1
|
Nabutanyi P, Edison A, Czuppon P, Xu S, Wittmann M. The role of evolving niche choice in herbivore adaptation to host plants. J Evol Biol 2025; 38:305-319. [PMID: 39665476 DOI: 10.1093/jeb/voae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/13/2024] [Accepted: 12/10/2024] [Indexed: 12/13/2024]
Abstract
Individuals living in heterogeneous environments often choose microenvironments that provide benefits to their fitness. Theory predicts that such niche choice can promote rapid adaptation to novel environments and help maintain genetic diversity. An open question of large applied importance is how niche choice and niche choice evolution affect the evolution of insecticide resistance in phytophagous insects. We, therefore, developed an individual-based model based on phytophagous insects to examine the evolution of insecticide resistance and niche choice via oviposition preferences. To find biologically realistic parameter ranges, we performed an empirical literature survey on insecticide resistance in major agricultural pests and also conducted a density-dependent survival experiment using potato beetles. We find that, in comparison to a scenario where individuals randomly oviposit eggs on toxic or non-toxic plants, the evolution of niche choice generally leads to slower evolution of resistance and facilitates the coexistence of different phenotypes. Our simulations also reveal that recombination rate and dominance effects can influence the evolution of both niche choice and resistance. Thus, this study provides new insights into the effects of niche choice on resistance evolution and highlights the need for more studies on the genetic basis of resistance and choice.
Collapse
Affiliation(s)
- Peter Nabutanyi
- Department of Theoretical Biology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Alitha Edison
- Institute of Organismic and Molecular Evolution (iomE), University of Mainz, Mainz, Germany
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Peter Czuppon
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Shuqing Xu
- Institute of Organismic and Molecular Evolution (iomE), University of Mainz, Mainz, Germany
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Meike Wittmann
- Department of Theoretical Biology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
2
|
Munar-Delgado G, Pulido F, Edelaar P. Performance-based habitat choice can drive rapid adaptive divergence and reproductive isolation. Curr Biol 2024; 34:5564-5569.e4. [PMID: 39471808 DOI: 10.1016/j.cub.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/26/2024] [Accepted: 10/01/2024] [Indexed: 11/01/2024]
Abstract
Theory predicts that performance-based habitat choice1,2,3-where individuals select environments based on their local performance-should be widespread in nature and significantly influence ecological and evolutionary processes, including local adaptation, population divergence, reproductive isolation, and speciation.2,4,5,6,7,8,9 However, experimental evidence supporting these predictions has been largely lacking. In this study, we addressed this by inducing performance-based habitat choice in wild tree sparrows (Passer montanus) through the manipulation of differential access to transponder-operated feeders in two adjacent woodland areas. Sparrows overwhelmingly chose to move to and breed in the area where their feeding performance was highest, leading to local adaptation and increased reproductive success. Moreover, this non-random movement led to a high degree of assortative mating for transponder type and to reproductive isolation with respect to this ecological trait-all within a single generation. Our findings provide an empirical proof of principle that performance-based habitat choice can drive adaptive population divergence, even in the absence of divergent natural selection, underscoring its potential role as a key mechanism in ecological and evolutionary dynamics. This highlights the importance of integrating performance-based habitat choice into broader frameworks of adaptation and speciation, especially in the context of rapidly changing environments.
Collapse
Affiliation(s)
- Gabriel Munar-Delgado
- Department of Biodiversity, Ecology and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, Madrid 28040, Spain; CIBIO-InBio, Research Centre in Biodiversity and Genetic Resources, Vairão 4485-661, Portugal.
| | - Francisco Pulido
- Department of Biodiversity, Ecology and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, Madrid 28040, Spain
| | - Pim Edelaar
- Department of Molecular Biology and Biochemical Engineering, University Pablo de Olavide, Seville 41013, Spain.
