1
|
Clear E, Grant R, Gardiner J, Brassey C. Baculum shape complexity correlates to metrics of post-copulatory sexual selection in Musteloidea. J Morphol 2023; 284:e21572. [PMID: 36806148 PMCID: PMC10952176 DOI: 10.1002/jmor.21572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023]
Abstract
The penis bone, or baculum, is present in many orders of mammals, although its function is still relatively unknown, mainly due to the challenges with studying the baculum in vivo. Suggested functions include increasing vaginal friction, prolonging intromission and inducing ovulation. Since it is difficult to study baculum function directly, functional morphology can give important insights. Shape complexity techniques, in particular, are likely to offer a useful metric of baculum morphology, especially since finding homologous landmarks on such a structure is challenging. This study focuses on measuring baculum shape complexity in the Musteloidea-a large superfamily spanning a range of body sizes with well-developed, qualitatively diverse bacula. We compared two shape complexity metrics-alpha shapes and ariaDNE and conducted analyses over a range of six different coefficients, or bandwidths, in 32 species of Musteloidea. Overall, we found that shape complexity, especially at the baculum distal tip, is associated with intromission duration using both metrics. These complexities can include hooks, bifurcations and other additional projections. In addition, alpha shapes complexity was also associated with relative testes mass. These results suggest that post-copulatory mechanisms of sexual selection are probably driving the evolution of more complex-shaped bacula tips in Musteloidea and are likely to be especially involved in increasing intromission duration during copulation.
Collapse
Affiliation(s)
- Emma Clear
- Faculty of Science and EngineeringManchester Metropolitan UniversityManchesterUK
| | - Robyn Grant
- Faculty of Science and EngineeringManchester Metropolitan UniversityManchesterUK
| | - James Gardiner
- Institute of Life Course and Medical SciencesThe University of LiverpoolLiverpoolUK
| | - Charlotte Brassey
- Faculty of Science and EngineeringManchester Metropolitan UniversityManchesterUK
| |
Collapse
|
2
|
Lenschow C, Mendes ARP, Lima SQ. Hearing, touching, and multisensory integration during mate choice. Front Neural Circuits 2022; 16:943888. [PMID: 36247731 PMCID: PMC9559228 DOI: 10.3389/fncir.2022.943888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/28/2022] [Indexed: 12/27/2022] Open
Abstract
Mate choice is a potent generator of diversity and a fundamental pillar for sexual selection and evolution. Mate choice is a multistage affair, where complex sensory information and elaborate actions are used to identify, scrutinize, and evaluate potential mating partners. While widely accepted that communication during mate assessment relies on multimodal cues, most studies investigating the mechanisms controlling this fundamental behavior have restricted their focus to the dominant sensory modality used by the species under examination, such as vision in humans and smell in rodents. However, despite their undeniable importance for the initial recognition, attraction, and approach towards a potential mate, other modalities gain relevance as the interaction progresses, amongst which are touch and audition. In this review, we will: (1) focus on recent findings of how touch and audition can contribute to the evaluation and choice of mating partners, and (2) outline our current knowledge regarding the neuronal circuits processing touch and audition (amongst others) in the context of mate choice and ask (3) how these neural circuits are connected to areas that have been studied in the light of multisensory integration.
Collapse
Affiliation(s)
- Constanze Lenschow
- Champalimaud Foundation, Champalimaud Research, Neuroscience Program, Lisbon, Portugal
| | - Ana Rita P Mendes
- Champalimaud Foundation, Champalimaud Research, Neuroscience Program, Lisbon, Portugal
| | - Susana Q Lima
- Champalimaud Foundation, Champalimaud Research, Neuroscience Program, Lisbon, Portugal
| |
Collapse
|
3
|
André GI, Firman RC, Simmons LW. The effect of genital stimulation on competitive fertilization success in house mice. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Orr TJ, Lukitsch T, Eiting TP, Brennan PLR. Testing Morphological Relationships Between Female and Male Copulatory Structures in Bats. Integr Comp Biol 2022; 62:icac040. [PMID: 35661885 DOI: 10.1093/icb/icac040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The lower reproductive tract of female mammals has several competing functions including mating, tract health maintenance, and parturition. Diverse vaginal anatomy suggests interactions between natural and sexual selection, yet despite its importance, female copulatory morphology remains under-studied. We undertook a comparative study across the species-rich mammalian order Chiroptera (bats) with a focus on the suborder Yangochiroptera (Vespertilioniformes) to examine how female vaginal features may have coevolved with male penis morphology to minimize mechanical damage to their tissues during copulation. The penis morphology is diverse, presenting great potential for post-copulatory sexual selection and coevolution with the female morphology, but vaginas have not been carefully examined. Here we test the hypotheses that vaginal thickness and collagen density have coevolved with features of the male penis including the presence of spines and a baculum. We present histological data from females of 24 species from 7 families of bats, and corresponding data on male penis anatomy. We also examine the role of phylogenetic history in the morphological patterns we observe. We found evidence that female vaginal thickness has coevolved with the presence of penile spines, but not with baculum presence or width. Collagen density did not appear to covary with male penile features. Our findings highlight the importance of considering interactions between the sexes in influencing functional reproductive structures and examine how these structures have been under selection in bats.
Collapse
Affiliation(s)
- Teri J Orr
- New Mexico State University, Department of Biology, Las Cruces, NM 88003
| | - Theresa Lukitsch
- New Mexico State University, Department of Biology, Las Cruces, NM 88003
| | - Thomas P Eiting
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84112
| | - Patricia L R Brennan
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075
| |
Collapse
|
5
|
Over and beyond the Primate baubellum Surface: A “Jewel Bone” Shielded in Museums. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Computed Tomography (CT), mostly used in the medical field, has also recently been involved in Cultural Heritage studies, thanks to its efficiency and total non-invasiveness. Due to the large variety of sizes and compositions typical of Cultural Heritage objects, different X-ray sources, detectors, and setups are necessary to meet the different needs of various case studies. Here, we focus on the use of micro-CT to explore the morphology and shape of a small, neglected bone found inside the clitoris of non-human primates (the baubellum), which we obtained by accessing two prestigious primatological collections of the American Museum of Natural History (New York, NY, USA) and the National Museum of Natural History (Washington, DC, USA). Overcoming methodological limits imposed by the absence of homologous landmarks, we combined the use of the non-invasive 3D micro-CT and a recently released landmark-free shape analysis (the alpha-shape technique) to objectively describe and quantify the shape complexity of scanned primate baubella. Micro-CT provided high-resolution results, overcoming constraints linked to museum policy about non-disruptive sampling and preserving samples for future research. Finally, it proved appropriate as post-mortem sampling had no impact on protected wild primate populations.
Collapse
|
6
|
Winkler L, Lindholm AK, Ramm SA, Sutter A. The baculum affects paternity success of first but not second males in house mouse sperm competition. BMC Ecol Evol 2021; 21:159. [PMID: 34384348 PMCID: PMC8359600 DOI: 10.1186/s12862-021-01887-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/16/2021] [Indexed: 01/20/2023] Open
Abstract
The vast variation observed in genital morphology is a longstanding puzzle in evolutionary biology. Studies showing that the morphology of the mammalian baculum (penis bone) can covary with a male’s paternity success indicate a potential impact of baculum morphology on male fitness, likely through influencing sperm competition outcomes. We therefore measured the size (measurements of length and width) and shape (geometric morphometric measurements) of the bacula of male house mice used in previously published sperm competition experiments, in which two males mated successively with the same female in staged matings. This enabled us to correlate baculum morphology with sperm competition success, incorporating potential explanatory variables related to copulatory plugs, male mating behavior and a selfish genetic element that influences sperm motility. We found that a wider baculum shaft increased a male’s paternity share when mating first, but not when mating second with a multiply-mating female. Geometric morphometric shape measurements were not clearly associated with fertilization success for either male. We found limited evidence that the effect of baculum morphology on male fertilization success was altered by experimental removal of the copulatory plug. Furthermore, neither genetic differences in sperm motility, nor covariation with male mating behavior mediated the effect of baculum morphology on male fertilization success. Taken together with previous findings, the mating-order effects we found here suggest that baculum-mediated stimulation by the first male might be particularly important for fertilization.
