1
|
Biswas A, Ghosh A, Agashe M. In 'hot' pursuit: exploring the evolutionary ecology of labial pits in boas and pythons. Proc Biol Sci 2025; 292:20250199. [PMID: 40264366 PMCID: PMC12015575 DOI: 10.1098/rspb.2025.0199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/05/2025] [Accepted: 03/17/2025] [Indexed: 04/24/2025] Open
Abstract
The evolution of thermoreception in animals, particularly that of infrared (IR)-sensing pits in boas, pythons and pit vipers, is a fascinating area of sensory ecology. While numerous studies have focused on the molecular mechanisms of IR sensing in snakes, the broader ecological and evolutionary significance remains less explored. In this study, we examined the origins and evolutionary consequences of labial pits in boas and pythons using phylogenetic comparative methods. We analysed how various ecological and biological factors-such as hunting mode, diet, habitat, body size and biome-were correlated with the presence of pits, and whether this adaptation influenced diversification rates. Our findings revealed that labial pits evolved multiple times and showed strong associations with an arboreal habitat and endothermic diet, but we did not find a significant correlation between pits and hunting mode or any other ecological traits. Moreover, lineages with pits did not exhibit higher diversification rates. This research provides new insights into the eco-evolutionary role of heat-sensing pits, suggesting that the emergence of labial pits might have acted as a key innovation, significantly affecting the evolution of habitat use patterns and prey preference for pythons and boas.
Collapse
Affiliation(s)
- Aritra Biswas
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Avrajjal Ghosh
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, Orissa, India
| | - Madhura Agashe
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, Karnataka, India
| |
Collapse
|
2
|
Januario M, Macedo-Rego RC, Rabosky DL. Evolutionary Lability of Sexual Selection and Its Implications for Speciation and Macroevolution. Am Nat 2025; 205:388-412. [PMID: 40179428 DOI: 10.1086/734457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
AbstractSexual selection is widely hypothesized to facilitate speciation and phenotypic evolution, but evidence from comparative studies has been mixed. Many previous studies have relied on proxy variables to quantify the intensity of sexual selection, raising the possibility that inconclusive results may reflect, in part, the imperfect measurement of this evolutionary process. Here, we test the relationship between phylogenetic speciation rates and indices of the opportunity for sexual selection drawn from populations of 82 vertebrate taxa. These indices provide a much more direct assessment of sexual selection intensity than proxy traits and allow straightforward comparisons among distantly related clades. We find no correlation between the opportunity for sexual selection and speciation rate, and this result is consistent across many complementary analyses. In addition, widely used proxy variables-sexual dimorphism and dichromatism-are not correlated with the indices employed here. Moreover, we find that the opportunity for sexual selection has low phylogenetic signal and that intraspecific variability in selection indices for many species approaches the range of variation observed across all vertebrates as a whole. Our results potentially reconcile a major paradox in speciation biology at the interface between microevolution and macroevolution: sexual selection can be important for speciation, yet the evolutionary lability of the process over deeper timescales restricts its impact on broad-scale patterns of biodiversity.
Collapse
|
3
|
Cai L, Cardoso D, Tressel LG, Lee C, Shrestha B, Choi IS, de Lima HC, de Queiroz LP, Ruhlman TA, Jansen RK, Wojciechowski MF. Well-resolved phylogeny supports repeated evolution of keel flowers as a synergistic contributor to papilionoid legume diversification. THE NEW PHYTOLOGIST 2025. [PMID: 40099506 DOI: 10.1111/nph.70080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/15/2025] [Indexed: 03/20/2025]
Abstract
The butterfly-shaped keel flower is a highly successful floral form in angiosperms. These flowers steer the mechanical interaction with bees and thus are hypothesized to accelerate pollinator-driven diversification. The exceptionally labile evolution of keel flowers in Papilionoideae (Fabaceae) provides a suitable system to test this hypothesis. Using 1456 low-copy nuclear loci, we confidently resolve the early divergence history of Papilionoideae. Constrained by this backbone phylogeny, we generated a time tree for 3326 Fabales to evaluate the tempo and mode of diversification within a state-dependent evolutionary framework. The first keel flowers emerged c. 59.0 million years ago in Papilionoideae, predating the earliest fossil by 3-4 million years. The Miocene diversification of Papilionoideae coincided with the rapid evolution of keel flowers. At least six independent origins and 32 losses of keel flowers were identified in Papilionoideae, Cercidoideae, and Polygalaceae. However, the state-dependent diversification model was not favored. Lack of radiation associated with keel flowers suggests that diversification within Papilionoideae was not solely driven by pollinator-mediated selection, but instead an outcome of the synergistic effects of multiple innovations, including nitrogen fixation and chemical defense, as well as dispersal into subtropical and temperate regions.
