1
|
Senna Dos Santos G, Fonseca BDR, Sousa FSS, Seixas FK, Borsuk S. Evaluation of the immunogenic potential of recombinant Mycobacterium bovis BCG expressing the ASP-2 and TC24 proteins from Trypanosoma cruzi. Acta Trop 2025; 263:107569. [PMID: 40010681 DOI: 10.1016/j.actatropica.2025.107569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/28/2025] [Accepted: 02/23/2025] [Indexed: 02/28/2025]
Abstract
Although drugs have been employed over the past years to treat Chagas disease, they work mostly on the acute phase of infection, where diagnosis is hardly ever made, and present a plethora of negative side effects that ends in discontinuation of treatment. Consequently, to deal with this disease, prophylaxis seems to be a better strategy, with recombinant subunit vaccines showing promising results. Among those, Mycobaterium bovis Bacillus Calmette-Guérin (BCG) has recently been employed as vector for delivering T. cruzi antigens with positive results on immune response stimulus and protection against the infection. Following this perspective, this study aimed to characterize the immune response elicited by recombinant BCG expressing a fraction of the amastigote surface protein 2 (ASP-2) and the 24 kDa flagellar calcium-binding protein (TC24) of T. cruzi. To accomplish this, four groups of BALB/c female mice (n = 10) were vaccinated with 0.9% saline solution (Group 1), non-transformed BCG Pasteur (Group 2), rBCG/pUS977/ASP-2 (Group 3) or rBCG/pUS977/TC24 (Group 4). Cellular responses, assessed by cytokine expression from cultured and protein stimulated splenocytes, were statistically higher for both vaccinal formulations when compared with basal levels (Group 1) and non-transformed BCG (Group 2). Group 3 achieved better results for interleukins 10 and 17, while interferon γ was greatly stimulated by vaccination with Group 4. Even though further analyses are needed to evaluate the full efficacy of the constructions, the here presented results exhibit the potential of BCG vectored vaccines in eliciting Th1/Th2/Th17 mixed immune responses.
Collapse
Affiliation(s)
- Guilherme Senna Dos Santos
- Laboratório de Biotecnologia Infecto-parasitária, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-900, RS, Brasil
| | - Bárbara da Rocha Fonseca
- Laboratório de Biotecnologia Infecto-parasitária, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-900, RS, Brasil
| | - Fernanda Severo Sabedra Sousa
- Laboratório de Biotecnologia do Câncer, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-900, RS, Brasil
| | - Fabiana Kommling Seixas
- Laboratório de Biotecnologia do Câncer, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-900, RS, Brasil
| | - Sibele Borsuk
- Laboratório de Biotecnologia Infecto-parasitária, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-900, RS, Brasil.
| |
Collapse
|
2
|
Hernández-Flores A, Elías-Díaz D, Cubillo-Cervantes B, Ibarra-Cerdeña CN, Morán D, Arnal A, Chaves A. Fighting Strategies Against Chagas' Disease: A Review. Pathogens 2025; 14:183. [PMID: 40005558 PMCID: PMC11858460 DOI: 10.3390/pathogens14020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/08/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Chagas disease, caused by Trypanosoma cruzi, remains a significant public health challenge, particularly in Latin America, where it is one of the most neglected diseases and is primarily transmitted by triatomine insects. The disease exhibits complexity due to its diverse transmission routes, including vectorial and non-vectorial mechanisms such as blood transfusions and congenital transmission. Effective monitoring and control strategies are critical to mitigating its impact. This review focuses on current monitoring and control efforts, emphasizing the importance of enhanced surveillance systems, improved risk assessments, and integrated vector control programs. Surveillance plays a pivotal role in early detection and timely intervention, particularly in endemic regions, while vector control remains central to reducing transmission. Moreover, the development of novel diagnostic tools, treatments, and vaccines is a crucial step in advancing control efforts. This review also highlights the involvement of local governments, international organizations, and civil society in executing these strategies, stressing the need for sustained political commitment to ensure the success of public health programs. By addressing key challenges in monitoring, control, and prevention, this review aims to provide insights and recommendations to further global efforts in reducing the burden of Chagas disease.
Collapse
Affiliation(s)
- Andrea Hernández-Flores
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Av. Universidad #3000, Mexico City 04510, Mexico; (A.H.-F.); (A.A.)
| | - Debora Elías-Díaz
- Sistema de Estudios de Posgrado Posgrado en Biología, Universidad de Costa Rica, San José 11501-206, Costa Rica; (D.E.-D.); (B.C.-C.)
| | - Bernadeth Cubillo-Cervantes
- Sistema de Estudios de Posgrado Posgrado en Biología, Universidad de Costa Rica, San José 11501-206, Costa Rica; (D.E.-D.); (B.C.-C.)
| | - Carlos N. Ibarra-Cerdeña
- Departamento de Ecología Humana, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Mérida, Merida 97205, Mexico;
| | - David Morán
- Unidad de Ecología y Epidemiología, Programa Arbovirus y Zoonoses, Centro para Estudios de Salud, Universidad del Valle de Guatemala, Guatemala City 01015, Guatemala;
| | - Audrey Arnal
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Av. Universidad #3000, Mexico City 04510, Mexico; (A.H.-F.); (A.A.)