Collapse
Affiliation(s)
- Lennart Winkler
- Department of Evolutionary Biology, Bielefeld University, Konsequenz 45, 33615, Bielefeld, Germany. .,Applied Zoology, Technical University Dresden, Zellescher Weg 20b, 01062, Dresden, Germany.
| | - Anna K Lindholm
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Steven A Ramm
- Department of Evolutionary Biology, Bielefeld University, Konsequenz 45, 33615, Bielefeld, Germany
| | - Andreas Sutter
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
7
|
van der Horst G, Kotzè S, O'Riain MJ, Muller N, Maree L. A possible highway system for the rapid delivery of sperm from the testis to the penis in the naked mole-rat, Heterocephalus glaber. J Morphol 2021; 282:1478-1498. [PMID: 34296784 DOI: 10.1002/jmor.21399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/08/2021] [Accepted: 07/17/2021] [Indexed: 11/08/2022]
Abstract
Gametogenesis is suppressed in most members of the eusocial naked mole-rat (NMR) colony, while the queen selects mainly one breeding male during her life span. Recently, it was reported that the NMR testicular organization seems to produce spermatozoa on demand after suppression of spermatogenesis during most of gestation. A Sertoli cell "pump" is then used to flush the spermatozoa into short tubuli recti and simplified rete testis to reach the excurrent duct system. We hypothesize that the components of this duct system are adapted for rapid delivery of spermatozoa to the penis and for numerous copulations with the queen. Therefore, the aim was to study the ultrastructure of the male NMR reproductive duct system using light microscopy and transmission electron microscopy. The NMR rete testis gives rise to six to eight efferent tubules joining the caput epididymis. The caput epididymis resembles that of other rodents but with less distinction in terms of histological zoning. The remainder of the epididymis is considerably reduced in length compared to other rodents. In contrast, the vas deferens epithelium is highly specialized in that a vast range of vesicles, often closely associated with the spermatozoa, were visible. The large ampulla is a factory for merocrine and apocrine secretions, producing even more diverse vesicles. The transitional epithelial cells of the bladder appear to secrete abundant mucous and the penis as well as its baculum is relatively small. We speculate that these modifications strongly suggest that the excurrent duct system has been simplified and adjusted to compensate for the absence of long maturation and storage of spermatozoa. We propose that these adaptations to the NMR reproductive tract are associated with a state of degenerative orthogenesis that was selected for due to the absence of sperm competition and apparently rapid delivery of spermatozoa from the testis.
Collapse
Affiliation(s)
- Gerhard van der Horst
- Department of Medical, Biosciences, University of the Western Cape, Bellville, South Africa
| | - Sanet Kotzè
- Division of Clinical Anatomy, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa.,Ross University School of Veterinary Medicine, Basseterre, St. Kitts, West Indies
| | | | - Nolan Muller
- National Health Laboratory Services, Anatomical Pathology, Tygerberg Hospital, Parow, South Africa
| | - Liana Maree
- Department of Medical, Biosciences, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
8
|
The ultimate database to (re)set the evolutionary history of primate genital bones. Sci Rep 2021; 11:11245. [PMID: 34045627 PMCID: PMC8160331 DOI: 10.1038/s41598-021-90787-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/17/2021] [Indexed: 02/04/2023] Open
Abstract
Scientific literature concerning genital bones in primates consists of both ancient works (dating back to the nineteenth century) and more recent revisions/meta-analyses, which, however, are not always so detailed or exhaustive. Based on a thorough analysis, several conflicting data, inaccurate references, and questionable claims have emerged. We generated a binary matrix of genital bone occurrence data, considering only data at the species level, based on (1) a rigorous literature search protocol, (2) raw data (collected exclusively from primary literature), (3) an updated taxonomy (often tracing back to the species taxonomic history) and (4) new occurrence data from scanned genitals of fresh and museum specimens (using micro-computed tomography-micro-CT). Thanks to this methodological approach, we almost doubled available occurrence data so far, avoiding any arbitrary extension of generic data to conspecific species. This practice, in fact, has been recently responsible for an overestimation of the occurrence data, definitively flattening the interspecific variability. We performed the ancestral state reconstruction analysis of genital bone occurrence and results were mapped onto the most updated phylogeny of primates. As for baculum, we definitively demonstrated its simplesiomorphy for the entire order. As for baubellum, we interpreted all scattered absences as losses, actually proposing (for the first time) a simplesiomorphic state for the clitoral bone as well. The occurrence data obtained, while indirectly confirming the baculum/baubellum homology (i.e., for each baubellum a baculum was invariably present), could also directly demonstrate an intra-specific variability affecting ossa genitalia occurrence. With our results, we established a radically improved and updated database about the occurrence of genital bones in primates, available for further comparative analyses.
Collapse
|
9
|
House CM, Lewis Z, Sharma MD, Hodgson DJ, Hunt J, Wedell N, Hosken DJ. Sexual selection on the genital lobes of male Drosophila simulans. Evolution 2021; 75:501-514. [PMID: 33386741 DOI: 10.1111/evo.14158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/03/2020] [Accepted: 12/11/2020] [Indexed: 12/01/2022]
Abstract
Sexual selection is thought to be responsible for the rapid divergent evolution of male genitalia with several studies detecting multivariate sexual selection on genital form. However, in most cases, selection is only estimated during a single episode of selection, which provides an incomplete view of net selection on genital traits. Here, we estimate the strength and form of multivariate selection on the genitalia arch of Drosophila simulans when mating occurs in the absence of a competitor and during sperm competition, in both sperm defence and offense roles (i.e., when mating first and last). We found that the strength of sexual selection on the genital arch was strongest during noncompetitive mating and weakest during sperm offense. However, the direction of selection was similar across selection episodes with no evidence for antagonistic selection. Overall, selection was not particularly strong despite genitals clearly evolving rapidly in this species.
Collapse
Affiliation(s)
- Clarissa M House
- School of Science, Western Sydney University, Richmond, NSW, Australia
| | - Zenobia Lewis
- School of Life Sciences, University of Liverpool, Liverpool, UK
| | - Manmohan D Sharma
- Centre for Ecology and Conservation, College of Life & Environmental Sciences, University of Exeter, Cornwall, UK
| | - David J Hodgson
- Centre for Ecology and Conservation, College of Life & Environmental Sciences, University of Exeter, Cornwall, UK
| | - John Hunt
- School of Science, Western Sydney University, Richmond, NSW, Australia.,Centre for Ecology and Conservation, College of Life & Environmental Sciences, University of Exeter, Cornwall, UK
| | - Nina Wedell
- Centre for Ecology and Conservation, College of Life & Environmental Sciences, University of Exeter, Cornwall, UK
| | - David J Hosken
- Centre for Ecology and Conservation, College of Life & Environmental Sciences, University of Exeter, Cornwall, UK
| |
Collapse
|
10
|
Jakovlić I. The missing human baculum: a victim of conspecific aggression and budding self‐awareness? Mamm Rev 2021. [DOI: 10.1111/mam.12237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ivan Jakovlić
- State Key Laboratory of Grassland Agro‐Ecosystem Institute of Innovation Ecology Lanzhou University Lanzhou730000China
- Bio‐Transduction Lab, Biolake Wuhan430075China
| |
Collapse
|
11
|
Sarver BAJ, Herrera ND, Sneddon D, Hunter SS, Settles ML, Kronenberg Z, Demboski JR, Good JM, Sullivan J. Diversification, Introgression, and Rampant Cytonuclear Discordance in Rocky Mountains Chipmunks (Sciuridae: Tamias). Syst Biol 2021; 70:908-921. [PMID: 33410870 DOI: 10.1093/sysbio/syaa085] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/18/2022] Open
Abstract
Evidence from natural systems suggests that hybridization between animal species is more common than traditionally thought, but the overall contribution of introgression to standing genetic variation within species remains unclear for most animal systems. Here, we use targeted exon-capture to sequence thousands of nuclear loci and complete mitochondrial genomes from closely related chipmunk species in the Tamias quadrivittatus group that are distributed across the Great Basin and the central and southern Rocky Mountains of North America. This recent radiation includes six overlapping, ecologically distinct species (T. canipes, T. cinereicollis, T. dorsalis, T. quadrivittatus, T. rufus, and T. umbrinus) that show evidence for widespread introgression across species boundaries. Such evidence has historically been derived from a handful of markers, typically focused on mitochondrial loci, to describe patterns of introgression; consequently, the extent of introgression of nuclear genes is less well characterized. We conducted a series of phylogenomic and species-tree analyses to resolve the phylogeny of six species in this group. In addition, we performed several population genomic analyses to characterize nuclear genomes and infer coancestry among individuals. Furthermore, we used emerging quartets-based approaches to simultaneously infer the species tree (SVDquartets) and identify introgression (HyDe). We found that, in spite of rampant introgression of mitochondrial genomes between some species pairs (and sometimes involving up to three species), there appears to be little to no evidence for nuclear introgression. These findings mirror other genomic results where complete mitochondrial capture has occurred between chipmunk species in the absence of appreciable nuclear gene flow. The underlying causes of recurrent massive cytonuclear discordance remain unresolved in this group but mitochondrial DNA appears highly misleading of population histories as a whole. Collectively, it appears that chipmunk species boundaries are largely impermeable to nuclear gene flow and that hybridization, while pervasive with respect to mtDNA, has likely played a relatively minor role in the evolutionary history of this group.
