1
|
Law CJ, Hlusko LJ, Tseng ZJ. The Carnivoran Adaptive Landscape Reveals Trade-offs among Functional Traits in the Skull, Appendicular, and Axial Skeleton. Integr Org Biol 2025; 7:obaf001. [PMID: 39850959 PMCID: PMC11756339 DOI: 10.1093/iob/obaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/26/2024] [Accepted: 01/03/2025] [Indexed: 01/25/2025] Open
Abstract
Analyses of form-function relationships are widely used to understand links between morphology, ecology, and adaptation across macroevolutionary scales. However, few have investigated functional trade-offs and covariance within and between the skull, limbs, and vertebral column simultaneously. In this study, we investigated the adaptive landscape of skeletal form and function in carnivorans to test how functional trade-offs among these skeletal regions contribute to ecological adaptations and the topology of the landscape. We found that morphological proxies of function derived from carnivoran skeletal regions exhibit trade-offs and covariation across their performance surfaces, particularly in the appendicular and axial skeletons. These functional trade-offs and covariation correspond as adaptations to different adaptive landscapes when optimized by various factors including phylogeny, dietary ecology, and, in particular, locomotor mode. Lastly, we found that the topologies of the optimized adaptive landscapes and underlying performance surfaces are largely characterized as a single gradual gradient rather than as rugged, multipeak landscapes with distinct zones. Our results suggest that carnivorans may already occupy a broad adaptive zone as part of a larger mammalian adaptive landscape that masks the form and function relationships of skeletal traits.
Collapse
Affiliation(s)
- C J Law
- Burke Museum and Department of Biology, University of Washington, Seattle, WA 91195, USA
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - L J Hlusko
- National Research Center on Human Evolution (CENIEH), Burgos, Spain
| | - Z J Tseng
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
2
|
Casadei-Ferreira A, Procópio Camacho G, van de Kamp T, Lattke JE, Machado Feitosa R, Economo EP. Evolution and functional implications of stinger shape in ants. Evolution 2024; 79:80-99. [PMID: 39367612 DOI: 10.1093/evolut/qpae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/22/2024] [Accepted: 10/03/2024] [Indexed: 10/06/2024]
Abstract
Trait diversification is often driven by underlying performance tradeoffs in the context of different selective pressures. Evolutionary changes in task specialization may influence how species respond to tradeoffs and alter diversification. We conducted this study to investigate the functional morphology, evolutionary history, and tempo and mode of evolution of the Hymenoptera stinger using Ectatomminae ants as a model clade. We hypothesized that a performance tradeoff surface underlies the diversity of stinger morphology and that shifts between predatory and omnivorous diets mediate the diversification dynamics of the trait. Shape variation was characterized by X-ray microtomography, and the correlation between shape and average values of von Mises stress, as a measure of yield failure criteria under loading conditions typical of puncture scenarios, was determined using finite element analysis. We observed that stinger elongation underlies most of the shape variation but found no evidence of biomechanical tradeoffs in the performance characteristics measured. In addition, omnivores have increased phenotypic shifts and accelerated evolution in performance metrics, suggesting the evolution of dietary flexibility releases selection pressure on a specific function, resulting in a greater phenotypic evolutionary rate. These results increase our understanding of the biomechanical basis of stinger shape, indicate that shape diversity is not the outcome of simple biomechanical optimization, and reveal connections between diet and trait diversification.
Collapse
Affiliation(s)
- Alexandre Casadei-Ferreira
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | | | - Thomas van de Kamp
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
- Laboratory for Applications of Synchrotron Radiation, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - John E Lattke
- Departamento de Zoologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Rodrigo Machado Feitosa
- Departamento de Zoologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Evan P Economo
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| |
Collapse
|
3
|
Stayton CT. Does Phenotypic Integration Promote Convergent Evolution? Integr Comp Biol 2024; 64:1484-1493. [PMID: 38769600 DOI: 10.1093/icb/icae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024] Open
Abstract
Phenotypic integration is often perceived as being able to produce convergent evolution in the absence of selection, but specific mechanisms for this process are lacking and a connection has never been empirically demonstrated. A new model of the effect of integration on convergence provides such a mechanism, along with other predictions about the influence of integration on evolutionary patterns. I use simulations and data from three empirical systems-turtle shells, characiform fish, and squirrel mandibles-to investigate the degree to which evolutionary integration is associated with high levels of convergent evolution. Levels of integration were varied in Brownian motion simulations and the resulting amounts of stochastic convergent evolution were quantified. Each empirical system was divided into modules, and the strength of integration, average amount of convergence, phenotypic disparity, and rate of evolution in each module were measured. Results from the simulations and from all three empirical systems converge on a common result: higher levels of phenotypic integration are indeed associated with higher levels of convergence. This is despite a lack of consistent association between the strength of phenotypic integration and evolutionary rate or disparity. The results here are only correlational. Further studies that more closely examine the influence of within-population drivers of evolutionary integration-for example, genetic or developmental integration-on convergence are required before it is possible to definitively establish when phenotypic integration can cause evolutionary convergence. Until then, however, the results of this study strongly suggest that phenotypic integration will often promote convergent evolution.
Collapse
Affiliation(s)
- C Tristan Stayton
- Department of Biology, Bucknell University, 337 Biology Building, Lewisburg, PA 17837, USA
| |
Collapse
|
4
|
Burns MD, Satterfield DR, Peoples N, Chan H, Barley AJ, Yuan ML, Roberts-Hugghis AS, Russell KT, Hess M, Williamson SL, Corn KA, Mihalitsis M, Wainwright DK, Wainwright PC. Complexity and weak integration promote the diversity of reef fish oral jaws. Commun Biol 2024; 7:1433. [PMID: 39496908 PMCID: PMC11535403 DOI: 10.1038/s42003-024-07148-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/24/2024] [Indexed: 11/06/2024] Open
Abstract
Major trade-offs often manifest as axes of diversity in organismal functional systems. Overarching trade-offs may result in high trait integration and restrict the trajectory of diversification to be along a single axis. Here, we explore the diversification of the feeding mechanism in coral reef fishes to establish the role of trade-offs and complexity in a spectacular ecological radiation. We show that the primary axis of variation in the measured musculo-skeletal traits is aligned with a trade-off between mobility and force transmission, spanning species that capture prey with suction and those that bite attached prey. We found weak or no covariation between about half the traits, reflecting deviations from the trade-off axis. The dramatic trophic range found among reef fishes occurs along the primary trade-off axis, with numerous departures that use a mosaic of trait combinations to adapt the feeding mechanism to diverse challenges. We suggest that morphological evolution both along and independent of a major axis of variation is a widespread mechanism of diversification in complex systems where a global trade-off shapes major patterns of diversity. Significant additional diversity emerges as systems use weak integration and complexity to assemble functional units with many trait combinations that meet varying ecological demands.
Collapse
Affiliation(s)
- M D Burns
- Department of Fisheries, Wildlife and Conservation Sciences, Oregon State University, Corvallis, OR, USA.
- Department of Evolution & Ecology, University of California, Davis, CA, USA.
| | - D R Satterfield
- Department of Evolution & Ecology, University of California, Davis, CA, USA
| | - N Peoples
- Department of Evolution & Ecology, University of California, Davis, CA, USA
| | - H Chan
- Department of Biosciences, Rice University, Houston, TX, USA
| | - A J Barley
- School of Mathematical and Natural Sciences, Arizona State University-West Valley Campus, Glendale, AZ, USA
| | - M L Yuan
- Department of Evolution & Ecology, University of California, Davis, CA, USA
| | - A S Roberts-Hugghis
- Department of Evolution & Ecology, University of California, Davis, CA, USA
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Fish Ecology and Evolution, EAWAG, Kastanienbaum, Switzerland
| | - K T Russell
- Department of Evolution & Ecology, University of California, Davis, CA, USA
| | - M Hess
- Department of Evolution & Ecology, University of California, Davis, CA, USA
| | - S L Williamson
- Department of Evolution & Ecology, University of California, Davis, CA, USA
| | - K A Corn
- Department of Biological Sciences, Virginia Polytechnic Institute & State University, Blacksburg, VA, USA
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - M Mihalitsis
- Department of Evolution & Ecology, University of California, Davis, CA, USA
| | - D K Wainwright
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - P C Wainwright
- Department of Evolution & Ecology, University of California, Davis, CA, USA
| |
Collapse
|
5
|
Hermanson G, Evers S. Shell Constraints on Evolutionary Body Size-Limb Size Allometry Can Explain Morphological Conservatism in the Turtle Body Plan. Ecol Evol 2024; 14:e70504. [PMID: 39539674 PMCID: PMC11557996 DOI: 10.1002/ece3.70504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/17/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Turtles are a small clade of vertebrates despite having existed since the Late Triassic. Turtles have a conservative body plan relative to other amniotes, characterized by the presence of a shell and quadrupedality. This morphology is even retained in strong ecological specialists, such as sea turtles, which are secondarily adapted to marine locomotion by strong allometric scaling in their hands. It is possible that the body plan of turtles is strongly influenced by the presence of the shell, acting as a constraint to achieving greater diversity of body forms. Here, we explore the evolutionary allometric relationships of fore- and hindlimb stylopodia (i.e., humerus and femur) with one another as well as their relationship with shell size (carapace length) to assess evidence of constraint. All turtles, including Triassic shelled stem turtles, have near-isometric relationships that do not vary strongly between clades, and evolve at slow evolutionary rates. This indeed indicates that body proportions of turtles are constrained to a narrow range of possibilities. Minor allometric deviations are seen in highly aquatic sea turtles and softshell turtles, which modified their shells by bone losses. Our allometric regressions allow accurate body size estimations for fossils. Several independent sea turtle lineages converged on maximum sizes of 2.2 m of shell length, which may be a biological maximum for the group.
