1
|
Sosa Espinosa J, Stavenga DG, van der Kooi CJ, Giraldo MA. Morpho butterfly flashiness crucially depends on wing scale curvature. Biol Lett 2024; 20:20240358. [PMID: 39532147 PMCID: PMC11557224 DOI: 10.1098/rsbl.2024.0358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/06/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Morpho butterflies are widely known for their brilliant blue and flashy colours, which are produced by intricate wing scale structures. Not all species display a vibrant structural coloration; some are whitish or even brown. This suggests that there is considerable interspecific variation in wing scale anatomy, pigmentation and flashiness. As evidenced by numerous studies, the optical mechanism that creates the bright structural colours resides in the multilayered ridges of the wing scales, but the interspecific variation in flashiness has so far received little attention. Here, we investigate the wing components that influence the directional wing reflectivity. We therefore selected three species that greatly vary in colour and flashy appearance, Morpho sulkowskyi, M. helenor and M. anaxibia. Applying morphological analyses, (micro-)spectrophotometry and imaging scatterometry on wing pieces and individual wing scales, we demonstrate that wings with flat scales produce highly directional reflections, whereas wings stacked with curved scales scatter light into a wider angular space, resulting in a spatially more diffuse appearance. We thus find that the curvature of the wing scales crucially determines the directionality of Morpho's visual display. We discuss how the visual ecology of Morpho butterflies and environmental conditions can drive the evolution of flashy visual displays.
Collapse
Affiliation(s)
- Juliana Sosa Espinosa
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
- Biophysics Group, Institute of Physics, University of Antioquia, Medellin, Colombia
| | - Doekele G. Stavenga
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Casper J. van der Kooi
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Marco A. Giraldo
- Biophysics Group, Institute of Physics, University of Antioquia, Medellin, Colombia
| |
Collapse
|
2
|
Laird‐Hopkins BC, Ashe‐Jepson E, Basset Y, Arizala Cobo S, Eberhardt L, Freiberga I, Hellon J, Hitchcock GE, Kleckova I, Linke D, Lamarre GPA, McFarlane A, Savage AF, Turner EC, Zamora AC, Sam K, Bladon AJ. Thermoregulatory ability and mechanism do not differ consistently between neotropical and temperate butterflies. GLOBAL CHANGE BIOLOGY 2023; 29:4180-4192. [PMID: 37315654 PMCID: PMC10946725 DOI: 10.1111/gcb.16797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 06/16/2023]
Abstract
Climate change is a major threat to species worldwide, yet it remains uncertain whether tropical or temperate species are more vulnerable to changing temperatures. To further our understanding of this, we used a standardised field protocol to (1) study the buffering ability (ability to regulate body temperature relative to surrounding air temperature) of neotropical (Panama) and temperate (the United Kingdom, Czech Republic and Austria) butterflies at the assemblage and family level, (2) determine if any differences in buffering ability were driven by morphological characteristics and (3) used ecologically relevant temperature measurements to investigate how butterflies use microclimates and behaviour to thermoregulate. We hypothesised that temperate butterflies would be better at buffering than neotropical butterflies as temperate species naturally experience a wider range of temperatures than their tropical counterparts. Contrary to our hypothesis, at the assemblage level, neotropical species (especially Nymphalidae) were better at buffering than temperate species, driven primarily by neotropical individuals cooling themselves more at higher air temperatures. Morphology was the main driver of differences in buffering ability between neotropical and temperate species as opposed to the thermal environment butterflies experienced. Temperate butterflies used postural thermoregulation to raise their body temperature more than neotropical butterflies, probably as an adaptation to temperate climates, but the selection of microclimates did not differ between regions. Our findings demonstrate that butterfly species have unique thermoregulatory strategies driven by behaviour and morphology, and that neotropical species are not likely to be more inherently vulnerable to warming than temperate species.
Collapse
Affiliation(s)
- Benita C. Laird‐Hopkins
- Institute of EntomologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
- Smithsonian Tropical Research InstitutePanama CityPanama
| | | | - Yves Basset
- Institute of EntomologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
- Smithsonian Tropical Research InstitutePanama CityPanama
- Maestria de EntomologiaUniversity of PanamaPanama CityPanama
| | | | | | - Inga Freiberga
- Institute of EntomologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Josh Hellon
- Wildlife Trust of Bedfordshire, Cambridgeshire, and NorthamptonshireCambourneUK
| | - Gwen E. Hitchcock
- Wildlife Trust of Bedfordshire, Cambridgeshire, and NorthamptonshireCambourneUK
| | - Irena Kleckova
- Institute of EntomologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Daniel Linke
- Institute of EntomologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| | - Greg P. A. Lamarre
- Institute of EntomologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
- Smithsonian Tropical Research InstitutePanama CityPanama
| | - Alex McFarlane
- Smithsonian Tropical Research InstitutePanama CityPanama
| | | | | | | | - Katerina Sam
- Institute of EntomologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| | | |
Collapse
|
3
|
Liu Y, Bu Y, Wang J, Wei C. Geological events and climate change drive diversification and speciation of mute cicadas in eastern continental Asia. Mol Phylogenet Evol 2023; 184:107809. [PMID: 37172861 DOI: 10.1016/j.ympev.2023.107809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/13/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
The poor mobility of nymphs living underground, usually for many years and the weak flying ability of adults make cicadas unique for evolutionary biology and bio-geographical study. Cicadas of the genus Karenia are unusual in Cicadidae in lacking the timbals that produce sound. Population differentiation, genetic structure, dispersal and evolutionary history of the eastern Asian mute cicada Karenia caelatata were investigated based on morphological, acoustic and molecular data. The results reveal a high level of genetic differentiation in this species. Six independent clades with nearly unique sets of haplotypes corresponding to geographically isolated populations are recognized. Genetic and geographic distances are significantly correlated among lineages. The phenotypic differentiation is generally consistent with the high levels of genetic divergence across populations. Results of ecological niche modeling suggest that the potential distribution range of this mountain-habitat specialist during the Last Glacial Maximum was broader than its current range, indicating this species had benefited from the climate change during the early Pleistocene in southern China. Geological events such as orogeny in Southwest China and Pleistocene climate oscillations have driven the differentiation and divergence of this species, and basins, plains and rivers function as natural "barriers" to block the gene flow. Besides significant genetic divergence being found among clades, the populations occurring in the Wuyi Mountains and the Hengduan Mountains are significantly different in the calling song structure from other populations. This may have resulted from significant population differentiation and subsequent adaptation of related populations. We conclude that ecological differences in habitats, coupled with geographical isolation, have driven population divergence and allopatric speciation. This study provides a plausible example of incipient speciation in Cicadidae and improves understanding of population differentiation, acoustic signal diversification and phylogeographic relationships of this unusual cicada species. It informs future studies on population differentiation, speciation and phylogeography of other mountain-habitat insects in the East Asian continent.
Collapse
Affiliation(s)
- Yunxiang Liu
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Plateau Ecology and Agriculture, Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai 810016, China
| | - Yifan Bu
- College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiali Wang
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cong Wei
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
4
|
Diversification of the shell shape and size in Baikal Candonidae ostracods inferred from molecular phylogeny. Sci Rep 2023; 13:2950. [PMID: 36806355 PMCID: PMC9941104 DOI: 10.1038/s41598-023-30003-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Ostracod shells are used extensively in paleontology, but we know little about their evolution, especially in ancient lakes. Lake Baikal (LB) is the world's most important stronghold of Candonidae diversity. These crustaceans radiated here rapidly (12-5 Ma) and with an unprecedented morphological diversity. We reconstruct their molecular phylogeny with 46 species and two markers (18S and 16S rRNA), and use it to estimate the evolution of the shell shape and size with landmark-based geometric morphometrics (LBGM). High posterior probabilities support four major clades, which differ in node depth and morphospace clustering. After removing a significant allometry, the first three principal components (PCs) describe about 88% of total variability, suggesting a strong integration. Reconstructed ancestral shapes are similar for all four clades, indicating that diversification happened after colonization. Major evolutionary changes occurred from trapezoidal to elongated shapes. Sister species are separated in morphospace, by centroid size, or both, as well as by vertical and horizontal distributions in LB. Ostracod shell is a strongly integrated structure that exhibits high evolvability, with some extreme shapes, although mostly along the first PC. This is the first study that combines molecular phylogeny and LBGM for ostracods and for any LB group.