| |
Collapse
|
3
|
Edelaar P, Otsuka J, Luque VJ. A generalised approach to the study and understanding of adaptive evolution. Biol Rev Camb Philos Soc 2023; 98:352-375. [PMID: 36223883 PMCID: PMC10091731 DOI: 10.1111/brv.12910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 01/12/2023]
Abstract
Evolutionary theory has made large impacts on our understanding and management of the world, in part because it has been able to incorporate new data and new insights successfully. Nonetheless, there is currently a tension between certain biological phenomena and mainstream evolutionary theory. For example, how does the inheritance of molecular epigenetic changes fit into mainstream evolutionary theory? Is niche construction an evolutionary process? Is local adaptation via habitat choice also adaptive evolution? These examples suggest there is scope (and perhaps even a need) to broaden our views on evolution. We identify three aspects whose incorporation into a single framework would enable a more generalised approach to the understanding and study of adaptive evolution: (i) a broadened view of extended phenotypes; (ii) that traits can respond to each other; and (iii) that inheritance can be non-genetic. We use causal modelling to integrate these three aspects with established views on the variables and mechanisms that drive and allow for adaptive evolution. Our causal model identifies natural selection and non-genetic inheritance of adaptive parental responses as two complementary yet distinct and independent drivers of adaptive evolution. Both drivers are compatible with the Price equation; specifically, non-genetic inheritance of parental responses is captured by an often-neglected component of the Price equation. Our causal model is general and simplified, but can be adjusted flexibly in terms of variables and causal connections, depending on the research question and/or biological system. By revisiting the three examples given above, we show how to use it as a heuristic tool to clarify conceptual issues and to help design empirical research. In contrast to a gene-centric view defining evolution only in terms of genetic change, our generalised approach allows us to see evolution as a change in the whole causal structure, consisting not just of genetic but also of phenotypic and environmental variables.
Collapse
Affiliation(s)
- Pim Edelaar
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Carretera Utrera km.1, 41013, Seville, Spain.,Swedish Collegium for Advanced Study, Thunbergsvägen 2, SE-75238, Uppsala, Sweden
| | - Jun Otsuka
- Department of Philosophy, Kyoto University, Yoshida-Hommachi, Sakyo, Kyoto, 606-8501, Japan.,RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Tokyo, 103-0027, Japan
| | - Victor J Luque
- Department of Philosophy, University of Valencia, Av. de Blasco Ibáñez, 30, 46010, València, Spain
| |
Collapse
|
4
|
Caspi T, Johnson JR, Lambert MR, Schell CJ, Sih A. Behavioral plasticity can facilitate evolution in urban environments. Trends Ecol Evol 2022; 37:1092-1103. [PMID: 36058767 DOI: 10.1016/j.tree.2022.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 01/12/2023]
Abstract
Plasticity-led evolution is central to evolutionary theory. Although challenging to study in nature, this process may be particularly apparent in novel environments such as cities. We document abundant evidence of plastic behavioral changes in urban animals, including learning, contextual, developmental, and transgenerational plasticities. Using behavioral drive as a conceptual framework, our analysis of notable case studies suggests that plastic behaviors, such as altered habitat use, migration, diurnal and seasonal activity, and courtship, can have faciliatory and cascading effects on urban evolution via spatial, temporal, and mate-choice mechanisms. Our findings highlight (i) the need to incorporate behavioral plasticity more formally into urban evolutionary research and (ii) the opportunity provided by urban environments to study behavioral mechanisms of plasticity-led processes.
Collapse
Affiliation(s)
- Tal Caspi
- Department of Environmental Science and Policy, University of California, Davis, Davis, CA, USA.
| | - Jacob R Johnson
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, USA.
| | - Max R Lambert
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, USA; Science Division, Habitat Program, Washington Department of Fish and Wildlife, Olympia, WA, USA
| | - Christopher J Schell
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, USA
| | - Andrew Sih
- Department of Environmental Science and Policy, University of California, Davis, Davis, CA, USA
| |
Collapse
|
5
|
Gervais L, Morellet N, David I, Hewison AJM, Réale D, Goulard M, Chaval Y, Lourtet B, Cargnelutti B, Merlet J, Quéméré E, Pujol B. Quantifying heritability and estimating evolutionary potential in the wild when individuals that share genes also share environments. J Anim Ecol 2022; 91:1239-1250. [DOI: 10.1111/1365-2656.13677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 02/01/2022] [Indexed: 11/29/2022]
Affiliation(s)
- L. Gervais
- Université de Toulouse, INRAE, CEFS, Castanet‐Tolosan, France ZA France
- PSL Université Paris : EHPE‐UPVD‐CNRS Perpignan France
| | - N. Morellet
- Université de Toulouse, INRAE, CEFS, Castanet‐Tolosan, France ZA France
| | - I. David
- Université de Toulouse Castanet Tolosan France
| | - A. J. M. Hewison
- Université de Toulouse, INRAE, CEFS, Castanet‐Tolosan, France ZA France
| | - D. Réale
- Département des sciences biologiques Université du Québec à Montréal QC Canada
| | - M. Goulard
- Université de Toulouse Castanet‐Tolosan France
| | - Y. Chaval
- Université de Toulouse, INRAE, CEFS, Castanet‐Tolosan, France ZA France