- MIVEGEC, IRD, CNRS, Université de Montpellier, 34394 Montpellier, France
- International Joint Laboratory IRD/UNAM ELDORADO, Merida 97205, Mexico
| | - Andrea Chaves
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT, Conare, San José 1174-1200, Costa Rica
- Escuela de Biología, Universidad de Costa Rica, San José 11501-206, Costa Rica
| |
Collapse
|
3
|
Borgna E, Prochetto E, Gamba JC, Vermeulen EM, Poncini CV, Cribb P, Pérez AR, Marcipar I, González FB, Cabrera G. Control of myeloid-derived suppressor cell dynamics potentiates vaccine protection in multiple mouse models of Trypanosoma cruzi infection. Front Immunol 2024; 15:1484290. [PMID: 39555082 PMCID: PMC11568482 DOI: 10.3389/fimmu.2024.1484290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/14/2024] [Indexed: 11/19/2024] Open
Abstract
To date, there is no licensed vaccine against the protozoan parasite Trypanosoma cruzi (T. cruzi), the etiological agent of Chagas Disease. T. cruzi has evolved numerous mechanisms to evade and manipulate the host immune system. Among the subversive strategies employed by the parasite, marked increases in CD11b+ Gr-1+ myeloid-derived suppressor cells (MDSCs) in several organs have been described. We have reported that CD11b+ Gr-1+ cells are involved not only during infection but also after immunization with a trans-sialidase fragment (TSf) adjuvanted with a cage-like particle adjuvant (ISPA). Thus, the aim of this work was to gain control over the involvement of MDSCs during immunization to potentiate a vaccine candidate with protective capacity in multiple mouse models of T. cruzi infection. Here, we show that the Gr-1+ cells that increase during TSf-ISPA immunization have suppressive capacity over bone marrow-derived dendritic cells and CD4+ lymphocytes. Protocols using one or two doses of 5-fluorouracil (5FU) were employed to deplete and control MDSC dynamics during immunization. The protocol based on two doses of 5FU (double 5FU TSf-ISPA) was more successful in controlling MDSCs during immunization and triggered a higher immune effector response, as evidenced by increased numbers of CD4+, CD4+CD44+, CD8+, CD8+CD44+, CD11c+, and CD11c+CD8α+ cells in the spleen and lymph nodes of double 5FU TSf-ISPA mice as compared to 5FU-TSf-ISPA mice. In line with these results, the protective capacity of the double 5FU TSf-ISPA protocol was higher compared to the 5FU-TSf-ISPA protocol against high lethal doses of intraperitoneal infection with the Tulahuen T. cruzi strain. When cross-protective capacity was analyzed, the optimized protocol based on double 5FU TSf-ISPA conferred protection in several preclinical models using different discrete typing units (DTU VI and DTU I), different mouse strains (BALB/c and C57BL/6), different parasite doses (1000 to 20000), and routes of administration (intraperitoneal and intradermal). Developing vaccines that are currently lacking may require new strategies to further potentiate vaccine candidates. Results reported herein provide evidence that rational control of cells from the regulatory arm of the immune system could enhance a vaccine candidate with cross-protective capacity in multiple mouse models of T. cruzi infection.
Collapse
Affiliation(s)
- Eliana Borgna
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Estefanía Prochetto
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Juan Cruz Gamba
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Elba Mónica Vermeulen
- Laboratorio de Células Presentadoras de Antígeno y Respuesta Inflamatoria, Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Carolina Verónica Poncini
- Laboratorio de Inmunología Celular e Inmunopatología de Infecciones, IMPaM UBA-CONICET, Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pamela Cribb
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Universidad Nacional de Rosario, Santa Fe, Argentina
| | - Ana Rosa Pérez
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET), and Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Santa Fe, Argentina
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Santa Fe, Argentina
| | - Iván Marcipar
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Florencia Belén González
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET), and Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Santa Fe, Argentina
| | - Gabriel Cabrera
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
4
|
Pinazo MJ, Malchiodi E, Ioset JR, Bivona A, Gollob KJ, Dutra WO. Challenges and advancements in the development of vaccines and therapies against Chagas disease. THE LANCET. MICROBE 2024; 5:100972. [PMID: 39303738 DOI: 10.1016/j.lanmic.2024.100972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/01/2024] [Accepted: 08/08/2024] [Indexed: 09/22/2024]
Abstract
Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, presents a substantial global health burden, affecting millions of individuals worldwide and posing a continual risk of infection. Despite the high mortality and morbidity rates, effective vaccines to prevent infection by the parasite remain elusive, and the drugs currently available are suboptimal. Understanding the intricate dynamics of parasite-host interactions and the resulting immune responses, which contribute to both protection and pathology, is crucial for the development of effective vaccines and therapies against Chagas disease. In this Series paper, we discuss the challenges associated with discovering and translating prophylactic and therapeutic strategies from the laboratory bench to clinical application. We highlight ongoing efforts in vaccine and new drug development, with a focus on more advanced candidates for vaccines and drugs. We also discuss potential solutions, emphasising the importance of collaborative research efforts, sustained funding, and a comprehensive understanding of host-parasite interactions and immunopathology to advance the development of new vaccines and therapies against Chagas disease.