Collapse
Affiliation(s)
- Brice A J Sarver
- Department of Biological Sciences, University of Idaho, Moscow, Idaho.,Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow Idaho
| | | | - David Sneddon
- Department of Biological Sciences, University of Idaho, Moscow, Idaho
| | - Samuel S Hunter
- Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow Idaho.,UC-Davis Genome Center, Davis, California
| | | | | | - John R Demboski
- Department of Zoology, Denver Museum of Nature & Sciences, Denver, Colorado
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, Montana.,Wildlife Biology Program, University of Montana, Missoula, Montana
| | - Jack Sullivan
- Department of Biological Sciences, University of Idaho, Moscow, Idaho.,Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow Idaho
| |
Collapse
|
12
|
Firman RC. Of mice and women: advances in mammalian sperm competition with a focus on the female perspective. Philos Trans R Soc Lond B Biol Sci 2020; 375:20200082. [PMID: 33070720 DOI: 10.1098/rstb.2020.0082] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although initially lagging behind discoveries being made in other taxa, mammalian sperm competition is now a productive and advancing field of research. Sperm competition in mammals is not merely a 'sprint-race' between the gametes of rival males, but rather a race over hurdles; those hurdles being the anatomical and physiological barriers provided by the female reproductive tract, as well as the egg and its vestments. With this in mind, in this review, I discuss progress in the field while focusing on the female perspective. I highlight ways by which sperm competition can have positive effects on female reproductive success and discuss how competitive outcomes are not only owing to dynamics between the ejaculates of rival males, but also attributable to mechanisms by which female mammals bias paternity toward favourable sires. Drawing on examples across different species-from mice to humans-I provide an overview of the accumulated evidence which firmly establishes that sperm competition is a key selective force in the evolution of male traits and detail how females can respond to increased sperm competitiveness with increased egg resistance to fertilization. I also discuss evidence for facultative responses to the sperm competition environment observed within mammal species. Overall, this review identifies shortcomings in our understanding of the specific mechanisms by which female mammals 'select' sperm. More generally, this review demonstrates how, moving forward, mammals will continue to be effective animal models for studying both evolutionary and facultative responses to sperm competition. This article is part of the theme issue 'Fifty years of sperm competition'.
Collapse
Affiliation(s)
- Renée C Firman
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| |
Collapse
|
13
|
André GI, Firman RC, Simmons LW. Baculum shape and paternity success in house mice: evidence for genital coevolution. Philos Trans R Soc Lond B Biol Sci 2020; 375:20200150. [PMID: 33070728 DOI: 10.1098/rstb.2020.0150] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sexual selection is believed to be responsible for the rapid divergence of male genitalia, which is a widely observed phenomenon across different taxa. Among mammals, the stimulatory role of male genitalia and female 'sensory perception' has been suggested to explain these evolutionary patterns. Recent research on house mice has shown that baculum (penis bone) shape can respond to experimentally imposed sexual selection. Here, we explore the adaptive value of baculum shape by performing two experiments that examine the effects of male and female genitalia on male reproductive success. Thus, we selected house mice (Mus musculus domesticus) from families characterized by extremes in baculum shape (relative width) and examined paternity success in both non-competitive (monogamous) and competitive (polyandrous) contexts. Our analyses revealed that the relative baculum shape of competing males influenced competitive paternity success, but that this effect was dependent on the breeding value for baculum shape of the family from which females were derived. Our data provide novel insight into the potential mechanisms underlying the evolution of the house mouse baculum and lend support to the stimulatory hypothesis for the coevolution of male and female genitalia. This article is part of the theme issue 'Fifty years of sperm competition'.
Collapse
Affiliation(s)
- Goncalo I André
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, 6009 Western Australia, Australia
| | - Renée C Firman
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, 6009 Western Australia, Australia
| | - Leigh W Simmons
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, 6009 Western Australia, Australia
| |
Collapse
|
14
|
Brassey CA, Behnsen J, Gardiner JD. Postcopulatory sexual selection and the evolution of shape complexity in the carnivoran baculum. Proc Biol Sci 2020; 287:20201883. [PMID: 33049172 PMCID: PMC7657853 DOI: 10.1098/rspb.2020.1883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The baculum is an enigmatic bone within the mammalian glans penis, and the driving forces behind its often bizarre shape have captivated evolutionary biologists for over a century. Hypotheses for the function of the baculum include aiding in intromission, stimulating females and assisting with prolonged mating. Previous attempts to test these hypotheses have focused on the gross size of the baculum and have failed to reach a consensus. We conducted three-dimensional imaging and apply a new method to quantify three-dimensional shape complexity in the carnivoran baculum. We show that socially monogamous species are evolving towards complex-shaped bacula, whereas group-living species are evolving towards simple bacula. Overall three-dimensional baculum shape complexity is not related to relative testes mass, but tip complexity is higher in induced ovulators and species engaging in prolonged copulation. Our study provides evidence of postcopulatory sexual selection pressures driving three-dimensional shape complexity in the carnivore baculum.
Collapse
Affiliation(s)
- Charlotte A Brassey
- Department of Natural Sciences, Manchester Metropolitan University, M1 5GD, UK
| | - Julia Behnsen
- Manchester X-ray Imaging Facility, University of Manchester, M13 9PL, UK
| | - James D Gardiner
- Institute of Ageing and Chronic Disease, University of Liverpool, L7 8TX, UK
| |
Collapse
|
15
|
André GI, Firman RC, Simmons LW. The coevolution of male and female genitalia in a mammal: A quantitative genetic insight. Evolution 2020; 74:1558-1567. [PMID: 32490547 DOI: 10.1111/evo.14031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 04/10/2020] [Accepted: 05/30/2020] [Indexed: 12/28/2022]
Abstract
Male genitalia are among the most phenotypically diverse morphological traits, and sexual selection is widely accepted as being responsible for their evolutionary divergence. Studies of house mice suggest that the shape of the baculum (penis bone) affects male reproductive fitness and experimentally imposed postmating sexual selection has been shown to drive divergence in baculum shape across generations. Much less is known of the morphology of female genitalia and its coevolution with male genitalia. In light of this, we used a paternal half-sibling design to explore patterns of additive genetic variation and covariation underlying baculum shape and female vaginal tract size in house mice (Mus musculus domesticus). We applied a landmark-based morphometrics approach to measure baculum size and shape in males and the length of the vaginal tract and width of the cervix in females. Our results reveal significant additive genetic variation in house mouse baculum morphology and cervix width, as well as evidence for genetic covariation between male and female genital measures. Our data thereby provide novel insight into the potential for the coevolutionary divergence of male and female genital traits in a mammal.
