | - Neelendra K Joshi
- Department of Entomology and Plant PathologyUniversity of ArkansasFayettevilleARUSA
| | - Joe Louis
- Department of EntomologyUniversity of Nebraska‐LincolnLincolnNEUSA
- Department of BiochemistryUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Glenn Studebaker
- Department of Entomology and Plant PathologyUniversity of ArkansasFayettevilleARUSA
| | - Rupesh Kariyat
- Department of Entomology and Plant PathologyUniversity of ArkansasFayettevilleARUSA
| |
Collapse
|
2
|
Tadesse Mawcha K, Malinga L, Muir D, Ge J, Ndolo D. Recent Advances in Biopesticide Research and Development with a Focus on Microbials. F1000Res 2025; 13:1071. [PMID: 39512238 PMCID: PMC11541078 DOI: 10.12688/f1000research.154392.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/03/2025] [Indexed: 11/15/2024] Open
Abstract
Biopesticides are pest control products derived from natural sources such as microbes, macro-organisms (insects and pathogens), plant extracts, and certain minerals. Many biopesticides are considered environmentally safe and can complement or substitute conventional chemical pesticides. They can also be highly specific or broad spectrum with a unique mode of action controlling a wide range of pest species. Due to their target-specificity and low to no environmental residuality, biopesticides conform to the 3 pillars of Climate-Smart Agriculture, the Sustainable Development Goals, and, ultimately, the Paris Agreement. This review focuses largely on microbial biopesticides derived from fungi, bacteria, viruses, and nematodes. It discusses (i) the various microbial biopesticide formulations, (ii) the mode of microbial biopesticide action, (iii) the factors that affect the potential efficacy of biopesticides, (iv) challenges to the adoption of microbial biopesticides, and (v) the role of microbial biopesticides in Integrated Pest Management programs. Finally, advancements in application techniques, as well as future research directions and gaps, are highlighted.
Collapse
Affiliation(s)
- Kahsay Tadesse Mawcha
- Department of Plant Protection, Hebei Agricultural University, Lingyusi Street, Hebei, 071001, China
- International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
- Department of Plant Sciences, Aksum University, Aksum University, Aksum, Tigray, 1000, Ethiopia
| | - Lawrence Malinga
- School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
- Crop Protection, South African Sugarcane Research Institute, Durban, South Africa
| | - Debbie Muir
- Department of Forestry, Fisheries and the Environment, Ministry of Enironment, Cape Town, South Africa
| | - Jing Ge
- Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Jiangsu, 210014, China
| | - Dennis Ndolo
- International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
| |
Collapse
|
3
|
Uecker H. Meeting Report on the Symposium "Evolutionary Applications" at the 3rd Joint Congress on Evolutionary Biology. Evol Appl 2025; 18:e70082. [PMID: 40144512 PMCID: PMC11937172 DOI: 10.1111/eva.70082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/09/2025] [Accepted: 02/09/2025] [Indexed: 03/28/2025] Open
Abstract
The symposium "Evolutionary Applications" took place on June 28, 2024 in the virtual part of the 3rd Joint Congress on Evolutionary Biology. It was contributed to the conference by the European Society for Evolutionary Biology (ESEB). The symposium highlighted research on evolutionary biology applied to address questions and contemporary problems in medicine and public health, conservation biology, and food production and agriculture. Each of the six talks covered a different application and a different organism: domestication of cheese-making fungi, restoration of long-lived bird populations, evolution of herbicide resistance, coral reef conservation, gene drive systems targeting Malaria vectors, and antibiotic resistance evolution in bacteria. By including speakers who are active in a consortium or work in an NGO, the symposium also showed how to make the step from scientific findings to practical application. The symposium furthermore featured a range of scientific methods, ranging from genomic analyses and mathematical modeling to laboratory evolution and field experiments. Speakers from across 15 time zones highlighted the potential of virtual symposia to foster global collaboration in evolutionary biology.
Collapse
Affiliation(s)
- Hildegard Uecker
- Research Group Stochastic Evolutionary Dynamics, Department of Theoretical BiologyMax Planck Institute for Evolutionary BiologyPlönGermany
| |
Collapse
|
4
|
Camm BJ, Fournier-Level A. Controlling the frequency dynamics of homing gene drives for intermediate outcomes. G3 (BETHESDA, MD.) 2025; 15:jkae300. [PMID: 39698831 PMCID: PMC11797013 DOI: 10.1093/g3journal/jkae300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/02/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
Gene drives have enormous potential for solving biological issues by forcing the spread of desired alleles through populations. However, to safeguard from the potentially irreversible consequences on natural populations, gene drives with intermediate outcomes that neither fixate nor get removed from the population are of outstanding interest. To elucidate the conditions leading to intermediate gene drive outcomes, a stochastic, individual allele-focused gene drive model was developed to simulate the diffusion of a homing gene drive in a population. The frequencies of multiple alleles at a locus targeted by a gene drive were tracked under various scenarios. These explored the effect of gene drive conversion efficiency, strength and frequency of resistance alleles, dominance and strength of a fitness cost for the gene drive, and the level of inbreeding. Four outcomes were consistently observed: fixation, loss, temporary, and equilibrium. The latter 2 are defined by the frequency of the gene drive peaking then crashing or plateauing, respectively. No single variable determined the outcome of a drive. The difference between the conversion efficiency and resistance level, modeled quantitatively, differentiated the temporary and equilibrium outcomes. The frequency dynamics of the gene drive within outcomes varied extensively, with different variables driving these dynamics between outcomes. These simulation results highlight the possibility of fine-tuning gene drive outcomes and frequency dynamics. To that end, we provide a web application implementing our model, which will guide the safer design of gene drives able to achieve a range of controllable outcomes tailored to population management needs.
Collapse
Affiliation(s)
- Benjamin J Camm
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | | |
Collapse
|
5
|
Noël A, Dumas C, Rottier E, Beslay D, Costagliola G, Ginies C, Nicolè F, Conte YL, Mondet F. Identification of five volatile organic compounds that trigger hygienic and recapping behaviours in the honey bee (Apis mellifera). Int J Parasitol 2025:S0020-7519(25)00020-7. [PMID: 39900171 DOI: 10.1016/j.ijpara.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/11/2024] [Accepted: 01/29/2025] [Indexed: 02/05/2025]
Abstract
Varroa destructor, the main parasite of the honey bee (Apis mellifera), is having a devastating effect on beekeeping worldwide. The development of resistance traits in some colonies, linked with Varroa-sensitive hygiene (VSH) and recapping (REC) behaviours, provide an ideal avenue for long-term sustainable control of the parasite. The most important step in these behaviours is the detection of parasitized brood cells. Several semiochemicals released from Varroa-infested brood cells, targeted by VSH behaviour, trigger this behaviour. Most of these compounds are not very volatile. In the current work, we focus on the study of volatile organic compound (VOC) emissions from Varroa-infested cells. This study describes the emission of nine VOCs characteristic of Varroa parasitism, of which five could be identified and triggered hygienic and recapping behaviours. These five compounds were also tested with compounds already described in the literature, in relation to the volatile nature of the compounds. Using solutions containing 1-15 compounds, we looked at the cleaning and recapping behaviours of the workers. Behavioural results highlight the importance of the VOCs found in this study in the detection, opening and recapping of brood cells, while low volatile compounds seem to play a particularly key role in the sacrifice of pupae. Similar to the Varroa parasitization-specific (VPS) compounds, including the tetracosyl acetate alone, the cleaning of brood cells triggered by one of the compounds identified in this study, n-tetradecane, appears to be linked to the colony's ability to carry out VSH behaviour. This study opens new perspectives in the understanding of resistance behaviour of honey bees against their main parasite Varroa destructor.
Collapse
Affiliation(s)
- Amélie Noël
- INRAE, UR 406 Abeilles et Environnement 84914 Avignon, France
| | - Charlène Dumas
- INRAE, UR 406 Abeilles et Environnement 84914 Avignon, France
| | - Emilien Rottier
- INRAE, UR 406 Abeilles et Environnement 84914 Avignon, France
| | | | - Guy Costagliola
- INRAE, UR 1115 Plantes et Systèmes de culture Horticoles 84914 Avignon, France
| | - Christian Ginies
- INRAE, UMR 408 Sécurité et Qualité des Produits d'Origine Végétale 84914 Avignon, France
| | - Florence Nicolè
- Université de Lyon, UJM-Saint-Etienne, CNRS, LBVpam 42100 Saint-Étienne, France
| | - Yves Le Conte
- INRAE, UR 406 Abeilles et Environnement 84914 Avignon, France
| | - Fanny Mondet
- INRAE, UR 406 Abeilles et Environnement 84914 Avignon, France.