Collapse
|
6
|
Hermanson G, Arnal FAM, Szczygielski T, Evers SW. A systematic comparative description of extant turtle humeri, with comments on humerus disparity and evolution based on fossil comparisons. Anat Rec (Hoboken) 2024; 307:3437-3505. [PMID: 38716962 DOI: 10.1002/ar.25450] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 10/09/2024]
Abstract
The humerus is central for locomotion in turtles as quadrupedal animals. Osteological variation across testudine clades remains poorly documented. Here, we systematically describe the humerus anatomy for all major extant turtle clades based on 38 species representing the phylogenetic and ecological diversity of crown turtles. Three Late Triassic species of shelled stem turtles (Testudindata) are included to establish the plesiomorphic humerus morphology. Our work is based on 3D models, establishing a publicly available digital database. Previously defined terms for anatomical sides of the humerus (e.g., dorsal, ventral) are often not aligned with the respective body sides in turtles and other quadrupedal animals with sprawling gait. We propose alternative anatomical directional terms to simplify communication: radial and ulnar (the sides articulating with the radius/ulna), capitular (the side bearing the humeral head), and intertubercular (opposite to capitular surface). Turtle humeri show low morphological variation with exceptions concentrated in locomotory specialists. We propose 15 discrete characters to summarize osteological variation for future phylogenetic studies. Disparity analyses comparing non-shelled and shelled turtles indicate that the presence of the shell constrains humerus variation. Flippered aquatic turtles are released from this constraint and significantly increase overall disparity. Ontogenetic changes of turtle humeri are related to increased ossification and pronunciation of the proximal processes, the distal articulation areas, and the closure of the ectepicondylar groove to a foramen. Some turtle species retain juvenile features into adulthood and provide evidence for paedomorphic evolution. We review major changes of turtle humerus morphology throughout the evolution of its stem group.
Collapse
Affiliation(s)
| | - Fernando A M Arnal
- The Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, UK
| | | | - Serjoscha W Evers
- Department of Geosciences, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
7
|
Ferreira GS, Hermanson G, Kyriakouli C, Dróżdż D, Szczygielski T. Shell biomechanics suggests an aquatic palaeoecology at the dawn of turtle evolution. Sci Rep 2024; 14:21822. [PMID: 39294199 PMCID: PMC11411134 DOI: 10.1038/s41598-024-72540-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024] Open
Abstract
The turtle shell is a remarkable structure that has intrigued not only evolutionary biologists but also engineering and material scientists because of its multi-scale complexity and various functions. Although protection is its most apparent role, the carapace and plastron are also related to many physiological functions and their shape influences hydrodynamics and self-righting ability. As such, analysing the functional morphology of the shell could help understanding the ecology of Triassic stem-turtles, which will contribute to the century-long debate on the evolutionary origins of turtles. Here, we used 3D imaging techniques to digitize the shells of two of the earliest stem-turtle taxa, Proganochelys and Proterochersis, and submitted their models to biomechanical and shape analyses. We analysed the strength performance under five predation scenarios and tested the function of two morphological traits found in stem-turtles, the epiplastral processes and an attached pelvic girdle. The latter, also present in the crown-lineage of side-necked turtles, has been suggested to increase load-bearing capacity of the shell or to improve swimming in pleurodires. Our results do not confirm the shell-strengthening hypothesis and, together with the results of our shape analyses, suggest that at least one of the first stem-turtles (Proterochersis) was an aquatic animal.
Collapse
Affiliation(s)
- Gabriel S Ferreira
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Hölderlinstraße 12, 72074, Tübingen, Germany.
- Fachbereich Geowissenschaften, Eberhard Karls Universität Tübingen, Hölderlinstraße 12, 72074, Tübingen, Germany.
| | - Guilherme Hermanson
- Department of Geosciences, University of Fribourg, Chemin du Musée 6, 1700, Fribourg, Switzerland
| | - Christina Kyriakouli
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Hölderlinstraße 12, 72074, Tübingen, Germany
- Fachbereich Geowissenschaften, Eberhard Karls Universität Tübingen, Hölderlinstraße 12, 72074, Tübingen, Germany
| | - Dawid Dróżdż
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences PL, Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Tomasz Szczygielski
- Institute of Paleobiology, Polish Academy of Sciences PL, Twarda 51/55, 00-818, Warsaw, Poland
| |
Collapse
|
8
|
Tan A, St. John M, Chau D, Clair C, Chan H, Holzman R, Martin CH. A multi-peak performance landscape for scale biting in an adaptive radiation of pupfishes. J Exp Biol 2024; 227:jeb247615. [PMID: 39054887 PMCID: PMC11418179 DOI: 10.1242/jeb.247615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
The physical interactions between organisms and their environment ultimately shape diversification rates, but the contributions of biomechanics to evolutionary divergence are frequently overlooked. Here, we estimated a performance landscape for biting in an adaptive radiation of Cyprinodon pupfishes, including scale-biting and molluscivore specialists, and compared performance peaks with previous estimates of the fitness landscape in this system. We used high-speed video to film feeding strikes on gelatin cubes by scale eater, molluscivore, generalist and hybrid pupfishes and measured bite dimensions. We then measured five kinematic variables from 227 strikes using the SLEAP machine-learning model. We found a complex performance landscape with two distinct peaks best predicted gel-biting performance, corresponding to a significant non-linear interaction between peak gape and peak jaw protrusion. Only scale eaters and their hybrids were able to perform strikes within the highest performance peak, characterized by larger peak gapes and greater jaw protrusion. A performance valley separated this peak from a lower performance peak accessible to all species, characterized by smaller peak gapes and less jaw protrusion. However, most individuals exhibited substantial variation in strike kinematics and species could not be reliably distinguished by their strikes, indicating many-to-many mapping of morphology to performance. The two performance peaks observed in the lab were partially consistent with estimates of a two-peak fitness landscape measured in the wild, with the exception of the new performance peak for scale eaters. We thus reveal a new bimodal non-linear biomechanical model that connects morphology to performance to fitness in a sympatric radiation of trophic niche specialists.
Collapse
Affiliation(s)
- Anson Tan
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720-3140, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michelle St. John
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Dylan Chau
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720-3140, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Chloe Clair
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720-3140, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - HoWan Chan
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Roi Holzman
- School of Zoology, Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
- Inter-University Institute for Marine Sciences, Eilat 8810302, Israel
| | - Christopher H. Martin
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720-3140, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
9
|
Burroughs RW, Parham JF, Stuart BL, Smits PD, Angielczyk KD. Morphological Species Delimitation in The Western Pond Turtle ( Actinemys): Can Machine Learning Methods Aid in Cryptic Species Identification? Integr Org Biol 2024; 6:obae010. [PMID: 38689939 PMCID: PMC11058871 DOI: 10.1093/iob/obae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/29/2024] [Indexed: 05/02/2024] Open
Abstract
As the discovery of cryptic species has increased in frequency, there has been an interest in whether geometric morphometric data can detect fine-scale patterns of variation that can be used to morphologically diagnose such species. We used a combination of geometric morphometric data and an ensemble of five supervised machine learning methods (MLMs) to investigate whether plastron shape can differentiate two putative cryptic turtle species, Actinemys marmorata and Actinemys pallida. Actinemys has been the focus of considerable research due to its biogeographic distribution and conservation status. Despite this work, reliable morphological diagnoses for its two species are still lacking. We validated our approach on two datasets, one consisting of eight morphologically disparate emydid species, the other consisting of two subspecies of Trachemys (T. scripta scripta, T. scripta elegans). The validation tests returned near-perfect classification rates, demonstrating that plastron shape is an effective means for distinguishing taxonomic groups of emydids via MLMs. In contrast, the same methods did not return high classification rates for a set of alternative phylogeographic and morphological binning schemes in Actinemys. All classification hypotheses performed poorly relative to the validation datasets and no single hypothesis was unequivocally supported for Actinemys. Two hypotheses had machine learning performance that was marginally better than our remaining hypotheses. In both cases, those hypotheses favored a two-species split between A. marmorata and A. pallida specimens, lending tentative morphological support to the hypothesis of two Actinemys species. However, the machine learning results also underscore that Actinemys as a whole has lower levels of plastral variation than other turtles within Emydidae, but the reason for this morphological conservatism is unclear.