Collapse
Affiliation(s)
- Gonçalo I André
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, 6009, Australia
| | - Renée C Firman
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, 6009, Australia
| | - Leigh W Simmons
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, 6009, Australia
| |
Collapse
|
16
|
A 3D journey on virtual surfaces and inner structure of ossa genitalia in Primates by means of a non-invasive imaging tool. PLoS One 2020; 15:e0228131. [PMID: 31999734 PMCID: PMC6992188 DOI: 10.1371/journal.pone.0228131] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 01/08/2020] [Indexed: 02/08/2023] Open
Abstract
Novel bio-imaging techniques such as micro-Computed Tomography provide an opportunity to investigate animal anatomy and morphology by overcoming limitations imposed by traditional anatomical drawings. The primate genital bones are complex anatomical structures whose occurrence in both male penis (baculum) and female clitoris (baubellum) may be difficult to assess in individual cadavers. We tested a 3-step methodological protocol, including different techniques ranging from inexpensive/simple to more expensive/sophisticated ones, by applying it to a sample of primate species, and resulting in different levels of data complexity: (1) presence/absence manual palpation method; (2) 2D X-ray plates; 3) 3D micro-CT scans. Manual palpation failed on 2 out of 23 specimens by detecting 1 false negative and 1 false positive; radiography failed once confirming the false positive, however firmly disproved by micro-CT; micro-CT analysis reported the presence of 9 bacula out of 11 male specimens and 1 baubellum out of 12 female specimens. A different baculum position was identified between strepsirrhine and haplorrhine species. We also aim to assess micro-CT as a non-invasive technique providing updated anatomical descriptions of primate ossa genitalia. Micro-CT 3D volumes showed the surface of some bones as rough, with a jagged appearance, whereas in others the surface appeared very smooth and coherent. In addition, four main types of bone internal structure were identified: 1) totally hollow; 2) hollow epiphyses and solid diaphysis with few or several channels inside; 3) totally solid with intricate Haversian channels; 4) totally solid with some channels (structure of single baubellum scanned). Ossa genitalia appeared as a living tissue having its own Haversian-like channels. The high resolution of micro-CT 3D-images of primate genital bones disclosed additional form variability to that available from genital bone 2D images of previous studies, and showed for the first time new internal and external morphological characters. Moreover, micro-CT non-invasive approach proved appropriate to recover much of scientific knowledge still hidden and often neglected in both museum specimens and primate cadavers only destined to necropsy.
Collapse
|
17
|
Brennan PL, Orbach DN. Copulatory behavior and its relationship to genital morphology. ADVANCES IN THE STUDY OF BEHAVIOR 2020. [DOI: 10.1016/bs.asb.2020.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Fasel NJ, Kołodziej-Sobocińska M, Komar E, Zegarek M, Ruczyński I. Penis size and sperm quality, are all bats grey in the dark? Curr Zool 2019; 65:697-703. [PMID: 31857816 PMCID: PMC6911842 DOI: 10.1093/cz/zoy094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 12/04/2018] [Indexed: 11/12/2022] Open
Abstract
Penises play a key role in sperm transport and in stimulating female genitals. This should impact post-copulatory competition, and expose penis characteristics to sexual selective pressures. Studies of male genitalia have repeatedly reported negative static allometries, which mean that, within species, large males have disproportionally small genitals when compared with smaller individuals. Males of some sperm-storing bat species may stand as an exception to such a pattern by arousing from hibernation to copulate with torpid females. The selection for large penises might take place, if a long organ provides advantages during post-copulatory competition and/or if females have evolved mechanisms allowing the choice of sire, relying on characters other than pre-copulatory traits (e.g., penis size). In this study, we measured dimensions of the erected penis in 4 sperm-storing bat species. Furthermore, we collected sperm and evaluated the link between penis dimensions and sperm velocity. Our results revealed steep allometric slopes of the erected penis length in Barbastella barbastellus and an inverse allometry of penis head width in Myotis nattereri. More detailed studies of copulatory behavior are urgently needed to explain the range of observed scaling relations. Furthermore, penis head width correlates with sperm velocity in Plecotus auritus. For this last species, we propose that penis shape might act as a marker of male fertility.
Collapse
Affiliation(s)
- Nicolas Jean Fasel
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse, Berlin, Germany
| | | | - Ewa Komar
- Mammal Research Institute Polish Academy of Sciences, Białowieża, Poland
| | - Marcin Zegarek
- Mammal Research Institute Polish Academy of Sciences, Białowieża, Poland
| | - Ireneusz Ruczyński
- Mammal Research Institute Polish Academy of Sciences, Białowieża, Poland
| |
Collapse
|
19
|
Horáková S, Šumbera R, Sovová J, Robovský J. The penial and bacular morphology of the solitary silvery mole-rat (Heliophobius argenteocinereus, Bathyergidae) from Malawi and evolutionary patterns across the African mole-rat family. Mamm Biol 2019. [DOI: 10.1016/j.mambio.2019.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Jubilato FC, Comelis MT, Bueno LM, Taboga SR, Góes RM, Morielle‐Versute E. Histomorphology of the glans penis in Vespertilionidae and Phyllostomidae species (Chiroptera, Mammalia). J Morphol 2019; 280:1759-1776. [DOI: 10.1002/jmor.21062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/19/2019] [Accepted: 08/29/2019] [Indexed: 01/31/2023]
Affiliation(s)
- Fernanda C. Jubilato
- Department of Zoology and BotanyInstitute of Biosciences, Humanities and Exact Sciences (IBILCE), Campus São José do Rio Preto, São Paulo State University (UNESP) São Paulo Brazil
| | - Manuela T. Comelis
- Department of Zoology and BotanyInstitute of Biosciences, Humanities and Exact Sciences (IBILCE), Campus São José do Rio Preto, São Paulo State University (UNESP) São Paulo Brazil
| | - Larissa M. Bueno
- Department of Zoology and BotanyInstitute of Biosciences, Humanities and Exact Sciences (IBILCE), Campus São José do Rio Preto, São Paulo State University (UNESP) São Paulo Brazil
| | - Sebastião R. Taboga
- Department of BiologyInstitute of Biosciences, Humanities and Exact Sciences (IBILCE), Campus São José do Rio Preto, São Paulo State University (UNESP) São Paulo Brazil
| | - Rejane M. Góes
- Department of BiologyInstitute of Biosciences, Humanities and Exact Sciences (IBILCE), Campus São José do Rio Preto, São Paulo State University (UNESP) São Paulo Brazil
| | - Eliana Morielle‐Versute
- Department of Zoology and BotanyInstitute of Biosciences, Humanities and Exact Sciences (IBILCE), Campus São José do Rio Preto, São Paulo State University (UNESP) São Paulo Brazil
| |
Collapse
|
21
|
Rodriguez‐Exposito E, Garcia‐Gonzalez F, Polak M. Individual and synergistic effects of male external genital traits in sexual selection. J Evol Biol 2019; 33:67-79. [DOI: 10.1111/jeb.13546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/15/2019] [Accepted: 09/19/2019] [Indexed: 01/22/2023]
Affiliation(s)
| | - Francisco Garcia‐Gonzalez
- Doñana Biological Station (CSIC) Sevilla Spain
- Centre for Evolutionary Biology School of Biological Sciences The University of Western Australia Crawley WA Australia
| | - Michal Polak
- Department of Biological Sciences University of Cincinnati Cincinnati OH USA
| |
Collapse
|
22
|
Casinos A, García-Martínez R, Borroto-Páez R. Cross-Sectional Geometry and Scaling in the Baculum of Cuban Hutias (Rodentia: Capromyidae). Anat Rec (Hoboken) 2019; 303:1346-1353. [PMID: 31569306 DOI: 10.1002/ar.24268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 02/28/2019] [Accepted: 06/05/2019] [Indexed: 11/08/2022]
Abstract
Bacula from 61 individual hutia (Rodentia) from five species were studied. The purpose was to investigate cross-sectional geometry as an indicator of mechanical behavior in order to answer questions around the origin and maintenance of the mammalian baculum. From images of the apical and basal cross sections, the following variables were calculated: perimeter, cross-sectional area, maximum second moment of area, and polar moment. An allometric analysis showed that these variables were related to body size. The orientation of the maximum second moment of area was analyzed by means of circular statistics. This orientation was transverse in both the apical and basal cross sections. Values for the second moment of area and polar moment, obtained from the predicted value of the allometric equations, showed that either the bending moment or the twisting moment of the baculum must be relatively low in hutias, compared with those of the radius in the same species. The results of the second moment of area predict that the main bending stress acting on the baculum is transverse. At the same time, shear stress would not be negligible. Anat Rec, 303:1346-1353, 2020. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Adrià Casinos