| |
Collapse
|
6
|
Ong S, Høye TT. Trap colour strongly affects the ability of deep learning models to recognize insect species in images of sticky traps. PEST MANAGEMENT SCIENCE 2025; 81:654-666. [PMID: 39377441 PMCID: PMC11716339 DOI: 10.1002/ps.8464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND The use of computer vision and deep learning models to automatically classify insect species on sticky traps has proven to be a cost- and time-efficient approach to pest monitoring. As different species are attracted to different colours, the variety of sticky trap colours poses a challenge to the performance of the models. However, the effectiveness of deep learning in classifying pests on different coloured sticky traps has not yet been sufficiently explored. In this study, we aim to investigate the influence of sticky trap colour and imaging devices on the performance of deep learning models in classifying pests on sticky traps. RESULTS Our results show that using the MobileNetV2 architecture with transparent sticky traps as training data, the model predicted the pest species on transparent sticky traps with an accuracy of at least 0.95 and on other sticky trap colours with at least 0.85 of the F1 score. Using a generalised linear model (GLM) and a Boruta feature selection algorithm, we also showed that the colour and architecture of the sticky traps significantly influenced the performance of the model. CONCLUSION Our results support the development of an automatic classification of pests on a sticky trap, which should focus on colour and deep learning architecture to achieve good results. Future studies could aim to incorporate the trap system into pest monitoring, providing more accurate and cost-effective results in a pest management programme. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Song‐Quan Ong
- Department of EcoscienceAarhus UniversityAarhusDenmark
- Institute for Tropical Biology and ConservationUniversiti Malaysia SabahKota KinabaluMalaysia
| | - Toke Thomas Høye
- Department of EcoscienceAarhus UniversityAarhusDenmark
- Arctic Research CentreAarhus UniversityAarhusDenmark
| |
Collapse
|
7
|
Gao Y, Alyokhin A, Prager SM, Reitz S, Huseth A. Complexities in the Implementation and Maintenance of Integrated Pest Management in Potato. ANNUAL REVIEW OF ENTOMOLOGY 2025; 70:45-63. [PMID: 39227134 DOI: 10.1146/annurev-ento-120523-023156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Integrated pest management (IPM) is an educated and systematic effort to use multiple control techniques to reduce pest damage to economically acceptable levels while minimizing negative environmental impacts. Although its benefits are widely acknowledged, IPM is not universally practiced by farmers. Potato farming, which produces one of the most important staple crops in the world, provides a good illustration of the issues surrounding IPM adoption. Potatoes are attacked by a complex of insect pests that can inflict catastrophic crop losses. Potato production has gone through the processes of consolidation and intensification, which are linked to increased pest problems, particularly selection for insecticide-resistant pest populations. While use of insecticides remains the most common method of pest control in potatoes, other techniques, including crop rotation and natural enemies, are also available. In addition, there are effective monitoring techniques for many potato pests. However, reliable economic thresholds are often lacking. Potato ecosystems are complex and diverse; therefore, the knowledge necessary for developing ecologically based pest management is not easily obtained or transferable. Furthermore, potato systems change with the arrival of new pest species and the evolution of existing pests. Modern technological advances, such as remote sensing and molecular biotechnology, are likely to improve potato IPM. However, these tools are not going to solve all problems. IPM is not just about integrating different techniques; it is also about integrating the efforts and concerns of all stakeholders. The collaboration of farmers and scientists in agricultural research is needed to foster the development of IPM systems that are appropriate for grower implementation and thus more likely to be adopted. Additional emphasis also needs to be placed on the fact that not only does IPM decrease degradation of the environment, but it also improves the economic well-being of its practitioners.
Collapse
Affiliation(s)
- Yulin Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China;
| | - Andrei Alyokhin
- School of Biology and Ecology, University of Maine, Orono, Maine, USA;
| | - Sean M Prager
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada;
| | - Stuart Reitz
- Department of Crop and Soil Science, Oregon State University, Ontario, Oregon, USA;
| | - Anders Huseth
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA;
| |
Collapse
|
8
|
Toma (Sărdărescu) DI, Manaila-Maximean D, Fierascu I, Baroi AM, Matei (Brazdis) RI, Fistos T, Chican IE, Fierascu RC. Applications of Natural Polymers in the Grapevine Industry: Plant Protection and Value-Added Utilization of Waste. Polymers (Basel) 2024; 17:18. [PMID: 39795420 PMCID: PMC11722739 DOI: 10.3390/polym17010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
The grapevine industry is confronted with challenges such as plant stress from environmental factors and microbial infections, alongside the need for sustainable waste management practices. Natural polymers offer promising solutions to these issues due to their biocompatibility, biodegradability, and functional versatility. This review explores the dual role of natural polymers in enhancing the grapevine industry: as protective agents against various stressors and as carriers for the delivery of valuable compounds recovered from grapevine wastes. We examine the use of natural polymers such as chitosan, alginate, and cellulose in formulating bio-based protective coatings and treatments that bolster plant resistance to abiotic stress, pathogens, and pests. Additionally, the review delves into the innovative utilization of grapevine residues, including skins, seeds, and stems, as sources of polyphenols and other bioactive compounds. These compounds can be efficiently encapsulated in natural polymer matrices for applications in agriculture, food, and pharmaceuticals. Key topics include the mechanisms of action, benefits, and limitations of natural polymer-based interventions, as well as case studies demonstrating their practical implementation in vineyards. The review also addresses future research directions, emphasizing the need for integrated approaches that enhance sustainability and economic viability in the grapevine industry.
Collapse
Affiliation(s)
- Daniela-Ionela Toma (Sărdărescu)
- National Research and Development Institute for Biotechnology in Horticulture–INCDBH, 37 Bucuresti-Pitesti Str., 117715 Ștefănești, Romania;
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 1-7 Gheorghe Polizu St., 011061 Bucharest, Romania
| | - Doina Manaila-Maximean
- Faculty of Applied Sciences, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov, 050044 Bucharest, Romania
| | - Irina Fierascu
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania; (I.F.); (A.M.B.); (T.F.); (I.E.C.)
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania
| | - Anda Maria Baroi
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania; (I.F.); (A.M.B.); (T.F.); (I.E.C.)
| | - Roxana Ioana Matei (Brazdis)
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania; (I.F.); (A.M.B.); (T.F.); (I.E.C.)
| | - Toma Fistos
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania; (I.F.); (A.M.B.); (T.F.); (I.E.C.)
| | - Irina Elena Chican
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania; (I.F.); (A.M.B.); (T.F.); (I.E.C.)
| | - Radu Claudiu Fierascu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 1-7 Gheorghe Polizu St., 011061 Bucharest, Romania
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania; (I.F.); (A.M.B.); (T.F.); (I.E.C.)
| |
Collapse
|
9
|
Phanthian C, Tandavanitj N, Chaisuekul C. Dominant strain shift in the invasive fall armyworm (Lepidoptera: Noctuidae) populations in Thailand as inferred from mitochondrial COI and nuclear Tpi genes. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:2100-2112. [PMID: 39250710 DOI: 10.1093/jee/toae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/09/2024] [Accepted: 07/22/2024] [Indexed: 09/11/2024]
Abstract
The fall armyworm, Spodoptera frugiperda (J. E. Smith, 1797) (Lepidoptera: Noctuidae), is a significant global pest, that exhibits 2 discernible strains, corn strain (CS) and rice strain (RS). After initial detection in the eastern hemisphere in 2016, the dominant strain was identified as RS based only on cytochrome C oxidase subunit I (COI) mitochondrial gene from limited samples from various countries, including Thailand. This study aimed to assess strain and haplotype variation in the S. frugiperda populations in Thailand using both mitochondrial COI and nuclear triosephosphate isomerase (Tpi) genes. Analyses of COI sequences (n = 105) revealed 2 predominant haplotypes, COICSh4 (82.86%) and COIRSh1 (17.14%), and the analyses of Tpi sequences (n = 99) revealed 6 haplotypes, with TpiCa1a (53.53%) being the most prevalent. Of the 98 caterpillar samples, the majority exhibited true CS (83.67%) for both genes. Meanwhile, interstrain hybrids, indicated by gene discordance, accounted for the minority (16.33%). Interestingly, despite the initial dominance of RS during the 2018 outbreak, the current study identified CS as the prevalent strain across all localities in Thailand. These findings suggested a shift in S. frugiperda dynamics in Thailand that was possibly influenced by factors, such as competitive exclusion principle, pesticide usage in rice cultivation, and preferences for corn over rice. Our study suggests a need to reexamine the previous reports of rice-strain dominance in various countries in the eastern hemisphere after the initial invasion.