Collapse
|
5
|
Anand PP, Seena S, Girish Kumar P, Shibu Vardhanan Y. Species morphospace boundary revisited through wing phenotypic variations of Antodynerus species (Hymenoptera: Vespidae: Eumeninae) from the Indian subcontinent. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.965577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The main objective of this study was to investigate the taxonomic significance of wing phenotypic variations (size and shape) for classifying potter wasps. This is the first study investigating the wing size and shape variations, as well as wing asymmetry, sexual dimorphism, wing integration, and phylogenetic signal analysis of all known Antodynerus species from the Indian subcontinent: A. flavescens, A. limbatus, and A. punctatipennis. We used forewings and hindwings for geometric morphometric analysis, and we proved that each species’ wing had unique size and shape variations, as well as significant right–left wing asymmetry and sexual dimorphism across the Antodynerus species, as verified by discriminant function analysis. Wings of Vespidae are longitudinally folded; based on that, we tested two alternative wing modular hypotheses for evaluating the wing integration, using two subsets organization, such as anterior–posterior (AP) and proximal-distal (PD) wing modular organization. We proved that Antodynerus species wings are highly integrated units (RV > 0.5), and we rejected our hypothesis at p < 0.05. The morphospace distribution analysis revealed that each species has its unique morphospace boundary, although they share some level of homoplasy, which suggests to us that we can use wing morphometric traits for Antodynerus species delimitation. In addition, we revealed the phylogenetic signal of Antodynerus species. Surprisingly, we found a shape-related phylogenetic signal in the forewing, and there is no significant (p > 0.05) phylogenetic signal in forewing size, hindwing shape, and size. We observed that the Antodynerus species’ forewing shape is evolutionarily more highly constrained than the hindwing. We found that A. limbatus and A. flavescens with distinct geographical distribution share a similar evolutionary history, while A. punctatipennis evolved independently.
Collapse
|
6
|
Rodrigues-Filho SJM, Prado E Castro C, Lopes LF, da Fonseca IP, Rebelo MT. Size does matter: intraspecific geometric morphometric analysis of wings of the blowfly Chrysomya albiceps (Diptera: Calliphoridae). Acta Trop 2022; 235:106662. [PMID: 35998679 DOI: 10.1016/j.actatropica.2022.106662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022]
Abstract
Blowflies have forensic, sanitary and veterinary importance, as well as being pollinators, parasitoids and ecological bioindicators. There is still little work with real data and from experiments assessing the relationship between blowflies' morphologic features and environmental and demographic factors. The present work tests whether the variation, in the shape and size, of Chrysomya albiceps (Wiedemann, 1819) wings is influenced by the following factors: 1) time; 2) temperature; 3) sex and; 4) different types of carcasses (pig, dog/cat and whale). Male and female wings from four different sites collected in six different years were used to obtain wing size and shape of C. albiceps. Analyses between wing shape and the variables tested had low explanatory power, even though they had statistical support. However, it was possible to identify differences in wing shape between males and females, with good returns in sex identification. The comparison between wing size and the variables tested showed that wing size has a negative relationship with temperature, significant differences between sexes, slight variation over time and no influence by carcass types. Furthermore, wing size influenced wing shape. Understanding population-specific characteristics of C. albiceps provide important insights about how the species reacts under specific conditions.
Collapse
Affiliation(s)
- Sérgio J M Rodrigues-Filho
- Departamento de Biologia Animal, Centro de Estudos do Ambiente e do Mar/Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Universidade do Estado do Amapá, Departamento de Engenharia Ambiental, Avenida Presidente Vargas, 650 - Central, Macapá AP, 68900-070, Brasil.
| | - Catarina Prado E Castro
- Centro de Estudos do Ambiente e do Mar (CESAM), Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Luís Filipe Lopes
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal; Centro de Ecologia, Evolução e Alterações Ambientais (cE3c), Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisbon, Portugal
| | - Isabel Pereira da Fonseca
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. Universidade Técnica, 1300-477 Lisboa, Portugal; Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS)
| | - Maria Teresa Rebelo
- Departamento de Biologia Animal, Centro de Estudos do Ambiente e do Mar/Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| |
Collapse
|
7
|
Le Roy C, Silva N, Godoy-Diana R, Debat V, Llaurens V, Muijres FT. Divergence of climbing escape flight performance in Morpho butterflies living in different microhabitats. J Exp Biol 2022; 225:276180. [PMID: 35851402 PMCID: PMC9440751 DOI: 10.1242/jeb.243867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 07/12/2022] [Indexed: 11/29/2022]
Abstract
Habitat specialization can influence the evolution of animal movement in promoting divergent locomotor abilities adapted to contrasting environmental conditions, differences in vegetation clutter or predatory communities. While the effect of habitat on the evolution of locomotion and particularly escape performance has been well investigated in terrestrial animals, it remains understudied in flying animals. Here, we investigated whether specialization of Morpho butterfly species into different vertical strata of the Amazonian forest affects the performance of upward escape flight manoeuvres. Using stereoscopic high-speed videography, we compared the climbing flight kinematics of seven Morpho species living either in the forest canopy or in the understory. We show that butterflies from canopy species display strikingly higher climbing speed and steeper ascent angle compared with understory species. Although climbing speed increased with wing speed and angle of attack, the higher climb angle observed in canopy species was best explained by their higher body pitch angle, resulting in more upward-directed aerodynamic thrust forces. Climb angle also scales positively with weight-normalized wing area, and this weight-normalized wing area was higher in canopy species. This shows that a combined divergence in flight behaviour and morphology contributes to the evolution of increased climbing flight abilities in canopy species. Summary: Quantification of climbing flight kinematics among closely related butterfly species living in different strata reveals contrasted climbing flight ability, probably resulting from divergent flight behaviour and morphology.
Collapse
Affiliation(s)
- Camille Le Roy
- 1 Department of Experimental Zoology, Wageningen University, 6709 PG Wageningen, the Netherlands
- 2 Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 75005 Paris, France
- 3 Université Paris Cité, 12 rue de l’École de Médecine, 75006 Paris, France
| | - Nicolas Silva
- 2 Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 75005 Paris, France
| | - Ramiro Godoy-Diana
- 4 Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH, UMR 7636), CNRS, ESPCI Paris Université PSL, Sorbonne Université, Université de Paris Cité, 75005 Paris, France
| | - Vincent Debat
- 2 Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 75005 Paris, France
| | - Violaine Llaurens
- 2 Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 75005 Paris, France
| | - Florian Titus Muijres
- 1 Department of Experimental Zoology, Wageningen University, 6709 PG Wageningen, the Netherlands
| |
Collapse
|
8
|
Le Roy C, Roux C, Authier E, Parrinello H, Bastide H, Debat V, Llaurens V. Convergent morphology and divergent phenology promote the coexistence of Morpho butterfly species. Nat Commun 2021; 12:7248. [PMID: 34903755 PMCID: PMC8668891 DOI: 10.1038/s41467-021-27549-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 11/22/2021] [Indexed: 11/08/2022] Open
Abstract
The coexistence of closely-related species in sympatry is puzzling because ecological niche proximity imposes strong competition and reproductive interference. A striking example is the widespread wing pattern convergence of several blue-banded Morpho butterfly species with overlapping ranges of distribution. Here we perform a series of field experiments using flying Morpho dummies placed in a natural habitat. We show that similarity in wing colour pattern indeed leads to interspecific territoriality and courtship among sympatric species. In spite of such behavioural interference, demographic inference from genomic data shows that sympatric closely-related Morpho species are genetically isolated. Mark-recapture experiments in the two most closely-related species unravel a strong temporal segregation in patrolling activity of males. Such divergence in phenology reduces the costs of reproductive interference while simultaneously preserving the benefits of convergence in non-reproductive traits in response to common ecological pressures. Henceforth, the evolution of multiple traits may favour species diversification in sympatry by partitioning niche in different dimensions.