Collapse
Affiliation(s)
- R W Burroughs
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
- Center for Inclusive Education, Stony Brook University, Stony Brook, NY 11794, USA
| | - J F Parham
- Department of Geological Sciences, California State University, Fullerton, CA 92834, USA
| | - B L Stuart
- Section of Research and Collections, NC Museum of Natural Sciences, Raleigh, NC 27601, USA
| | - P D Smits
- 952 NW 60th St., Seattle, Washington, WA 98107, USA
| | - K D Angielczyk
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL 60605, USA
| |
Collapse
|
10
|
Bergmann PJ, Tonelli-Sippel I. Many-to-many mapping: A simulation study of how the number of traits and tasks affect the evolution of form and function. J Theor Biol 2024; 581:111744. [PMID: 38281541 DOI: 10.1016/j.jtbi.2024.111744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/14/2024] [Accepted: 01/20/2024] [Indexed: 01/30/2024]
Abstract
Many-to-many mapping of form-to-function posits that multiple morphological and physiological traits affect the performance of multiple tasks in an organism, and that redundancy and multitasking occur simultaneously to shape the evolution of an organism's phenotype. Many-to-many mapping is expected to be ubiquitous in nature, yet little is known about how it influences the evolution of organismal phenotype. The F-matrix is a powerful tool to study these issues because it describes how multiple traits affect multiple tasks. We undertook a simulation study using the F-matrix to test how the number of traits and the number of tasks affect trait integration and evolvability, as well as the relationships among tasks. We found that as the number of traits and/or tasks increases, the relationships between the tasks and the integration between the traits become weaker, and that the evolvability of the traits increases, all resulting in a system that is freer to evolve. We also found that as the number of traits increases, performance tradeoffs tend to become weaker, but only to a point. Our work shows that it is important to consider not only multiple traits, but also the multitude of tasks that those traits carry out when studying form-function relationships. We suggest that evolution of these relationships follows functional lines of least resistance, which are less defined in more complex systems, resulting in a mechanism for diversification.
Collapse
Affiliation(s)
- Philip J Bergmann
- Department of Biology, Clark University, 950 Main Street, Worcester, MA 01602, United States.
| | - Isabel Tonelli-Sippel
- Department of Biology, Clark University, 950 Main Street, Worcester, MA 01602, United States
| |
Collapse
|
11
|
Panda AK, Verma V, Srivastav A, Badola R, Hussain SA. Digital image processing: A new tool for morphological measurements of freshwater turtles under rehabilitation. PLoS One 2024; 19:e0300253. [PMID: 38484004 PMCID: PMC10939246 DOI: 10.1371/journal.pone.0300253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/23/2024] [Indexed: 03/17/2024] Open
Abstract
Freshwater fauna is facing an uphill task for survival in the Ganga Basin, India, due to a range of factors causing habitat degradation and fragmentation, necessitating conservation interventions. As part of the ongoing efforts to conserve the freshwater fauna of the Basin, we are working on rehabilitating rescued freshwater chelonians. We carry out various interventions to restore rescued individuals to an apparent state of fitness for their release in suitable natural habitats. Morphometric measurements are crucial to managing captive wild animals for assessing their growth and well-being. Measurements are made using manual methods like vernier caliper that are prone to observer error experience and require handling the specimens for extended periods. Digital imaging technology is rapidly progressing at a fast pace and with the advancement of technology. We acquired images of turtles using smartphones along with manual morphometric measurements using vernier calipers of the straight carapace length and straight carapace width. The images were subsequently processed using ImageJ, a freeware and compared with manual morphometric measurements. A significant decrease in the time spent in carrying out morphometric measurements was observed in our study. The difference in error in measurements was, however, not significant. A probable cause for this may have been the extensive experience of the personnel carrying out the measurements using vernier caliper. Digital image processing technology can cause a significant reduction in the stress of the animals exposed to handling during measurements, thereby improving their welfare. Additionally, this can be used in the field to carry out morphometric measurements of free-ranging individuals, where it is often difficult to capture individuals, and challenges are faced in obtaining permission to capture specimens.
Collapse
Affiliation(s)
- Ashish Kumar Panda
- Ganga Aqualife Conservation and Monitoring Centre, Wildlife Institute of India, Chandrabani, Dehra Dun, Uttarakhand, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Vikas Verma
- Ganga Aqualife Conservation and Monitoring Centre, Wildlife Institute of India, Chandrabani, Dehra Dun, Uttarakhand, India
| | - Anupam Srivastav
- Ganga Aqualife Conservation and Monitoring Centre, Wildlife Institute of India, Chandrabani, Dehra Dun, Uttarakhand, India
| | - Ruchi Badola
- Ganga Aqualife Conservation and Monitoring Centre, Wildlife Institute of India, Chandrabani, Dehra Dun, Uttarakhand, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Syed Ainul Hussain
- Ganga Aqualife Conservation and Monitoring Centre, Wildlife Institute of India, Chandrabani, Dehra Dun, Uttarakhand, India
| |
Collapse
|
12
|
van Casteren A, Sellers WI, Crossley DA, Costello LM, Codd JR. Shell shape does not accurately predict self-righting ability in hatchling freshwater turtles. Sci Rep 2024; 14:4919. [PMID: 38418502 PMCID: PMC10902340 DOI: 10.1038/s41598-024-54191-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/09/2024] [Indexed: 03/01/2024] Open
Abstract
Flat hydrodynamic shells likely represent an evolutionary trade-off between adaptation to an aquatic lifestyle and the instability of more rounded shells, thought beneficial for self-righting. Trade-offs often result in compromises, this is particularly true when freshwater turtles, with flatter shells, must self-right to avoid the negative effects of inverting. These turtles, theoretically, invest more biomechanical effort to achieve successful and timely self-righting when compared to turtles with rounded carapaces. This increase in effort places these hatchlings in a precarious position; prone to inversion and predation and with shells seemingly maladapted to the act of self-righting. Here, we examine hatchling self-righting performance in three morphologically distinct freshwater turtle species (Apalone spinifera, Chelydra serpentina and Trachemys scripta scripta) that inhabit similar environmental niches. We demonstrate that these hatchlings were capable of rapid self-righting and used considerably less biomechanical effort relative to adult turtles. Despite differences in shell morphology the energetic efficiency of self-righting remained remarkably low and uniform between the three species. Our results confound theoretical predictions of self-righting ability based on shell shape metrics and indicate that other morphological characteristics like neck or tail morphology and shell material properties must be considered to better understand the biomechanical nuances of Testudine self-righting.