Collapse
Affiliation(s)
- Chitsanuphong Phanthian
- Zoology Program, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Integrative Insect Ecology Research Unit (IIERU), Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nontivich Tandavanitj
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chatchawan Chaisuekul
- Integrative Insect Ecology Research Unit (IIERU), Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
10
|
Zhou W, Arcot Y, Medina RF, Bernal J, Cisneros-Zevallos L, Akbulut MES. Integrated Pest Management: An Update on the Sustainability Approach to Crop Protection. ACS OMEGA 2024; 9:41130-41147. [PMID: 39398119 PMCID: PMC11465254 DOI: 10.1021/acsomega.4c06628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024]
Abstract
Integrated Pest Management (IPM) emerged as a pest control framework promoting sustainable intensification of agriculture, by adopting a combined strategy to reduce reliance on chemical pesticides while improving crop productivity and ecosystem health. This critical review synthesizes the most recent advances in IPM research and practice, mostly focusing on studies published within the past five years. The Review discusses the key components of IPM, including cultural practices, biological control, genetic pest control, and targeted pesticide application, with a particular emphasis on the significant advancements made in biological control and targeted pesticide delivery systems. Recent findings highlight the growing importance of genetic control and conservation biological control, which involves the management of agricultural landscapes to promote natural enemy populations. Furthermore, the recent discovery of novel biopesticides, including microbial agents and plant-derived compounds, has expanded the arsenal of tools available for eco-friendly pest management. Substantial progress has recently also been made in the development of targeted pesticide delivery systems, such as nanoemulsions and controlled-release formulations, which can minimize the environmental impact of pesticides while maintaining their efficacy. The Review also analyzes the environmental, economic, and social dimensions of IPM adoption, showcasing its potential to promote biodiversity conservation and ensure food safety. Case studies from various agroecological contexts demonstrate the successful implementation of IPM programs, highlighting the importance of participatory approaches and effective knowledge exchange among stakeholders. The Review also identifies the main challenges and opportunities for the widespread adoption of IPM, including the need for transdisciplinary research, capacity building, and policy support. In conclusion, this critical review discusses the essential role of IPM components in achieving the sustainable intensification of agriculture, as it seeks to optimize crop production while minimizing adverse environmental impacts and enhancing the resilience of agricultural systems to global challenges such as climate change and biodiversity loss.
Collapse
Affiliation(s)
- Wentao Zhou
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Yashwanth Arcot
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Raul F. Medina
- Department
of Entomology, Texas A&M University, College Station, Texas 77843, United States
| | - Julio Bernal
- Department
of Entomology, Texas A&M University, College Station, Texas 77843, United States
| | - Luis Cisneros-Zevallos
- Department
of Horticultural Sciences, Texas A&M
University, College
Station, Texas 77843, United States
| | - Mustafa E. S. Akbulut
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Materials
Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
11
|
Chaudhary S, Ricardo RMN, Dubey M, Jensen DF, Grenville-Briggs L, Karlsson M. Genotypic variation in winter wheat for fusarium foot rot and its biocontrol using Clonostachys rosea. G3 (BETHESDA, MD.) 2024; 14:jkae240. [PMID: 39373570 PMCID: PMC11631536 DOI: 10.1093/g3journal/jkae240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Biological control to manage plant diseases is an environmentally friendly alternative to using chemical pesticides. However, little is known about the role of genetic variation in plants affecting the efficacy of biological control agents (BCAs). The aim of this study was to explore the genetic variation in winter wheat for disease susceptibility to fusarium foot rot caused by Fusarium graminearum and variation in biocontrol efficacy of the fungal BCA Clonostachys rosea to control the disease. In total, 190 winter wheat genotypes were evaluated under controlled conditions in two treatments, i.e. (i) F. graminearum (Fg) and (ii) F. graminearum infection on C. rosea treated seeds (FgCr). Alongside disease severity, plant growth-related traits such as shoot length and root length were also measured. Comparison of genotypes between the two treatments enabled the dissection of genotypic variation for disease resistance and C. rosea efficacy. The study revealed significant variation among plant genotypes for fusarium foot rot susceptibility and other growth traits in treatment Fg. Moreover, significant variation in C. rosea efficacy was also observed in genotype contrasts between the two treatments for all traits. Using a 20K marker array, a genome-wide association study was also performed. We identified a total of 18 significant marker-trait associations for disease resistance and C. rosea efficacy for all the traits. Moreover, the markers associated with disease resistance and C. rosea efficacy were not co-localized, highlighting the independent inheritance of these traits, which can facilitate simultaneous selection for cultivar improvement.
Collapse
Affiliation(s)
- Sidhant Chaudhary
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden
| | | | - Mukesh Dubey
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden
| | - Dan Funck Jensen
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden
| | - Laura Grenville-Briggs
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Lomma SE-23422, Sweden
| | - Magnus Karlsson
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden
| |
Collapse
|
12
|
Ong SQ, Høye TT. An annotated image dataset of pests on different coloured sticky traps acquired with different imaging devices. Data Brief 2024; 55:110741. [PMID: 39156668 PMCID: PMC11327826 DOI: 10.1016/j.dib.2024.110741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/18/2024] [Accepted: 07/08/2024] [Indexed: 08/20/2024] Open
Abstract
The sticky trap is probably the most cost-effective tool for catching insect pests, but the identification and counting of insects on sticky traps is very labour-intensive. When investigating the automatic identification and counting of pests on sticky traps using computer vision and machine learning, two aspects can strongly influence the performance of the model - the colour of the sticky trap and the device used to capture the images of the pests on the sticky trap. As far as we know, there are no available image datasets to study these two aspects in computer vision and deep learning algorithms. Therefore, this paper presents a new dataset consisting of images of two pests commonly found in post-harvest crops - the red flour beetle (Tribolium castaneum) and the rice weevil (Sitophilus oryzae) - captured with three different devices (DSLR, webcam and smartphone) on blue, yellow, white and transparent sticky traps. The images were sorted by device, colour and species and divided into training, validation and test parts for the development of the deep learning model.
Collapse
Affiliation(s)
- Song-Quan Ong
- Department of Ecoscience Aarhus University, C. F. Møllers Allé 8, DK-8000 Aarhus C, Denmark
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah Malaysia
| | - Toke Thomas Høye
- Department of Ecoscience Aarhus University, C. F. Møllers Allé 8, DK-8000 Aarhus C, Denmark
- Arctic Research Centre, Aarhus University, Ole Worms Allé 1, DK-8000 Aarhus C, Denmark
| |
Collapse
|
13
|
Sun H, Li X, Yuan X, Tian Z, Li Y, Zhang Y, Liu J. Elucidating the detoxification efficacy of Periplaneta americana delta glutathione S-transferase 1 (PaGSTd1) against organophosphates. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:106013. [PMID: 39084777 DOI: 10.1016/j.pestbp.2024.106013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024]
Abstract
As an important class of detoxifying enzymes, glutathione S-transferases (GSTs) are pivotal in decreasing insecticide toxicity to insects. Periplaneta americana GSTd1 (PaGSTd1) has been verified as a key enzyme in detoxifying pyrethroid insecticides, but its detoxification capability against a broader spectrum of insecticides has never been investigated. It is revealed that PaGSTd1 expression showed a rapid and significant increase upon exposure to various insecticides (organophosphates, neonicotinoids, and fipronil). Subsequent in vitro metabolic assays indicated that organophosphates, particularly chlorpyrifos-methyl, can be effectively metabolized by PaGSTd1. Further knockdown of PaGSTd1 via RNA interference significantly heightened the susceptibility of P. americana to chlorpyrifos-methyl, underscoring the enzyme's key role in detoxifying chlorpyrifos-methyl. Additionally, this study confirmed that PaGSTd1 cannot mitigate insecticide toxicity through countering oxidative stress. Collectively, these findings elucidate the involvement of PaGSTd1 in the detoxification processes for organophosphates, offering a comprehensive insight into the metabolic mechanisms mediated by GSTs in P. americana. This research provides a foundational understanding for managing GSTs-mediated metabolic resistance in this species, which is crucial for effective pest control strategies.
Collapse
Affiliation(s)
- Hong Sun
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinyu Li
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinyue Yuan
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhen Tian
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yifan Li
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yalin Zhang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Jiyuan Liu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
14
|
Pointer MD, Spurgin LG, McMullan M, Butler S, Richardson DS. Life history correlations and trade-offs resulting from selection for dispersal in Tribolium castaneum. J Evol Biol 2024; 37:748-757. [PMID: 38654518 DOI: 10.1093/jeb/voae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/14/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
Dispersal is an important facet of the life history of many organisms and is, therefore, subject to selective pressure but does not evolve in isolation. Across nature, there are examples of dispersal syndromes and life history strategies in which suites of traits coevolve and covary with dispersal in combinations that serve to maximize fitness in a given ecological context. The red rust flour beetle, Tribolium castaneum, is a model organism and globally significant post-harvest pest that relies on dispersal to reach new patches of ephemeral habitat. Dispersal behaviour in Tribolium has a strong genetic basis. However, a robust understanding of the relationship between dispersal and other life-history components, which could elucidate evolutionary processes and allow pest managers to control their spread and reduce the impact of infestation, is currently lacking. Here, we use highly replicated lines of T. castaneum previously artificially selected for divergent small-scale dispersal propensity to robustly test several important life history components: reproductive strategy, development time, and longevity. As predicted, we find that a suite of important changes as a result of our selection on dispersal: high dispersal propensity is associated with a lower number of longer mating attempts by males, lower investment in early life reproduction by females, slower development of later-laid offspring, and longer female life span. These findings indicate that correlated intraspecific variation in dispersal and related traits may represent alternative life history strategies in T. castaneum. We therefore suggest that pest management efforts to mitigate the species' agro-economic impact should consider the eco-evolutionary dynamics within multiple life histories. The benefits of doing so could be felt both through improved targeting of efforts to reduce spread and also in forecasting how the selection pressures applied through pest management are likely to affect pest evolution.