Collapse
Affiliation(s)
- Liming Cai
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Domingos Cardoso
- Instituto de Biologia, Universidade Federal da Bahia, Salvador, Bahia, 40170-115, Brazil
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, 22460-030, Brazil
| | - Lydia G Tressel
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Chaehee Lee
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
- Department of Plant Sciences, University of California Davis, Davis, CA, 95616, USA
| | - Bikash Shrestha
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - In-Su Choi
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Department of Biological Sciences and Biotechnology, Hannam University, Daejeon, 34054, Korea
| | - Haroldo C de Lima
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, 22460-030, Brazil
| | - Luciano P de Queiroz
- Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, 44036-900, Brazil
| | - Tracey A Ruhlman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Robert K Jansen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | | |
Collapse
|
4
|
Miller EC, Faucher R, Hart PB, Rincón-Sandoval M, Santaquiteria A, White WT, Baldwin CC, Miya M, Betancur-R R, Tornabene L, Evans K, Arcila D. Reduced evolutionary constraint accompanies ongoing radiation in deep-sea anglerfishes. Nat Ecol Evol 2025; 9:474-490. [PMID: 39604701 DOI: 10.1038/s41559-024-02586-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 10/18/2024] [Indexed: 11/29/2024]
Abstract
Colonization of a novel habitat is often followed by phenotypic diversification in the wake of ecological opportunity. However, some habitats should be inherently more constraining than others if the challenges of that environment offer few evolutionary solutions. We examined this push-and-pull on macroevolutionary diversification following habitat transitions in the anglerfishes (Lophiiformes). We constructed a phylogeny with extensive sampling (1,092 loci and ~38% of species), combined with three-dimensional phenotypic data from museum specimens. We used these datasets to examine the tempo and mode of phenotypic diversification. The deep-sea pelagic anglerfishes originated from a benthic ancestor and shortly after experienced rapid lineage diversification rates. This transition incurred shifts towards larger jaws, smaller eyes and a more laterally compressed body plan. Despite these directional trends, this lineage still evolved high phenotypic disparity in body, skull and jaw shapes. In particular, bathypelagic anglerfishes show high variability in body elongation, while benthic anglerfishes are constrained around optimal shapes. Within this radiation, phenotypic evolution was concentrated among recently diverged lineages, notably those that deviated from the archetypical globose body plan. Taken together, these results demonstrate that spectacular evolutionary radiations can unfold even within environments with few ecological resources and demanding physiological challenges.
Collapse
Affiliation(s)
- Elizabeth Christina Miller
- Department of Biology, University of Oklahoma, Norman, OK, USA.
- Department of Ichthyology, Sam Noble Museum of Natural History, Norman, OK, USA.
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA.
- Burke Museum of Natural History and Culture, University of Washington, Seattle, WA, USA.
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.