Collapse
Affiliation(s)
| | - Emilio Malchiodi
- Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Instituto de Estudios de la Inmunidad Humoral (IDEHU) and Instituto de Microbiologia y Parasitologia Médica (IMPaM), UBA-CONICET, Buenos Aires, Argentina
| | | | - Augusto Bivona
- Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Instituto de Estudios de la Inmunidad Humoral (IDEHU) and Instituto de Microbiologia y Parasitologia Médica (IMPaM), UBA-CONICET, Buenos Aires, Argentina
| | - Kenneth J Gollob
- Hospital Israelita Albert Einstein, São Paulo, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Belo Horizonte, Brazil
| | - Walderez O Dutra
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Belo Horizonte, Brazil; Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
5
|
Dumonteil E, Tu W, Desale H, Goff K, Marx P, Ortega-Lopez J, Herrera C. Immunoglobulin and T cell receptor repertoire changes induced by a prototype vaccine against Chagas disease in naïve rhesus macaques. J Biomed Sci 2024; 31:58. [PMID: 38824576 PMCID: PMC11143712 DOI: 10.1186/s12929-024-01050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 05/27/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND A vaccine against Trypanosoma cruzi, the agent of Chagas disease, would be an excellent additional tool for disease control. A recombinant vaccine based on Tc24 and TSA1 parasite antigens was found to be safe and immunogenic in naïve macaques. METHODS We used RNA-sequencing and performed a transcriptomic analysis of PBMC responses to vaccination of naïve macaques after each vaccine dose, to shed light on the immunogenicity of this vaccine and guide the optimization of doses and formulation. We identified differentially expressed genes and pathways and characterized immunoglobulin and T cell receptor repertoires. RESULTS RNA-sequencing analysis indicated a clear transcriptomic response of PBMCs after three vaccine doses, with the up-regulation of several immune cell activation pathways and a broad non-polarized immune profile. Analysis of the IgG repertoire showed that it had a rapid turnover with novel IgGs produced following each vaccine dose, while the TCR repertoire presented several persisting clones that were expanded after each vaccine dose. CONCLUSIONS These data suggest that three vaccine doses may be needed for optimum immunogenicity and support the further evaluation of the protective efficacy of this vaccine.
Collapse
Affiliation(s)
- Eric Dumonteil
- Department of Tropical Medicine and Infectious Disease, School of Public Health and Tropical Medicine, and Vector-Borne and Infectious Disease Research Center, Tulane University, 1440 Canal St, New Orleans, Louisiana, 70112, USA.
| | - Weihong Tu
- Department of Tropical Medicine and Infectious Disease, School of Public Health and Tropical Medicine, and Vector-Borne and Infectious Disease Research Center, Tulane University, 1440 Canal St, New Orleans, Louisiana, 70112, USA
| | - Hans Desale
- Department of Tropical Medicine and Infectious Disease, School of Public Health and Tropical Medicine, and Vector-Borne and Infectious Disease Research Center, Tulane University, 1440 Canal St, New Orleans, Louisiana, 70112, USA
| | - Kelly Goff
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| | - Preston Marx
- Department of Tropical Medicine and Infectious Disease, School of Public Health and Tropical Medicine, and Vector-Borne and Infectious Disease Research Center, Tulane University, 1440 Canal St, New Orleans, Louisiana, 70112, USA
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| | - Jaime Ortega-Lopez
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, México
| | - Claudia Herrera
- Department of Tropical Medicine and Infectious Disease, School of Public Health and Tropical Medicine, and Vector-Borne and Infectious Disease Research Center, Tulane University, 1440 Canal St, New Orleans, Louisiana, 70112, USA
| |
Collapse
|
6
|
Ramos-Vega A, Monreal-Escalante E, Rosales-Mendoza S, Bañuelos-Hernández B, Dumonteil E, Angulo C. Trypanosoma cruzi Tc24 Antigen Expressed and Orally Delivered by Schizochytrium sp. Microalga is Immunogenic in Mice. Mol Biotechnol 2024; 66:1376-1388. [PMID: 37344711 DOI: 10.1007/s12033-023-00763-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/22/2023] [Indexed: 06/23/2023]
Abstract
Chagas disease-caused by the parasite Trypanosoma cruzi-is a neglected tropical disease for which available drugs are not fully effective in the chronic stage and a vaccine is not available yet. Microalgae represent a promising platform for the production and oral delivery of low-cost vaccines. Herein, we report a vaccine prototype against T. cruzi produced in a microalgae platform, based on the candidate antigen Tc24 with a C terminus fusion with the Co1 peptide (Tc24:Co1 vaccine prototype). After modeling the tertiary structure, in silico studies suggested that the chimeric protein is antigenic, not allergenic, and molecular docking indicated binding with Toll-like receptors 2 and 4. Thus, Tc24:Co1 was expressed in the marine microalga Schizochytrium sp., and Western blot confirmed the expression at 48 h after induction, with a yield of 632 µg/L of algal culture (300 μg/g of lyophilized algal cells) as measured by the enzyme-linked immunosorbent assay (ELISA). Upon oral administration of whole-cell Schizochytrium sp. expressing Tc24:Co1 (7.5 µg or 15 µg of Tc24:Co1 doses) in mice, specific serum IgG and intestinal mucosa IgA responses were detected in addition to an increase in serum Th1/Th2 cytokines. In conclusion, Schizochytrium sp.-expressing Tc24:Co1 is a promising oral vaccine prototype to be evaluated in an animal model of Trypanosoma cruzi infection.