Collapse
Affiliation(s)
- Michael D Pointer
- Department of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Lewis G Spurgin
- Department of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Mark McMullan
- Department of Organisms and Ecosystems, Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Simon Butler
- Department of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - David S Richardson
- Department of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
15
|
North HL, Fu Z, Metz R, Stull MA, Johnson CD, Shirley X, Crumley K, Reisig D, Kerns DL, Gilligan T, Walsh T, Jiggins CD, Sword GA. Rapid Adaptation and Interspecific Introgression in the North American Crop Pest Helicoverpa zea. Mol Biol Evol 2024; 41:msae129. [PMID: 38941083 PMCID: PMC11259193 DOI: 10.1093/molbev/msae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
Insect crop pests threaten global food security. This threat is amplified through the spread of nonnative species and through adaptation of native pests to control measures. Adaptations such as pesticide resistance can result from selection on variation within a population, or through gene flow from another population. We investigate these processes in an economically important noctuid crop pest, Helicoverpa zea, which has evolved resistance to a wide range of pesticides. Its sister species Helicoverpa armigera, first detected as an invasive species in Brazil in 2013, introduced the pyrethroid-resistance gene CYP337B3 to South American H. zea via adaptive introgression. To understand whether this could contribute to pesticide resistance in North America, we sequenced 237 H. zea genomes across 10 sample sites. We report H. armigera introgression into the North American H. zea population. Two individuals sampled in Texas in 2019 carry H. armigera haplotypes in a 4 Mbp region containing CYP337B3. Next, we identify signatures of selection in the panmictic population of nonadmixed H. zea, identifying a selective sweep at a second cytochrome P450 gene: CYP333B3. We estimate that its derived allele conferred a ∼5% fitness advantage and show that this estimate explains independently observed rare nonsynonymous CYP333B3 mutations approaching fixation over a ∼20-year period. We also detect putative signatures of selection at a kinesin gene associated with Bt resistance. Overall, we document two mechanisms of rapid adaptation: the introduction of fitness-enhancing alleles through interspecific introgression, and selection on intraspecific variation.
Collapse
Affiliation(s)
- Henry L North
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Zhen Fu
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Richard Metz
- AgriLife Genomics and Bioinformatics Service, Texas A&M University, College Station, TX 77843, USA
| | - Matt A Stull
- AgriLife Genomics and Bioinformatics Service, Texas A&M University, College Station, TX 77843, USA
| | - Charles D Johnson
- AgriLife Genomics and Bioinformatics Service, Texas A&M University, College Station, TX 77843, USA
| | - Xanthe Shirley
- Animal and Plant Health Inspection Service, United States Department of Agriculture, College Station, TX, USA
| | - Kate Crumley
- Agrilife Extension, Texas A&M University, Wharton, TX, USA
| | - Dominic Reisig
- Department of Entomology and Plant Pathology, North Carolina State University, Plymouth, NC, 27962, USA
| | - David L Kerns
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Todd Gilligan
- Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA
| | - Tom Walsh
- Black Mountain Laboratories, Commonwealth Scientific and Industrial Research Organization, Canberra, Australia
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Gregory A Sword
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
16
|
Jarrett BJM, Miller CW. Host Plant Effects on Sexual Selection Dynamics in Phytophagous Insects. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:41-57. [PMID: 37562047 DOI: 10.1146/annurev-ento-022823-020258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Natural selection is notoriously dynamic in nature, and so, too, is sexual selection. The interactions between phytophagous insects and their host plants have provided valuable insights into the many ways in which ecological factors can influence sexual selection. In this review, we highlight recent discoveries and provide guidance for future work in this area. Importantly, host plants can affect both the agents of sexual selection (e.g., mate choice and male-male competition) and the traits under selection (e.g., ornaments and weapons). Furthermore, in our rapidly changing world, insects now routinely encounter new potential host plants. The process of adaptation to a new host may be hindered or accelerated by sexual selection, and the unexplored evolutionary trajectories that emerge from these dynamics are relevant to pest management and insect conservation strategies. Examining the effects of host plants on sexual selection has the potential to advance our fundamental understanding of sexual conflict, host range evolution, and speciation, with relevance across taxa.
Collapse
Affiliation(s)
- Benjamin J M Jarrett
- School of Natural Sciences, Bangor University, Bangor, United Kingdom;
- Department of Biology, Lund University, Lund, Sweden
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA;
| | - Christine W Miller
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA;
| |
Collapse
|
17
|
Ul Haq I, Khan M, Khan I. Phytopathological management through bacteriophages: enhancing food security amidst climate change. J Ind Microbiol Biotechnol 2024; 51:kuae031. [PMID: 39210514 PMCID: PMC11388930 DOI: 10.1093/jimb/kuae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The increasing global population and climate change pose significant challenges to agriculture, particularly in managing plant diseases caused by phytopathogens. Traditional methods, including chemical pesticides and antibiotics, have become less effective due to pathogen resistance and environmental concerns. Phage therapy emerges as a promising alternative, offering a sustainable and precise approach to controlling plant bacterial diseases without harming beneficial soil microorganisms. This review explores the potential of bacteriophages as biocontrol agents, highlighting their specificity, rapid multiplication, and minimal environmental impact. We discuss the historical context, current applications, and prospects of phage therapy in agriculture, emphasizing its role in enhancing crop yield and quality. Additionally, the paper examines the integration of phage therapy with modern agricultural practices and the development phage cocktails and genetically engineered phages to combat resistant pathogens. The findings suggest that phage therapy could revolutionize phytopathological management, contributing to global food security and sustainable agricultural practices. ONE-SENTENCE SUMMARY The burden of plant diseases and phage-based phytopathological treatment.
Collapse
Affiliation(s)
- Ihtisham Ul Haq
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland
- Joint Doctoral school, Silesian University of Technology , 44-100 Gliwice, Poland
- Postgraduate Program in Technological Innovation, Federal University of Minas Gerais, Belo Horizonte 31270-901 MG, Brazil
- Department of Bioscience, COMSATS University Islamabad, Islamabad 44000, Pakistan
| | - Mehtab Khan
- Department of Biology, University of Moncton, Moncton, NB E1A 3E9, Canada
| | - Imran Khan
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695-7612, USA
| |
Collapse
|
18
|
Daraban GM, Hlihor RM, Suteu D. Pesticides vs. Biopesticides: From Pest Management to Toxicity and Impacts on the Environment and Human Health. TOXICS 2023; 11:983. [PMID: 38133384 PMCID: PMC10748064 DOI: 10.3390/toxics11120983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
The environmental pollution that occurs in direct response to the widespread use of man-made/conventional pesticides results from many chemicals that require a long period of time, often decades, to degrade. The synthetic nature of pesticides also harms animals, beneficial insects, microorganisms, and plants, as well as humans. Fortunately, however, there are many natural pesticides, the so-called biopesticides, that are also effective against pests and more importantly, do not interfere with the well-being of ecosystems. Consequently, most biopesticides are safer for use around people and pets than man-made pesticides because, for example, they can be easily washed away from fruits and vegetables. The natural habitat is a rich resource with a wide selection of plants, many of which are also used to treat diseases in humans, animals, and plants. Out of concern for public health, environmental safety, and the stringent regulation of pesticide residues in agricultural commodities, the use of biopesticides is becoming increasingly important, but questions regarding potential pest resistance to these products may arise, just as is the case with conventional pesticides. Therefore, the performance and potential role of biopesticides in the management of plant pests should be prioritized due to their sustainability and importance to human and environmental welfare. In this review, we propose to highlight a scenario in which we discuss in detail the main constraints posed by the use of pesticides compared to biopesticides, starting with issues regarding their definition and continuing on to issues related to their toxicity and their impact on the environment and human health.
Collapse
Affiliation(s)
- Gabriel Mihăiță Daraban
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73 Prof.dr.docent D. Mangeron Blvd., 700050 Iasi, Romania;
| | - Raluca-Maria Hlihor
- Faculty of Horticulture, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 3 Mihail Sadoveanu Street, 700490 Iasi, Romania
| | - Daniela Suteu
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73 Prof.dr.docent D. Mangeron Blvd., 700050 Iasi, Romania;
| |
Collapse
|
19
|
Duthie AB, Mangan R, McKeon CR, Tinsley MC, Bussière LF. resevol: An R package for spatially explicit models of pesticide resistance given evolving pest genomes. PLoS Comput Biol 2023; 19:e1011691. [PMID: 38048359 PMCID: PMC10721171 DOI: 10.1371/journal.pcbi.1011691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/14/2023] [Accepted: 11/15/2023] [Indexed: 12/06/2023] Open
Abstract
The evolution of pesticide resistance is a widespread problem with potentially severe consequences for global food security. We introduce the resevol R package, which simulates individual-based models of pests with evolving genomes that produce complex, polygenic, and covarying traits affecting pest life history and pesticide resistance. Simulations are modelled on a spatially-explicit and highly customisable landscape in which crop and pesticide application and rotation can vary, making the package a highly flexible tool for both general and tactical models of pest management and resistance evolution. We present the key features of the resevol package and demonstrate its use for a simple example simulating pests with two covarying traits. The resevol R package is open source under GNU Public License. All source code and documentation are available on GitHub.