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Barcelona, Spain
| | - Rubén García-Martínez
- Centre de Restauració i Interpretació Paleontològica (CRIP), Els Hostalets de Pierola, Spain
| | | |
Collapse
|
23
|
Are baculum size and allometry a response to post-copulatory sexual selection in promiscuous males of the house mouse? ZOOMORPHOLOGY 2019. [DOI: 10.1007/s00435-019-00436-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Lee SH, Ha TJ, Koh KS, Song WC. Ligamentous structures in human glans penis. J Anat 2018; 234:83-88. [PMID: 30450557 DOI: 10.1111/joa.12896] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2018] [Indexed: 01/29/2023] Open
Abstract
The corpus spongiosum reportedly occupies a larger proportion of the human glans penis than does the penile body, embedding the end of the corpus cavernosus (CC). However, anatomic descriptions about the fibrous structures of glans penis in the literature cause confusion during dissection and reconstructive surgery. Forty-five penises of formalin-embalmed cadavers were dissected sagittally along the course of the distal urethra and observed macroscopically. Dense connective tissues adjacent to the fossa navicularis and spongiosum parts of the glans were cropped, and underwent Masson's trichrome and Verhoeff-Van-Gieson staining. Most (55.5%) of the specimens had distinct fibrous bands toward the distal tips of the glans penis, which elongated from the tunica albuginea of the CC. They comprised longitudinal collagen bundles continuous to the outer longitudinal layer of the tunica albuginea covering the CC and were intermingled with sparse elastic fibres. This architecture either did not reach the distal end of the glans penis (35.5% of cases), or was obscure or dispersed in all directions (9.0% of cases). The structural dimorphism and the variations in the ratio of dense connective tissue components of the fibrous skeleton are considered to contribute to the varying degrees of flexibility, distensibility and rigidity of the human glans penis.
Collapse
Affiliation(s)
- Shin-Hyo Lee
- Department of Anatomy, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| | - Tae-Jun Ha
- Department of Anatomy, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| | - Ki-Seok Koh
- Department of Anatomy, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| | - Wu-Chul Song
- Department of Anatomy, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| |
Collapse
|
25
|
|
26
|
Brassey CA, Gardiner JD, Kitchener AC. Testing hypotheses for the function of the carnivoran baculum using finite-element analysis. Proc Biol Sci 2018; 285:20181473. [PMID: 30232157 PMCID: PMC6170803 DOI: 10.1098/rspb.2018.1473] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 08/28/2018] [Indexed: 11/16/2022] Open
Abstract
The baculum (os penis) is a mineralized bone within the glans of the mammalian penis and is one of the most morphologically diverse structures in the mammal skeleton. Recent experimental work provides compelling evidence for sexual selection shaping the baculum, yet the functional mechanism by which this occurs remains unknown. Previous studies have tested biomechanical hypotheses for the role of the baculum based on simple metrics such as length and diameter, ignoring the wealth of additional shape complexity present. For the first time, to our knowledge, we apply a computational simulation approach (finite-element analysis; FEA) to quantify the three-dimensional biomechanical performance of carnivoran bacula (n = 74) based upon high-resolution micro-computed tomography scans. We find a marginally significant positive correlation between sexual size dimorphism and baculum stress under compressive loading, counter to the 'vaginal friction' hypothesis of bacula becoming more robust to overcome resistance during initial intromission. However, a highly significant negative relationship exists between intromission duration and baculum stress under dorsoventral bending. Furthermore, additional FEA simulations confirm that the presence of a ventral groove would reduce deformation of the urethra. We take this as evidence in support of the 'prolonged intromission' hypothesis, suggesting the carnivoran baculum has evolved in response to pressures on the duration of copulation and protection of the urethra.
Collapse
Affiliation(s)
- Charlotte A Brassey
- School of Science and the Environment, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - James D Gardiner
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Andrew C Kitchener
- Department of Natural Sciences, National Museums Scotland, Chambers Street, Edinburgh EH1 1JF, UK
| |
Collapse
|
27
|
Csanády A, Stanko M, Mošanský L. Are differences in variation and allometry in testicular size of two sibling species of the genus Mus (Mammalia, Rodentia) caused by female promiscuity? MAMMAL RES 2018. [DOI: 10.1007/s13364-018-0393-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
André GI, Firman RC, Simmons LW. Phenotypic plasticity in genitalia: baculum shape responds to sperm competition risk in house mice. Proc Biol Sci 2018; 285:20181086. [PMID: 30051823 PMCID: PMC6053933 DOI: 10.1098/rspb.2018.1086] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/15/2018] [Indexed: 12/26/2022] Open
Abstract
Males are known to adjust their expenditure on testes growth and sperm production in response to sperm competition risk. Genital morphology can also contribute to competitive fertilization success but whether male genital morphology can respond plastically to the sperm competition environment has received little attention. Here, we exposed male house mice to two different sperm competition environments during their sexual development and quantified phenotypic plasticity in baculum morphology. The sperm competition environment generated plasticity in body growth. Males maturing under sperm competition risk were larger and heavier than males maturing under no sperm competition risk. We used a landmark-based geometric morphometric approach to measure baculum size and shape. Independent of variation in body size, males maintained under risk of sperm competition had a relatively thicker and more distally extended baculum bulb compared with males maintained under no sperm competition risk. Plasticity in baculum shape paralleled evolutionary responses to selection from sperm competition reported in previous studies of house mice. Our findings provide experimental evidence of socially mediated phenotypic plasticity in male genitalia.
Collapse
Affiliation(s)
- Gonçalo I André
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley 6009, Australia
| | - Renée C Firman
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley 6009, Australia
| | - Leigh W Simmons
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley 6009, Australia
| |
Collapse
|
29
|
Dixson A. Copulatory and Postcopulatory Sexual Selection in Primates. Folia Primatol (Basel) 2018; 89:258-286. [DOI: 10.1159/000488105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/04/2018] [Indexed: 12/24/2022]
|
30
|
Comelis MT, Bueno LM, Góes RM, Taboga S, Morielle-Versute E. Morphological and histological characters of penile organization in eleven species of molossid bats. ZOOLOGY 2018; 127:70-83. [DOI: 10.1016/j.zool.2018.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/14/2017] [Accepted: 01/27/2018] [Indexed: 11/24/2022]
|
31
|
Firman RC. Postmating sexual conflict and female control over fertilization during gamete interaction. Ann N Y Acad Sci 2018. [DOI: 10.1111/nyas.13635] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Renée C. Firman
- Centre for Evolutionary Biology University of Western Australia Western Australia Australia
| |
Collapse
|
32
|
Wu H, Jiang T, Huang X, Feng J. Patterns of sexual size dimorphism in horseshoe bats: Testing Rensch's rule and potential causes. Sci Rep 2018; 8:2616. [PMID: 29422495 PMCID: PMC5805768 DOI: 10.1038/s41598-018-21077-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 01/29/2018] [Indexed: 11/10/2022] Open
Abstract
Rensch's rule, stating that sexual size dimorphism (SSD) becomes more evident and male-biased with increasing body size, has been well supported for taxa that exhibit male-biased SSD. Bats, primarily having female-biased SSD, have so far been tested for whether SSD allometry conforms to Rensch's rule in only three studies. However, these studies did not consider phylogeny, and thus the mechanisms underlying SSD variations in bats remain unclear. Thus, the present study reviewed published and original data, including body size, baculum size, and habitat types in 45 bats of the family Rhinolophidae to determine whether horseshoe bats follow Rensch's rule using a phylogenetic comparative framework. We also investigated the potential effect of postcopulatory sexual selection and habitat type on SSD. Our findings indicated that Rensch's rule did not apply to Rhinolophidae, suggesting that SSD did not significantly vary with increasing size. This pattern may be attributable interactions between weak sexual selection to male body size and strong fecundity selection for on female body size. The degree of SSD among horseshoe bats may be attributed to a phylogenetic effect rather than to the intersexual competition for food or to baculum length. Interestingly, we observed that species in open habitats exhibited greater SSD than those in dense forests, suggesting that habitat types may be associated with variations in SSD in horseshoe bats.
