1
|
Luepold SB, Carlotti S, Pasinelli G. A test of the mechanistic process behind the convergent agonistic character displacement hypothesis. Behav Ecol 2024; 35:arae072. [PMID: 39380688 PMCID: PMC11457480 DOI: 10.1093/beheco/arae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 05/31/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024] Open
Abstract
In this era of rapid global change, understanding the mechanisms that enable or prevent species from co-occurring has assumed new urgency. The convergent agonistic character displacement (CACD) hypothesis posits that signal similarity enables the co-occurrence of ecological competitors by promoting aggressive interactions that reduce interspecific territory overlap and hence, exploitative competition. In northwestern Switzerland, ca. 10% of Phylloscopus sibilatrix produce songs containing syllables that are typical of their co-occurring sister species, Phylloscopus bonelli ("mixed singers"). To examine whether the consequences of P. sibilatrix mixed singing are consistent with CACD, we combined a playback experiment and an analysis of interspecific territory overlap. Although P. bonelli reacted more aggressively to playback of mixed P. sibilatrix song than to playback of typical P. sibilatrix song, interspecific territory overlap was not reduced for mixed singers. Thus, the CACD hypothesis was not supported, which stresses the importance of distinguishing between interspecific aggressive interactions and their presumed spatial consequences.
Collapse
Affiliation(s)
- Shannon Buckley Luepold
- Swiss Ornithological Institute, Seerose 1, 6204 Sempach, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Sandro Carlotti
- Swiss Ornithological Institute, Seerose 1, 6204 Sempach, Switzerland
| | - Gilberto Pasinelli
- Swiss Ornithological Institute, Seerose 1, 6204 Sempach, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
2
|
Montalvo LD, Kimball RT, Austin JD, Robinson SK. Unraveling the genomic landscape of Campylorhynchus wrens along western Ecuador's precipitation gradient: Insights into hybridization, isolation by distance, and isolation by the environment. Ecol Evol 2024; 14:e11661. [PMID: 38994212 PMCID: PMC11237350 DOI: 10.1002/ece3.11661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/31/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
Environmental gradients have the potential to influence genetic differentiation among populations ultimately leading to allopatric speciation. However, environmental gradients can also facilitate hybridization between closely related taxa. We investigated a putative hybrid zone in western Ecuador, involving two polytypic wren species (Aves: Troglodytidae), Campylorhynchus zonatus and C. fasciatus. Our study addressed two primary questions: (1) Is there evidence of population structure and genetic admixture between these taxa in western Ecuador? and (2) What are the relative contributions of isolation by distance and isolation by the environment to the observed genetic differentiation along the environmental gradient in this region? We analyzed 4409 single-nucleotide polymorphisms (SNPs) from 112 blood samples sequenced using ddRadSeq and a de novo assembly. The optimum number of genetic clusters ranged from 2 to 4, aligning with geographic origins, known phylogenetics, and physical or ecological constraints. We observed notable transitions in admixture proportions along the environmental gradient in western Ecuador between C. z. brevirostris and the northern and southern genetic clusters of C. f. pallescens. Genetic differentiation between the two C. f. pallescens populations could be attributed to an unreported potential physical barrier in central western Ecuador, where the proximity of the Andes to the coastline restricts lowland habitats, limiting dispersal and gene flow, especially among dry-habitat specialists. The observed admixture in C. f. pallescens suggests that this subspecies may be a hybrid between C. z. brevirostris and C. fasciatus, with varying degrees of admixture in western Ecuador and northwestern Peru. We found evidence of isolation by distance, while isolation by the environment was less pronounced but still significant for annual mean precipitation and precipitation seasonality. This study enhances our understanding of avian population genomics in tropical regions.
Collapse
Affiliation(s)
- Luis Daniel Montalvo
- Florida Museum of Natural History University of Florida Gainesville Florida USA
- Department of Biology University of Florida Gainesville Florida USA
| | | | - James D Austin
- Department of Wildlife Ecology and Conservation University of Florida Gainesville Florida USA
| | - Scott K Robinson
- Florida Museum of Natural History University of Florida Gainesville Florida USA
| |
Collapse
|
3
|
McEachin S, Drury JP, Grether GF. Competitive Displacement and Agonistic Character Displacement, or the Ghost of Interference Competition. Am Nat 2024; 203:335-346. [PMID: 38358816 DOI: 10.1086/728671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
AbstractInterference competition can drive species apart in habitat use through competitive displacement in ecological time and agonistic character displacement (ACD) over evolutionary time. As predicted by ACD theory, sympatric species of rubyspot damselflies (Hetaerina spp.) that respond more aggressively to each other in staged encounters differ more in microhabitat use. However, the same pattern could arise from competitive displacement if dominant species actively exclude subordinate species from preferred microhabitats. The degree to which habitat partitioning is caused by competitive displacement can be assessed with removal experiments. We carried out removal experiments with three species pairs of rubyspot damselflies. With competitive displacement, removing dominant species should allow subordinate species to shift into the dominant species' microhabitat. Instead, we found that species-specific microhabitat use persisted after the experimental removals. Thus, the previously documented association between heterospecific aggression and microhabitat partitioning in this genus is most likely a product of divergence in habitat preferences caused by interference competition in the evolutionary past.