Collapse
Affiliation(s)
- Camille Le Roy
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 75005, Paris, France.
- Sorbonne Paris Cité, Université Paris Descartes, 12 rue de l'École de Médecine, 75006, Paris, France.
- Department of Experimental Zoology, Wageningen University, 6709 PG, Wageningen, The Netherlands.
| | - Camille Roux
- CNRS, UMR 8198 - Evo-Eco-Paleo, Univ. Lille, F-59000, Lille, France
| | | | - Hugues Parrinello
- MGX-Montpellier GenomiX, Univ. Montpellier, CNRS, INSERM, F-34094, Montpellier, France
| | - Héloïse Bastide
- CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Vincent Debat
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 75005, Paris, France
| | - Violaine Llaurens
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 75005, Paris, France
| |
Collapse
|
9
|
Le Roy C, Amadori D, Charberet S, Windt J, Muijres FT, Llaurens V, Debat V. Adaptive evolution of flight in Morpho butterflies. Science 2021; 374:1158-1162. [PMID: 34822295 DOI: 10.1126/science.abh2620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Camille Le Roy
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 75005 Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France.,Experimental Zoology Group, Wageningen University, 6709 PG Wageningen, Netherlands
| | - Dario Amadori
- Maritime Research Institute Netherlands, 6708 PM Wageningen, Netherlands
| | - Samuel Charberet
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 75005 Paris, France
| | - Jaap Windt
- Maritime Research Institute Netherlands, 6708 PM Wageningen, Netherlands
| | - Florian T Muijres
- Experimental Zoology Group, Wageningen University, 6709 PG Wageningen, Netherlands
| | - Violaine Llaurens
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 75005 Paris, France
| | - Vincent Debat
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 75005 Paris, France
| |
Collapse
|
10
|
Hamilton CA, Winiger N, Rubin JJ, Breinholt J, Rougerie R, Kitching IJ, Barber JR, Kawahara AY. Hidden phylogenomic signal helps elucidate arsenurine silkmoth phylogeny and the evolution of body size and wing shape trade-offs. Syst Biol 2021; 71:859-874. [PMID: 34791485 DOI: 10.1093/sysbio/syab090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
One of the key objectives in biological research is understanding how evolutionary processes have produced Earth's diversity. A critical step towards revealing these processes is an investigation of evolutionary tradeoffs - that is, the opposing pressures of multiple selective forces. For millennia, nocturnal moths have had to balance successful flight, as they search for mates or host plants, with evading bat predators. However, the potential for evolutionary trade-offs between wing shape and body size are poorly understood. In this study, we used phylogenomics and geometric morphometrics to examine the evolution of wing shape in the wild silkmoth subfamily Arsenurinae (Saturniidae) and evaluate potential evolutionary relationships between body size and wing shape. The phylogeny was inferred based on 782 loci from target capture data of 42 arsenurine species representing all 10 recognized genera. After detecting in our data one of the most vexing problems in phylogenetic inference - a region of a tree that possesses short branches and no "support" for relationships (i.e., a polytomy), we looked for hidden phylogenomic signal (i.e., inspecting differing phylogenetic inferences, alternative support values, quartets, and phylogenetic networks) to better illuminate the most probable generic relationships within the subfamily. We found there are putative evolutionary trade-offs between wing shape, body size, and the interaction of fore- and hindwing shape. Namely, body size tends to decrease with increasing hindwing length but increases as forewing shape becomes more complex. Additionally, the type of hindwing (i.e., tail or no tail) a lineage possesses has a significant effect on the complexity of forewing shape. We outline possible selective forces driving the complex hindwing shapes that make Arsenurinae, and silkmoths as a whole, so charismatic.
Collapse
Affiliation(s)
- Chris A Hamilton
- Florida Museum of Natural History, McGuire Center for Lepidoptera and Biodiversity, University of Florida, Gainesville, FL 32611 USA.,Department of Entomology, Plant Pathology & Nematology, University of Idaho, Moscow, ID, 83844 USA
| | - Nathalie Winiger
- Florida Museum of Natural History, McGuire Center for Lepidoptera and Biodiversity, University of Florida, Gainesville, FL 32611 USA.,Wildlife Ecology and Management, Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany
| | - Juliette J Rubin
- Florida Museum of Natural History, McGuire Center for Lepidoptera and Biodiversity, University of Florida, Gainesville, FL 32611 USA
| | - Jesse Breinholt
- Florida Museum of Natural History, McGuire Center for Lepidoptera and Biodiversity, University of Florida, Gainesville, FL 32611 USA.,Division of Bioinformatics, Intermountain Healthcare, Precision Genomics, St. George, UT 84790 USA
| | - Rodolphe Rougerie
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Ian J Kitching
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Jesse R Barber
- Department of Biological Sciences, Boise State University, Boise, ID, 83725 USA
| | - Akito Y Kawahara
- Florida Museum of Natural History, McGuire Center for Lepidoptera and Biodiversity, University of Florida, Gainesville, FL 32611 USA
| |
Collapse
|
11
|
Morphological variability of Argynnis paphia (Lepidoptera: Nymphalidae) across different environmental conditions in eastern Slovakia. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00771-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Chazot N, Blandin P, Debat V, Elias M, Condamine FL. Punctuational ecological changes rather than global factors drive species diversification and the evolution of wing phenotypes in Morpho butterflies. J Evol Biol 2021; 34:1592-1607. [PMID: 34449944 DOI: 10.1111/jeb.13921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 11/30/2022]
Abstract
Assessing the relative importance of geographical and ecological drivers of evolution is paramount to understand the diversification of species and traits at the macroevolutionary scale. Here, we use an integrative approach, combining phylogenetics, biogeography, ecology and quantified phenotypes to investigate the drivers of both species and phenotypic diversification of the iconic Neotropical butterfly genus Morpho. We generated a time-calibrated phylogeny for all known species and inferred historical biogeography. We fitted models of time-dependent (accounting for rate heterogeneity across the phylogeny) and paleoenvironment-dependent diversification (accounting for global effect on the phylogeny). We used geometric morphometrics to assess variation of wing size and shape across the tree and investigated their dynamics of evolution. We found that the diversification of Morpho is best explained when considering variable diversification rates across the tree, possibly associated with lineages occupying different microhabitat conditions. First, a shift from understory to canopy was characterized by an increased speciation rate partially coupled with an increasing rate of wing shape evolution. Second, the occupation of dense bamboo thickets accompanying a major host-plant shift from dicotyledons towards monocotyledons was associated with a simultaneous diversification rate shift and an evolutionary 'jump' of wing size. Our study points to a diversification pattern driven by punctuational ecological changes instead of a global driver or biogeographic history.