Collapse
Affiliation(s)
- Abel Ramos-Vega
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C., La Paz, BCS, Mexico
| | - Elizabeth Monreal-Escalante
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C., La Paz, BCS, Mexico.
- CONACYT-Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Col. Playa Palo de Santa Rita Sur, Av. Instituto Politécnico Nacional 195, CP. 23096, La Paz, BCS, Mexico.
| | - Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, UASLP, San Luis Potosí, Mexico
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, UASLP, San Luis Potosí, Mexico
| | | | - Eric Dumonteil
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Carlos Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C., La Paz, BCS, Mexico.
| |
Collapse
|
7
|
Mejia R, Verocai GG, Mosley IA, Zhan B, Vongthavaravat L, Busselman RE, Hamer SA. Evaluation of a novel Tc-24 recombinant antigen ELISA for serologic testing for Trypanosoma cruzi in dogs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.579969. [PMID: 38405948 PMCID: PMC10888942 DOI: 10.1101/2024.02.12.579969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Chagas disease is a parasitic infection caused by Trypanosoma cruzi. Diagnosis of chronic Chagas disease in dogs relies on limited serological test options. This study used a new Tc-24 recombinant antigen ELISA on an archival set of 70 dog serum samples from multi-dog kennel environments in Texas subjected to three existing Chagas serological tests. Tc-24 ELISA produced a quantitative result and could detect anti-T. cruzi antibodies in dogs with high sensitivity and specificity. Comparing individual tests to Tc-24 ELISA resulted in strong associations and correlations, which suggest that Tc-24 ELISA is a reliable and accurate diagnostic tool for dogs with a single test.
Collapse
Affiliation(s)
- Rojelio Mejia
- Department of Pediatrics - Tropical Medicine, Baylor College of Medicine, Houston, Texas
| | - Guilherme G. Verocai
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Ilana A. Mosley
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Bin Zhan
- Department of Pediatrics - Tropical Medicine, Baylor College of Medicine, Houston, Texas
| | - Lindsey Vongthavaravat
- Department of Pediatrics - Tropical Medicine, Baylor College of Medicine, Houston, Texas
| | - Rachel E. Busselman
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Sarah A. Hamer
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| |
Collapse
|
8
|
Becker I, Miranda-Ortiz H, Fernández-Figueroa EA, Sánchez-Montes S, Colunga-Salas P, Grostieta E, Juárez-Gabriel J, Lozano-Sardaneta YN, Arce-Fonseca M, Rodríguez-Morales O, Meneses-Ruíz G, Pastén-Sánchez S, López Martínez I, González-Guzmán S, Paredes-Cervantes V, Moreira OC, Finamore-Araujo P, Canseco-Méndez JC, Coquis-Navarrete U, Rengifo-Correa L, González-Salazar C, Alfaro-Cortés MM, Falcón-Lezama JA, Tapia-Conyer R, Stephens CR. The Low Variability of Tc24 in Trypanosoma cruzi TcI as an Advantage for Chagas Disease Prophylaxis and Diagnosis in Mexico. Pathogens 2023; 12:pathogens12030368. [PMID: 36986290 PMCID: PMC10057631 DOI: 10.3390/pathogens12030368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
(1) Background: Chagas disease is the main neglected tropical disease in America. It is estimated that around 6 million people are currently infected with the parasite in Latin America, and 25 million live in endemic areas with active transmission. The disease causes an estimated economic loss of USD 24 billion dollars annually, with a loss of 75,200 working years per year of life; it is responsible for around ~12,000 deaths annually. Although Mexico is an endemic country that recorded 10,186 new cases of Chagas disease during the period of 1990–2017, few studies have evaluated the genetic diversity of genes that could be involved in the prophylaxis and/or diagnosis of the parasite. One of the possible candidates proposed as a vaccine target is the 24 kDa trypomastigote excretory–secretory protein, Tc24, whose protection is linked to the stimulation of T. cruzi-specific CD8+ immune responses. (2) Methods: The aim of the present study was to evaluate the fine-scale genetic diversity and structure of Tc24 in T. cruzi isolates from Mexico, and to compare them with other populations reported in the Americas with the aim to reconsider the potential role of Tc24 as a key candidate for the prophylaxis and improvement of the diagnosis of Chagas disease in Mexico. (3) Results: Of the 25 Mexican isolates analysed, 48% (12) were recovered from humans and 24% (6) recovered from Triatoma barberi and Triatoma dimidiata. Phylogenetic inferences revealed a polytomy in the T. cruzi clade with two defined subgroups, one formed by all sequences of the DTU I and the other formed by DTU II–VI; both subgroups had high branch support. Genetic population analysis detected a single (monomorphic) haplotype of TcI throughout the entire distribution across both Mexico and South America. This information was supported by Nei’s pairwise distances, where the sequences of TcI showed no genetic differences. (4) Conclusions: Given that both previous studies and the findings of the present work confirmed that TcI is the only genotype detected from human isolates obtained from various states of Mexico, and that there is no significant genetic variability in any of them, it is possible to propose the development of in silico strategies for the production of antigens that optimise the diagnosis of Chagas disease, such as quantitative ELISA methods that use this region of Tc24.