| | - Rose Faucher
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Pamela B Hart
- Department of Biology, University of Oklahoma, Norman, OK, USA
- Department of Ichthyology, Sam Noble Museum of Natural History, Norman, OK, USA
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
| | | | | | - William T White
- CSIRO Australian National Fish Collection, National Research Collections Australia, Hobart, Tasmania, Australia
| | - Carole C Baldwin
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Masaki Miya
- Department of Zoology, Natural History Museum and Institute, Chuo-ku, Chiba, Japan
| | - Ricardo Betancur-R
- Department of Biology, University of Oklahoma, Norman, OK, USA
- Department of Ichthyology, Sam Noble Museum of Natural History, Norman, OK, USA
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Luke Tornabene
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
- Burke Museum of Natural History and Culture, University of Washington, Seattle, WA, USA
| | - Kory Evans
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Dahiana Arcila
- Department of Biology, University of Oklahoma, Norman, OK, USA
- Department of Ichthyology, Sam Noble Museum of Natural History, Norman, OK, USA
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
5
|
Nge FJ, Hammer TA, Vasconcelos T, Biffin E, Kellermann J, Waycott M. Polyploidy linked with species richness but not diversification rates or niche breadth in Australian Pomaderreae (Rhamnaceae). ANNALS OF BOTANY 2025; 135:531-548. [PMID: 39441970 PMCID: PMC11920800 DOI: 10.1093/aob/mcae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND AND AIMS Polyploidy is an important evolutionary driver for plants and has been linked with higher species richness and increases in diversification rate. These correlations between ploidy and plant radiations could be the result of polyploid lineages exploiting broader niche space and novel niches due to their enhanced adaptability. The evolution of ploidy and its link to plant diversification across the Australian continent is not well understood. Here, we focus on the ploidy evolution of the Australasian Rhamnaceae tribe Pomaderreae. METHODS We generated a densely sampled phylogeny (90 %, 215/240 species) of the tribe and used it to test for the evolution of ploidy. We obtained 30 orthologous nuclear loci per sample and dated the phylogeny using treePL. Ploidy estimates for each sequenced species were obtained using nQuire, based on phased sequence data. We used MiSSE to obtain tip diversification rates and tested for significant relationships between diversification rates and ploidy. We also assessed for relationships between ploidy level and niche breadth, using distributional records, species distributional modelling and WorldClim data. KEY RESULTS Polyploidy is extensive across the tribe, with almost half (45 %) of species and the majority of genera exhibiting this trait. We found a significant positive relationship between polyploidy and genus size (i.e. species richness), but a non-significant positive relationship between polyploidy and diversification rates. Polyploidy did not result in significantly wider niche space occupancy for Pomaderreae; however, polyploidy did allow transitions into novel wetter niches. Spatially, eastern Australia is the diversification hotspot for Pomaderreae in contrast to the species hotspot of south-west Western Australia. CONCLUSIONS The relationship between polyploidy and diversification is complex. Ancient polyploidization events likely played an important role in the diversification of species-rich genera. A lag time effect may explain the uncoupling of tip diversification rates and polyploidy of extant lineages. Further studies on other groups are required to validate these hypotheses.
Collapse
Affiliation(s)
- Francis J Nge
- School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA 5000, Australia
- National Herbarium of New South Wales, Botanic Gardens of Sydney, Mount Annan, NSW 2567, Australia
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, SA 5000, Australia
- IRD – Institut de Recherche pour le Développement, Montpellier, BP 64501, France
| | - Timothy A Hammer
- School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA 5000, Australia
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, SA 5000, Australia
| | - Thais Vasconcelos
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ed Biffin
- School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA 5000, Australia
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, SA 5000, Australia
| | - Jürgen Kellermann
- School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA 5000, Australia
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, SA 5000, Australia
| | - Michelle Waycott
- School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA 5000, Australia
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, SA 5000, Australia
| |
Collapse
|
6
|
Kersting SJ, Wicke K, Fischer M. Tree balance in phylogenetic models. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230303. [PMID: 39976413 PMCID: PMC11867160 DOI: 10.1098/rstb.2023.0303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/19/2024] [Accepted: 10/05/2024] [Indexed: 02/21/2025] Open
Abstract
Tree shape statistics, particularly measures of tree (im)balance, play an important role in the analysis of the shape of phylogenetic trees. With applications ranging from testing evolutionary models to studying the impact of fertility inheritance and selection, or tumour development and language evolution, the assessment of measures of tree balance is important. Currently, a multitude of at least 30 (im)balance indices can be found in the literature, alongside numerous other tree shape statistics. This diversity prompts essential questions: how can we assist researchers in choosing only a small number of indices to mitigate the challenges of multiple testing? Is there a preeminent balance index tailored to specific tasks? This research expands previous studies on the examination of index power, encompassing almost all established indices and a broader array of alternative models, such as a variety of trait-based models. Our investigation reveals distinct groups of balance indices better suited for different tree models, suggesting that decisions on balance index selection can be enhanced with prior knowledge. Furthermore, we present the R software package poweRbal which allows the inclusion of new indices and models, thus facilitating future research on the power of tree shape statistics.This article is part of the theme issue '"A mathematical theory of evolution": phylogenetic models dating back 100 years'.