Collapse
Affiliation(s)
- Adam van Casteren
- School of Biological Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - William I Sellers
- School of Natural Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Dane A Crossley
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Leah M Costello
- School of Biological Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Jonathan R Codd
- School of Biological Sciences, University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
13
|
Tan A, St. John M, Chau D, Clair C, Chan H, Holzman R, Martin CH. Multiple performance peaks for scale-biting in an adaptive radiation of pupfishes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573139. [PMID: 38187684 PMCID: PMC10769438 DOI: 10.1101/2023.12.22.573139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The physical interactions between organisms and their environment ultimately shape their rate of speciation and adaptive radiation, but the contributions of biomechanics to evolutionary divergence are frequently overlooked. Here we investigated an adaptive radiation of Cyprinodon pupfishes to measure the relationship between feeding kinematics and performance during adaptation to a novel trophic niche, lepidophagy, in which a predator removes only the scales, mucus, and sometimes tissue from their prey using scraping and biting attacks. We used high-speed video to film scale-biting strikes on gelatin cubes by scale-eater, molluscivore, generalist, and hybrid pupfishes and subsequently measured the dimensions of each bite. We then trained the SLEAP machine-learning animal tracking model to measure kinematic landmarks and automatically scored over 100,000 frames from 227 recorded strikes. Scale-eaters exhibited increased peak gape and greater bite length; however, substantial within-individual kinematic variation resulted in poor discrimination of strikes by species or strike type. Nonetheless, a complex performance landscape with two distinct peaks best predicted gel-biting performance, corresponding to a significant nonlinear interaction between peak gape and peak jaw protrusion in which scale-eaters and their hybrids occupied a second performance peak requiring larger peak gape and greater jaw protrusion. A bite performance valley separating scale-eaters from other species may have contributed to their rapid evolution and is consistent with multiple estimates of a multi-peak fitness landscape in the wild. We thus present an efficient deep-learning automated pipeline for kinematic analyses of feeding strikes and a new biomechanical model for understanding the performance and rapid evolution of a rare trophic niche.
Collapse
Affiliation(s)
- Anson Tan
- Department of Integrative Biology, University of California, Berkeley
- Museum of Vertebrate Zoology, University of California, Berkeley
| | | | - Dylan Chau
- Department of Integrative Biology, University of California, Berkeley
- Museum of Vertebrate Zoology, University of California, Berkeley
| | - Chloe Clair
- Department of Integrative Biology, University of California, Berkeley
- Museum of Vertebrate Zoology, University of California, Berkeley
| | | | - Roi Holzman
- School of Zoology, Tel Aviv University, Eilat, Israel
- Inter-University Institute for Marine Sciences, Eilat, Israel
| | - Christopher H. Martin
- Department of Integrative Biology, University of California, Berkeley
- Museum of Vertebrate Zoology, University of California, Berkeley
| |
Collapse
|
14
|
Schwab JA, Figueirido B, Martín-Serra A, van der Hoek J, Flink T, Kort A, Esteban Núñez JM, Jones KE. Evolutionary ecomorphology for the twenty-first century: examples from mammalian carnivores. Proc Biol Sci 2023; 290:20231400. [PMID: 38018109 PMCID: PMC10685142 DOI: 10.1098/rspb.2023.1400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023] Open
Abstract
Carnivores (cats, dogs and kin) are a diverse group of mammals that inhabit a remarkable range of ecological niches. While the relationship between ecology and morphology has long been of interest in carnivorans, the application of quantitative techniques has resulted in a recent explosion of work in the field. Therefore, they provide a case study of how quantitative techniques, such as geometric morphometrics (GMM), have impacted our ability to tease apart complex ecological signals from skeletal anatomy, and the implications for our understanding of the relationships between form, function and ecological specialization. This review provides a synthesis of current research on carnivoran ecomorphology, with the goal of illustrating the complex interaction between ecology and morphology in the skeleton. We explore the ecomorphological diversity across major carnivoran lineages and anatomical systems. We examine cranial elements (skull, sensory systems) and postcranial elements (limbs, vertebral column) to reveal mosaic patterns of adaptation related to feeding and hunting strategies, locomotion and habitat preference. We highlight the crucial role that new approaches have played in advancing our understanding of carnivoran ecomorphology, while addressing challenges that remain in the field, such as ecological classifications, form-function relationships and multi-element analysis, offering new avenues for future research.
Collapse
Affiliation(s)
- Julia A. Schwab
- Department of Earth and Environmental Sciences, University of Manchester, M13 9PL Manchester, UK
| | - Borja Figueirido
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Alberto Martín-Serra
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Julien van der Hoek
- Department of Earth and Environmental Sciences, University of Manchester, M13 9PL Manchester, UK
| | - Therese Flink
- Department of Palaeobiology, Swedish Museum of Natural History, PO Box 50007, 10405 Stockholm, Sweden
| | - Anne Kort
- Department of Earth and Atmospheric Sciences, Indiana University Bloomington, 1001 E 10th St, Bloomington, IN, USA
- Department of Earth and Environmental Sciences, University of Michigan, 1100 N University Ave, Ann Arbor, MI 48109, USA
| | | | - Katrina E. Jones
- Department of Earth and Environmental Sciences, University of Manchester, M13 9PL Manchester, UK
| |
Collapse
|
15
|
Liu S, Smith SD. Replicated radiations in the South American marsh pitcher plants (Heliamphora) lead to convergent carnivorous trap morphologies. AMERICAN JOURNAL OF BOTANY 2023; 110:e16230. [PMID: 37807697 DOI: 10.1002/ajb2.16230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 10/10/2023]
Abstract
PREMISE The evolution of carnivorous pitcher traps across multiple angiosperm lineages represents a classic example of morphological convergence. Nevertheless, no comparative study to-date has examined pitcher evolution from a quantitative morphometric perspective. METHODS In the present study, we used comparative morphometric approaches to quantify the shape space occupied by Heliamphora pitchers and to trace evolutionary trajectories through this space to examine patterns of divergence and convergence within the genus. We also investigated pitcher development, and, how the packing of pitchers is affected by crowding, a common condition in their natural environments. RESULTS Our results showed that Heliamphora pitchers have diverged along three main axes in morphospace: (1) pitcher curvature; (2) nectar spoon elaboration; and (3) pitcher stoutness. Both curvature and stoutness are correlated with pitcher size, suggesting structural constraints in pitcher morphological evolution. Among the four traits (curvature, spoon elaboration, stoutness, and size), all but curvature lacked phylogenetic signal and showed marked convergence across the phylogeny. We also observed tighter packing of pitchers in crowded conditions, and this effect was most pronounced in curved, slender pitchers. CONCLUSIONS Overall, our study demonstrates that diversification and convergent evolution of carnivory-related traits extends to finer evolutionary timescales, reinforcing the notion that ecological specialization may not necessarily be an evolutionary dead end.
Collapse
Affiliation(s)
- Sukuan Liu
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, 1900 Pleasant Street, Boulder, Colorado, 80309, USA
| | - Stacey D Smith
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, 1900 Pleasant Street, Boulder, Colorado, 80309, USA
| |
Collapse
|
16
|
Simon MN, Moen DS. Bridging Performance and Adaptive Landscapes to Understand Long-Term Functional Evolution. Physiol Biochem Zool 2023; 96:304-320. [PMID: 37418608 DOI: 10.1086/725416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
AbstractUnderstanding functional adaptation demands an integrative framework that captures the complex interactions between form, function, ecology, and evolutionary processes. In this review, we discuss how to integrate the following two distinct approaches to better understand functional evolution: (1) the adaptive landscape approach (ALA), aimed at finding adaptive peaks for different ecologies, and (2) the performance landscape approach (PLA), aimed at finding performance peaks for different ecologies. We focus on the Ornstein-Uhlenbeck process as the evolutionary model for the ALA and on biomechanical modeling to estimate performance for the PLA. Whereas both the ALA and the PLA have each given insight into functional adaptation, separately they cannot address how much performance contributes to fitness or whether evolutionary constraints have played a role in form-function evolution. We show that merging these approaches leads to a deeper understanding of these issues. By comparing the locations of performance and adaptive peaks, we can infer how much performance contributes to fitness in species' current environments. By testing for the relevance of history on phenotypic variation, we can infer the influence of past selection and constraints on functional adaptation. We apply this merged framework in a case study of turtle shell evolution and explain how to interpret different possible outcomes. Even though such outcomes can be quite complex, they represent the multifaceted relations among function, fitness, and constraints.
Collapse
|
17
|
Deepak V, Gower DJ, Cooper N. Diet and habit explain head-shape convergences in natricine snakes. J Evol Biol 2023; 36:399-411. [PMID: 36511814 DOI: 10.1111/jeb.14139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/24/2022] [Accepted: 11/14/2022] [Indexed: 12/15/2022]
Abstract
The concept of ecomorphs, whereby species with similar ecologies have similar phenotypes regardless of their phylogenetic relatedness, is often central to discussions regarding the relationship between ecology and phenotype. However, some aspects of the concept have been questioned, and sometimes species have been grouped as ecomorphs based on phenotypic similarity without demonstrating ecological similarity. Within snakes, similar head shapes have convergently evolved in species living in comparable environments and/or with similar diets. Therefore, ecomorphs could exist in some snake lineages, but this assertion has rarely been tested for a wide-ranging group within a single framework. Natricine snakes (Natricinae) are ecomorphologically diverse and currently distributed in Asia, Africa, Europe and north-central America. They are primarily semiaquatic or ground-dwelling terrestrial snakes, but some are aquatic, burrowing or aquatic and burrowing in habit and may be generalist or specialist in diet. Thus, natricines present an interesting system to test whether snakes from different major habit categories represent ecomorphs. We quantify morphological similarity and disparity in head shape among 191 of the ca. 250 currently recognized natricine species and apply phylogenetic comparative methods to test for convergence. Natricine head shape is largely correlated with habit, but in some burrowers is better explained by dietary specialism. Convergence in head shape is especially strong for aquatic burrowing, semiaquatic and terrestrial ecomorphs and less strong for aquatic and burrowing ecomorphs. The ecomorph concept is useful for understanding natricine diversity and evolution, though would benefit from further refinement, especially for aquatic and burrowing taxa.