Collapse
Affiliation(s)
- Nicolas Chazot
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Patrick Blandin
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, UA, Paris, France
| | - Vincent Debat
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, UA, Paris, France
| | - Marianne Elias
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, UA, Paris, France
| | - Fabien L Condamine
- CNRS, UMR 5554, Institut des Sciences de l'Evolution, Université de Montpellier, Montpellier, France
| |
Collapse
|
13
|
Botton-Divet L, Nyakatura JA. Vertical clinging and leaping induced evolutionary rate shifts in postcranial evolution of tamarins and marmosets (Primates, Callitrichidae). BMC Ecol Evol 2021; 21:132. [PMID: 34171986 PMCID: PMC8235625 DOI: 10.1186/s12862-021-01848-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 06/03/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Callitrichids comprise a diverse group of platyrrhine monkeys that are present across South and Central America. Their secondarily evolved small size and pointed claws allow them to cling to vertical trunks of a large diameter. Within callitrichids, lineages with a high affinity for vertical supports often engage in trunk-to-trunk leaping. This vertical clinging and leaping (VCL) differs from horizontal leaping (HL) in terms of the functional demands imposed on the musculoskeletal system, all the more so as HL often occurs on small compliant terminal branches. We used quantified shape descriptors (3D geometric morphometrics) and phylogenetically-informed analyses to investigate the evolution of the shape and size of the humerus and femur, and how this variation reflects locomotor behavior within Callitrichidae. RESULTS The humerus of VCL-associated species has a narrower trochlea compared with HL species. It is hypothesized that this contributes to greater elbow mobility. The wider trochlea in HL species appears to correspondingly provide greater stability to the elbow joint. The femur in VCL species has a smaller head and laterally-oriented distal condyles, possibly to reduce stresses during clinging. Similarly, the expanded lesser trochanters visible in VCL species provide a greater lever for the leg retractors and are thus also interpreted as an adaptation to clinging. Evolutionary rate shifts to faster shape and size changes of humerus and femur occurred in the Leontocebus clade when a shift to slower rates occurred in the Saguinus clade. CONCLUSIONS Based on the study of evolutionary rate shifts, the transition to VCL behavior within callitrichids (specifically the Leontocebus clade) appears to have been an opportunity for radiation, rather than a specialization that imposed constraints on morphological diversity. The study of the evolution of callitrichids suffers from a lack of comparative analyses of limb mechanics during trunk-to-trunk leaping, and future work in this direction would be of great interest.
Collapse
Affiliation(s)
- Léo Botton-Divet
- AG Vergleichende Zoologie, Institut Für Biologie, Humboldt-Universität Zu Berlin, Philippstr. 13, 10115, Berlin, Germany.
| | - John A Nyakatura
- AG Vergleichende Zoologie, Institut Für Biologie, Humboldt-Universität Zu Berlin, Philippstr. 13, 10115, Berlin, Germany
| |
Collapse
|
14
|
Leme Pablos J, Kristina Silva A, Seraphim N, de Moraes Magaldi L, Pereira de Souza A, Victor Lucci Freitas A, Lucas Silva-Brandão K. North-south and climate-landscape-associated pattern of population structure for the Atlantic Forest White Morpho butterflies. Mol Phylogenet Evol 2021; 161:107157. [PMID: 33753193 DOI: 10.1016/j.ympev.2021.107157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 01/25/2021] [Accepted: 03/15/2021] [Indexed: 11/18/2022]
Abstract
Atlantic Forest White Morpho butterflies, currently classified as Morpho epistrophus and M. iphitus, are endemic to the Atlantic Forest, where they are widely distributed throughout heterogeneous environmental conditions. Studies with endemic butterflies allow to elucidate questions on both patterns of diversity distribution and current and past processes acting on insect groups in this biodiversity hotspot. In the present study, we characterized one mtDNA marker (COI sequences) and developed 11 polymorphic loci of microsatellite for 22 sampling locations distributed throughout the entire Atlantic Forest domain. We investigated both the taxonomic limits of taxa classified as White Morpho and the structure and distribution of the genetic diversity throughout their populations. Genetic markers and distribution data failed to identify species diversification, population structure, or isolation among subpopulations attributed to different taxa proposed for the White Morpho, suggesting that the current distinction between two species is unreasonable. The Bayesian coalescent tree based on COI sequences also failed to recover monophyletic clades for the putative species, and pointed instead to a north-south oriented pattern of genetic structure, with the northern clade coalescing later than the southern clade. Northern samples also showed more intragroup structure than southern samples based on mtDNA data. Clustering tests based on microsatellites indicated the existence of three genetic clusters, with turnover between the states of Paraná and São Paulo. The north-south pattern found for the White Morpho populations is showed for the first time to a endemic AF insect and coincides with the two different bioclimatic domains previously described for vertebrates and plants. Population structure observed for these butterflies is related to climate- and landscape-associated variables, mainly precipitation and elevation.
Collapse
Affiliation(s)
- Julia Leme Pablos
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Animal, Rua Monteiro Lobato, 255, 13083-862 Campinas, SP, Brazil
| | - Ana Kristina Silva
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Animal, Rua Monteiro Lobato, 255, 13083-862 Campinas, SP, Brazil
| | - Noemy Seraphim
- Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, Campus Campinas, Rua Heitor Lacerda Guedes, 1000, 13059-581 Campinas, SP, Brazil
| | - Luiza de Moraes Magaldi
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Animal, Rua Monteiro Lobato, 255, 13083-862 Campinas, SP, Brazil
| | - Anete Pereira de Souza
- Universidade Estadual de Campinas, Centro de Biologia Molecular e Engenharia Genética, Av. Candido Rondom, 400, 13083-875 Campinas, SP, Brazil
| | - André Victor Lucci Freitas
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Animal, Rua Monteiro Lobato, 255, 13083-862 Campinas, SP, Brazil
| | - Karina Lucas Silva-Brandão
- Universidade Estadual de Campinas, Centro de Biologia Molecular e Engenharia Genética, Av. Candido Rondom, 400, 13083-875 Campinas, SP, Brazil; Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, Av. dos Estados, 5001, 09210-580 Santo André, SP, Brazil.
| |
Collapse
|
15
|
Llaurens V, Le Poul Y, Puissant A, Blandin P, Debat V. Convergence in sympatry: Evolution of blue-banded wing pattern in Morpho butterflies. J Evol Biol 2020; 34:284-295. [PMID: 33119141 DOI: 10.1111/jeb.13726] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 11/30/2022]
Abstract
Species interactions such as mimicry can promote trait convergence but disentangling this effect from those of shared ecology, evolutionary history, and niche conservatism is often challenging. Here by focusing on wing colour pattern variation within and between three butterfly species living in sympatry in a large proportion of their range, we tested the effect of species interactions on trait diversification. These butterflies display a conspicuous iridescent blue coloration on the dorsal side of their wings and a cryptic brownish colour on the ventral side. Combined with an erratic and fast flight, these colour patterns increase the difficulty of capture by predators and contribute to the high escape abilities of these butterflies. We hypothesize that, beyond their direct contribution to predator escape, these wing patterns can be used as signals of escape abilities by predators, resulting in positive frequency-dependent selection favouring convergence in wing pattern in sympatry. To test this hypothesis, we quantified dorsal wing pattern variations of 723 butterflies from the three species sampled throughout their distribution, including sympatric and allopatric situations and compared the phenotypic distances between species, sex and localities. We detected a significant effect of localities on colour pattern, and higher inter-specific resemblance in sympatry as compared to allopatry, consistent with the hypothesis of local convergence of wing patterns. Our results provide support to the existence of escape mimicry in the wild and stress the importance of estimating trait variation within species to understand trait variation between species, and to a larger extent, trait diversification at the macro-evolutionary scale.