Collapse
|
4
|
Leighton GM, Drury JP, Small J, Miller ET. Unfamiliarity generates costly aggression in interspecific avian dominance hierarchies. Nat Commun 2024; 15:335. [PMID: 38184603 PMCID: PMC10771497 DOI: 10.1038/s41467-023-44613-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024] Open
Abstract
Dominance hierarchies often form between species, especially at common feeding locations. Yet, relative to work focused on the factors that maintain stable dominance hierarchies within species, large-scale analyses of interspecific dominance hierarchies have been comparatively rare. Given that interspecific behavioral interference mediates access to resources, these dominance hierarchies likely play an important and understudied role in community assembly and behavioral evolution. To test alternative hypotheses about the formation and maintenance of interspecific dominance hierarchies, we employ an large, participatory science generated dataset of displacements observed at feeders in North America in the non-breeding season. Consistent with the hypothesis that agonistic interference can be an adaptive response to exploitative competition, we find that species with similar niches are more likely to engage in costly aggression over resources. Among interacting species, we find broad support for the hypothesis that familiarity (measured as fine-scale habitat overlap) predicts adherence to the structure of the dominance hierarchy and reduces aggression between species. Our findings suggest that the previously documented agonistic hierarchy in North American birds emerges from species-level adaptations and learned behaviors that result in the avoidance of costly aggression.
Collapse
Affiliation(s)
- Gavin M Leighton
- Department of Biology, SUNY Buffalo State University, Buffalo, NY, 14213, USA.
| | - Jonathan P Drury
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Jay Small
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Eliot T Miller
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY, 14850, USA
| |
Collapse
|
5
|
Patterson CW, Drury JP. Interspecific behavioural interference and range dynamics: current insights and future directions. Biol Rev Camb Philos Soc 2023; 98:2012-2027. [PMID: 37364865 DOI: 10.1111/brv.12993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
Novel biotic interactions in shifting communities play a key role in determining the ability of species' ranges to track suitable habitat. To date, the impact of biotic interactions on range dynamics have predominantly been studied in the context of interactions between different trophic levels or, to a lesser extent, exploitative competition between species of the same trophic level. Yet, both theory and a growing number of empirical studies show that interspecific behavioural interference, such as interspecific territorial and mating interactions, can slow down range expansions, preclude coexistence, or drive local extinction, even in the absence of resource competition. We conducted a systematic review of the current empirical research into the consequences of interspecific behavioural interference on range dynamics. Our findings demonstrate there is abundant evidence that behavioural interference by one species can impact the spatial distribution of another. Furthermore, we identify several gaps where more empirical work is needed to test predictions from theory robustly. Finally, we outline several avenues for future research, providing suggestions for how interspecific behavioural interference could be incorporated into existing scientific frameworks for understanding how biotic interactions influence range expansions, such as species distribution models, to build a stronger understanding of the potential consequences of behavioural interference on the outcome of future range dynamics.
Collapse
Affiliation(s)
| | - Jonathan P Drury
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| |
Collapse
|
6
|
Niśkiewicz M, Szymański P, Budka M, Osiejuk TS. Response of forest Turtur doves to conspecific and congeneric songs in sympatry and allopatry. Sci Rep 2023; 13:15948. [PMID: 37743404 PMCID: PMC10518307 DOI: 10.1038/s41598-023-43035-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023] Open
Abstract
Birds have a diverse acoustic communication system, and the ability to recognise their own species' song from a distance facilitates complex behaviours related to mate attraction and rival deterrence. However, certain species, including doves, do not learn songs and their vocal repertoires are much simpler than those of better-studied songbirds. In these so-called non-learning birds, relatively little is known about the role that bird song plays in intra- and interspecific interactions, and how such behaviours might be acquired (inherited or learned from experience). To investigate this question, we focused on two species of African wood doves whose long-range songs are used in a territorial context. Specifically, we examined the responses of sympatric and allopatric populations of male blue-headed wood-doves (Turtur brehmeri) and tambourine doves (Turtur tympanistria) to different types of simulated territorial intrusions, i.e. playback of conspecific, congeneric, and control songs. We aimed to assess (i) whether these species, which have similar songs, respond only to their own species' song or exhibit interspecific territoriality, and (ii) if the response pattern is affected by the presence or absence of congeners in the general area. We found that both species responded strongly to playback of their own species in both sympatric and allopatric populations. In allopatry, though, male tambourine doves misdirected their response and also approached the playback of congeneric songs. Our results indicate that, in areas where the studied Turtur doves live in sympatry, they do not exhibit consistent interspecific territoriality. However, we cannot exclude the possibility that the smaller tambourine dove avoids its larger congener during the process of territory establishment. The difference in tambourine doves' response toward the song of present (sympatric) or absent (allopatric) congeners suggests that the ability to discriminate between songs of similarly singing potential competitors is acquired through earlier interactions and learning. This plasticity in response supports the misdirected aggression hypothesis, which argues that interspecific territorialism emerges as a maladaptive by-product of signal similarity. However, on an evolutionary timescale, such an ability could be considered an adaptive cognitive tool useful for resolving competing interests with congeners.