Collapse
Affiliation(s)
- A. Bradley Duthie
- Biological and Environmental Sciences, University of Stirling, Stirling, United Kingdom
| | - Rosie Mangan
- Biological and Environmental Sciences, University of Stirling, Stirling, United Kingdom
| | - C. Rose McKeon
- Biological and Environmental Sciences, University of Stirling, Stirling, United Kingdom
| | - Matthew C. Tinsley
- Biological and Environmental Sciences, University of Stirling, Stirling, United Kingdom
| | - Luc F. Bussière
- Biological and Environmental Sciences and Gothenburg Global Biodiversity Centre, The University of Gothenburg, Gothenburg, Sweden
- Gothenburgh Global Biodiversity Centre, Gothenburg, Sweden
| |
Collapse
|
20
|
Zhu Y, Yao K, Ma M, Cui Y, Xu J, Chen W, Yang R, Wu C, Gong G. Occurrence Regionalization of Kiwifruit Brown Spot in Sichuan. J Fungi (Basel) 2023; 9:899. [PMID: 37755007 PMCID: PMC10532618 DOI: 10.3390/jof9090899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
Kiwifruit brown spot caused by Corynespora cassiicola is the most significant fungal disease in Sichuan, resulting in premature defoliation, which had a significant impact on yield and fruit quality. The objective of the study was to determine the occurrence regularity and suitability of kiwifruit brown spot in Sichuan. The occurrence of the disease in the main producing region was continuously monitored, the maximum entropy (MaxEnt) model was used to predict its potential distribution, and the key environmental variables were identified using the jackknife method. The results indicated that kiwifruit brown spot was widely distributed across the entire producing region in Sichuan, predominantly affecting the variety "Hongyang". The incidence (p < 0.01) and disease index (p < 0.05) showed a significant positive correlation with the cultivar, and decreased with the altitude increasing. The average area under the ROC curve (AUC) of 10 replicates was 0.933 ± 0.012, with an accuracy of 84.44% in a field test, confirming the reliability of the predicted results. The highly suitable distribution areas of kiwifruit brown spot were mainly located in the Chengdu and Ya'an regions. The entire Panzhihua region was an unsuitable distribution area, and the entire Pujiang County and Mingshan District were highly suitable distribution areas. The key environmental variables affecting the potential distribution of kiwifruit brown spot included isothermality (24.3-33.7%), minimum temperature in August (16.3-23.6 °C), maximum temperature in July (25.5-31.2 °C), minimum temperature in June (15.6-20.9 °C), precipitation in August (158-430 mm), and average temperature in October (15.6-18.8 °C). This study provides a theoretical basis for the reasonable layout of the cultivar and the precise prevention and control of the disease.
Collapse
Affiliation(s)
- Yuhang Zhu
- Plant Protection Department, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (K.Y.); (M.M.); (J.X.); (W.C.); (R.Y.); (C.W.)
| | - Kaikai Yao
- Plant Protection Department, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (K.Y.); (M.M.); (J.X.); (W.C.); (R.Y.); (C.W.)
| | - Miaomiao Ma
- Plant Protection Department, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (K.Y.); (M.M.); (J.X.); (W.C.); (R.Y.); (C.W.)
| | - Yongliang Cui
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu 610041, China;
| | - Jing Xu
- Plant Protection Department, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (K.Y.); (M.M.); (J.X.); (W.C.); (R.Y.); (C.W.)
| | - Wen Chen
- Plant Protection Department, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (K.Y.); (M.M.); (J.X.); (W.C.); (R.Y.); (C.W.)
| | - Rui Yang
- Plant Protection Department, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (K.Y.); (M.M.); (J.X.); (W.C.); (R.Y.); (C.W.)
| | - Cuiping Wu
- Plant Protection Department, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (K.Y.); (M.M.); (J.X.); (W.C.); (R.Y.); (C.W.)
| | - Guoshu Gong
- Plant Protection Department, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (K.Y.); (M.M.); (J.X.); (W.C.); (R.Y.); (C.W.)
| |
Collapse
|
21
|
Fardella PA, Clarke BB, Belanger FC. The Epichloë festucae Antifungal Protein Efe-AfpA Has Activity against Numerous Plant Pathogens. Microorganisms 2023; 11:microorganisms11040828. [PMID: 37110250 PMCID: PMC10145699 DOI: 10.3390/microorganisms11040828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Fungal plant pathogens can present major problems for most crop species. Currently, control of fungal diseases relies heavily on the use of fungicides. However, there are problems associated with fungicide use, including potential toxicity to non-target organisms and the development of resistance in the target fungus. New strategies are being sought to reduce fungicide use. One area of active research is the potential use of antifungal proteins from various fungal species as alternatives or complements to traditional fungicides. An antifungal protein, Efe-AfpA, from the fungal endophyte Epichloë festucae was previously found to protect plants from the pathogen Clarireedia jacksonii, the causal agent of dollar spot disease. Here we report that Efe-AfpA also has inhibitory activity against other important plant pathogens. These results suggest that it may be possible to develop Efe-AfpA as a biofungicide to target a broad range of destructive plant pathogens.
Collapse
Affiliation(s)
- Patrick A Fardella
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Bruce B Clarke
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Faith C Belanger
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
22
|
Global honeybee health decline factors and potential conservation techniques. Food Secur 2023. [DOI: 10.1007/s12571-023-01346-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
23
|
Almeida OAC, de Araujo NO, Dias BHS, de Sant’Anna Freitas C, Coerini LF, Ryu CM, de Castro Oliveira JV. The power of the smallest: The inhibitory activity of microbial volatile organic compounds against phytopathogens. Front Microbiol 2023; 13:951130. [PMID: 36687575 PMCID: PMC9845590 DOI: 10.3389/fmicb.2022.951130] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/20/2022] [Indexed: 01/06/2023] Open
Abstract
Plant diseases caused by phytopathogens result in huge economic losses in agriculture. In addition, the use of chemical products to control such diseases causes many problems to the environment and to human health. However, some bacteria and fungi have a mutualistic relationship with plants in nature, mainly exchanging nutrients and protection. Thus, exploring those beneficial microorganisms has been an interesting and promising alternative for mitigating the use of agrochemicals and, consequently, achieving a more sustainable agriculture. Microorganisms are able to produce and excrete several metabolites, but volatile organic compounds (VOCs) have huge biotechnology potential. Microbial VOCs are small molecules from different chemical classes, such as alkenes, alcohols, ketones, organic acids, terpenes, benzenoids and pyrazines. Interestingly, volatilomes are species-specific and also change according to microbial growth conditions. The interaction of VOCs with other organisms, such as plants, insects, and other bacteria and fungi, can cause a wide range of effects. In this review, we show that a large variety of plant pathogens are inhibited by microbial VOCs with a focus on the in vitro and in vivo inhibition of phytopathogens of greater scientific and economic importance in agriculture, such as Ralstonia solanacearum, Botrytis cinerea, Xanthomonas and Fusarium species. In this scenario, some genera of VOC-producing microorganisms stand out as antagonists, including Bacillus, Pseudomonas, Serratia and Streptomyces. We also highlight the known molecular and physiological mechanisms by which VOCs inhibit the growth of phytopathogens. Microbial VOCs can provoke many changes in these microorganisms, such as vacuolization, fungal hyphal rupture, loss of intracellular components, regulation of metabolism and pathogenicity genes, plus the expression of proteins important in the host response. Furthermore, we demonstrate that there are aspects to investigate by discussing questions that are still not very clear in this research area, especially those that are essential for the future use of such beneficial microorganisms as biocontrol products in field crops. Therefore, we bring to light the great biotechnological potential of VOCs to help make agriculture more sustainable.
Collapse
Affiliation(s)
- Octávio Augusto Costa Almeida
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Natália Oliveira de Araujo
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Bruno Henrique Silva Dias
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Carla de Sant’Anna Freitas
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Luciane Fender Coerini
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, South Korea,Biosystems and Bioengineering Program, University of Science and Technology, Daejeon, South Korea
| | - Juliana Velasco de Castro Oliveira
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil,*Correspondence: Juliana Velasco de Castro Oliveira,
| |
Collapse
|
24
|
Banerji A, Benesh K. Incorporating Microbial Species Interaction in Management of Freshwater Toxic Cyanobacteria: A Systems Science Challenge. AQUATIC ECOLOGY 2022; 3:570-587. [PMID: 36643215 PMCID: PMC9836389 DOI: 10.3390/ecologies3040042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Water resources are critically important, but also pose risks of exposure to toxic and pathogenic microbes. Increasingly, a concern is toxic cyanobacteria, which have been linked to the death and disease of humans, domesticated animals, and wildlife in freshwater systems worldwide. Management approaches successful at reducing cyanobacterial abundance and toxin production have tended to be short-term solutions applied on small scales (e.g., algaecide application) or solutions that entail difficult multifaceted investments (e.g., modification of landscape and land use to reduce nutrient inputs). However, implementation of these approaches can be undermined by microbial species interactions that (a) provide toxic cyanobacteria with protection against the method of control or (b) permit toxic cyanobacteria to be replaced by other significant microbial threats. Understanding these interactions is necessary to avoid such scenarios and can provide a framework for novel strategies to enhance freshwater resource management via systems science (e.g., pairing existing physical and chemical approaches against cyanobacteria with ecological strategies such as manipulation of natural enemies, targeting of facilitators, and reduction of benthic occupancy and recruitment). Here, we review pertinent examples of the interactions and highlight potential applications of what is known.