Collapse
Affiliation(s)
- Violaine Llaurens
- Institut de Systématique, Evolution et Biodiversité, UMR 7205 CNRS/MNHN/Sorbonne Université/EPHE, Museum National d'Histoire Naturelle, Paris, France
| | - Yann Le Poul
- Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Agathe Puissant
- Institut de Systématique, Evolution et Biodiversité, UMR 7205 CNRS/MNHN/Sorbonne Université/EPHE, Museum National d'Histoire Naturelle, Paris, France
| | - Patrick Blandin
- Institut de Systématique, Evolution et Biodiversité, UMR 7205 CNRS/MNHN/Sorbonne Université/EPHE, Museum National d'Histoire Naturelle, Paris, France
| | - Vincent Debat
- Institut de Systématique, Evolution et Biodiversité, UMR 7205 CNRS/MNHN/Sorbonne Université/EPHE, Museum National d'Histoire Naturelle, Paris, France
| |
Collapse
|
16
|
Le VL, Beurton-Aimar M, Zemmari A, Marie A, Parisey N. Automated landmarking for insects morphometric analysis using deep neural networks. ECOL INFORM 2020. [DOI: 10.1016/j.ecoinf.2020.101175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Ramos-Pérez VI, Castellanos I, Robinson-Fuentes VA, Macías-Ordóñez R, Mendoza-Cuenca L. Sex-related interannual plasticity in wing morphological design in Heliconius charithonia enhances flight metabolic performance. PLoS One 2020; 15:e0239620. [PMID: 33125377 PMCID: PMC7598497 DOI: 10.1371/journal.pone.0239620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/09/2020] [Indexed: 11/18/2022] Open
Abstract
Flight morphological variations and its consequences on animal performance are common in winged insects. In the butterfly Heliconius charithonia, sex-related differences in the wing morphological design have been described resulting in differences in foraging behavior, daily flight distances and flight aerodynamics. It has been suggested that these differences should be reflected in the metabolic capacities and energetic budgets associated with flight in both sexes. In this study, we analyzed the relationship between wing morphological variation and metabolic performance, flight aerodynamics and energetic reserves in females and males of Heliconius charithonia over two years. The results confirm the presence of wing shape sexual dimorphism, but also show an unexpected sex-related annual variation in wing shape, mirrored in the metabolic condition (resting metabolic rate) of individuals. However, contrary to expectation, intersexual variations in wing shape are not related to differences between the sexes in terms of flight aerodynamics, flight metabolic rates, or energetic reserves (carbohydrates, lipids and proteins). Our results indicate a considerable plasticity in H. charithonia wing shape, which we suggest is determined by a trade-off between environmental pressures and reproductive restriction of each sex, maintaining an optimum flight design. Finally, similarities in metabolic rates between young and older males and females in both years may be a consequence of the ability of Heliconius species to feed on pollen.
Collapse
Affiliation(s)
- Velia I Ramos-Pérez
- Laboratorio de Ecología de la Conducta, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México.,Laboratorio Nacional de Análisis y Síntesis Ecológica, ENES, UNAM, Morelia, México
| | - Ignacio Castellanos
- Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, México
| | - Virginia A Robinson-Fuentes
- Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | | | - Luis Mendoza-Cuenca
- Laboratorio de Ecología de la Conducta, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México.,Laboratorio Nacional de Análisis y Síntesis Ecológica, ENES, UNAM, Morelia, México
| |
Collapse
|
18
|
Mena S, Kozak KM, Cárdenas RE, Checa MF. Forest stratification shapes allometry and flight morphology of tropical butterflies. Proc Biol Sci 2020; 287:20201071. [PMID: 33081613 DOI: 10.1098/rspb.2020.1071] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Studies of altitudinal and latitudinal gradients have identified links between the evolution of insect flight morphology, landscape structure and microclimate. Although lowland tropical rainforests offer steeper shifts in conditions between the canopy and the understorey, this vertical gradient has received far less attention. Butterflies, because of their great phenotypic plasticity, are excellent models to study selection pressures that mould flight morphology. We examined data collected over 5 years on 64 Nymphalidae butterflies in the Ecuadorian Chocó rainforest. We used phylogenetic methods to control for similarity resulting from common ancestry, and explore the relationships between species stratification and flight morphology. We hypothesized that species should show morphological adaptations related to differing micro-environments, associated with canopy and understorey. We found that butterfly species living in each stratum presented significantly different allometric slopes. Furthermore, a preference for the canopy was significantly associated with low wing area to thoracic volume ratios and high wing aspect ratios, but not with the relative distance to the wing centroid, consistent with extended use of fast flapping flight for canopy butterflies and slow gliding for the understorey. Our results suggest that microclimate differences in vertical gradients are a key factor in generating morphological diversity in flying insects.
Collapse
Affiliation(s)
- Sebastián Mena
- Museo de Zoología QCAZ Invertebrados-Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | | | - Rafael E Cárdenas
- Museo de Zoología QCAZ Invertebrados-Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - María F Checa
- Museo de Zoología QCAZ Invertebrados-Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| |
Collapse
|
19
|
Molecular and morphometric divergence of four species of butterflies (Nymphalidae and Pieridae) from the Western Himalaya, India. Mol Biol Rep 2020; 47:8687-8699. [PMID: 33070284 DOI: 10.1007/s11033-020-05913-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/10/2020] [Indexed: 10/23/2022]
Abstract
Morphometric and molecular divergence among four butterfly species of the families Nymphalidae and Pieridae from the western Himalaya region were investigated using molecular tools, traditional morphometric measures and a truss network system. The considered species were Danaus chrysippus, Vanessa cardui, Pieris brassicae and Pieris canidia. Traditional taxonomy is sometimes unable to discriminate cryptic species or species that have close morphological features. Although taxonomists carefully examine external body features to differentiate the species; however, there is a risk for misidentification during a visual assessment of cryptic species. Therefore, we aimed to use the truss network system of 14 morphological landmarks interconnected to yield 90 variables about molecular taxonomy. Principal component analysis (PCA), discriminant function analysis (DFA) and cluster analysis (CA) were employed to determine morphometric variations. In the traditional analysis, 79, 68, 16 and 5 characters out of 90 were found significant (p < 0.05) for D. chrysippus, V. cardui, P. brassicae and P. canidia, respectively. One to seven principal components were extracted through PCA; they explained 87.5-100% of the total variance in samples. Notably, DFA correctly classified 100% of the original grouped cases and 100% of the cross-validated grouped cases. However, the variations were not the same for the two different methods (truss and traditional) employed for the analysis. We correctly identified all the species; the interspecies sequence divergence was between 0.1034 and 0.1398, and the intra-species sequence divergence range was 0.0001 to 0.0128 using the Cytochrome c oxidase subunit-I (COI) gene. The present study provides useful information about the application and complementary role of traditional with truss morphometric analysis for the precise identification and classification of the selected species.
Collapse
|
20
|
Owens HL, Lewis DS, Condamine FL, Kawahara AY, Guralnick RP. Comparative Phylogenetics of Papilio Butterfly Wing Shape and Size Demonstrates Independent Hindwing and Forewing Evolution. Syst Biol 2020; 69:813-819. [PMID: 32259252 DOI: 10.1093/sysbio/syaa029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 12/27/2022] Open
Abstract
The complex forces that shape butterfly wings have long been a subject of experimental and comparative research. Butterflies use their wings for flight, camouflage, mate recognition, warning, and mimicry. However, general patterns and correlations among wing shape and size evolution are still poorly understood. We collected geometric morphometric measurements from over 1400 digitized museum specimens of Papilio swallowtails and combined them with phylogenetic data to test two hypotheses: 1) forewing shape and size evolve independently of hindwing shape and size and 2) wing size evolves more quickly than wing shape. We also determined the major axes of wing shape variation and discovered that most shape variability occurs in hindwing tails and adjacent areas. We conclude that forewing shape and size are functionally and biomechanically constrained, whereas hindwings are more labile, perhaps in response to disruptive selective pressure for Batesian mimicry or against predation. The development of a significant, re-usable, digitized data resource will enable further investigation on tradeoffs between flight performance and ecological selective pressures, along with the degree to which intraspecific, local-scale selection may explain macroevolutionary patterns. [Batesian mimicry; Lepidoptera; geometric morphometrics; museum specimens.].