Collapse
Affiliation(s)
- V Deepak
- Science Group, Natural History Museum London, London, UK.,Senckenberg Dresden, Museum of Zoology (Museum für Tierkunde), Dresden, Germany
| | - David J Gower
- Science Group, Natural History Museum London, London, UK
| | - Natalie Cooper
- Science Group, Natural History Museum London, London, UK
| |
Collapse
|
18
|
Abstract
AbstractEvolvability is best addressed from a multi-level, macroevolutionary perspective through a comparative approach that tests for among-clade differences in phenotypic diversification in response to an opportunity, such as encountered after a mass extinction, entering a new adaptive zone, or entering a new geographic area. Analyzing the dynamics of clades under similar environmental conditions can (partially) factor out shared external drivers to recognize intrinsic differences in evolvability, aiming for a macroevolutionary analog of a common-garden experiment. Analyses will be most powerful when integrating neontological and paleontological data: determining differences among extant populations that can be hypothesized to generate large-scale, long-term contrasts in evolvability among clades; or observing large-scale differences among clade histories that can by hypothesized to reflect contrasts in genetics and development observed directly in extant populations. However, many comparative analyses can be informative on their own, as explored in this overview. Differences in clade-level evolvability can be visualized in diversity-disparity plots, which can quantify positive and negative departures of phenotypic productivity from stochastic expectations scaled to taxonomic diversification. Factors that evidently can promote evolvability include modularity—when selection aligns with modular structure or with morphological integration patterns; pronounced ontogenetic changes in morphology, as in allometry or multiphase life cycles; genome size; and a variety of evolutionary novelties, which can also be evaluated using macroevolutionary lags between the acquisition of a trait and phenotypic diversification, and dead-clade-walking patterns that may signal a loss of evolvability when extrinsic factors can be excluded. High speciation rates may indirectly foster phenotypic evolvability, and vice versa. Mechanisms are controversial, but clade evolvability may be higher in the Cambrian, and possibly early in the history of clades at other times; in the tropics; and, for marine organisms, in shallow-water disturbed habitats.
Collapse
|
19
|
Holzman R, Keren T, Kiflawi M, Martin CH, China V, Mann O, Olsson KH. A new theoretical performance landscape for suction feeding reveals adaptive kinematics in a natural population of reef damselfish. J Exp Biol 2022; 225:jeb243273. [PMID: 35647659 PMCID: PMC9339911 DOI: 10.1242/jeb.243273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 05/20/2022] [Indexed: 11/20/2022]
Abstract
Understanding how organismal traits determine performance and, ultimately, fitness is a fundamental goal of evolutionary eco-morphology. However, multiple traits can interact in non-linear and context-dependent ways to affect performance, hindering efforts to place natural populations with respect to performance peaks or valleys. Here, we used an established mechanistic model of suction-feeding performance (SIFF) derived from hydrodynamic principles to estimate a theoretical performance landscape for zooplankton prey capture. This performance space can be used to predict prey capture performance for any combination of six morphological and kinematic trait values. We then mapped in situ high-speed video observations of suction feeding in a natural population of a coral reef zooplanktivore, Chromis viridis, onto the performance space to estimate the population's location with respect to the topography of the performance landscape. Although the kinematics of the natural population closely matched regions of high performance in the landscape, the population was not located on a performance peak. Individuals were furthest from performance peaks on the peak gape, ram speed and mouth opening speed trait axes. Moreover, we found that the trait combinations in the observed population were associated with higher performance than expected by chance, suggesting that these combinations are under selection. Our results provide a framework for assessing whether natural populations occupy performance optima.
Collapse
Affiliation(s)
- Roi Holzman
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- The Inter-University Institute for Marine Sciences, PO Box 469, Eilat 88103, Israel
| | - Tal Keren
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- The Inter-University Institute for Marine Sciences, PO Box 469, Eilat 88103, Israel
| | - Moshe Kiflawi
- Department of Life Sciences, Ben Gurion University, Beer Sheva 8410501, Israel
- The Inter-University Institute for Marine Sciences, PO Box 469, Eilat 88103, Israel
| | - Christopher H. Martin
- Department of Integrative Biology, and the Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| | - Victor China
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- The Inter-University Institute for Marine Sciences, PO Box 469, Eilat 88103, Israel
| | - Ofri Mann
- Department of Life Sciences, Ben Gurion University, Beer Sheva 8410501, Israel
- The Inter-University Institute for Marine Sciences, PO Box 469, Eilat 88103, Israel
| | - Karin H. Olsson
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- The Inter-University Institute for Marine Sciences, PO Box 469, Eilat 88103, Israel
| |
Collapse
|
20
|
Hebdon N, Polly PD, Peterman DJ, Ritterbush KA. Detecting Mismatch in Functional Narratives of Animal Morphology: a Test Case With Fossils. Integr Comp Biol 2022; 62:icac034. [PMID: 35660875 DOI: 10.1093/icb/icac034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A boom in technological advancements over the last two decades has driven a surge in both the diversity and power of analytical tools available to biomechanical and functional morphology research. However, in order to adequately investigate each of these dense datasets, one must often consider only one functional narrative at a time. There is more to each organism than any one of these form-function relationships. Joint performance landscapes determined by maximum likelihood are a valuable tool that can be used to synthesize our understanding of these multiple functional hypotheses to further explore an organism's ecology. We present an example framework for applying these tools to such a problem using the morphological transition of ammonoids from the Middle Triassic to the Early Jurassic. Across this time interval, morphospace occupation shifts from a broad occupation across Westermann Morphospace to a dense occupation of a region emphasizing an exposed umbilicus and modest frontal profile. The hydrodynamic capacities and limitations of the shell have seen intense scrutiny as a likely explanation of this transition. However, conflicting interpretations of hydrodynamic performance remain despite this scrutiny, with scant offerings of alternative explanations. Our analysis finds that hydrodynamic measures of performance do little to explain the shift in morphological occupation, highlighting a need for a more robust investigation of alternative functional hypotheses that are often intellectually set aside. With this we show a framework for consolidating the current understanding of the form-function relationships in an organism, and assess when they are insufficiently characterizing the dynamics those data are being used to explain. We aim to encourage the broader adoption of this framework and these ideas as a foundation to bring the field close to comprehensive synthesis and reconstruction of organisms.
Collapse
Affiliation(s)
- Nicholas Hebdon
- Dept. of Biological Sciences, Chapman University, Keck Center, 450 North Center Street, Orange, CA, 92866
| | - P David Polly
- Departments of Earth & Atmospheric Science, Biology, and Anthropology, Indiana University, Bloomington, IN, 47405, USA
| | - David Joseph Peterman
- Dept. Geology and Geophysics, University of Utah, Frederick Albert Sutton Building, 115 S 1460 E, Salt Lake City, UT 84112-0102
| | - Kathleen A Ritterbush
- Dept. Geology and Geophysics, University of Utah, Frederick Albert Sutton Building, 115 S 1460 E, Salt Lake City, UT 84112-0102
| |
Collapse
|
21
|
Deakin WJ, Anderson PSL, den Boer W, Smith TJ, Hill JJ, Rücklin M, Donoghue PCJ, Rayfield EJ. Increasing morphological disparity and decreasing optimality for jaw speed and strength during the radiation of jawed vertebrates. SCIENCE ADVANCES 2022; 8:eabl3644. [PMID: 35302857 PMCID: PMC8932669 DOI: 10.1126/sciadv.abl3644] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/28/2022] [Indexed: 05/25/2023]
Abstract
The Siluro-Devonian adaptive radiation of jawed vertebrates, which underpins almost all living vertebrate biodiversity, is characterized by the evolutionary innovation of the lower jaw. Multiple lines of evidence have suggested that the jaw evolved from a rostral gill arch, but when the jaw took on a feeding function remains unclear. We quantified the variety of form in the earliest jaws in the fossil record from which we generated a theoretical morphospace that we then tested for functional optimality. By drawing comparisons with the real jaw data and reconstructed jaw morphologies from phylogenetically inferred ancestors, our results show that the earliest jaw shapes were optimized for fast closure and stress resistance, inferring a predatory feeding function. Jaw shapes became less optimal for these functions during the later radiation of jawed vertebrates. Thus, the evolution of jaw morphology has continually explored previously unoccupied morphospace and accumulated disparity through time, laying the foundation for diverse feeding strategies and the success of jawed vertebrates.