Collapse
Affiliation(s)
- Ingeborg Becker
- Centro de Medicina Tropical, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Correspondence: (I.B.); (C.R.S.)
| | - Haydee Miranda-Ortiz
- Unidad de Secuenciación, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico
| | | | - Sokani Sánchez-Montes
- Centro de Medicina Tropical, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Laboratorio de Diagnóstico, Facultad de Ciencias Biológicas y Agropecuarias Región Poza Rica-Tuxpan, Universidad Veracruzana, Tuxpan de Rodríguez Cano 92870, Mexico
| | - Pablo Colunga-Salas
- Centro de Medicina Tropical, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Instituto de Biotecnología y Ecología Aplicada, Universidad Veracruzana, Xalapa de Enríquez 91090, Mexico
| | - Estefanía Grostieta
- Centro de Medicina Tropical, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Javier Juárez-Gabriel
- Centro de Medicina Tropical, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Laboratorio de Diagnóstico, Facultad de Ciencias Biológicas y Agropecuarias Región Poza Rica-Tuxpan, Universidad Veracruzana, Tuxpan de Rodríguez Cano 92870, Mexico
| | - Yokomi N. Lozano-Sardaneta
- Centro de Medicina Tropical, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Minerva Arce-Fonseca
- Department of Molecular Biology, National Institute of Cardiology “Ignacio Chávez”, Mexico City 14080, Mexico
| | - Olivia Rodríguez-Morales
- Department of Molecular Biology, National Institute of Cardiology “Ignacio Chávez”, Mexico City 14080, Mexico
| | - Gabriela Meneses-Ruíz
- Departamento de Parasitología, Instituto de Diagnóstico y Referencia Epidemiológicos, Secretaría de Salud, Mexico City 01480, Mexico
| | - Sergio Pastén-Sánchez
- Departamento de Parasitología, Instituto de Diagnóstico y Referencia Epidemiológicos, Secretaría de Salud, Mexico City 01480, Mexico
| | - Irma López Martínez
- Departamento de Parasitología, Instituto de Diagnóstico y Referencia Epidemiológicos, Secretaría de Salud, Mexico City 01480, Mexico
| | - Saúl González-Guzmán
- Laboratorio del Banco Central de Sangre del Centro Médico Nacional “La Raza”, Instituto Mexicano del Seguro Social, Mexico City 02990, Mexico
- Departamento de Investigación, Hospital Regional de Alta Especialidad de Zumpango, Zumpango 55600, Mexico
| | - Vladimir Paredes-Cervantes
- Unidad de Investigación Médica en Inmunología e Infectología, Hospital de Infectología, Centro Médico Nacional “La Raza”, Instituto Mexicano del Seguro Social, Mexico City 02990, Mexico
| | - Otacilio C. Moreira
- Laboratorio de Biología Molecular e Doencas Endêmicas, Instituto Oswaldo Cruz, Fiocruz 21040900, RJ, Brazil
| | - Paula Finamore-Araujo
- Laboratorio de Biología Molecular e Doencas Endêmicas, Instituto Oswaldo Cruz, Fiocruz 21040900, RJ, Brazil
| | | | - Uriel Coquis-Navarrete
- Departamento de Genómica Poblacional, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico
| | - Laura Rengifo-Correa
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | | | | | - Jorge A. Falcón-Lezama
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa 86100, Mexico
| | - Roberto Tapia-Conyer
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Christopher R. Stephens
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Correspondence: (I.B.); (C.R.S.)