Collapse
Affiliation(s)
- Małgorzata Niśkiewicz
- Department of Behavioural Ecology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| | - Paweł Szymański
- Department of Behavioural Ecology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Michał Budka
- Department of Behavioural Ecology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Tomasz S Osiejuk
- Department of Behavioural Ecology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| |
Collapse
|
7
|
Rosvall KA. Evolutionary endocrinology and the problem of Darwin's tangled bank. Horm Behav 2022; 146:105246. [PMID: 36029721 DOI: 10.1016/j.yhbeh.2022.105246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/20/2022] [Accepted: 08/10/2022] [Indexed: 11/04/2022]
Abstract
Like Darwin's tangled bank of biodiversity, the endocrine mechanisms that give rise to phenotypic diversity also exhibit nearly endless forms. This tangled bank of mechanistic diversity can prove problematic as we seek general principles on the role of endocrine mechanisms in phenotypic evolution. A key unresolved question is therefore: to what degree are specific endocrine mechanisms re-used to bring about replicated phenotypic evolution? Related areas of inquiry are booming in molecular ecology, but behavioral traits are underrepresented in this literature. Here, I leverage the rich comparative tradition in evolutionary endocrinology to evaluate whether and how certain mechanisms may be repeated hotspots of behavioral evolutionary change. At one extreme, mechanisms may be parallel, such that evolution repeatedly uses the same gene or pathway to arrive at multiple independent (or, convergent) origins of a particular behavioral trait. At the other extreme, the building blocks of behavior may be unique, such that outwardly similar phenotypes are generated via lineage-specific mechanisms. This review synthesizes existing case studies, phylogenetic analyses, and experimental evolutionary research on mechanistic parallelism in animal behavior. These examples show that the endocrine building blocks of behavior have some elements of parallelism across replicated evolutionary events. However, support for parallelism is variable among studies, at least some of which relates to the level of complexity at which we consider sameness (i.e. pathway vs. gene level). Moving forward, we need continued experimentation and better testing of neutral models to understand whether, how - and critically, why - mechanism A is used in one lineage and mechanism B is used in another. We also need continued growth of large-scale comparative analyses, especially those that can evaluate which endocrine parameters are more or less likely to undergo parallel evolution alongside specific behavioral traits. These efforts will ultimately deepen understanding of how and why hormone-mediated behaviors are constructed the way that they are.
Collapse
Affiliation(s)
- Kimberly A Rosvall
- Indiana University, Bloomington, USA; Department of Biology, USA; Center for the Integrative Study of Animal Behavior, USA.
| |
Collapse
|
8
|
Grether GF, Okamoto KW. Eco‐evolutionary dynamics of interference competition. Ecol Lett 2022; 25:2167-2176. [DOI: 10.1111/ele.14091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Gregory F. Grether
- Department of Ecology and Evolutionary Biology University of California Los Angeles Los Angeles California USA
| | | |
Collapse
|
9
|
Dear-enemy effect between two sympatric bird species. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2021.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Nunes LA, Raxworthy CJ, Pearson RG. Evidence for ecological processes driving speciation among endemic lizards of Madagascar. Evolution 2021; 76:58-69. [PMID: 34862965 DOI: 10.1111/evo.14409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 09/06/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022]
Abstract
Although genetic patterns produced by population isolation during speciation are well documented, the biogeographic and ecological processes that trigger speciation remain poorly understood. Alternative hypotheses for the biogeography and ecology of speciation include geographic isolation combined with niche conservation (soft allopatry) or parapatric distribution on an environmental gradient with niche divergence (ecological speciation). Here, we use species' distributions, environmental data, and two null models (the Random Translation and Rotation and the Background Similarity Test) to test these alternative hypotheses among 28 sister pairs of microendemic lizards in Madagascar. Our results demonstrate strong bimodal peaks along a niche divergence-conservation spectrum, with at least 25 out of 28 sister pairs exhibiting either niche conservation or divergence, and the remaining pairs showing weak ecological signals. Yet despite these significant results, we do not find strong associations of niche conservation with allopatric distributions or niche divergence with parapatric distributions. Our findings thus provide strong evidence of a role for ecological processes driving speciation, rather than the classic expectation of speciation through geographic isolation, but demonstrate that the link between ecological speciation and parapatry is complex and requires further analysis of a broader taxonomic sample to fully resolve.