Collapse
Affiliation(s)
- William J. Deakin
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Philip S. L. Anderson
- Department of Evolution, Ecology and Behavior, University of Illinois, Urbana-Champaign, IL, USA
| | - Wendy den Boer
- Swedish Museum of Natural History, Department of Palaeobiology, Frescativägen 40, 114 18 Stockholm, Sweden
| | - Thomas J. Smith
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Jennifer J. Hill
- Smithsonian Institution, National Museum of Natural History, Washington, DC 20013-7012, USA
| | - Martin Rücklin
- Naturalis Biodiversity Center, Postbus 9517, 2300 RA Leiden, Netherlands
| | - Philip C. J. Donoghue
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Emily J. Rayfield
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
22
|
Weller H, López-Fernández H, McMahan CD, Brainerd EL. Relaxed feeding constraints facilitate the evolution of mouthbrooding in Neotropical cichlids. Am Nat 2022; 199:E197-E210. [DOI: 10.1086/719235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Butterfield TG, Herrel A, Olson ME, Contreras-Garduño J, Macip-Ríos R. Morphology of the limb, shell and head explain the variation in performance and ecology across 14 turtle taxa (12 species). Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Given that morphology directly influences the ability of an organism to utilize its habitat and dietary resources, it also influences fitness. Comparing the relationship between morphology, performance and ecology is fundamental to understand how organisms evolve to occupy a wide range of habitats and diets. In turtles, studies have documented important relationships between morphology, performance and ecology, but none was field based or considered limb, shell and head morphology simultaneously. We compared the morphology, performance and ecology of 14 turtle taxa (12 species) in Mexico that range in their affinity to water and in their diet. We took linear measurements of limb, shell and head variables. We measured maximum swimming speed, maximum bite force and how often turtles were encountered on land, and we used stable isotopes to assess trophic position. We used these data to test the following three hypotheses: (1) morphology, performance and ecology covary; (2) limb and shell variables, like hand length, are correlated with swimming speed and the percentage of time spent on land; and (3) head variables, such as head width, are correlated with bite force and stable isotopes. We find support for these hypotheses and provide the first evidence that morphology influences performance and ecology in turtles in the field.
Collapse
Affiliation(s)
- Taggert G Butterfield
- Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Morelia, Michoacán, México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Unidad de Posgrado, edificio D, Ciudad Universitaria, CDMX, México, Mexico
| | - Anthony Herrel
- UMR 7179 CNRS/MNHN, Département Adaptations du Vivant, 55 rue Buffon, 75005, Paris Cedex 5, France
| | - Mark E Olson
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Unidad de Posgrado, edificio D, Ciudad Universitaria, CDMX, México, Mexico
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México (CDMX), Mexico, Mexico
| | - Jorge Contreras-Garduño
- Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Morelia, Michoacán, México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Unidad de Posgrado, edificio D, Ciudad Universitaria, CDMX, México, Mexico
| | - Rodrigo Macip-Ríos
- Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Morelia, Michoacán, México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Unidad de Posgrado, edificio D, Ciudad Universitaria, CDMX, México, Mexico
| |
Collapse
|
24
|
Smith SM, Stayton CT, Angielczyk KD. How many trees to see the forest? Assessing the effects of morphospace coverage and sample size in performance surface analysis. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Stephanie M. Smith
- Negaunee Integrative Research Center Field Museum of Natural History Chicago IL USA
| | | | | |
Collapse
|
25
|
Kilbourne BM. Differing limb functions and their potential influence upon the diversification of the mustelid hindlimb skeleton. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blaa207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Though form-function relationships of the mammalian locomotor system have been investigated for over a century, recent models of trait evolution have hitherto been seldom used to identify likely evolutionary processes underlying the locomotor system’s morphological diversity. Using mustelids, an ecologically diverse carnivoran lineage, I investigated whether variation in hindlimb skeletal morphology functionally coincides with climbing, digging, swimming and generalized locomotor habits by using 15 linear traits of the femur, tibia, fibula, calcaneum and metatarsal III across 44 species in a principal component analysis. I subsequently fit different models of Brownian motion and adaptive trait diversification individually to each trait. Climbing, digging and swimming mustelids occupy distinct regions of phenotypic space characterized by differences in bone robustness. Models of adaptive and neutral evolution are, respectively, the best fits for long bone lengths and muscle in-levers, suggesting that different kinds of traits may be associated with different evolutionary processes. However, simulations based upon models of best fit reveal low statistical power to rank the models. Though differences in mustelid hindlimb skeletal morphology appear to coincide with locomotor habits, further study, with sampling expanded beyond the Mustelidae, is necessary to better understand to what degree adaptive evolution shapes morphological diversity of the locomotor system.
Collapse
Affiliation(s)
- Brandon M Kilbourne
- Museum für Naturkunde Berlin, Leibniz Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
| |
Collapse
|
26
|
Corn KA, Martinez CM, Burress ED, Wainwright PC. A Multifunction Trade-Off has Contrasting Effects on the Evolution of Form and Function. Syst Biol 2021; 70:681-693. [PMID: 33331913 DOI: 10.1093/sysbio/syaa091] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/14/2020] [Accepted: 11/19/2020] [Indexed: 01/14/2023] Open
Abstract
Trade-offs caused by the use of an anatomical apparatus for more than one function are thought to be an important constraint on evolution. However, whether multifunctionality suppresses diversification of biomechanical systems is challenged by recent literature showing that traits more closely tied to trade-offs evolve more rapidly. We contrast the evolutionary dynamics of feeding mechanics and morphology between fishes that exclusively capture prey with suction and multifunctional species that augment this mechanism with biting behaviors to remove attached benthic prey. Diversification of feeding kinematic traits was, on average, over 13.5 times faster in suction feeders, consistent with constraint on biters due to mechanical trade-offs between biting and suction performance. Surprisingly, we found that the evolution of morphology contrasts directly with these differences in kinematic evolution, with significantly faster rates of evolution of head shape in biters. This system provides clear support for an often postulated, but rarely confirmed prediction that multifunctionality stifles functional diversification, while also illustrating the sometimes weak relationship between form and function. [Form-function evolution; geometric morphometrics; kinematic evolution; macroevolution; Ornstein-Uhlenbeck; RevBayes; suction feeding].
Collapse
Affiliation(s)
- Katherine A Corn
- Department of Evolution & Ecology, University of California, Davis, 2320 Storer Hall, 1 Shields Ave, Davis, CA, 95616 USA
| | - Christopher M Martinez
- Department of Evolution & Ecology, University of California, Davis, 2320 Storer Hall, 1 Shields Ave, Davis, CA, 95616 USA
| | - Edward D Burress
- Department of Evolution & Ecology, University of California, Davis, 2320 Storer Hall, 1 Shields Ave, Davis, CA, 95616 USA
| | - Peter C Wainwright
- Department of Evolution & Ecology, University of California, Davis, 2320 Storer Hall, 1 Shields Ave, Davis, CA, 95616 USA
| |
Collapse
|
27
|
Stayton CT. Are our phylomorphospace plots so terribly tangled? An investigation of disorder in data simulated under adaptive and nonadaptive models. Curr Zool 2020; 66:565-574. [PMID: 33293934 PMCID: PMC7705511 DOI: 10.1093/cz/zoaa045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/17/2020] [Indexed: 01/02/2023] Open
Abstract
Contemporary methods for visualizing phenotypic evolution, such as phylomorphospaces, often reveal patterns which depart strongly from a naïve expectation of consistently divergent branching and expansion. Instead, branches regularly crisscross as convergence, reversals, or other forms of homoplasy occur, forming patterns described as “birds’ nests”, “flies in vials”, or less elegantly, “a mess”. In other words, the phenotypic tree of life often appears highly tangled. Various explanations are given for this, such as differential degrees of developmental constraint, adaptation, or lack of adaptation. However, null expectations for the magnitude of disorder or “tangling” have never been established, so it is unclear which or even whether various evolutionary factors are required to explain messy patterns of evolution. I simulated evolution along phylogenies under a number of varying parameters (number of taxa and number of traits) and models (Brownian motion, Ornstein–Uhlenbeck (OU)-based, early burst, and character displacement (CD)] and quantified disorder using 2 measures. All models produce substantial amounts of disorder. Disorder increases with tree size and the number of phenotypic traits. OU models produced the largest amounts of disorder—adaptive peaks influence lineages to evolve within restricted areas, with concomitant increases in crossing of branches and density of evolution. Large early changes in trait values can be important in minimizing disorder. CD consistently produced trees with low (but not absent) disorder. Overall, neither constraints nor a lack of adaptation is required to explain messy phylomorphospaces—both stochastic and deterministic processes can act to produce the tantalizingly tangled phenotypic tree of life.