| |
Collapse
|
9
|
Nath SK, Pankajakshan P, Sharma T, Kumari P, Shinde S, Garg N, Mathur K, Arambam N, Harjani D, Raj M, Kwatra G, Venkatesh S, Choudhoury A, Bano S, Tayal P, Sharan M, Arora R, Strych U, Hotez PJ, Bottazzi ME, Rawal K. A Data-Driven Approach to Construct a Molecular Map of Trypanosoma cruzi to Identify Drugs and Vaccine Targets. Vaccines (Basel) 2023; 11:vaccines11020267. [PMID: 36851145 PMCID: PMC9963959 DOI: 10.3390/vaccines11020267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/28/2023] Open
Abstract
Chagas disease (CD) is endemic in large parts of Central and South America, as well as in Texas and the southern regions of the United States. Successful parasites, such as the causative agent of CD, Trypanosoma cruzi have adapted to specific hosts during their phylogenesis. In this work, we have assembled an interactive network of the complex relations that occur between molecules within T. cruzi. An expert curation strategy was combined with a text-mining approach to screen 10,234 full-length research articles and over 200,000 abstracts relevant to T. cruzi. We obtained a scale-free network consisting of 1055 nodes and 874 edges, and composed of 838 proteins, 43 genes, 20 complexes, 9 RNAs, 36 simple molecules, 81 phenotypes, and 37 known pharmaceuticals. Further, we deployed an automated docking pipeline to conduct large-scale docking studies involving several thousand drugs and potential targets to identify network-based binding propensities. These experiments have revealed that the existing FDA-approved drugs benznidazole (Bz) and nifurtimox (Nf) show comparatively high binding energies to the T. cruzi network proteins (e.g., PIF1 helicase-like protein, trans-sialidase), when compared with control datasets consisting of proteins from other pathogens. We envisage this work to be of value to those interested in finding new vaccines for CD, as well as drugs against the T. cruzi parasite.
Collapse
Affiliation(s)
- Swarsat Kaushik Nath
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Preeti Pankajakshan
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Trapti Sharma
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Priya Kumari
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Sweety Shinde
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Nikita Garg
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Kartavya Mathur
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Nevidita Arambam
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Divyank Harjani
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Manpriya Raj
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Garwit Kwatra
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Sayantan Venkatesh
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Alakto Choudhoury
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Saima Bano
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Prashansa Tayal
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Mahek Sharan
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Ruchika Arora
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Ulrich Strych
- Texas Children’s Hospital Center for Vaccine Development, Departments of Pediatrics and Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peter J. Hotez
- Texas Children’s Hospital Center for Vaccine Development, Departments of Pediatrics and Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biology, Baylor University, Waco, TX 76798, USA
| | - Maria Elena Bottazzi
- Texas Children’s Hospital Center for Vaccine Development, Departments of Pediatrics and Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biology, Baylor University, Waco, TX 76798, USA
| | - Kamal Rawal
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
- Correspondence:
| |
Collapse
|
10
|
de Azevedo SLC, Catanho M, Guimarães ACR, Galvão TC. Genomic surveillance: a potential shortcut for effective Chagas disease management. Mem Inst Oswaldo Cruz 2023; 117:e220164. [PMID: 36700581 PMCID: PMC9870261 DOI: 10.1590/0074-02760220164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/29/2022] [Indexed: 01/27/2023] Open
Abstract
Chagas disease is an enduring public health issue in many Latin American countries, receiving insufficient investment in research and development. Strategies for disease control and management currently lack efficient pharmaceuticals, commercial diagnostic kits with improved sensitivity, and vaccines. Genetic heterogeneity of Trypanosoma cruzi is a key aspect for novel drug design since pharmacological technologies rely on the degree of conservation of parasite target proteins. Therefore, there is a need to expand the knowledge regarding parasite genetics which, if fulfilled, could leverage Chagas disease research and development, and improve disease control strategies. The growing capacity of whole-genome sequencing technology and its adoption as disease surveillance routine may be key for solving this long-lasting problem.
Collapse
Affiliation(s)
- Sophia Lincoln Cardoso de Azevedo
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Rio de Janeiro, RJ, Brasil,Universidade Federal Fluminense, Niterói, RJ, Brasil
| | - Marcos Catanho
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - Ana Carolina Ramos Guimarães
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Rio de Janeiro, RJ, Brasil
| | - Teca Calcagno Galvão
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Rio de Janeiro, RJ, Brasil,+ Corresponding author:
| |
Collapse
|
11
|
Jones KM, Poveda C, Versteeg L, Bottazzi ME, Hotez PJ. Preclinical advances and the immunophysiology of a new therapeutic chagas disease vaccine. Expert Rev Vaccines 2022; 21:1185-1203. [PMID: 35735065 DOI: 10.1080/14760584.2022.2093721] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Chronic infection with the protozoal parasite Trypanosoma cruzi leads to a progressive cardiac disease, known as chronic Chagasic cardiomyopathy (CCC). A new therapeutic Chagas disease vaccine is in development to augment existing antiparasitic chemotherapy drugs. AREAS COVERED We report on our current understanding of the underlying immunologic and physiologic mechanisms that lead to CCC, including parasite immune escape mechanisms that allow persistence and the subsequent inflammatory and fibrotic processes that lead to clinical disease. We report on vaccine design and the observed immunotherapeutic effects including induction of a balanced TH1/TH2/TH17 immune response that leads to reduced parasite burdens and tissue pathology. Further, we report vaccine-linked chemotherapy, a dose sparing strategy to further reduce parasite burdens and tissue pathology. EXPERT OPINION Our vaccine-linked chemotherapeutic approach is a multimodal treatment strategy, addressing both the parasite persistence and the underlying deleterious host inflammatory and fibrotic responses that lead to cardiac dysfunction. In targeting treatment towards patients with chronic indeterminate or early determinate Chagas disease, this vaccine-linked chemotherapeutic approach will be highly economical and will reduce the global disease burden and deaths due to CCC.