| | - B. Lourtet
- Université de Toulouse, INRAE, CEFS, Castanet‐Tolosan, France ZA France
| | - B. Cargnelutti
- Université de Toulouse, INRAE, CEFS, Castanet‐Tolosan, France ZA France
| | - J. Merlet
- Université de Toulouse, INRAE, CEFS, Castanet‐Tolosan, France ZA France
| | - E. Quéméré
- Université de Toulouse, INRAE, CEFS, Castanet‐Tolosan, France ZA France
- INRAE, DECOD (Ecosystem Dynamics and Sustainability), Institut Agro, IFREMER Rennes France
| | - B. Pujol
- PSL Université Paris : EHPE‐UPVD‐CNRS Perpignan France
| |
Collapse
|
6
|
Heinze P, Dieker P, Rowland HM, Schielzeth H. Evidence for morph-specific substrate choice in a green-brown polymorphic grasshopper. Behav Ecol 2022; 33:17-26. [PMID: 35197804 PMCID: PMC8857936 DOI: 10.1093/beheco/arab133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/11/2021] [Accepted: 11/02/2021] [Indexed: 11/14/2022] Open
Abstract
Orthopteran insects are characterized by high variability in body coloration, in particular featuring a widespread green-brown color polymorphism. The mechanisms that contribute to the maintenance of this apparently balanced polymorphism are not yet understood. To investigate whether morph-dependent microhabitat choice might contribute to the continued coexistence of multiple morphs, we studied substrate choice in the meadow grasshopper Pseudochorthippus parallelus. The meadow grasshopper occurs in multiple discrete, genetically determined color morphs that range from uniform brown to uniform green. We tested whether three common morphs preferentially choose differently colored backgrounds in an experimental arena. We found that a preference for green backgrounds was most pronounced in uniform green morphs. If differential choices improve morph-specific performance in natural habitats via crypsis and/or thermoregulatory benefits, they could help to equalize fitness differences among color morphs and potentially produce frequency-dependent microhabitat competition, though difference appear too small to serve as the only explanation. We also measured the reflectance of the grasshoppers and backgrounds and used visual modeling to quantify the detectability of the different morphs to a range of potential predators. Multiple potential predators, including birds and spiders, are predicted to distinguish between morphs chromatically, while other species, possibly including grasshoppers themselves, will perceive only differences in brightness. Our study provides the first evidence that morph-specific microhabitat choice might be relevant to the maintenance of the green-brown polymorphisms in grasshoppers and shows that visual distinctness of color morphs varies between perceivers.
Collapse
Affiliation(s)
- Pauline Heinze
- Population Ecology Group, Institute of Ecology and Evolution, Friedrich Schiller University Jena, Dornburger Straße, Jena, Germany
| | - Petra Dieker
- Population Ecology Group, Institute of Ecology and Evolution, Friedrich Schiller University Jena, Dornburger Straße, Jena, Germany
| | - Hannah M Rowland
- Research Group Predators and Toxic Prey, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße, Jena, Germany
| | - Holger Schielzeth
- Population Ecology Group, Institute of Ecology and Evolution, Friedrich Schiller University Jena, Dornburger Straße, Jena, Germany
| |
Collapse
|
7
|
Rabdeau J, Arroyo B, Mougeot F, Badenhausser I, Bretagnolle V, Monceau K. Do human infrastructures shape nest distribution in the landscape depending on individual personality in a farmland bird of prey? J Anim Ecol 2021; 90:2848-2858. [PMID: 34486116 DOI: 10.1111/1365-2656.13586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 08/04/2021] [Indexed: 11/30/2022]
Abstract
Individuals' distribution across habitats may depend on their personality. Human activities and infrastructures are critical elements of the landscape that may impact the habitat selection process. However, depending on their personality, individuals may respond differently to these unnatural elements. In the present study, we first investigated whether some human infrastructures (buildings, roads and paths) shaped Montagu's harrier nest spatial distribution in the landscape according to female personality (boldness). Second, we tested if the reproductive success of females depended on their boldness and nest location regarding infrastructures. Using a long-term (19 years) dataset, we calculated, for each infrastructure type, the distance from each nest to the nearest infrastructure and the infrastructure density around the nest. We tested the effects of female boldness (bold vs. shy) and its interaction with egg-laying date on these six metrics. Nest location in the landscape depended on female personality and on some human infrastructures: the building density was smaller around nests from shy females than from bold ones. Nest distribution related to other infrastructure metrics did not depend on female boldness. The pattern related to building density is consistent with some habitat choice hypotheses, which are discussed. Path density around nests negatively affected reproductive success regardless of female boldness, and late breeders nested further away from paths than early breeders. Human activities on paths (more common later in the season) could lead to disturbance and a decrease in parental care, reducing reproductive success. Increasing human presence in farmlands implies a need to better understand its impact on population composition, in terms of personality. Our results suggest that individual behavioural differences should be taken into account in studies assessing the effects of human disturbance on animal populations, to propose more appropriate conservation measures.