Collapse
Affiliation(s)
- Aabir Banerji
- US Environmental Protection Agency, Office of Research & Development, Duluth, MN 55804, USA
| | - Kasey Benesh
- Oak Ridge Institute for Science & Education, Oak Ridge, TN 37830, USA
| |
Collapse
|
25
|
Marone Fassolo E, Lecchi B, Marcianò D, Maddalena G, Toffolatti SL. Pathogen Adaptation to American ( Rpv3-1) and Eurasian ( Rpv29) Grapevine Loci Conferring Resistance to Downy Mildew. PLANTS (BASEL, SWITZERLAND) 2022; 11:2619. [PMID: 36235481 PMCID: PMC9571346 DOI: 10.3390/plants11192619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Durable resistance is a key objective in genetic improvement for disease resistance in grapevines, which must survive for years in the field in the presence of adaptable pathogen populations. In this study, the adaptation of 72 Northern Italian isolates of Plasmopara viticola, the downy mildew agent, has been investigated into Bianca, possessing Rpv3-1, the most frequently exploited resistance locus for genetic improvement, and Mgaloblishvili, a Vitis vinifera variety possessing the newly discovered Rpv29 locus. Infection parameters (latency period, infection frequency, and disease severity) and oospore production and viability were evaluated and compared to those of Pinot noir, the susceptible reference. The expected levels of disease control were achieved by both resistant cultivars (>90% on Bianca; >25% on Mgaloblishvili), despite the high frequency of isolates able to grow on one (28%) or both (46%) accessions. The disease incidence and severity were limited by both resistant cultivars and the strains able to grow on resistant accessions showed signatures of fitness penalties (reduced virulence, infection frequency, and oospore density). Together, these results indicate an adequate pathogen control but suitable practices must be adopted in the field to prevent the diffusion of the partially adapted P. viticola strains to protect resistance genes from erosion.
Collapse
|
26
|
Skoracka A, Laska A, Radwan J, Konczal M, Lewandowski M, Puchalska E, Karpicka‐Ignatowska K, Przychodzka A, Raubic J, Kuczyński L. Effective specialist or jack of all trades? Experimental evolution of a crop pest in fluctuating and stable environments. Evol Appl 2022; 15:1639-1652. [PMID: 36330306 PMCID: PMC9624081 DOI: 10.1111/eva.13360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/30/2022] [Accepted: 02/06/2022] [Indexed: 11/30/2022] Open
Abstract
Understanding pest evolution in agricultural systems is crucial for developing effective and innovative pest control strategies. Types of cultivation, such as crop monocultures versus polycultures or crop rotation, may act as a selective pressure on pests' capability to exploit the host's resources. In this study, we examined the herbivorous mite Aceria tosichella (commonly known as wheat curl mite), a widespread wheat pest, to understand how fluctuating versus stable environments influence its niche breadth and ability to utilize different host plant species. We subjected a wheat-bred mite population to replicated experimental evolution in a single-host environment (either wheat or barley), or in an alternation between these two plant species every three mite generations. Next, we tested the fitness of these evolving populations on wheat, barley, and on two other plant species not encountered during experimental evolution, namely rye and smooth brome. Our results revealed that the niche breadth of A. tosichella evolved in response to the level of environmental variability. The fluctuating environment expanded the niche breadth by increasing the mite's ability to utilize different plant species, including novel ones. Such an environment may thus promote flexible host-use generalist phenotypes. However, the niche expansion resulted in some costs expressed as reduced performances on both wheat and barley as compared to specialists. Stable host environments led to specialized phenotypes. The population that evolved in a constant environment consisting of barley increased its fitness on barley without the cost of utilizing wheat. However, the population evolving on wheat did not significantly increase its fitness on wheat, but decreased its performance on barley. Altogether, our results indicated that, depending on the degree of environmental heterogeneity, agricultural systems create different conditions that influence pests' niche breadth evolution, which may in turn affect the ability of pests to persist in such systems.
Collapse
Affiliation(s)
- Anna Skoracka
- Population Ecology LabFaculty of BiologyInstitute of Environmental BiologyAdam Mickiewicz UniversityPoznańPoland
- Center for Advanced TechnologyAdam Mickiewicz UniversityPoznańPoland
| | - Alicja Laska
- Population Ecology LabFaculty of BiologyInstitute of Environmental BiologyAdam Mickiewicz UniversityPoznańPoland
| | - Jacek Radwan
- Evolutionary Biology GroupFaculty of BiologyInstitute of Environmental BiologyAdam Mickiewicz UniversityPoznańPoland
| | - Mateusz Konczal
- Evolutionary Biology GroupFaculty of BiologyInstitute of Environmental BiologyAdam Mickiewicz UniversityPoznańPoland
| | - Mariusz Lewandowski
- Section of Applied EntomologyDepartment of Plant ProtectionInstitute of Horticultural SciencesWarsaw University of Life Sciences – SGGWWarsawPoland
| | - Ewa Puchalska
- Section of Applied EntomologyDepartment of Plant ProtectionInstitute of Horticultural SciencesWarsaw University of Life Sciences – SGGWWarsawPoland
| | - Kamila Karpicka‐Ignatowska
- Population Ecology LabFaculty of BiologyInstitute of Environmental BiologyAdam Mickiewicz UniversityPoznańPoland
| | - Anna Przychodzka
- Population Ecology LabFaculty of BiologyInstitute of Environmental BiologyAdam Mickiewicz UniversityPoznańPoland
| | - Jarosław Raubic
- Population Ecology LabFaculty of BiologyInstitute of Environmental BiologyAdam Mickiewicz UniversityPoznańPoland
| | - Lechosław Kuczyński
- Population Ecology LabFaculty of BiologyInstitute of Environmental BiologyAdam Mickiewicz UniversityPoznańPoland
| |
Collapse
|
27
|
Cohen ZP, Chen YH, Groves R, Schoville SD. Evidence of hard-selective sweeps suggests independent adaptation to insecticides in Colorado potato beetle (Coleoptera: Chrysomelidae) populations. Evol Appl 2022; 15:1691-1705. [PMID: 36330305 PMCID: PMC9624080 DOI: 10.1111/eva.13498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 12/01/2022] Open
Abstract
Pesticide resistance provides one of the best examples of rapid evolution to environmental change. The Colorado potato beetle (CPB) has a long and noteworthy history as a super-pest due to its ability to repeatedly develop resistance to novel insecticides and rapidly expand its geographic and host plant range. Here, we investigate regional differences in demography, recombination, and selection using whole-genome resequencing data from two highly resistant CPB populations in the United States (Hancock, Wisconsin and Long Island, New York). Demographic reconstruction corroborates historical records for a single pest origin during the colonization of the Midwestern and Eastern United States in the mid- to late-19th century and suggests that the effective population size might be higher in Long Island, NY than Hancock, WI despite contemporary potato acreage of Wisconsin being far greater. Population-based recombination maps show similar background recombination rates between these populations, as well as overlapping regions of low recombination that intersect with important metabolic detoxification genes. In both populations, we find compelling evidence for hard selective sweeps linked to insecticide resistance with multiple sweeps involving genes associated with xenobiotic metabolism, stress response, and defensive chemistry. Notably, only two candidate insecticide resistance genes are shared among both populations, but both appear to be independent hard selective sweep events. This suggests that repeated, rapid, and independent evolution of genes may underlie CPB's pest status among geographically distinct populations.
Collapse
Affiliation(s)
- Zachary P. Cohen
- Department of EntomologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Yolanda H. Chen
- Department of Plant and Soil SciencesUniversity of VermontBurlingtonVermontUSA
| | - Russell Groves
- Department of EntomologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Sean D. Schoville
- Department of EntomologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
28
|
Einspanier S, Susanto T, Metz N, Wolters PJ, Vleeshouwers V, Lankinen Å, Liljeroth E, Landschoot S, Ivanović Ž, Hückelhoven R, Hausladen H, Stam R. Whole-genome sequencing elucidates the species-wide diversity and evolution of fungicide resistance in the early blight pathogen Alternaria solani. Evol Appl 2022; 15:1605-1620. [PMID: 36330303 PMCID: PMC9624079 DOI: 10.1111/eva.13350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 11/28/2022] Open
Abstract
Early blight of potato is caused by the fungal pathogen Alternaria solani and is an increasing problem worldwide. The primary strategy to control the disease is applying fungicides such as succinate dehydrogenase inhibitors (SDHI). SDHI-resistant strains, showing reduced sensitivity to treatments, appeared in Germany in 2013, shortly after the introduction of SDHIs. Two primary mutations in the SDH complex (SdhB-H278Y and SdhC-H134R) have been frequently found throughout Europe. How these resistances arose and spread, and whether they are linked to other genomic features, remains unknown. For this project, we performed whole-genome sequencing for 48 A. solani isolates from potato fields across Europe to better characterize the pathogen's genetic diversity in general and understand the development and spread of the genetic mutations that lead to SDHI resistance. The isolates can be grouped into seven genotypes. These genotypes do not show a geographical pattern but appear spread throughout Europe. We found clear evidence for recombination on the genome, and the observed admixtures might indicate a higher adaptive potential of the fungus than previously thought. Yet, we cannot link the observed recombination events to different Sdh mutations. The same Sdh mutations appear in different, non-admixed genetic backgrounds; therefore, we conclude they arose independently. Our research gives insights into the genetic diversity of A. solani on a genome level. The mixed occurrence of different genotypes, apparent admixture in the populations, and evidence for recombination indicate higher genomic complexity than anticipated. The conclusion that SDHI tolerance arose multiple times independently has important implications for future fungicide resistance management strategies. These should not solely focus on preventing the spread of isolates between locations but also on limiting population size and the selective pressure posed by fungicides in a given field to avoid the rise of new mutations in other genetic backgrounds.