Collapse
Affiliation(s)
- C Tristan Stayton
- Department of Biology, Bucknell University, 337 Biology Building, Lewisburg, PA, 17837, USA
| |
Collapse
|
28
|
Dickson BV, Clack JA, Smithson TR, Pierce SE. Functional adaptive landscapes predict terrestrial capacity at the origin of limbs. Nature 2020; 589:242-245. [PMID: 33239789 DOI: 10.1038/s41586-020-2974-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/01/2020] [Indexed: 11/09/2022]
Abstract
The acquisition of terrestrial, limb-based locomotion during tetrapod evolution has remained a subject of debate for more than a century1,2. Our current understanding of the locomotor transition from water to land is largely based on a few exemplar fossils such as Tiktaalik3, Acanthostega4, Ichthyostega5 and Pederpes6. However, isolated bony elements may reveal hidden functional diversity, providing a more comprehensive evolutionary perspective7. Here we analyse 40 three-dimensionally preserved humeri from extinct tetrapodomorphs that span the fin-to-limb transition and use functionally informed ecological adaptive landscapes8-10 to reconstruct the evolution of terrestrial locomotion. We show that evolutionary changes in the shape of the humerus are driven by ecology and phylogeny and are associated with functional trade-offs related to locomotor performance. Two divergent adaptive landscapes are recovered for aquatic fishes and terrestrial crown tetrapods, each of which is defined by a different combination of functional specializations. Humeri of stem tetrapods share a unique suite of functional adaptations, but do not conform to their own predicted adaptive peak. Instead, humeri of stem tetrapods fall at the base of the crown tetrapod landscape, indicating that the capacity for terrestrial locomotion occurred with the origin of limbs. Our results suggest that stem tetrapods may have used transitional gaits5,11 during the initial stages of land exploration, stabilized by the opposing selective pressures of their amphibious habits. Effective limb-based locomotion did not arise until loss of the ancestral 'L-shaped' humerus in the crown group, setting the stage for the diversification of terrestrial tetrapods and the establishment of modern ecological niches12,13.
Collapse
Affiliation(s)
- Blake V Dickson
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Jennifer A Clack
- University Museum of Zoology, University of Cambridge, Cambridge, UK
| | | | - Stephanie E Pierce
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
29
|
Olsson KH, Martin CH, Holzman R. Hydrodynamic Simulations of the Performance Landscape for Suction-Feeding Fishes Reveal Multiple Peaks for Different Prey Types. Integr Comp Biol 2020; 60:1251-1267. [PMID: 32333778 PMCID: PMC7825097 DOI: 10.1093/icb/icaa021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The complex interplay between form and function forms the basis for generating and maintaining organismal diversity. Fishes that rely on suction-feeding for prey capture exhibit remarkable phenotypic and trophic diversity. Yet the relationships between fish phenotypes and feeding performance on different prey types are unclear, partly because the morphological, biomechanical, and hydrodynamic mechanisms that underlie suction-feeding are complex. Here we demonstrate a general framework to investigate the mapping of multiple phenotypic traits to performance by mapping kinematic variables to suction-feeding capacity. Using a mechanistic model of suction-feeding that is based on core physical principles, we predict prey capture performance across a broad range of phenotypic trait values, for three general prey types: mollusk-like prey, copepod-like prey, and fish-like prey. Mollusk-like prey attach to surfaces, copepod-like prey attempt to escape upon detecting the hydrodynamic disturbance produced by the predator, and fish-like prey attempt to escape when the predator comes within a threshold distance. This approach allowed us to evaluate suction-feeding performance for any combination of six key kinematic traits, irrespective of whether these trait combinations were observed in an extant species, and to generate a multivariate mapping of phenotype to performance. We used gradient ascent methods to explore the complex topography of the performance landscape for each prey type, and found evidence for multiple peaks. Characterization of phenotypes associated with performance peaks indicates that the optimal kinematic parameter range for suction-feeding on different prey types are narrow and distinct from each other, suggesting different functional constraints for the three prey types. These performance landscapes can be used to generate hypotheses regarding the distribution of extant species in trait space and their evolutionary trajectories toward adaptive peaks on macroevolutionary fitness landscapes.
Collapse
Affiliation(s)
- Karin H Olsson
- Department of Zoology, Tel Aviv University, Tel Aviv 69978, Israel
- Inter-University Institute for Marine Sciences, Eilat 8810302, Israel
| | - Christopher H Martin
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| | - Roi Holzman
- Department of Zoology, Tel Aviv University, Tel Aviv 69978, Israel
- Inter-University Institute for Marine Sciences, Eilat 8810302, Israel
| |
Collapse
|
30
|
Segall M, Cornette R, Godoy‐Diana R, Herrel A. Exploring the functional meaning of head shape disparity in aquatic snakes. Ecol Evol 2020; 10:6993-7005. [PMID: 32760507 PMCID: PMC7391336 DOI: 10.1002/ece3.6380] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/30/2020] [Accepted: 04/22/2020] [Indexed: 12/26/2022] Open
Abstract
Phenotypic diversity, or disparity, can be explained by simple genetic drift or, if functional constraints are strong, by selection for ecologically relevant phenotypes. We here studied phenotypic disparity in head shape in aquatic snakes. We investigated whether conflicting selective pressures related to different functions have driven shape diversity and explore whether similar phenotypes may give rise to the same functional output (i.e., many-to-one mapping of form to function). We focused on the head shape of aquatically foraging snakes as they fulfill several fitness-relevant functions and show a large amount of morphological variability. We used 3D surface scanning and 3D geometric morphometrics to compare the head shape of 62 species in a phylogenetic context. We first tested whether diet specialization and size are drivers of head shape diversification. Next, we tested for many-to-one mapping by comparing the hydrodynamic efficiency of head shape characteristic of the main axes of variation in the dataset. We 3D printed these shapes and measured the forces at play during a frontal strike. Our results show that diet and size explain only a small amount of shape variation. Shapes did not fully functionally converge as more specialized aquatic species evolved a more efficient head shape than others. The shape disparity observed could thus reflect a process of niche specialization.
Collapse
Affiliation(s)
- Marion Segall
- Department of HerpetologyAmerican Museum of Natural HistoryNew YorkNYUSA
- UMR CNRS/MNHN 7179Mécanismes adaptatifs et EvolutionParisFrance
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMHUMR 7636)CNRSESPCI Paris–PSL Research UniversityUniversité Paris DiderotSorbonne UniversitéParisFrance
| | | | - Ramiro Godoy‐Diana
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMHUMR 7636)CNRSESPCI Paris–PSL Research UniversityUniversité Paris DiderotSorbonne UniversitéParisFrance
| | - Anthony Herrel
- UMR CNRS/MNHN 7179Mécanismes adaptatifs et EvolutionParisFrance
- Evolutionary Morphology of VertebratesGhent UniversityGhentBelgium
| |
Collapse
|
31
|
Camarillo H, Muñoz MM. Weak Relationships Between Swimming Morphology and Water Depth in Wrasses and Parrotfish Belie Multiple Selective Demands on Form-Function Evolution. Integr Comp Biol 2020; 60:1309-1319. [PMID: 32449771 DOI: 10.1093/icb/icaa041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mechanical tradeoffs in performance are predicted to sculpt macroevolutionary patterns of morphological diversity across environmental gradients. Water depth shapes the amount of wave energy organisms' experience, which should result in evolutionary tradeoffs between speed and maneuverability in fish swimming morphology. Here, we tested whether morphological evolution would reflect functional tradeoffs in swimming performance in 131 species of wrasses and parrotfish (Family: Labridae) across a water depth gradient. We found that maximum water depth predicts variation in pectoral fin aspect ratio (AR) in wrasses, but not in parrotfish. Shallow-water wrasses exhibit wing-like pectoral fins that help with "flapping," which allows more efficient swimming at faster speeds. Deeper water species, in contrast, exhibit more paddle-like pectoral fins associated with enhanced maneuverability at slower speeds. Functional morphology responds to a number of different, potentially contrasting selective pressures. Furthermore, many-to-one mapping may release some traits from selection on performance at the expense of others. As such, deciphering the signatures of mechanical tradeoffs on phenotypic evolution will require integrating multiple aspects of ecological and morphological variation. As the field of evolutionary biomechanics moves into the era of big data, we will be uniquely poised to disentangle the intrinsic and extrinsic predictors of functional diversity.