Collapse
Affiliation(s)
- Hui Wu
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng ST 2888, Changchun, 130118, China
- Jilin Provincal Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Jingyue St 2555, Changchun, 130117, China
| | - Tinglei Jiang
- Jilin Provincal Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Jingyue St 2555, Changchun, 130117, China.
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, Changchun, 130024, China.
| | - Xiaobin Huang
- Jilin Provincal Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Jingyue St 2555, Changchun, 130117, China
| | - Jiang Feng
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng ST 2888, Changchun, 130118, China.
- Jilin Provincal Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Jingyue St 2555, Changchun, 130117, China.
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
33
|
Lough‐Stevens M, Schultz NG, Dean MD. The baubellum is more developmentally and evolutionarily labile than the baculum. Ecol Evol 2018; 8:1073-1083. [PMID: 29375780 PMCID: PMC5773289 DOI: 10.1002/ece3.3634] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/15/2017] [Indexed: 12/19/2022] Open
Abstract
Understanding the evolutionary forces that influence sexual dimorphism is a fundamental goal in biology. Here, we focus on one particularly extreme example of sexual dimorphism. Many mammal species possess a bone in their penis called a baculum. The female equivalent of this bone is called the baubellum and occurs in the clitoris, which is developmentally homologous to the male penis. To understand the potential linkage between these two structures, we scored baculum/baubellum presence/absence across 163 species and analyzed their distribution in a phylogenetic framework. The majority of species (N = 134) shared the same state in males and females (both baculum and baubellum present or absent). However, the baubellum has experienced significantly more transitions, and more recent transitions, so that the remaining 29 species have a baculum but not a well-developed baubellum. Even in species where both bones are present, the baubellum shows more ontogenetic variability and harbors more morphological variation than the baculum. Our study demonstrates that the baculum and baubellum are generally correlated across mammals, but that the baubellum is more evolutionarily and developmentally labile than the baculum. The accumulation of more evolutionary transitions, especially losses in the baubellum, as well as noisier developmental patterns, suggests that the baubellum may be nonfunctional, and lost over time.
Collapse
Affiliation(s)
- Michael Lough‐Stevens
- Molecular and Computational BiologyUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Nicholas G. Schultz
- Molecular and Computational BiologyUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Matthew D. Dean
- Molecular and Computational BiologyUniversity of Southern CaliforniaLos AngelesCAUSA
| |
Collapse
|
34
|
Orbach DN, Hedrick B, Würsig B, Mesnick SL, Brennan PLR. The evolution of genital shape variation in female cetaceans. Evolution 2017; 72:261-273. [PMID: 29134627 DOI: 10.1111/evo.13395] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/05/2017] [Indexed: 12/31/2022]
Abstract
Male genital diversification is likely the result of sexual selection. Female genital diversification may also result from sexual selection, although it is less well studied and understood. Female genitalia are complex among whales, dolphins, and porpoises, especially compared to other vertebrates. The evolutionary factors affecting the diversity of vaginal complexity could include ontogeny, allometry, phylogeny, sexual selection, and natural selection. We quantified shape variation in female genitalia using 2D geometric morphometric analysis, and validated the application of this method to study soft tissues. We explored patterns of variation in the shape of the cervix and vagina of 24 cetacean species (n = 61 specimens), and found that genital shape varies primarily in the relative vaginal length and overall aspect ratio of the reproductive tract. Extensive genital shape variation was partly explained by ontogenetic changes and evolutionary allometry among sexually mature cetaceans, whereas phylogenetic signal, relative testis size, and neonate size were not significantly associated with genital shape. Female genital shape is diverse and evolves rapidly even among closely related species, consistent with predictions of sexual selection models and with findings in invertebrate and vertebrate taxa. Future research exploring genital shape variation in 3D will offer new insights into evolutionary mechanisms because internal vaginal structures are variable and can form complex spirals.
Collapse
Affiliation(s)
- Dara N Orbach
- Department of Biology, Dalhousie University, Life Science Center, 1355 Oxford Street, Halifax, NS B3H 4R2, Canada.,Department of Biological Sciences, Mount Holyoke College, Amherst, Massachusetts
| | - Brandon Hedrick
- Department of Biological Sciences, University of Massachusetts-Amherst, Amherst, Massachusetts
| | - Bernd Würsig
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas
| | - Sarah L Mesnick
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, California
| | - Patricia L R Brennan
- Department of Biological Sciences, Mount Holyoke College, Amherst, Massachusetts.,Department of Biological Sciences, University of Massachusetts-Amherst, Amherst, Massachusetts
| |
Collapse
|
35
|
Wensing KU, Koppik M, Fricke C. Precopulatory but not postcopulatory male reproductive traits diverge in response to mating system manipulation in Drosophila melanogaster. Ecol Evol 2017; 7:10361-10378. [PMID: 29238561 PMCID: PMC5723610 DOI: 10.1002/ece3.3542] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/11/2017] [Accepted: 09/14/2017] [Indexed: 01/01/2023] Open
Abstract
Competition between males creates potential for pre‐ and postcopulatory sexual selection and conflict. Theory predicts that males facing risk of sperm competition should evolve traits to secure their reproductive success. If those traits are costly to females, the evolution of such traits may also increase conflict between the sexes. Conversely, under the absence of sperm competition, one expectation is for selection on male competitive traits to relax thereby also relaxing sexual conflict. Experimental evolution studies are a powerful tool to test this expectation. Studies in multiple insect species have yielded mixed and partially conflicting results. In this study, we evaluated male competitive traits and male effects on female costs of mating in Drosophila melanogaster after replicate lines evolved for more than 50 generations either under enforced monogamy or sustained polygamy, thus manipulating the extent of intrasexual competition between males. We found that in a setting where males competed directly with a rival male for access to a female and fertilization of her ova polygamous males had superior reproductive success compared to monogamous males. When comparing reproductive success solely in double mating standard sperm competition assays, however, we found no difference in male sperm defense competitiveness between the different selection regimes. Instead, we found monogamous males to be inferior in precopulatory competition, which indicates that in our system, enforced monogamy relaxed selection on traits important in precopulatory rather than postcopulatory competition. We discuss our findings in the context of findings from previous experimental evolution studies in Drosophila ssp. and other invertebrate species.
Collapse
Affiliation(s)
- Kristina U. Wensing
- Institute for Evolution and BiodiversityUniversity of MuensterMuensterGermany
- Muenster Graduate School of EvolutionUniversity of MuensterMuensterGermany
| | - Mareike Koppik
- Institute for Evolution and BiodiversityUniversity of MuensterMuensterGermany
| | - Claudia Fricke
- Institute for Evolution and BiodiversityUniversity of MuensterMuensterGermany
| |
Collapse
|
36
|
Brindle M, Opie C. Postcopulatory sexual selection influences baculum evolution in primates and carnivores. Proc Biol Sci 2016; 283:20161736. [PMID: 27974519 PMCID: PMC5204150 DOI: 10.1098/rspb.2016.1736] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/04/2016] [Indexed: 11/22/2022] Open
Abstract
The extreme morphological variability of the baculum across mammals is thought to be the result of sexual selection (particularly, high levels of postcopulatory selection). However, the evolutionary trajectory of the mammalian baculum is little studied and evidence for the adaptive function of the baculum has so far been elusive. Here, we use Markov chain Monte Carlo methods implemented in a Bayesian phylogenetic framework to reconstruct baculum evolution across the mammalian class and investigate the rate of baculum length evolution within the primate order. We then test the effects of testes mass (postcopulatory sexual selection), polygamy, seasonal breeding and intromission duration on the baculum in primates and carnivores. The ancestral mammal did not have a baculum, but both ancestral primates and carnivores did. No relationship was found between testes mass and baculum length in either primates or carnivores. Intromission duration correlated with baculum presence over the course of primate evolution, and prolonged intromission predicts significantly longer bacula in extant primates and carnivores. Both polygamous and seasonal breeding systems predict significantly longer bacula in primates. These results suggest the baculum plays an important role in facilitating reproductive strategies in populations with high levels of postcopulatory sexual selection.