Collapse
Affiliation(s)
| | - Tamara Susanto
- Chair of PhytopathologyTechnical University of MunichFreisingGermany
| | - Nicole Metz
- Chair of PhytopathologyTechnical University of MunichFreisingGermany
| | - Pieter J. Wolters
- Plant BreedingWageningen University and ResearchWageningenThe Netherlands
| | | | - Åsa Lankinen
- Department of Plant ProtectionSwedish University of Agricultural SciencesLommaSweden
| | - Erland Liljeroth
- Department of Plant ProtectionSwedish University of Agricultural SciencesLommaSweden
| | | | - Žarko Ivanović
- Institute for Plant Protection and EnvironmentBelgradeSerbia
| | - Ralph Hückelhoven
- Chair of PhytopathologyTechnical University of MunichFreisingGermany
| | - Hans Hausladen
- Plant Technology CentreTechnical University of MunichFreisingGermany
| | - Remco Stam
- Chair of PhytopathologyTechnical University of MunichFreisingGermany
| |
Collapse
|
29
|
Bras A, Roy A, Heckel DG, Anderson P, Karlsson Green K. Pesticide resistance in arthropods: Ecology matters too. Ecol Lett 2022; 25:1746-1759. [PMID: 35726578 PMCID: PMC9542861 DOI: 10.1111/ele.14030] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/12/2022] [Accepted: 05/03/2022] [Indexed: 12/22/2022]
Abstract
Pesticide resistance development is an example of rapid contemporary evolution that poses immense challenges for agriculture. It typically evolves due to the strong directional selection that pesticide treatments exert on herbivorous arthropods. However, recent research suggests that some species are more prone to evolve pesticide resistance than others due to their evolutionary history and standing genetic variation. Generalist species might develop pesticide resistance especially rapidly due to pre‐adaptation to handle a wide array of plant allelochemicals. Moreover, research has shown that adaptation to novel host plants could lead to increased pesticide resistance. Exploring such cross‐resistance between host plant range evolution and pesticide resistance development from an ecological perspective is needed to understand its causes and consequences better. Much research has, however, been devoted to the molecular mechanisms underlying pesticide resistance while both the ecological contexts that could facilitate resistance evolution and the ecological consequences of cross‐resistance have been under‐studied. Here, we take an eco‐evolutionary approach and discuss circumstances that may facilitate cross‐resistance in arthropods and the consequences cross‐resistance may have for plant–arthropod interactions in both target and non‐target species and species interactions. Furthermore, we suggest future research avenues and practical implications of an increased ecological understanding of pesticide resistance evolution.
Collapse
Affiliation(s)
- Audrey Bras
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden.,Faculty of Forestry and Wood Sciences, EXTEMIT-K and EVA.4.0 Unit, Czech University of Life Sciences, Suchdol, Czech Republic
| | - Amit Roy
- Faculty of Forestry and Wood Sciences, EXTEMIT-K and EVA.4.0 Unit, Czech University of Life Sciences, Suchdol, Czech Republic
| | - David G Heckel
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Peter Anderson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Kristina Karlsson Green
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
30
|
De-la-Cruz IM, Batsleer F, Bonte D, Diller C, Hytönen T, Muola A, Osorio S, Posé D, Vandegehuchte ML, Stenberg JA. Evolutionary Ecology of Plant-Arthropod Interactions in Light of the "Omics" Sciences: A Broad Guide. FRONTIERS IN PLANT SCIENCE 2022; 13:808427. [PMID: 35548276 PMCID: PMC9084618 DOI: 10.3389/fpls.2022.808427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/01/2022] [Indexed: 06/15/2023]
Abstract
Aboveground plant-arthropod interactions are typically complex, involving herbivores, predators, pollinators, and various other guilds that can strongly affect plant fitness, directly or indirectly, and individually, synergistically, or antagonistically. However, little is known about how ongoing natural selection by these interacting guilds shapes the evolution of plants, i.e., how they affect the differential survival and reproduction of genotypes due to differences in phenotypes in an environment. Recent technological advances, including next-generation sequencing, metabolomics, and gene-editing technologies along with traditional experimental approaches (e.g., quantitative genetics experiments), have enabled far more comprehensive exploration of the genes and traits involved in complex ecological interactions. Connecting different levels of biological organization (genes to communities) will enhance the understanding of evolutionary interactions in complex communities, but this requires a multidisciplinary approach. Here, we review traditional and modern methods and concepts, then highlight future avenues for studying the evolution of plant-arthropod interactions (e.g., plant-herbivore-pollinator interactions). Besides promoting a fundamental understanding of plant-associated arthropod communities' genetic background and evolution, such knowledge can also help address many current global environmental challenges.
Collapse
Affiliation(s)
- Ivan M. De-la-Cruz
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Femke Batsleer
- Terrestrial Ecology Unit, Department of Biology, Ghent University, Ghent, Belgium
| | - Dries Bonte
- Terrestrial Ecology Unit, Department of Biology, Ghent University, Ghent, Belgium
| | - Carolina Diller
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Timo Hytönen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- NIAB EMR, West Malling, United Kingdom
| | - Anne Muola
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
- Biodiversity Unit, University of Turku, Finland
| | - Sonia Osorio
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Campus de Teatinos, Málaga, Spain
| | - David Posé
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Campus de Teatinos, Málaga, Spain
| | - Martijn L. Vandegehuchte
- Terrestrial Ecology Unit, Department of Biology, Ghent University, Ghent, Belgium
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Johan A. Stenberg
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
31
|
Hashemi M, Tabet D, Sandroni M, Benavent-Celma C, Seematti J, Andersen CB, Grenville-Briggs LJ. The hunt for sustainable biocontrol of oomycete plant pathogens, a case study of Phytophthora infestans. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Vilarem C, Piou V, Vogelweith F, Vétillard A. Varroa destructor from the Laboratory to the Field: Control, Biocontrol and IPM Perspectives-A Review. INSECTS 2021; 12:800. [PMID: 34564240 PMCID: PMC8465918 DOI: 10.3390/insects12090800] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022]
Abstract
Varroa destructor is a real challenger for beekeepers and scientists: fragile out of the hive, tenacious inside a bee colony. From all the research done on the topic, we have learned that a better understanding of this organism in its relationship with the bee but also for itself is necessary. Its biology relies mostly on semiochemicals for reproduction, nutrition, or orientation. Many treatments have been developed over the years based on hard or soft acaricides or even on biocontrol techniques. To date, no real sustainable solution exists to reduce the pressure of the mite without creating resistances or harming honeybees. Consequently, the development of alternative disruptive tools against the parasitic life cycle remains open. It requires the combination of both laboratory and field results through a holistic approach based on health biomarkers. Here, we advocate for a more integrative vision of V. destructor research, where in vitro and field studies are more systematically compared and compiled. Therefore, after a brief state-of-the-art about the mite's life cycle, we discuss what has been done and what can be done from the laboratory to the field against V. destructor through an integrative approach.
Collapse
Affiliation(s)
- Caroline Vilarem
- Laboratoire Evolution et Diversité Biologique, UMR5174, CNRS-Université de Toulouse III-IRD, INU Jean-François Champollion, Université Paul Sabatier, 31077 Toulouse, France; (C.V.); (V.P.)
- M2i Biocontrol–Entreprise SAS, 46140 Parnac, France;
| | - Vincent Piou
- Laboratoire Evolution et Diversité Biologique, UMR5174, CNRS-Université de Toulouse III-IRD, INU Jean-François Champollion, Université Paul Sabatier, 31077 Toulouse, France; (C.V.); (V.P.)
| | | | - Angélique Vétillard
- Laboratoire Evolution et Diversité Biologique, UMR5174, CNRS-Université de Toulouse III-IRD, INU Jean-François Champollion, Université Paul Sabatier, 31077 Toulouse, France; (C.V.); (V.P.)
| |
Collapse
|
33
|
Karlsson Green K. The effects of host plant species and larval density on immune function in the polyphagous moth Spodoptera littoralis. Ecol Evol 2021; 11:10090-10097. [PMID: 34367561 PMCID: PMC8328413 DOI: 10.1002/ece3.7802] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 04/09/2021] [Accepted: 05/18/2021] [Indexed: 11/07/2022] Open
Abstract
Immune functions are costly, and immune investment is usually dependent on the individual's condition and resource availability. For phytophagous insects, host plant quality has large effects on performance, for example growth and survival, and may also affect their immune function. Polyphagous insects often experience a large variation in quality among different host plant species, and their immune investment may thus vary depending on which host plant species they develop on. Larvae of the polyphagous moth Spodoptera littoralis have previously been found to exhibit density-dependent prophylaxis as they invest more in certain immune responses in high population densities. In addition, the immune response of S. littoralis has been shown to depend on nutrient quality in experiments with artificial diet. Here, I studied the effects of natural host plant diet and larval density on a number of immune responses to understand how host plant species affects immune investment in generalist insects, and whether the density-dependent prophylaxis could be mediated by host plant species. While host plant species in general did not mediate the density-dependent immune expression, particular host plant species was found to increase larval investment in certain functions of the immune system. Interestingly, these results indicate that different host plants may provide a polyphagous species with protection against different kinds of antagonisms. This insight may contribute to our understanding of the relationship between preference and performance in generalists, as well as having applied consequences for sustainable pest management.