Collapse
Affiliation(s)
- Juliette Rabdeau
- UMR 7372, Centre d'Etudes Biologiques de Chizé, La Rochelle Université & CNRS, Villiers en Bois, France
| | - Beatriz Arroyo
- Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - François Mougeot
- Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Isabelle Badenhausser
- INRAE, Unité de Recherche Pluridisciplinaire Prairies Plantes Fourragères, Lusignan, France
| | - Vincent Bretagnolle
- UMR 7372, Centre d'Etudes Biologiques de Chizé, La Rochelle Université & CNRS, Villiers en Bois, France.,LTSER "Zone Atelier Plaine & Val de Sèvre", CNRS, Villiers-en-Bois, France
| | - Karine Monceau
- UMR 7372, Centre d'Etudes Biologiques de Chizé, La Rochelle Université & CNRS, Villiers en Bois, France
| |
Collapse
|
8
|
Fokkema RW, Korsten P, Schmoll T, Wilson AJ. Social competition as a driver of phenotype-environment correlations: implications for ecology and evolution. Biol Rev Camb Philos Soc 2021; 96:2561-2572. [PMID: 34145714 PMCID: PMC9290562 DOI: 10.1111/brv.12768] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/27/2022]
Abstract
While it is universally recognised that environmental factors can cause phenotypic trait variation via phenotypic plasticity, the extent to which causal processes operate in the reverse direction has received less consideration. In fact individuals are often active agents in determining the environments, and hence the selective regimes, they experience. There are several important mechanisms by which this can occur, including habitat selection and niche construction, that are expected to result in phenotype–environment correlations (i.e. non‐random assortment of phenotypes across heterogeneous environments). Here we highlight an additional mechanism – intraspecific competition for preferred environments – that may be widespread, and has implications for phenotypic evolution that are currently underappreciated. Under this mechanism, variation among individuals in traits determining their competitive ability leads to phenotype–environment correlation; more competitive phenotypes are able to acquire better patches. Based on a concise review of the empirical evidence we argue that competition‐induced phenotype–environment correlations are likely to be common in natural populations before highlighting the major implications of this for studies of natural selection and microevolution. We focus particularly on two central issues. First, competition‐induced phenotype–environment correlation leads to the expectation that positive feedback loops will amplify phenotypic and fitness variation among competing individuals. As a result of being able to acquire a better environment, winners gain more resources and even better phenotypes – at the expense of losers. The distinction between individual quality and environmental quality that is commonly made by researchers in evolutionary ecology thus becomes untenable. Second, if differences among individuals in competitive ability are underpinned by heritable traits, competition results in both genotype–environment correlations and an expectation of indirect genetic effects (IGEs) on resource‐dependent life‐history traits. Theory tells us that these IGEs will act as (partial) constraints, reducing the amount of genetic variance available to facilitate evolutionary adaptation. Failure to recognise this will lead to systematic overestimation of the adaptive potential of populations. To understand the importance of these issues for ecological and evolutionary processes in natural populations we therefore need to identify and quantify competition‐induced phenotype–environment correlations in our study systems. We conclude that both fundamental and applied research will benefit from an improved understanding of when and how social competition causes non‐random distribution of phenotypes, and genotypes, across heterogeneous environments.