Collapse
Affiliation(s)
- H L Owens
- Center for Macroecology, Evolution, and Climate, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark.,Florida Museum of Natural History, University of Florida, 1659 Museum Rd, Gainesville, FL 32611, USA
| | - D S Lewis
- Department of Biology, Burman University, 6730 University Drive, Lacombe, Alberta, Canada T4L 2E5
| | - F L Condamine
- CNRS, Institut des Sciences de l'Evolution de Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| | - A Y Kawahara
- Florida Museum of Natural History, University of Florida, 1659 Museum Rd, Gainesville, FL 32611, USA
| | - R P Guralnick
- Florida Museum of Natural History, University of Florida, 1659 Museum Rd, Gainesville, FL 32611, USA
| |
Collapse
|
21
|
Khalik MZ, Bozkurt E, Schilthuizen M. Morphological parallelism of sympatric cave‐dwelling microsnails of the genus Georissaat Mount Silabur, Borneo (Gastropoda, Neritimorpha, Hydrocenidae). J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mohd Zacaery Khalik
- Naturalis Biodiversity Center Leiden The Netherlands
- Institute of Biology Leiden Faculty of Science Leiden University Leiden The Netherlands
- Faculty of Resource Science and Technology Universiti Malaysia Sarawak Sarawak Malaysia
| | - Esra Bozkurt
- Naturalis Biodiversity Center Leiden The Netherlands
| | - Menno Schilthuizen
- Naturalis Biodiversity Center Leiden The Netherlands
- Institute of Biology Leiden Faculty of Science Leiden University Leiden The Netherlands
- Institute for Tropical Biology and Conservation Universiti Malaysia Sabah, Jalan UMS Sabah Malaysia
| |
Collapse
|
22
|
Debat V, Chazot N, Jarosson S, Blandin P, Llaurens V. What Drives the Diversification of Eyespots in Morpho Butterflies? Disentangling Developmental and Selective Constraints From Neutral Evolution. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
23
|
González-Rojas MF, Darragh K, Robles J, Linares M, Schulz S, McMillan WO, Jiggins CD, Pardo-Diaz C, Salazar C. Chemical signals act as the main reproductive barrier between sister and mimetic Heliconius butterflies. Proc Biol Sci 2020; 287:20200587. [PMID: 32370676 PMCID: PMC7282924 DOI: 10.1098/rspb.2020.0587] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Colour pattern is the main trait that drives mate recognition between Heliconius species that are phylogenetically close. However, when this cue is compromised such as in cases of mimetic, sympatric and closely related species, alternative mating signals must evolve to ensure reproductive isolation and species integrity. The closely related species Heliconius melpomene malleti and H. timareta florencia occur in the same geographical region, and despite being co-mimics, they display strong reproductive isolation. In order to test which cues differ between species, and potentially contribute to reproductive isolation, we quantified differences in the wing phenotype and the male chemical profile. As expected, the wing colour pattern was indistinguishable between the two species, while the chemical profile of the androconial and genital males' extracts showed marked differences. We then conducted behavioural experiments to study the importance of these signals in mate recognition by females. In agreement with our previous results, we found that chemical blends and not wing colour pattern drive the preference of females for conspecific males. Also, experiments with hybrid males and females suggested an important genetic component for both chemical production and preference. Altogether, these results suggest that chemicals are the major reproductive barrier opposing gene flow between these two sister and co-mimic species.
Collapse
Affiliation(s)
- M F González-Rojas
- Department of Biology, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogota 111221, Colombia
| | - K Darragh
- Department of Zoology, University of Cambridge, Cambridge, Cambridgeshire CB2 3EJ, UK
| | - J Robles
- Department of Chemistry, Pontificia Universidad Javeriana, Bogota, Colombia
| | - M Linares
- Department of Biology, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogota 111221, Colombia
| | - S Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - C D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, Cambridgeshire CB2 3EJ, UK
| | - C Pardo-Diaz
- Department of Biology, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogota 111221, Colombia
| | - C Salazar
- Department of Biology, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogota 111221, Colombia
| |
Collapse
|
24
|
Agbolade O, Nazri A, Yaakob R, Ghani AAA, Cheah YK. Landmark-based homologous multi-point warping approach to 3D facial recognition using multiple datasets. PeerJ Comput Sci 2020; 6:e249. [PMID: 33816901 PMCID: PMC7924716 DOI: 10.7717/peerj-cs.249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 12/05/2019] [Indexed: 11/20/2022]
Abstract
Over the years, neuroscientists and psychophysicists have been asking whether data acquisition for facial analysis should be performed holistically or with local feature analysis. This has led to various advanced methods of face recognition being proposed, and especially techniques using facial landmarks. The current facial landmark methods in 3D involve a mathematically complex and time-consuming workflow involving semi-landmark sliding tasks. This paper proposes a homologous multi-point warping for 3D facial landmarking, which is verified experimentally on each of the target objects in a given dataset using 500 landmarks (16 anatomical fixed points and 484 sliding semi-landmarks). This is achieved by building a template mesh as a reference object and applying this template to each of the targets in three datasets using an artificial deformation approach. The semi-landmarks are subjected to sliding along tangents to the curves or surfaces until the bending energy between a template and a target form is minimal. The results indicate that our method can be used to investigate shape variation for multiple datasets when implemented on three databases (Stirling, FRGC and Bosphorus).
Collapse
Affiliation(s)
- Olalekan Agbolade
- Department of Computer Science, Faculty of Computer Science & IT, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Azree Nazri
- Department of Computer Science, Faculty of Computer Science & IT, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Razali Yaakob
- Department of Computer Science, Faculty of Computer Science & IT, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Abdul Azim Abd Ghani
- Department of Software Engineering, Faculty of Computer Science & IT, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Yoke Kqueen Cheah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
25
|
Montejo‐Kovacevich G, Smith JE, Meier JI, Bacquet CN, Whiltshire‐Romero E, Nadeau NJ, Jiggins CD. Altitude and life-history shape the evolution of Heliconius wings. Evolution 2019; 73:2436-2450. [PMID: 31631338 PMCID: PMC6916360 DOI: 10.1111/evo.13865] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/15/2019] [Indexed: 01/04/2023]
Abstract
Phenotypic divergence between closely related species has long interested biologists. Taxa that inhabit a range of environments and have diverse natural histories can help understand how selection drives phenotypic divergence. In butterflies, wing color patterns have been extensively studied but diversity in wing shape and size is less well understood. Here, we assess the relative importance of phylogenetic relatedness, natural history, and habitat on shaping wing morphology in a large dataset of over 3500 individuals, representing 13 Heliconius species from across the Neotropics. We find that both larval and adult behavioral ecology correlate with patterns of wing sexual dimorphism and adult size. Species with solitary larvae have larger adult males, in contrast to gregarious Heliconius species, and indeed most Lepidoptera, where females are larger. Species in the pupal-mating clade are smaller than those in the adult-mating clade. Interestingly, we find that high-altitude species tend to have rounder wings and, in one of the two major Heliconius clades, are also bigger than their lowland relatives. Furthermore, within two widespread species, we find that high-altitude populations also have rounder wings. Thus, we reveal novel adaptive wing morphological divergence among Heliconius species beyond that imposed by natural selection on aposematic wing coloration.