Collapse
Affiliation(s)
- Kathryn M Jones
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Cristina Poveda
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Leroy Versteeg
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America.,Cell Biology and Immunology Group, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, The Netherlands
| | - Maria Elena Bottazzi
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Biology, Baylor University, Waco, Texas, United States of America
| | - Peter J Hotez
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Biology, Baylor University, Waco, Texas, United States of America.,James A. Baker III Institute for Public Policy, Rice University, Houston, Texas, United States of America.,Hagler Institute for Advanced Study at Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
12
|
Vaccine Design against Chagas Disease Focused on the Use of Nucleic Acids. Vaccines (Basel) 2022; 10:vaccines10040587. [PMID: 35455336 PMCID: PMC9028413 DOI: 10.3390/vaccines10040587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
Chagas disease is caused by the protozoan Trypanosoma cruzi and is endemic to Central and South America. However, it has spread around the world and affects several million people. Treatment with currently available drugs cause several side effects and require long treatment times to eliminate the parasite, however, this does not improve the chronic effects of the disease such as cardiomyopathy. A therapeutic vaccine for Chagas disease may be able to prevent the disease and improve the chronic effects such as cardiomyopathy. This vaccine would be beneficial for both infected people and those which are at risk in endemic and non-endemic areas. In this article, we will review the surface antigens of T. cruzi, in order to choose those that are most antigenic and least variable, to design effective vaccines against the etiological agent of Chagas disease. Also, we discuss aspects of the design of nucleic acid-based vaccines, which have been developed and proven to be effective against the SARS-CoV-2 virus. The role of co-adjuvants and delivery carriers is also discussed. We present an example of a chimeric trivalent vaccine, based on experimental work, which can be used to design a vaccine against Chagas disease.
Collapse
|
13
|
Versteeg L, Adhikari R, Poveda C, Villar-Mondragon MJ, Jones KM, Hotez PJ, Bottazzi ME, Tijhaar E, Pollet J. Location and expression kinetics of Tc24 in different life stages of Trypanosoma cruzi. PLoS Negl Trop Dis 2021; 15:e0009689. [PMID: 34478444 PMCID: PMC8415617 DOI: 10.1371/journal.pntd.0009689] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/27/2021] [Indexed: 12/03/2022] Open
Abstract
Tc24-C4, a modified recombinant flagellar calcium-binding protein of Trypanosoma cruzi, is under development as a therapeutic subunit vaccine candidate to prevent or delay progression of chronic Chagasic cardiomyopathy. When combined with Toll-like receptor agonists, Tc24-C4 immunization reduces parasitemia, parasites in cardiac tissue, and cardiac fibrosis and inflammation in animal models. To support further research on the vaccine candidate and its mechanism of action, murine monoclonal antibodies (mAbs) against Tc24-C4 were generated. Here, we report new findings made with mAb Tc24-C4/884 that detects Tc24-WT and Tc24-C4, as well as native Tc24 in T. cruzi on ELISA, western blots, and different imaging techniques. Surprisingly, detection of Tc24 by Tc24-C/884 in fixed T. cruzi trypomastigotes required permeabilization of the parasite, revealing that Tc24 is not exposed on the surface of T. cruzi, making a direct role of antibodies in the induced protection after Tc24-C4 immunization less likely. We further observed that after immunostaining T. cruzi-infected cells with mAb Tc24-C4/884, the expression of Tc24 decreases significantly when T. cruzi trypomastigotes enter host cells and transform into amastigotes. However, Tc24 is then upregulated in association with parasite flagellar growth linked to re-transformation into the trypomastigote form, prior to host cellular escape. These observations are discussed in the context of potential mechanisms of vaccine immunity.