Collapse
Affiliation(s)
- Matilda Brindle
- Department of Anthropology, University College London, 14 Taviton Street, London, WC1H 0BW, UK
| | - Christopher Opie
- Department of Anthropology, University College London, 14 Taviton Street, London, WC1H 0BW, UK
| |
Collapse
|
37
|
Schultz NG, Lough-Stevens M, Abreu E, Orr T, Dean MD. The Baculum was Gained and Lost Multiple Times during Mammalian Evolution. Integr Comp Biol 2016; 56:644-56. [PMID: 27252214 PMCID: PMC6080509 DOI: 10.1093/icb/icw034] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The rapid evolution of male genitalia is a nearly ubiquitous pattern across sexually reproducing organisms, likely driven by the evolutionary pressures of male-male competition, male-female interactions, and perhaps pleiotropic effects of selection. The penis of many mammalian species contains a baculum, a bone that displays astonishing morphological diversity. The evolution of baculum size and shape does not consistently correlate with any aspects of mating system, hindering our understanding of the evolutionary processes affecting it. One potential explanation for the lack of consistent comparative results is that the baculum is not actually a homologous structure. If the baculum of different groups evolved independently, then the assumption of homology inherent in comparative studies is violated. Here, we specifically test this hypothesis by modeling the presence/absence of bacula of 954 mammalian species across a well-established phylogeny and show that the baculum evolved a minimum of nine times, and was lost a minimum of ten times. Three different forms of bootstrapping show our results are robust to species sampling. Furthermore, groups with a baculum show evidence of higher rates of diversification. Our study offers an explanation for the inconsistent results in the literature, and provides insight into the evolution of this remarkable structure.
Collapse
Affiliation(s)
- Nicholas G Schultz
- *Molecular and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089, USA
| | - Michael Lough-Stevens
- *Molecular and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089, USA
| | - Eric Abreu
- West Adams Preparatory High School, 1500 W Washington Blvd, Los Angeles, CA 90007, USA
| | - Teri Orr
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112-0840, USA
| | - Matthew D Dean
- *Molecular and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089, USA
| |
Collapse
|
38
|
Lack of Evolution of Sexual Size Dimorphism in Heteromyidae (Rodentia): The Influence of Resource Defense and the Trade-Off between Pre- and Post-Copulatory Trait Investment. Evol Biol 2016. [DOI: 10.1007/s11692-016-9390-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
39
|
Kelly DA, Moore BC. The Morphological Diversity of Intromittent Organs: An Introduction to the Symposium. Integr Comp Biol 2016; 56:630-4. [DOI: 10.1093/icb/icw103] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
40
|
Orr TJ, Brennan PLR. All Features Great and Small—the Potential Roles of the Baculum and Penile Spines in Mammals. Integr Comp Biol 2016; 56:635-43. [DOI: 10.1093/icb/icw057] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
41
|
Kelly DA. Intromittent Organ Morphology and Biomechanics: Defining the Physical Challenges of Copulation. Integr Comp Biol 2016; 56:705-14. [PMID: 27252215 DOI: 10.1093/icb/icw058] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Intromittent organs-structures that place gametes into a mate for internal fertilization-evolved many times within the animal kingdom, and are remarkable for their extravagant morphological diversity. Some taxa build intromittent organs from tissues with reproductive system antecedents, but others copulate with modified fins, tentacles, or legs: anatomically, these structures can include combinations of stiff tissues, extensible tissues, and muscle. Their mechanical behavior during copulation is also diverse: males in some taxa reorient or protrude genital tissues, others inflate them and change their shape, while still other taxa combine these strategies. For these animals, the ability to ready an intromittent organ for copulation and physically interact with a mate's genital tissues is critical to reproductive success, and may be tied to aspects of postcopulatory selection such as sperm competition and sexual conflict. But we know little about their mechanical behavior during copulation. This review surveys mechanical strategies that animals may use for intromittent organ function during intromission and copulation, and discusses how they may perform when their tissues experience stresses in tension, compression, bending, torsion, or shear.
Collapse
Affiliation(s)
- Diane A Kelly
- *Department of Psychological and Brain Sciences, University of Massachusetts, Tobin Hall, 135 Hicks Way, Amherst, MA 01003, USA
| |
Collapse
|
42
|
Booksmythe I, Head ML, Keogh JS, Jennions MD. Fitness consequences of artificial selection on relative male genital size. Nat Commun 2016; 7:11597. [PMID: 27188478 PMCID: PMC4873965 DOI: 10.1038/ncomms11597] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/12/2016] [Indexed: 11/12/2022] Open
Abstract
Male genitalia often show remarkable differences among related species in size, shape and complexity. Across poeciliid fishes, the elongated fin (gonopodium) that males use to inseminate females ranges from 18 to 53% of body length. Relative genital size therefore varies greatly among species. In contrast, there is often tight within-species allometric scaling, which suggests strong selection against genital-body size combinations that deviate from a species' natural line of allometry. We tested this constraint by artificially selecting on the allometric intercept, creating lines of males with relatively longer or shorter gonopodia than occur naturally for a given body size in mosquitofish, Gambusia holbrooki. We show that relative genital length is heritable and diverged 7.6-8.9% between our up-selected and down-selected lines, with correlated changes in body shape. However, deviation from the natural line of allometry does not affect male success in assays of attractiveness, swimming performance and, crucially, reproductive success (paternity).
Collapse
Affiliation(s)
- Isobel Booksmythe
- Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Building 116, Daley Road, Acton, Canberra, Australian Capital Territory 2601, Australia
- Centre of Excellence in Biological Interactions Research, Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, Zürich CH-8057, Switzerland
| | - Megan L Head
- Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Building 116, Daley Road, Acton, Canberra, Australian Capital Territory 2601, Australia
| | - J Scott Keogh
- Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Building 116, Daley Road, Acton, Canberra, Australian Capital Territory 2601, Australia
| | - Michael D Jennions
- Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Building 116, Daley Road, Acton, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
43
|
Schultz NG, Ingels J, Hillhouse A, Wardwell K, Chang PL, Cheverud JM, Lutz C, Lu L, Williams RW, Dean MD. The Genetic Basis of Baculum Size and Shape Variation in Mice. G3 (BETHESDA, MD.) 2016; 6:1141-51. [PMID: 26935419 PMCID: PMC4856068 DOI: 10.1534/g3.116.027888] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/05/2016] [Indexed: 01/01/2023]
Abstract
The rapid divergence of male genitalia is a preeminent evolutionary pattern. This rapid divergence is especially striking in the baculum, a bone that occurs in the penis of many mammalian species. Closely related species often display diverse baculum morphology where no other morphological differences can be discerned. While this fundamental pattern of evolution has been appreciated at the level of gross morphology, nearly nothing is known about the genetic basis of size and shape divergence. Quantifying the genetic basis of baculum size and shape variation has been difficult because these structures generally lack obvious landmarks, so comparing them in three dimensions is not straightforward. Here, we develop a novel morphometric approach to quantify size and shape variation from three-dimensional micro-CT scans taken from 369 bacula, representing 75 distinct strains of the BXD family of mice. We identify two quantitative trait loci (QTL) that explain ∼50% of the variance in baculum size, and a third QTL that explains more than 20% of the variance in shape. Together, our study demonstrates that baculum morphology may diverge relatively easily, with mutations at a few loci of large effect that independently modulate size and shape. Based on a combination of bioinformatic investigations and new data on RNA expression, we prioritized these QTL to 16 candidate genes, which have hypothesized roles in bone morphogenesis and may enable future genetic manipulation of baculum morphology.