Collapse
Affiliation(s)
| | | | - Joana I. Meier
- St John's CollegeUniversity of CambridgeCambridgeCB2 1TP
| | | | | | - Nicola J. Nadeau
- Animal and Plant SciencesUniversity of SheffieldSheffieldS10 2TNUK
| | | |
Collapse
|
26
|
Adams DC, Collyer ML. Phylogenetic Comparative Methods and the Evolution of Multivariate Phenotypes. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2019. [DOI: 10.1146/annurev-ecolsys-110218-024555] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Evolutionary biology is multivariate, and advances in phylogenetic comparative methods for multivariate phenotypes have surged to accommodate this fact. Evolutionary trends in multivariate phenotypes are derived from distances and directions between species in a multivariate phenotype space. For these patterns to be interpretable, phenotypes should be characterized by traits in commensurate units and scale. Visualizing such trends, as is achieved with phylomorphospaces, should continue to play a prominent role in macroevolutionary analyses. Evaluating phylogenetic generalized least squares (PGLS) models (e.g., phylogenetic analysis of variance and regression) is valuable, but using parametric procedures is limited to only a few phenotypic variables. In contrast, nonparametric, permutation-based PGLS methods provide a flexible alternative and are thus preferred for high-dimensional multivariate phenotypes. Permutation-based methods for evaluating covariation within multivariate phenotypes are also well established and can test evolutionary trends in phenotypic integration. However, comparing evolutionary rates and modes in multivariate phenotypes remains an important area of future development.
Collapse
Affiliation(s)
- Dean C. Adams
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Michael L. Collyer
- Department of Science, Chatham University, Pittsburgh, Pennsylvania 15232, USA
| |
Collapse
|
27
|
Interspecific larvae competence and mandible shape disparity in cutworm pest complex (Lepidoptera: Noctuidae). ZOOL ANZ 2019. [DOI: 10.1016/j.jcz.2019.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Le Roy C, Debat V, Llaurens V. Adaptive evolution of butterfly wing shape: from morphology to behaviour. Biol Rev Camb Philos Soc 2019; 94:1261-1281. [PMID: 30793489 DOI: 10.1111/brv.12500] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 01/07/2023]
Abstract
Butterflies display extreme variation in wing shape associated with tremendous ecological diversity. Disentangling the role of neutral versus adaptive processes in wing shape diversification remains a challenge for evolutionary biologists. Ascertaining how natural selection influences wing shape evolution requires both functional studies linking morphology to flight performance, and ecological investigations linking performance in the wild with fitness. However, direct links between morphological variation and fitness have rarely been established. The functional morphology of butterfly flight has been investigated but selective forces acting on flight behaviour and associated wing shape have received less attention. Here, we attempt to estimate the ecological relevance of morpho-functional links established through biomechanical studies in order to understand the evolution of butterfly wing morphology. We survey the evidence for natural and sexual selection driving wing shape evolution in butterflies, and discuss how our functional knowledge may allow identification of the selective forces involved, at both the macro- and micro-evolutionary scales. Our review shows that although correlations between wing shape variation and ecological factors have been established at the macro-evolutionary level, the underlying selective pressures often remain unclear. We identify the need to investigate flight behaviour in relevant ecological contexts to detect variation in fitness-related traits. Identifying the selective regime then should guide experimental studies towards the relevant estimates of flight performance. Habitat, predators and sex-specific behaviours are likely to be major selective forces acting on wing shape evolution in butterflies. Some striking cases of morphological divergence driven by contrasting ecology involve both wing and body morphology, indicating that their interactions should be included in future studies investigating co-evolution between morphology and flight behaviour.
Collapse
Affiliation(s)
- Camille Le Roy
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier CP50, 75005, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 12 rue de l'École de Médecine, 75006, Paris, France
| | - Vincent Debat
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier CP50, 75005, Paris, France
| | - Violaine Llaurens
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier CP50, 75005, Paris, France
| |
Collapse
|
29
|
Le Roy C, Cornette R, Llaurens V, Debat V. Effects of natural wing damage on flight performance in Morpho butterflies: what can it tell us about wing shape evolution? J Exp Biol 2019; 222:jeb.204057. [DOI: 10.1242/jeb.204057] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/30/2019] [Indexed: 01/09/2023]
Abstract
Flying insects frequently experience wing damage during their life. Such irreversible alterations of wing shape affect flight performance and ultimately fitness. Insects have been shown to compensate for wing damage through various behavioural adjustments, but the importance of damage location over the wings has been scarcely studied. Using natural variation in wing damage, here we tested how the loss of different wing parts affect flight performance. We quantified flight performance in two species of large butterflies, Morpho helenor and M. achilles, caught in the wild, and displaying large variation in the extent and location of wing damage. We artificially generated more severe wing damage in our sample to contrast natural vs. higher magnitude of wing loss. Wing shape alteration across our sample was quantified using geometric morphometrics to test the effect of different damage distributions on flight performance. Our results show that impaired flight performance clearly depends on damage location over the wings, pointing out a relative importance of different wing parts for flight. Deteriorated forewings leading edge most crucially affected flight performance, specifically decreasing flight speed and proportion of gliding flight. In contrast, most frequent natural damage such as scattered wing margin had no detectable effect on flight behaviour. Damages located on the hindwings – although having a limited effect on flight – were associated with reduced flight height, suggesting that fore- and hindwings play different roles in butterfly flight. By contrasting harmless and deleterious consequences of various types of wing damage, our study points at different selective regimes acting on morphological variations of butterfly wings.
Collapse
Affiliation(s)
- Camille Le Roy
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 75005, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, 12 rue de l’École de Médecine, 75006, Paris, France
| | - Raphaël Cornette
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 75005, Paris, France
| | - Violaine Llaurens
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 75005, Paris, France
| | - Vincent Debat
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 75005, Paris, France
| |
Collapse
|
30
|
Ospina-Garcés SM, Escobar F, Baena ML, Davis ALV, Scholtz CH. Do dung beetles show interrelated evolutionary trends in wing morphology, flight biomechanics and habitat preference? Evol Ecol 2018. [DOI: 10.1007/s10682-018-9958-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Chursina MA, Negrobov OP. Phylogenetic Signal in the Wing Shape in the Subfamily Dolichopodinae (Diptera, Dolichopodidae). ACTA ACUST UNITED AC 2018. [DOI: 10.1134/s0013873818050019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Evolutionary pattern of the forewing shape in the Neotropical genus of jumping plant-lice (Hemiptera: Psylloidea: Russelliana). ORG DIVERS EVOL 2018. [DOI: 10.1007/s13127-018-0367-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
33
|
Noguerales V, Cordero PJ, Ortego J. Integrating genomic and phenotypic data to evaluate alternative phylogenetic and species delimitation hypotheses in a recent evolutionary radiation of grasshoppers. Mol Ecol 2018; 27:1229-1244. [DOI: 10.1111/mec.14504] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/16/2017] [Accepted: 01/05/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Víctor Noguerales
- Grupo de Investigación de la Biodiversidad Genética y Cultural; Instituto de Investigación en Recursos Cinegéticos - IREC (CSIC, UCLM, JCCM); Ciudad Real Spain
| | - Pedro J. Cordero
- Grupo de Investigación de la Biodiversidad Genética y Cultural; Instituto de Investigación en Recursos Cinegéticos - IREC (CSIC, UCLM, JCCM); Ciudad Real Spain
| | - Joaquín Ortego
- Department of Integrative Ecology; Estación Biológica de Doñana (EBD-CSIC); Seville Spain
| |
Collapse
|
34
|
Vandaele R, Aceto J, Muller M, Péronnet F, Debat V, Wang CW, Huang CT, Jodogne S, Martinive P, Geurts P, Marée R. Landmark detection in 2D bioimages for geometric morphometrics: a multi-resolution tree-based approach. Sci Rep 2018; 8:538. [PMID: 29323201 PMCID: PMC5765108 DOI: 10.1038/s41598-017-18993-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 12/20/2017] [Indexed: 11/23/2022] Open
Abstract
The detection of anatomical landmarks in bioimages is a necessary but tedious step for geometric morphometrics studies in many research domains. We propose variants of a multi-resolution tree-based approach to speed-up the detection of landmarks in bioimages. We extensively evaluate our method variants on three different datasets (cephalometric, zebrafish, and drosophila images). We identify the key method parameters (notably the multi-resolution) and report results with respect to human ground truths and existing methods. Our method achieves recognition performances competitive with current existing approaches while being generic and fast. The algorithms are integrated in the open-source Cytomine software and we provide parameter configuration guidelines so that they can be easily exploited by end-users. Finally, datasets are readily available through a Cytomine server to foster future research.