Collapse
Affiliation(s)
- Kristina Karlsson Green
- Department of Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| |
Collapse
|
34
|
Stenberg JA, Ortiz R. Focused Identification of Germplasm Strategy (FIGS): polishing a rough diamond. CURRENT OPINION IN INSECT SCIENCE 2021; 45:1-6. [PMID: 33166746 DOI: 10.1016/j.cois.2020.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
Focused Identification of Germplasm Strategy (FIGS) has been advocated as an efficient approach to predict and harness variation in adaptive traits in genebanks or wild populations of plants. However, a weakness of the current FIGS approach is that it only utilizes a priori knowledge of one evolutionary factor: natural selection. Further optimization is needed to capture elusive traits, and this review shows that nonadaptive evolutionary processes (gene flow and genetic drift) should be incorporated to increase precision. Focusing on plant resistance to insect herbivores, we also note that historic selection pressures can be difficult to disentangle, and provide suggestions for successful mining based on eco-evolutionary theory. We conclude that with such refinement FIGS has high potential for enhancing breeding efforts and hence sustainable plant production.
Collapse
Affiliation(s)
- Johan A Stenberg
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, PO Box 102, 23053 Alnarp, Sweden.
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, PO Box 101, 23053 Alnarp, Sweden
| |
Collapse
|
35
|
Piwowar A. The use of pesticides in Polish agriculture after integrated pest management (IPM) implementation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:26628-26642. [PMID: 33491144 PMCID: PMC8159817 DOI: 10.1007/s11356-020-12283-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
The aim of the conducted study was to characterize the attitudes and practices of Polish farmers in the area of performing chemical plant protection treatments. A particular attention was paid to identifying the relationship between the direction of changes in the volume of chemical plant protection product consumption and selected attributes of farms. The main time range of the analyses covered the period of 2013-2017. Statistical data and results of representative surveys carried out on a sample of 1101 farms in Poland were used in the research process. Due to the large number of variants of the analysed variables, a multiple correspondence analysis was used, which made it possible to determine the correlation between the examined features (direction of changes in pesticide use relative to the farm area, economic size of the farm and location of the farm). Statistical analysis showed the existence of strong relationships between the physical (1) and economic (2) size of farms and the direction of changes in pesticide consumption ((1) φ2 = 0.0907; (2) φ2 = 0.1141)). According to empirical studies, the reduction of pesticide consumption took place mainly on the smallest farms. The implementation of the integrated plant protection directive has not resulted in significant changes in the form of reduced pesticide use in large-scale field crops. This raises the need to modify the strategy and model of crop protection in large-scale field crops in Poland.
Collapse
Affiliation(s)
- Arkadiusz Piwowar
- Wroclaw University of Economics and Business, Komandorska Street 118/120, 53-345, Wrocław, Poland.
| |
Collapse
|
36
|
Sutter A, Price TA, Wedell N. The impact of female mating strategies on the success of insect control technologies. CURRENT OPINION IN INSECT SCIENCE 2021; 45:75-83. [PMID: 33601059 DOI: 10.1016/j.cois.2021.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/11/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Attempts to control insect pests and disease vectors have a long history. Recently, new technology has opened a whole new range of possible methods to suppress or transform natural populations. But it has also become clear that a better understanding of the ecology of targeted populations is needed. One key parameter is mating behaviour. Often modified males are released which need to successfully reproduce with females while competing with wild males. Insect control techniques can be affected by target species' mating ecology, and conversely mating ecology is likely to evolve in response to manipulation attempts. A better understanding of (female) mating behaviour will help anticipate and overcome potential challenges, and thus make desirable outcomes more likely.
Collapse
Affiliation(s)
- Andreas Sutter
- School of Biological Sciences, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, UK
| | - Tom Ar Price
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Nina Wedell
- Biosciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK.
| |
Collapse
|
37
|
Waheed A, Wang YP, Nkurikiyimfura O, Li WY, Liu ST, Lurwanu Y, Lu GD, Wang ZH, Yang LN, Zhan J. Effector Avr4 in Phytophthora infestans Escapes Host Immunity Mainly Through Early Termination. Front Microbiol 2021; 12:646062. [PMID: 34122360 PMCID: PMC8192973 DOI: 10.3389/fmicb.2021.646062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/19/2021] [Indexed: 11/13/2022] Open
Abstract
Effector genes play critical roles in the antagonistic interactions between plants and pathogens. However, knowledge of mutation mechanisms and evolutionary processes in effector genes and the contribution of climatic factors to the evolution of effector genes are fragmented but important in sustainable management of plant diseases and securing food supply under changing climates. Here, we used a population genetic approach to explore the evolution of the Avr4 gene in Phytophthora infestans, the causal agent of potato blight. We found that the Avr4 gene exhibited a high genetic diversity generated by point mutation and sequence deletion. Frameshifts caused by a single base-pair deletion at the 194th nucleotide position generate two stop codons, truncating almost the entire C-terminal, which is important for effector function and R4 recognition in all sequences. The effector is under natural selection for adaptation supported by comparative analyses of population differentiation (FST ) and isolation-by-distance between Avr4 sequences and simple sequence repeat marker loci. Furthermore, we found that local air temperature was positively associated with pairwise FST in the Avr4 sequences. These results suggest that the evolution of the effector gene is influenced by local air temperature, and the C-terminal truncation is one of the main mutation mechanisms in the P. infestans effector gene to circumvent the immune response of potato plants. The implication of these results to agricultural and natural sustainability in future climate conditions is discussed.
Collapse
Affiliation(s)
- Abdul Waheed
- Key Lab for Bio Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan-Ping Wang
- Key Lab for Bio Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Oswald Nkurikiyimfura
- Key Lab for Bio Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wen-Yang Li
- Key Lab for Bio Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shi-Ting Liu
- Key Lab for Bio Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yahuza Lurwanu
- Key Lab for Bio Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Crop Protection, Bayero University Kano, Kano, Nigeria
| | - Guo-Dong Lu
- Key Lab for Bio Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zong-Hua Wang
- Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Li-Na Yang
- Key Lab for Bio Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Jiasui Zhan
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
38
|
Hampf AC, Nendel C, Strey S, Strey R. Biotic Yield Losses in the Southern Amazon, Brazil: Making Use of Smartphone-Assisted Plant Disease Diagnosis Data. FRONTIERS IN PLANT SCIENCE 2021; 12:621168. [PMID: 33936124 PMCID: PMC8083370 DOI: 10.3389/fpls.2021.621168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 03/12/2021] [Indexed: 05/03/2023]
Abstract
Pathogens and animal pests (P&A) are a major threat to global food security as they directly affect the quantity and quality of food. The Southern Amazon, Brazil's largest domestic region for soybean, maize and cotton production, is particularly vulnerable to the outbreak of P&A due to its (sub)tropical climate and intensive farming systems. However, little is known about the spatial distribution of P&A and the related yield losses. Machine learning approaches for the automated recognition of plant diseases can help to overcome this research gap. The main objectives of this study are to (1) evaluate the performance of Convolutional Neural Networks (ConvNets) in classifying P&A, (2) map the spatial distribution of P&A in the Southern Amazon, and (3) quantify perceived yield and economic losses for the main soybean and maize P&A. The objectives were addressed by making use of data collected with the smartphone application Plantix. The core of the app's functioning is the automated recognition of plant diseases via ConvNets. Data on expected yield losses were gathered through a short survey included in an "expert" version of the application, which was distributed among agronomists. Between 2016 and 2020, Plantix users collected approximately 78,000 georeferenced P&A images in the Southern Amazon. The study results indicate a high performance of the trained ConvNets in classifying 420 different crop-disease combinations. Spatial distribution maps and expert-based yield loss estimates indicate that maize rust, bacterial stalk rot and the fall armyworm are among the most severe maize P&A, whereas soybean is mainly affected by P&A like anthracnose, downy mildew, frogeye leaf spot, stink bugs and brown spot. Perceived soybean and maize yield losses amount to 12 and 16%, respectively, resulting in annual yield losses of approximately 3.75 million tonnes for each crop and economic losses of US$2 billion for both crops together. The high level of accuracy of the trained ConvNets, when paired with widespread use from following a citizen-science approach, results in a data source that will shed new light on yield loss estimates, e.g., for the analysis of yield gaps and the development of measures to minimise them.
Collapse
Affiliation(s)
- Anna C. Hampf
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
- Albrecht Daniel Thaer Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- *Correspondence: Anna C. Hampf,
| | - Claas Nendel
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Simone Strey
- Progressive Environmental and Agricultural Technologies (PEAT) GmbH, Hannover, Germany
| | - Robert Strey
- Progressive Environmental and Agricultural Technologies (PEAT) GmbH, Hannover, Germany
| |
Collapse
|