Collapse
Affiliation(s)
- Nicholas G Schultz
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089
| | - Jesse Ingels
- University of Tennessee, Health Science Center, Memphis, Tennessee 38163
| | - Andrew Hillhouse
- Texas A & M, Veterinary Medicine and Biomedical Sciences, College Station, Texas 77845
| | | | - Peter L Chang
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089
| | - James M Cheverud
- Loyola University, Department of Biology, Chicago, Illinois 60626
| | | | - Lu Lu
- University of Tennessee, Health Science Center, Memphis, Tennessee 38163
| | - Robert W Williams
- University of Tennessee, Health Science Center, Memphis, Tennessee 38163
| | - Matthew D Dean
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089
| |
Collapse
|
44
|
|
45
|
Dufour CMS, Pillay N, Ganem G. Ventro–ventral copulation in a rodent: a female initiative? J Mammal 2015. [DOI: 10.1093/jmammal/gyv106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
46
|
Frazee SR, Masly JP. Multiple sexual selection pressures drive the rapid evolution of complex morphology in a male secondary genital structure. Ecol Evol 2015; 5:4437-50. [PMID: 26664690 PMCID: PMC4667835 DOI: 10.1002/ece3.1721] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/14/2015] [Accepted: 08/19/2015] [Indexed: 12/30/2022] Open
Abstract
The genitalia of internally fertilizing taxa represent a striking example of rapid morphological evolution. Although sexual selection can shape variation in genital morphology, it has been difficult to test whether multiple sexual selection pressures combine to drive the rapid evolution of individual genital structures. Here, we test the hypothesis that both pre‐ and postcopulatory sexual selection can act in concert to shape complex structural variation in secondary genital morphology. We genetically modified the size and shape of the posterior lobes of Drosophila melanogaster males and tested the consequences of morphological variation on several reproductive measures. We found that the posterior lobes are necessary for genital coupling and that they are also the targets of multiple postcopulatory processes that shape quantitative variation in morphology, even though these structures make no direct contact with the external female genitalia or internal reproductive organs during mating. We also found that males with smaller and less structurally complex posterior lobes suffer substantial fitness costs in competitive fertilization experiments. Our results show that sexual selection mechanisms can combine to shape the morphology of a single genital structure and that the posterior lobes of D. melanogaster are the targets of multiple postcopulatory selection pressures.
Collapse
Affiliation(s)
- Stephen R Frazee
- Department of Biology University of Oklahoma Norman Oklahoma 73019
| | - John P Masly
- Department of Biology University of Oklahoma Norman Oklahoma 73019
| |
Collapse
|
47
|
Brennan PLR, Prum RO. Mechanisms and Evidence of Genital Coevolution: The Roles of Natural Selection, Mate Choice, and Sexual Conflict. Cold Spring Harb Perspect Biol 2015; 7:a017749. [PMID: 26134314 DOI: 10.1101/cshperspect.a017749] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Genital coevolution between the sexes is expected to be common because of the direct interaction between male and female genitalia during copulation. Here we review the diverse mechanisms of genital coevolution that include natural selection, female mate choice, male-male competition, and how their interactions generate sexual conflict that can lead to sexually antagonistic coevolution. Natural selection on genital morphology will result in size coevolution to allow for copulation to be mechanically possible, even as other features of genitalia may reflect the action of other mechanisms of selection. Genital coevolution is explicitly predicted by at least three mechanisms of genital evolution: lock and key to prevent hybridization, female choice, and sexual conflict. Although some good examples exist in support of each of these mechanisms, more data on quantitative female genital variation and studies of functional morphology during copulation are needed to understand more general patterns. A combination of different approaches is required to continue to advance our understanding of genital coevolution. Knowledge of the ecology and behavior of the studied species combined with functional morphology, quantitative morphological tools, experimental manipulation, and experimental evolution have been provided in the best-studied species, all of which are invertebrates. Therefore, attention to vertebrates in any of these areas is badly needed.
Collapse
Affiliation(s)
- Patricia L R Brennan
- Departments of Psychology and Biology, University of Massachusetts, Amherst, MA 01003 Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA 01003
| | - Richard O Prum
- Department of Ecology and Evolutionary Biology and Peabody Museum of Natural History, Yale University, New Haven, CT 06520
| |
Collapse
|
48
|
Herdina AN, Kelly DA, Jahelková H, Lina PHC, Horáček I, Metscher BD. Testing hypotheses of bat baculum function with 3D models derived from microCT. J Anat 2015; 226:229-35. [PMID: 25655647 DOI: 10.1111/joa.12274] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2014] [Indexed: 02/06/2023] Open
Abstract
The baculum (os penis) has been extensively studied as a taxon-specific character in bats and other mammals but its mechanical function is still unclear. There is a wide consensus in the literature that the baculum is probably a sexually selected character. Using a novel approach combining postmortem manipulation and three-dimensional (3D) imaging, we tested two functional hypotheses in the common noctule bat Nyctalus noctula, the common pipistrelle Pipistrellus pipistrellus, and Nathusius' pipistrelle Pipistrellus nathusii: (i) whether the baculum can protect the distal urethra and urethral opening from compression during erection and copulation; and (ii) whether the baculum and corpora cavernosa form a functional unit to support both the penile shaft and the more distal glans tip. In freshly dead or frozen and thawed bats, we compared flaccid penises with artificially 'erect' penises that were inflated with 10% formalin. Penises were stained with alcoholic iodine and imaged with a lab-based high-resolution x-ray microtomography system. Analysis of the 3D images enabled us to compare the changes in relative positions of the baculum, corpora cavernosa, urethra, and corpus spongiosum with one another between flaccid and 'erect' penises. Our results support both functional hypotheses, indicating that the baculum probably performs two different roles during erection. Our approach should prove valuable for comparing and testing the functions of different baculum morphologies in bats and other mammals. Moreover, we have validated an essential component of the groundwork necessary to extend this approach with finite element analysis for quantitative 3D biomechanical modeling of penis function.
Collapse
Affiliation(s)
- Anna Nele Herdina
- Department of Theoretical Biology, University of Vienna, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
49
|
Dines JP, Otárola-Castillo E, Ralph P, Alas J, Daley T, Smith AD, Dean MD. Sexual selection targets cetacean pelvic bones. Evolution 2014; 68:3296-306. [PMID: 25186496 DOI: 10.1111/evo.12516] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 08/07/2014] [Indexed: 02/07/2023]
Abstract
Male genitalia evolve rapidly, probably as a result of sexual selection. Whether this pattern extends to the internal infrastructure that influences genital movements remains unknown. Cetaceans (whales and dolphins) offer a unique opportunity to test this hypothesis: since evolving from land-dwelling ancestors, they lost external hind limbs and evolved a highly reduced pelvis that seems to serve no other function except to anchor muscles that maneuver the penis. Here, we create a novel morphometric pipeline to analyze the size and shape evolution of pelvic bones from 130 individuals (29 species) in the context of inferred mating system. We present two main findings: (1) males from species with relatively intense sexual selection (inferred by relative testes size) tend to evolve larger penises and pelvic bones compared to their body length, and (2) pelvic bone shape has diverged more in species pairs that have diverged in inferred mating system. Neither pattern was observed in the anterior-most pair of vertebral ribs, which served as a negative control. This study provides evidence that sexual selection can affect internal anatomy that controls male genitalia. These important functions may explain why cetacean pelvic bones have not been lost through evolutionary time.
Collapse
Affiliation(s)
- James P Dines
- Mammalogy, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California, 90007; Integrative and Evolutionary Biology, University of Southern California, Los Angeles, California, 90089
| | | | | | | | | | | | | |
Collapse
|
50
|
Leivers S, Simmons LW. Human Sperm Competition. ADVANCES IN THE STUDY OF BEHAVIOR 2014. [DOI: 10.1016/b978-0-12-800286-5.00001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|