Collapse
Affiliation(s)
- Rienk W Fokkema
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany.,Evolutionary Biology, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany.,Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, Groningen, 9747AG, The Netherlands
| | - Peter Korsten
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany
| | - Tim Schmoll
- Evolutionary Biology, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany
| | - Alastair J Wilson
- Centre for Ecology and Conservation, University of Exeter (Penryn Campus), Penryn, Cornwall, TR10 9FE, United Kingdom
| |
Collapse
|
9
|
Peralta-Rincón JR, Aoulad FZ, Prado A, Edelaar P. Phenotype-dependent habitat choice is too weak to cause assortative mating between Drosophila melanogaster strains differing in light sensitivity. PLoS One 2020; 15:e0234223. [PMID: 33057335 PMCID: PMC7561098 DOI: 10.1371/journal.pone.0234223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/02/2020] [Indexed: 11/23/2022] Open
Abstract
Matching habitat choice is gaining attention as a mechanism for maintaining biodiversity and driving speciation. It revolves around the idea that individuals select the habitat in which they perceive to obtain greater fitness based on a prior evaluation of their local performance across heterogeneous environments. This results in individuals with similar ecologically relevant traits converging to the same patches, and hence it could indirectly cause assortative mating when mating occurs in those patches. White-eyed mutants of Drosophila fruit flies have a series of disadvantages compared to wild type flies, including a poorer performance under bright light. It has been previously reported that, when given a choice, wild type Drosophila simulans preferred a brightly lit habitat while white-eyed mutants occupied a dimly lit one. This spatial segregation allowed the eye color polymorphism to be maintained for several generations, whereas normally it is quickly replaced by the wild type. Here we compare the habitat choice decisions of white-eyed and wild type flies in another species, D. melanogaster. We released groups of flies in a light gradient and recorded their departure and settlement behavior. Departure depended on sex and phenotype, but not on the light conditions of the release point. Settlement depended on sex, and on the interaction between phenotype and light conditions of the point of settlement. Nonetheless, simulations showed that this differential habitat use by the phenotypes would only cause a minimal degree of assortative mating in this species.
Collapse
Affiliation(s)
- Juan Ramón Peralta-Rincón
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - Fatima Zohra Aoulad
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - Antonio Prado
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Seville, Spain
| | - Pim Edelaar
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
10
|
Mortier F, Bonte D. Trapped by habitat choice: Ecological trap emerging from adaptation in an evolutionary experiment. Evol Appl 2020; 13:1877-1887. [PMID: 32908592 PMCID: PMC7463321 DOI: 10.1111/eva.12937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/07/2020] [Accepted: 02/14/2020] [Indexed: 01/23/2023] Open
Abstract
Individuals moving in heterogeneous environments can improve their fitness considerably by habitat choice. Induction by past exposure, genetic preference alleles and comparison of local performances can all drive this decision-making process. Despite the importance of habitat choice mechanisms for eco-evolutionary dynamics in metapopulations, we lack insights on the connection of their cue with its effect on fitness optimization. We selected a laboratory population of Tetranychus urticae Koch (two-spotted spider mite) according to three distinct host-choice selection treatments for ten generations. Additionally, we tested the presence of induced habitat choice mechanisms and quantified the adaptive value of a choice before and after ten generations of artificial selection in order to gather insight on the habitat choice mechanisms at play. Unexpectedly, we observed no evolution of habitat choice in our experimental system: the initial choice of cucumber over tomato remained. However, this choice became maladaptive as tomato ensured a higher fitness at the end of the experiment. Furthermore, a noteworthy proportion of induced habitat choice can modify this ecological trap depending on past environments. Despite abundant theory and applied relevance, we provide the first experimental evidence of an emerging trap. The maladaptive choice also illustrates the constraints habitat choice has in rescuing populations endangered by environmental challenges or in pest control.
Collapse
Affiliation(s)
- Frederik Mortier
- Terrestrial Ecology Unit Department of Biology Ghent University Ghent Belgium
| | - Dries Bonte
- Terrestrial Ecology Unit Department of Biology Ghent University Ghent Belgium
| |
Collapse
|
11
|
Camacho C, Sanabria-Fernández A, Baños-Villalba A, Edelaar P. Experimental evidence that matching habitat choice drives local adaptation in a wild population. Proc Biol Sci 2020; 287:20200721. [PMID: 32429813 PMCID: PMC7287376 DOI: 10.1098/rspb.2020.0721] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/23/2020] [Indexed: 12/11/2022] Open
Abstract
Matching habitat choice is a unique, flexible form of habitat choice based on self-assessment of local performance. This mechanism is thought to play an important role in adaptation and population persistence in variable environments. Nevertheless, the operation of matching habitat choice in natural populations remains to be unequivocally demonstrated. We investigated the association between body colour and substrate use by ground-perching grasshoppers (Sphingonotus azurescens) in an urban mosaic of dark and pale pavements, and then performed a colour manipulation experiment to test for matching habitat choice based on camouflage through background matching. Naturally, dark and pale grasshoppers occurred mostly on pavements that provided matching backgrounds. Colour-manipulated individuals recapitulated this pattern, such that black-painted and white-painted grasshoppers recaptured after the treatment aggregated together on the dark asphalt and pale pavement, respectively. Our study demonstrates that grasshoppers adjust their movement patterns to choose the substrate that confers an apparent improvement in camouflage given their individual-specific colour. More generally, our study provides unique experimental evidence of matching habitat choice as a driver of phenotype-environment correlations in natural populations and, furthermore, suggests that performance-based habitat choice might act as a mechanism of adaptation to changing environments, including human-modified (urban) landscapes.