Collapse
Affiliation(s)
- Henry Camarillo
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06510, USA
| | - Martha M Muñoz
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06510, USA
| |
Collapse
|
32
|
St John ME, Holzman R, Martin CH. Rapid adaptive evolution of scale-eating kinematics to a novel ecological niche. J Exp Biol 2020; 223:jeb217570. [PMID: 32029459 PMCID: PMC7097200 DOI: 10.1242/jeb.217570] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/29/2020] [Indexed: 01/08/2023]
Abstract
The origins of novel trophic specialization, in which organisms begin to exploit resources for the first time, may be explained by shifts in behavior such as foraging preferences or feeding kinematics. One way to investigate behavioral mechanisms underlying ecological novelty is by comparing prey capture kinematics among species. We investigated the contribution of kinematics to the origins of a novel ecological niche for scale-eating within a microendemic adaptive radiation of pupfishes on San Salvador Island, Bahamas. We compared prey capture kinematics across three species of pupfish while they consumed shrimp and scales in the lab, and found that scale-eating pupfish exhibited peak gape sizes twice as large as in other species, but also attacked prey with a more obtuse angle between their lower jaw and suspensorium. We then investigated how this variation in feeding kinematics could explain scale-biting performance by measuring bite size (surface area removed) from standardized gelatin cubes. We found that a combination of larger peak gape and more obtuse lower jaw and suspensorium angles resulted in approximately 40% more surface area removed per strike, indicating that scale-eaters may reside on a performance optimum for scale biting. To test whether feeding performance could contribute to reproductive isolation between species, we also measured F1 hybrids and found that their kinematics and performance more closely resembled generalists, suggesting that F1 hybrids may have low fitness in the scale-eating niche. Ultimately, our results suggest that the evolution of strike kinematics in this radiation is an adaptation to the novel niche of scale eating.
Collapse
Affiliation(s)
- Michelle E St John
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Roi Holzman
- School of Zoology, Tel Aviv University, Eilat 6997801, Israel
- Inter-University Institute for Marine Sciences, Eilat 8810302, Israel
| | - Christopher H Martin
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
33
|
Abstract
Animals use a diverse array of motion to feed, escape predators, and reproduce. Linking morphology, performance, and fitness is a foundational paradigm in organismal biology and evolution. Yet, the influence of mechanical relationships on evolutionary diversity remains unresolved. Here, I focus on the many-to-one mapping of form to function, a widespread, emergent property of many mechanical systems in nature, and discuss how mechanical redundancy influences the tempo and mode of phenotypic evolution. By supplying many possible morphological pathways for functional adaptation, many-to-one mapping can release morphology from selection on performance. Consequently, many-to-one mapping decouples morphological and functional diversification. In fish, for example, parallel morphological evolution is weaker for traits that contribute to mechanically redundant motions, like suction feeding performance, than for systems with one-to-one form-function relationships, like lower jaw lever ratios. As mechanical complexity increases, historical factors play a stronger role in shaping evolutionary trajectories. Many-to-one mapping, however, does not always result in equal freedom of morphological evolution. The kinematics of complex systems can often be reduced to variation in a few traits of high mechanical effect. In various different four-bar linkage systems, for example, mechanical output (kinematic transmission) is highly sensitive to size variation in one or two links, and insensitive to variation in the others. In four-bar linkage systems, faster rates of evolution are biased to traits of high mechanical effect. Mechanical sensitivity also results in stronger parallel evolution-evolutionary transitions in mechanical output are coupled with transition in linkages of high mechanical effect. In other words, the evolutionary dynamics of complex systems can actually approximate that of simpler, one-to-one systems when mechanical sensitivity is strong. When examined in a macroevolutionary framework, the same mechanical system may experience distinct selective pressures in different groups of organisms. For example, performance tradeoffs are stronger for organisms that use the same mechanical structure for more functions. In general, stronger performance tradeoffs result in less phenotypic diversity in the system and, sometimes, a slower rate of evolution. These macroevolutionary trends can contribute to unevenness in functional and lineage diversity across the tree of life. Finally, I discuss how the evolution of mechanical systems informs our understanding of the relative roles of determinism and contingency in evolution.
Collapse
Affiliation(s)
- Martha M Muñoz
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| |
Collapse
|
34
|
MARTIN CHRISTOPHERH, RICHARDS EMILIEJ. The paradox behind the pattern of rapid adaptive radiation: how can the speciation process sustain itself through an early burst? ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2019; 50:569-593. [PMID: 36237480 PMCID: PMC9555815 DOI: 10.1146/annurev-ecolsys-110617-062443] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Rapid adaptive radiation poses a distinct question apart from speciation and adaptation: what happens after one speciation event? That is, how are some lineages able to continue speciating through a rapid burst? This question connects global macroevolutionary patterns to microevolutionary processes. Here we review major features of rapid radiations in nature and their mismatch with theoretical models and what is currently known about speciation mechanisms. Rapid radiations occur on three major diversification axes - species richness, phenotypic disparity, and ecological diversity - with exceptional outliers on each axis. The paradox is that the hallmark early stage of adaptive radiation, a rapid burst of speciation and niche diversification, is contradicted by most existing speciation models which instead predict continuously decelerating speciation rates and niche subdivision through time. Furthermore, while speciation mechanisms such as magic traits, phenotype matching, and physical linkage of co-adapted alleles promote speciation, it is often not discussed how these mechanisms could promote multiple speciation events in rapid succession. Additional mechanisms beyond ecological opportunity are needed to understand how rapid radiations occur. We review the evidence for five emerging theories: 1) the 'transporter' hypothesis: introgression and the ancient origins of adaptive alleles, 2) the 'signal complexity' hypothesis: the dimensionality of sexual traits, 3) the connectivity of fitness landscapes, 4) 'diversity begets diversity', and 5) flexible stem/'plasticity first'. We propose new questions and predictions to guide future work on the mechanisms underlying the rare origins of rapid radiation.
Collapse
Affiliation(s)
- CHRISTOPHER H. MARTIN
- Department of Biology, University of North Carolina at Chapel Hill, NC, USA
- Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA
| | - EMILIE J. RICHARDS
- Department of Biology, University of North Carolina at Chapel Hill, NC, USA
- Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA
| |
Collapse
|
35
|
Martin CH, McGirr JA, Richards EJ, St. John ME. How to Investigate the Origins of Novelty: Insights Gained from Genetic, Behavioral, and Fitness Perspectives. Integr Org Biol 2019; 1:obz018. [PMID: 33791533 PMCID: PMC7671130 DOI: 10.1093/iob/obz018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Biologists are drawn to the most extraordinary adaptations in the natural world, often referred to as evolutionary novelties, yet rarely do we understand the microevolutionary context underlying the origins of novel traits, behaviors, or ecological niches. Here we discuss insights gained into the origins of novelty from a research program spanning biological levels of organization from genotype to fitness in Caribbean pupfishes. We focus on a case study of the origins of novel trophic specialists on San Salvador Island, Bahamas and place this radiation in the context of other rapid radiations. We highlight questions that can be addressed about the origins of novelty at different biological levels, such as measuring the isolation of novel phenotypes on the fitness landscape, locating the spatial and temporal origins of adaptive variation contributing to novelty, detecting dysfunctional gene regulation due to adaptive divergence, and connecting behaviors with novel traits. Evolutionary novelties are rare, almost by definition, and we conclude that integrative case studies can provide insights into this rarity relative to the dynamics of adaptation to more common ecological niches and repeated parallel speciation, such as the relative isolation of novel phenotypes on fitness landscapes and the transient availability of ecological, genetic, and behavioral opportunities.
Collapse
Affiliation(s)
- C H Martin
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| | - J A McGirr
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - E J Richards
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| | - M E St. John
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|