Collapse
Affiliation(s)
- Laura A Nunes
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, United Kingdom.,Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Christopher J Raxworthy
- Department of Herpetology, The American Museum of Natural History, New York, New York, 10024
| | - Richard G Pearson
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, United Kingdom
| |
Collapse
|
11
|
McEachin S, Drury JP, Anderson CN, Grether GF. Mechanisms of reduced interspecific interference between territorial species. Behav Ecol 2021. [DOI: 10.1093/beheco/arab115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Interspecific territoriality has complex ecological and evolutionary consequences. Species that interact aggressively often exhibit spatial or temporal shifts in activity that reduce the frequency of costly encounters. We analyzed data collected over a 13-year period on 50 populations of rubyspot damselflies (Hetaerina spp.) to examine how rates of interspecific fighting covary with fine-scale habitat partitioning and to test for agonistic character displacement in microhabitat preferences. In most sympatric species, interspecific fights occur less frequently than expected based on the species’ relative densities. Incorporating measurements of spatial segregation and species discrimination into the calculation of expected frequencies accounted for most of the reduction in interspecific fighting (subtle differences in microhabitat preferences could account for the rest). In 23 of 25 sympatric population pairs, we found multivariate differences between species in territory microhabitat (perch height, stream width, current speed, and canopy cover). As predicted by the agonistic character displacement hypothesis, sympatric species that respond more aggressively to each other in direct encounters differ more in microhabitat use and have higher levels of spatial segregation. Previous work established that species with the lowest levels of interspecific fighting have diverged in territory signals and competitor recognition through agonistic character displacement. In the other species pairs, interspecific aggression appears to be maintained as an adaptive response to reproductive interference, but interspecific fighting is still costly. We now have robust evidence that evolved shifts in microhabitat preferences also reduce the frequency of interspecific fighting.
Collapse
Affiliation(s)
- Shawn McEachin
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles Young Drive South, Los Angeles, CA, USA
| | | | | | - Gregory F Grether
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles Young Drive South, Los Angeles, CA, USA
| |
Collapse
|
12
|
Drucker JR, Senner NR, Gomez JP. Interspecific aggression in sympatry between congeneric tropical birds. Behav Ecol 2021. [DOI: 10.1093/beheco/arab060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Interspecific aggression may shape species distributions through competitive exclusion, resulting in spatial segregation, or facilitate sympatry as an adaptive mechanism for resource partitioning. Competitive exclusion results from asymmetric aggression of one species towards another, but if the aggressive relationship between species is symmetric, they may persist in sympatry. Interspecific aggression is widely cited as a mechanism for maintaining the distributional limits of tropical birds, but how it shapes the spatial dynamics of competing species that are sympatric over larger geographic areas is less clear. To address this issue, we conducted reciprocal playback experiments on two congeneric Antbirds — Thamnophilus atrinucha and T. doliatus — that occur in sympatry across a habitat matrix in Colombia to characterize their relationship as symmetrically or asymmetrically aggressive and analyzed point count data to assess the degree to which they occur sympatrically. We found weak evidence for competitive exclusion, with the larger T. doliatus responding asymmetrically to T. atrinucha, and the two species having a low co-detection rate during point counts. However, despite their 22% difference in body size, T. atrinucha still responded to T. doliatus playback in over half of our trials, and the two species co-occurred on nearly 25% of point counts, indicating that interspecific aggression does not drive complete spatial segregation. Our findings highlight how the degree to which one species can competitively exclude another may vary, especially across a dynamic landscape.
Collapse
Affiliation(s)
- Jacob R Drucker
- Committee on Evolutionary Biology, University of Chicago, Chicago, IL 60637, USA
- Integrative Science Center, The Field Museum, Chicago, IL 60605, USA
- School of Natural Science, Hampshire College, Amherst, MA 01002, USA
| | - Nathan R Senner
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Juan Pablo Gomez
- Departamento de Química y Biología, Universidad del Norte, Área Metropolitana de Barranquilla, Colombia
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
13
|
|