Collapse
Affiliation(s)
| | | | | | - Pim Edelaar
- Department of Molecular Biology and Biochemical Engineering, University Pablo de Olavide, Carretera Utrera km. 1, 41013 Seville, Spain
| |
Collapse
|
12
|
Affiliation(s)
- Julia Boyle
- Department of Ecology and Evolutionary Biology University of Toronto Toronto ON Canada
| | - Denon Start
- Center for Population Biology University of California Davis CA USA
| |
Collapse
|
13
|
Affiliation(s)
- Carlos Camacho
- Dept of Evolutionary Ecology, Estación Biológica de Doñana – CSIC Seville Spain
- Dept of Biology, Centre for Animal Movement Research (CAnMove). Lund Univ. Ecology Building SE‐223 62 Lund Sweden
| | - Andrew P. Hendry
- Redpath Museum and Dept of Biology, McGill Univ. Montréal QC Canada
| |
Collapse
|
14
|
Laurent E, Schtickzelle N, Jacob S. Fragmentation mediates thermal habitat choice in ciliate microcosms. Proc Biol Sci 2020; 287:20192818. [PMID: 31992166 DOI: 10.1098/rspb.2019.2818] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Habitat fragmentation is expected to reduce dispersal movements among patches as a result of increased inter-patch distances. Furthermore, since habitat fragmentation is expected to raise the costs of moving among patches in the landscape, it should hamper the ability or tendency of organisms to perform informed dispersal decisions. Here, we used microcosms of the ciliate Tetrahymena thermophila to test experimentally whether habitat fragmentation, manipulated through the length of corridors connecting patches differing in temperature, affects habitat choice. We showed that a twofold increase of inter-patch distance can as expected hamper the ability of organisms to choose their habitat at immigration. Interestingly, it also increased their habitat choice at emigration, suggesting that organisms become choosier in their decision to either stay or leave their patch when obtaining information about neighbouring patches gets harder. This study points out that habitat fragmentation might affect not only dispersal rate but also the level of non-randomness of dispersal, with emigration and immigration decisions differently affected. These consequences of fragmentation might considerably modify ecological and evolutionary dynamics of populations facing environmental changes.
Collapse
Affiliation(s)
- Estelle Laurent
- Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, Croix du Sud 4, L7-07-04, 1348 Louvain-la-Neuve, Belgium
| | - Nicolas Schtickzelle
- Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, Croix du Sud 4, L7-07-04, 1348 Louvain-la-Neuve, Belgium
| | - Staffan Jacob
- Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, Croix du Sud 4, L7-07-04, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
15
|
Edelaar P, Baños-Villalba A, Quevedo DP, Escudero G, Bolnick DI, Jordán-Andrade A. Biased movement drives local cryptic coloration on distinct urban pavements. Proc Biol Sci 2019; 286:20191343. [PMID: 31575366 DOI: 10.1098/rspb.2019.1343] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Explanations of how organisms might adapt to urban environments have mostly focused on divergent natural selection and adaptive plasticity. However, differential habitat choice has been suggested as an alternative. Here, we test for habitat choice in enhancing crypsis in ground-perching grasshoppers colonizing an urbanized environment, composed of a mosaic of four distinctly coloured substrates (asphalt roads and adjacent pavements). Additionally, we determine its relative importance compared to present-day natural selection and phenotypic plasticity. We found that grasshoppers are very mobile, but nevertheless approximately match the colour of their local substrate. By manipulating grasshopper colour, we confirm that grasshoppers increase the usage of those urban substrates that resemble their own colours. This selective movement actively improves crypsis. Colour divergence between grasshoppers on different substrates is not or hardly owing to present-day natural selection, because observed mortality rates are too low to counteract random substrate use. Additional experiments also show negligible contributions from plasticity in colour. Our results confirm that matching habitat choice can be an important driver of adaptation to urban environments. In general, studies should more fully incorporate that individuals are not only selective targets (i.e. selected on by the environment), but also selective agents (i.e. selecting their own environments).