Collapse
Affiliation(s)
- Leroy Versteeg
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, United States of America
- Texas Children’s Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, Texas, United States of America
- Cell Biology and Immunology Group, Wageningen University, Wageningen, The Netherlands
| | - Rakesh Adhikari
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, United States of America
- Texas Children’s Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, Texas, United States of America
| | - Cristina Poveda
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, United States of America
- Texas Children’s Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, Texas, United States of America
| | - Maria Jose Villar-Mondragon
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, United States of America
- Texas Children’s Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, Texas, United States of America
| | - Kathryn M. Jones
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, United States of America
- Texas Children’s Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, Texas, United States of America
| | - Peter J. Hotez
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, United States of America
- Texas Children’s Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biology, Baylor University, Waco, Texas, United States of America
| | - Maria Elena Bottazzi
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, United States of America
- Texas Children’s Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biology, Baylor University, Waco, Texas, United States of America
| | - Edwin Tijhaar
- Cell Biology and Immunology Group, Wageningen University, Wageningen, The Netherlands
| | - Jeroen Pollet
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, United States of America
- Texas Children’s Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
14
|
Choudhuri S, Rios L, Vázquez-Chagoyán JC, Garg NJ. Oxidative stress implications for therapeutic vaccine development against Chagas disease. Expert Rev Vaccines 2021; 20:1395-1406. [PMID: 34406892 DOI: 10.1080/14760584.2021.1969230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Pathogenesis of Chagas disease (CD) caused by the protozoan parasite Trypanosoma cruzi (T. cruzi) involves chronic oxidative and inflammatory stress. In this review, we discuss the research efforts in therapeutic vaccine development to date and the potential challenges imposed by oxidative stress in achieving an efficient therapeutic vaccine against CD. AREAS COVERED This review covers the immune and nonimmune mechanisms of reactive oxygen species production and immune response patterns during T. cruzi infection in CD. A discussion on immunotherapy development efforts, the efficacy of antigen-based immune therapies against T. cruzi, and the role of antioxidants as adjuvants is discussed to provide promising insights to developing future treatment strategies against CD. EXPERT OPINION Administration of therapeutic vaccines can be a good option to confront persistent parasitemia in CD by achieving a rapid, short-lived stimulation of type 1 cell-mediated immunity. At the same time, adjunct therapies could play a critical role in the preservation of mitochondrial metabolism and cardiac muscle contractility in CD. We propose combined therapy with antigen-based vaccine and small molecules to control the pathological oxidative insult would be effective in the conservation of cardiac structure and function in CD.
Collapse
Affiliation(s)
- Subhadip Choudhuri
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Lizette Rios
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Juan Carlos Vázquez-Chagoyán
- Centro de Investigación y Estudios Avanzados En Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, México
| | - Nisha Jain Garg
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Tx, USA
| |
Collapse
|
15
|
Majeau A, Murphy L, Herrera C, Dumonteil E. Assessing Trypanosoma cruzi Parasite Diversity through Comparative Genomics: Implications for Disease Epidemiology and Diagnostics. Pathogens 2021; 10:212. [PMID: 33669197 PMCID: PMC7919814 DOI: 10.3390/pathogens10020212] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 01/21/2023] Open
Abstract
Chagas disease is an important vector-borne neglected tropical disease that causes great health and economic losses. The etiological agent, Trypanosoma cruzi, is a protozoan parasite endemic to the Americas, comprised by important diversity, which has been suggested to contribute to poor serological diagnostic performance. Current nomenclature describes seven discrete typing units (DTUs), or lineages. We performed the first large scale analysis of T. cruzi diversity among 52 previously published genomes from strains covering multiple countries and parasite DTUs and assessed how different markers summarize this genetic diversity. We also examined how seven antigens currently used in commercial serologic tests are conserved across this diversity of strains. DTU structuration was confirmed at the whole-genome level, with evidence of sub-DTU diversity, associated in part to geographic structuring. We observed very comparable phylogenetic tree topographies for most of the 32 markers investigated, with clear clustering of sequences by DTU, and a few of these markers suggested some degree of intra-lineage diversity. At least three of the currently used antigens represent poorly conserved sequences, with sequences used in tests quite divergent from sequences in many strains. Most markers are well suited for estimating parasite diversity to DTU level, and a few are particularly well-suited to assess intra-DTU diversity. Analysis of antigen sequences across all strains indicates that antigenic diversity is a likely explanation for limited diagnostic performance in Central and North America.
Collapse
Affiliation(s)
| | | | - Claudia Herrera
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Vector Borne Infectious Disease Research Center, Tulane University, New Orleans, LA 70112, USA; (A.M.); (L.M.)
| | - Eric Dumonteil
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Vector Borne Infectious Disease Research Center, Tulane University, New Orleans, LA 70112, USA; (A.M.); (L.M.)
| |
Collapse
|
16
|
Dumonteil E, Herrera C. The Case for the Development of a Chagas Disease Vaccine: Why? How? When? Trop Med Infect Dis 2021; 6:tropicalmed6010016. [PMID: 33530605 PMCID: PMC7851737 DOI: 10.3390/tropicalmed6010016] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/06/2021] [Accepted: 01/19/2021] [Indexed: 11/16/2022] Open
Abstract
Chagas disease is a major neglected tropical disease, transmitted predominantly by triatomine insect vectors, but also through congenital and oral routes. While endemic in the Americas, it has turned into a global disease. Because of the current drug treatment limitations, a vaccine would represent a major advancement for better control of the disease. Here, we review some of the rationale, advances, and challenges for the ongoing development of a vaccine against Chagas disease. Recent pre-clinical studies in murine models have further expanded (i) the range of vaccine platforms and formulations tested; (ii) our understanding of the immune correlates for protection; and (iii) the extent of vaccine effects on cardiac function, beyond survival and parasite burden. We further discuss outstanding issues and opportunities to move Chagas disease development forward in the near future.
Collapse
|