Collapse
Affiliation(s)
- Rémy Vandaele
- Montefiore Institute, Department of Electrical engineering and Computer Science., University of Liège, Liège, 4000, Belgium.
| | - Jessica Aceto
- Laboratory for Organogenesis and Regeneration, GIGA-Research, University of Liège, Liège, 4000, Belgium
| | - Marc Muller
- Laboratory for Organogenesis and Regeneration, GIGA-Research, University of Liège, Liège, 4000, Belgium
| | - Frédérique Péronnet
- Institut de Biologie Paris-Seine (IBPS), UMR7622, Laboratoire de Biologie du Développement, UPMC Univ Paris 06, Paris, F-75005, France
| | - Vincent Debat
- Institut de Systématique, Evolution, Biodiversité, ISYEB UMR 7205 (CNRS, MNHN, UPMC, EPHE), Muséum national d'Histoire naturelle, Sorbonne Universités, Paris, F-75005, France
| | - Ching-Wei Wang
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Cheng-Ta Huang
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Sébastien Jodogne
- Department of Medical Physics, University Hospital (CHU) of Liège, University of Liège, Liège, 4000, Belgium
| | - Philippe Martinive
- Department of Medical Physics, University Hospital (CHU) of Liège, University of Liège, Liège, 4000, Belgium
| | - Pierre Geurts
- Montefiore Institute, Department of Electrical engineering and Computer Science., University of Liège, Liège, 4000, Belgium
| | - Raphaël Marée
- Montefiore Institute, Department of Electrical engineering and Computer Science., University of Liège, Liège, 4000, Belgium
| |
Collapse
|
35
|
Rossa R, Goczał J, Pawliczek B, Ohbayashi N. Hind wing variation in Leptura annularis complex among European and Asiatic populations (Coleoptera, Cerambycidae). Zookeys 2017:31-42. [PMID: 29362531 PMCID: PMC5769710 DOI: 10.3897/zookeys.724.20667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/27/2017] [Indexed: 12/02/2022] Open
Abstract
The ability to quantify morphological variation is essential for understanding the processes of species diversification. The geometric morphometrics approach allows reliable description of variation in animals, including insects. Here, this method was used to quantify the morphological variation among European and Asiatic populations of Lepturaannularis Fabricius, 1801 and its closely related species L.mimica Bates, 1884, endemic for Japan and Sakhalin islands. Since the taxonomic status of these two taxa is differently interpreted by taxonomists, they are collectively called “Lepturaannularis complex” in this paper. The analysis was based on the measurements of hind wings of 269 specimens from six populations from Europe and Asia. The level of morphological divergence between most of continental European and Asiatic populations was relatively small and proportional to the geographic distance between them. However, distinct morphotype was detected in Sakhalin Is. and Japan. These data confirm the morphological divergence of the endemic L.mimica species. Obtained results highlight the potential of the geometric morphometric method in studying morphological variation in beetles.
Collapse
Affiliation(s)
- Robert Rossa
- Institute of Forest Ecosystem Protection, Faculty of Forestry, University of Agriculture in Krakow, 29 Listopada 46, 31-425 Krakow, Poland
| | - Jakub Goczał
- Institute of Forest Ecosystem Protection, Faculty of Forestry, University of Agriculture in Krakow, 29 Listopada 46, 31-425 Krakow, Poland
| | - Bartosz Pawliczek
- Institute of Forest Ecosystem Protection, Faculty of Forestry, University of Agriculture in Krakow, 29 Listopada 46, 31-425 Krakow, Poland
| | | |
Collapse
|
36
|
Goczał J, Rossa R, Tofilski A. Elytra reduction may affect the evolution of beetle hind wings. ZOOMORPHOLOGY 2017; 137:131-138. [PMID: 29568156 PMCID: PMC5847043 DOI: 10.1007/s00435-017-0388-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/31/2017] [Accepted: 11/14/2017] [Indexed: 11/02/2022]
Abstract
Beetles are one of the largest and most diverse groups of animals in the world. Conversion of forewings into hardened shields is perceived as a key adaptation that has greatly supported the evolutionary success of this taxa. Beetle elytra play an essential role: they minimize the influence of unfavorable external factors and protect insects against predators. Therefore, it is particularly interesting why some beetles have reduced their shields. This rare phenomenon is called brachelytry and its evolution and implications remain largely unexplored. In this paper, we focused on rare group of brachelytrous beetles with exposed hind wings. We have investigated whether the elytra loss in different beetle taxa is accompanied with the hind wing shape modification, and whether these changes are similar among unrelated beetle taxa. We found that hind wings shape differ markedly between related brachelytrous and macroelytrous beetles. Moreover, we revealed that modifications of hind wings have followed similar patterns and resulted in homoplasy in this trait among some unrelated groups of wing-exposed brachelytrous beetles. Our results suggest that elytra reduction may affect the evolution of beetle hind wings.
Collapse
Affiliation(s)
- Jakub Goczał
- Institute of Forest Ecosystem Protection, Faculty of Forestry, University of Agriculture in Krakow, 29 Listopada 46, 31-425, Krakow, Poland
| | - Robert Rossa
- Institute of Forest Ecosystem Protection, Faculty of Forestry, University of Agriculture in Krakow, 29 Listopada 46, 31-425, Krakow, Poland
| | - Adam Tofilski
- Department of Pomology and Apiculture, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425 Krakow, Poland
| |
Collapse
|
37
|
Giraldo MA, Yoshioka S, Liu C, Stavenga DG. Coloration mechanisms and phylogeny of Morpho butterflies. ACTA ACUST UNITED AC 2017; 219:3936-3944. [PMID: 27974535 DOI: 10.1242/jeb.148726] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/04/2016] [Indexed: 11/20/2022]
Abstract
Morpho butterflies are universally admired for their iridescent blue coloration, which is due to nanostructured wing scales. We performed a comparative study on the coloration of 16 Morpho species, investigating the morphological, spectral and spatial scattering properties of the differently organized wing scales. In numerous previous studies, the bright blue Morpho coloration has been fully attributed to the multi-layered ridges of the cover scales' upper laminae, but we found that the lower laminae of the cover and ground scales play an important additional role, by acting as optical thin film reflectors. We conclude that Morpho coloration is a subtle combination of overlapping pigmented and/or unpigmented scales, multilayer systems, optical thin films and sometimes undulated scale surfaces. Based on the scales' architecture and their organization, five main groups can be distinguished within the genus Morpho, largely agreeing with the accepted phylogeny.
Collapse
Affiliation(s)
- M A Giraldo
- Biophysics Group, Institute of Physics, University of Antioquia, Calle 70 #52-21, AA 1226, Medellín 050010, Colombia
| | - S Yoshioka
- Tokyo University of Science, Faculty of Science and Technology, Department of Physics, 2641 Yamazaki, Noda-shi, Chiba-ken 278-8510, Japan
| | - C Liu
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - D G Stavenga
- Computational Physics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen NL-9747 AG, The Netherlands
| |
Collapse
|