Collapse
Affiliation(s)
- Pim Edelaar
- Department of Molecular Biology and Biochemical Engineering, University Pablo de Olavide, Carretera Utrera km.1, 41013 Seville, Spain
| | - Adrian Baños-Villalba
- Department of Molecular Biology and Biochemical Engineering, University Pablo de Olavide, Carretera Utrera km.1, 41013 Seville, Spain
| | - David P Quevedo
- Department of Molecular Biology and Biochemical Engineering, University Pablo de Olavide, Carretera Utrera km.1, 41013 Seville, Spain.,Department of Ethology and Biodiversity Conservation, Doñana Biological Station-Spanish Research Council (EBD-CSIC), Avenida Americo Vespucio 26, 41092 Seville, Spain
| | - Graciela Escudero
- Department of Molecular Biology and Biochemical Engineering, University Pablo de Olavide, Carretera Utrera km.1, 41013 Seville, Spain
| | - Daniel I Bolnick
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75N. Eagleville Road, Storrs, CT 06269-3043, USA.,Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Aída Jordán-Andrade
- Department of Molecular Biology and Biochemical Engineering, University Pablo de Olavide, Carretera Utrera km.1, 41013 Seville, Spain
| |
Collapse
|
16
|
Edelaar P, Bolnick DI. Appreciating the Multiple Processes Increasing Individual or Population Fitness. Trends Ecol Evol 2019; 34:435-446. [DOI: 10.1016/j.tree.2019.02.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/30/2019] [Accepted: 02/01/2019] [Indexed: 10/27/2022]
|
17
|
Lowe WH, Addis BR. Matching habitat choice and plasticity contribute to phenotype–environment covariation in a stream salamander. Ecology 2019; 100:e02661. [DOI: 10.1002/ecy.2661] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/07/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Winsor H. Lowe
- Division of Biological Sciences University of Montana Missoula Montana 59812 USA
| | - Brett R. Addis
- Division of Biological Sciences University of Montana Missoula Montana 59812 USA
| |
Collapse
|
18
|
Mortier F, Jacob S, Vandegehuchte ML, Bonte D. Habitat choice stabilizes metapopulation dynamics by enabling ecological specialization. OIKOS 2018. [DOI: 10.1111/oik.05885] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Frederik Mortier
- Terrestrial Ecology Unit, Dept of Biology, Ghent Univ Karel Lodewijk Ledeganckstraat 35 BE‐9000 Ghent Belgium
| | - Staffan Jacob
- Station d'Ecologie Théorique et Expérimentale, CNRS UMR5321 Moulis France
- Earth and Life Inst., Biodiversity Research Centre, Univ. Catholique de Louvain Louvain‐la‐Neuve Belgium
| | - Martijn L. Vandegehuchte
- Terrestrial Ecology Unit, Dept of Biology, Ghent Univ Karel Lodewijk Ledeganckstraat 35 BE‐9000 Ghent Belgium
| | - Dries Bonte
- Terrestrial Ecology Unit, Dept of Biology, Ghent Univ Karel Lodewijk Ledeganckstraat 35 BE‐9000 Ghent Belgium
| |
Collapse
|
19
|
Jacob S, Laurent E, Haegeman B, Bertrand R, Prunier JG, Legrand D, Cote J, Chaine AS, Loreau M, Clobert J, Schtickzelle N. Habitat choice meets thermal specialization: Competition with specialists may drive suboptimal habitat preferences in generalists. Proc Natl Acad Sci U S A 2018; 115:11988-11993. [PMID: 30397109 PMCID: PMC6255147 DOI: 10.1073/pnas.1805574115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Limited dispersal is classically considered as a prerequisite for ecological specialization to evolve, such that generalists are expected to show greater dispersal propensity compared with specialists. However, when individuals choose habitats that maximize their performance instead of dispersing randomly, theory predicts dispersal with habitat choice to evolve in specialists, while generalists should disperse more randomly. We tested whether habitat choice is associated with thermal niche specialization using microcosms of the ciliate Tetrahymena thermophila, a species that performs active dispersal. We found that thermal specialists preferred optimal habitats as predicted by theory, a link that should make specialists more likely to track suitable conditions under environmental changes than expected under the random dispersal assumption. Surprisingly, generalists also performed habitat choice but with a preference for suboptimal habitats. Since this result challenges current theory, we developed a metapopulation model to understand under which circumstances such a preference for suboptimal habitats should evolve. We showed that competition between generalists and specialists may favor a preference for niche margins in generalists under environmental variability. Our results demonstrate that the behavioral dimension of dispersal-here, habitat choice-fundamentally alters our predictions of how dispersal evolve with niche specialization, making dispersal behaviors crucial for ecological forecasting facing environmental changes.
Collapse
Affiliation(s)
- Staffan Jacob
- Earth and Life Institute, Biodiversity Research Centre, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium;
- Station d'Ecologie Théorique et Expérimentale (UMR5321), CNRS, Université Paul Sabatier, F-09200 Moulis, France
| | - Estelle Laurent
- Earth and Life Institute, Biodiversity Research Centre, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Bart Haegeman
- Station d'Ecologie Théorique et Expérimentale (UMR5321), CNRS, Université Paul Sabatier, F-09200 Moulis, France
- Centre for Biodiversity Theory and Modelling, Station d'Ecologie Théorique et Expérimentale (UMR5321), CNRS, Université Paul Sabatier, F-09200 Moulis, France
| | - Romain Bertrand
- Station d'Ecologie Théorique et Expérimentale (UMR5321), CNRS, Université Paul Sabatier, F-09200 Moulis, France
- Centre for Biodiversity Theory and Modelling, Station d'Ecologie Théorique et Expérimentale (UMR5321), CNRS, Université Paul Sabatier, F-09200 Moulis, France
| | - Jérôme G Prunier
- Station d'Ecologie Théorique et Expérimentale (UMR5321), CNRS, Université Paul Sabatier, F-09200 Moulis, France
| | - Delphine Legrand
- Station d'Ecologie Théorique et Expérimentale (UMR5321), CNRS, Université Paul Sabatier, F-09200 Moulis, France
| | - Julien Cote
- Laboratoire Evolution and Diversité Biologique (UMR5174), CNRS, Université Paul Sabatier, F-31062 Toulouse, France
| | - Alexis S Chaine
- Station d'Ecologie Théorique et Expérimentale (UMR5321), CNRS, Université Paul Sabatier, F-09200 Moulis, France
- Toulouse School of Economics, Institute for Advanced Studies in Toulouse, 31015 Toulouse, France
| | - Michel Loreau
- Station d'Ecologie Théorique et Expérimentale (UMR5321), CNRS, Université Paul Sabatier, F-09200 Moulis, France
- Centre for Biodiversity Theory and Modelling, Station d'Ecologie Théorique et Expérimentale (UMR5321), CNRS, Université Paul Sabatier, F-09200 Moulis, France
| | - Jean Clobert
- Station d'Ecologie Théorique et Expérimentale (UMR5321), CNRS, Université Paul Sabatier, F-09200 Moulis, France
| | - Nicolas Schtickzelle
- Earth and Life Institute, Biodiversity Research Centre, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
20
|
An Alternative to Adaptation by Sexual Selection: Habitat Choice. Trends Ecol Evol 2018; 33:576-581. [DOI: 10.1016/j.tree.2018.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 11/23/2022]
|
21
|
Van Belleghem SM, Hendrickx F. Response to Akcali et al.: What keeps them from mingling. Evolution 2017; 71:2762-2764. [PMID: 28975607 DOI: 10.1111/evo.13371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 09/11/2017] [Indexed: 11/30/2022]
Abstract
The salt marsh beetle Pogonus chalceus has diverged into short- and long-winged populations, which can be found in hundreds of interlaced habitat patches that sharply differ in their hydrological regime. In a recent study, we investigated how a behavioral adaptation to these contrasting hydrological regimes might drive the neat spatial sorting of the ecotypes and facilitate divergence. Simulated inundation experiments revealed that the ecotypes differ in dispersal response toward the hydrological regime and that this is a plastic behavior imprinted during the nondispersive immature stages. In their comment, Akcali and Porter (2017) question if the observed plastic response would effectively reduce gene-flow in this system. Based on the natural history of this species we demonstrate why this is plausible and we propose future avenues that may further strengthen this conclusion. In addition, Akcali and Porter (2017) illustrate some current inconsistencies in the use of terminology of the different habitat choice mechanisms. We agree that proper classification of the existing theories is indispensable in advancing the field of habitat choice mechanisms and their effect on gene flow, but the unique attributes of any given biological system may thwart this exercise.
Collapse
Affiliation(s)
- Steven M Van Belleghem
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom.,Entomology Department, Royal Belgian Institute of Natural Sciences, 1000 Brussels, Belgium.,Terrestrial Ecology Unit, Biology Department, Ghent University, B-9000 Gent, Belgium.,Current Address: Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | - Frederik Hendrickx
- Entomology Department, Royal Belgian Institute of Natural Sciences, 1000 Brussels, Belgium.,Terrestrial Ecology Unit, Biology Department, Ghent University, B-9000 Gent, Belgium
| |
Collapse
|