Collapse
Affiliation(s)
- Sophie J. Kersting
- Institute of Mathematics and Computer Science, University of Greifswald, Greifswald17487, Germany
| | - Kristina Wicke
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ07102, USA
| | - Mareike Fischer
- Institute of Mathematics and Computer Science, University of Greifswald, Greifswald17487, Germany
| |
Collapse
|
7
|
do Rosario Petrucci B, May MR, Heath TA. Fossils improve extinction-rate estimates under state-dependent diversification models. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230313. [PMID: 39976401 PMCID: PMC11867151 DOI: 10.1098/rstb.2023.0313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/07/2024] [Accepted: 11/04/2024] [Indexed: 02/21/2025] Open
Abstract
The effect of traits on diversification rates is a major topic of study in the fields of evolutionary biology and palaeontology. Many researchers investigating these macroevolutionary questions currently make use of the extensive suite of state-dependent speciation and extinction (SSE) models. These models were developed for, and are almost exclusively used with, phylogenetic trees of extant species. However, analyses considering only extant taxa are limited in their power to estimate extinction rates. Furthermore, SSE models can erroneously detect associations between neutral traits and diversification rates when the true associated trait is not observed. In this study, we examined the impact of including fossil data on the accuracy of parameter estimates under the binary-state speciation and extinction (BiSSE) model. This was achieved by combining SSE models with the fossilized birth-death process. We show that the inclusion of fossils improves the accuracy of extinction-rate estimates for analyses applying the BiSSE model in a Bayesian inference framework, with no negative impact on speciation-rate and state transition-rate estimates when compared with estimates from trees of only extant taxa. However, even with the addition of fossil data, analyses under the BiSSE model continued to incorrectly identify correlations between diversification rates and neutral traits.This article is part of the theme issue '"A mathematical theory of evolution": phylogenetic models dating back 100 years'.
Collapse
Affiliation(s)
- Bruno do Rosario Petrucci
- Department of Ecology, Evolutionary, and Organismal Biology, Iowa State University, Ames, IA50011, USA
| | - Michael R. May
- Department of Evolution and Ecology, University of California Davis, Davis, CA95616, USA
| | - Tracy A. Heath
- Department of Ecology, Evolutionary, and Organismal Biology, Iowa State University, Ames, IA50011, USA
| |
Collapse
|
8
|
Januario M, Pinsky ML, Rabosky DL. The Metapopulation Bridge to Macroevolutionary Speciation Rates: A Conceptual Framework and Empirical Test. Ecol Lett 2025; 28:e70021. [PMID: 39737715 DOI: 10.1111/ele.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/09/2024] [Accepted: 10/09/2024] [Indexed: 01/01/2025]
Abstract
Whether large-scale variation in lineage diversification rates can be predicted by species properties at the population level is a key unresolved question at the interface between micro- and macroevolution. All else being equal, species with biological attributes that confer metapopulation stability should persist more often at timescales relevant to speciation and so give rise to new (incipient) forms that share these biological traits. Here, we develop a framework for testing the relationship between metapopulation properties related to persistence and phylogenetic speciation rates. We illustrate this conceptual approach by applying it to a long-term dataset on demersal fish communities from the North American continental shelf region. We find that one index of metapopulation persistence has phylogenetic signal, suggesting that traits are connected with range-wide demographic patterns. However, there is no relationship between demographic properties and speciation rate. These findings suggest a decoupling between ecological dynamics at decadal timescales and million-year clade dynamics, raising questions about the extent to which population-level processes observable over ecological timescales can be extrapolated to infer biodiversity dynamics more generally.
Collapse
Affiliation(s)
- Matheus Januario
- Museum of Zoology & Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Malin L Pinsky
- Department of Ecology, Evolution, and Natural Resources, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, USA
| | - Daniel L Rabosky
- Museum of Zoology & Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
9
|
Turck DF, Schwery O, Harmon LJ, Tank DC. Fire in the tree: The origin and distribution of fire-adapted traits within conifers and their influence on speciation rates across the conifer phylogeny. AMERICAN JOURNAL OF BOTANY 2025; 112:e16454. [PMID: 39754325 DOI: 10.1002/ajb2.16454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 01/06/2025]
Abstract
PREMISE Considering rapidly changing fire regimes due to anthropogenic disturbances to climate and fuel loads, it is crucial to understand the underpinnings driving fire-adapted trait evolution. Among the oldest lineages affected by fire is Coniferae. This lineage occupies a variety of fire prone and non-fire prone habitats across all hemispheres and has four fire-adapted traits: (1) thick bark; (2) serotiny; (3) seedling grass stage; and (4) resprouting ability. We seek to determine the historic origins of these traits, the degree of convergent evolution among species, how fire adaptations affect diversification rates in conifers, and if there is a link between climate and the evolution of fire adaptations. METHODS To investigate these questions, we use a combination of ancestral state reconstructions, multiple diversification analyses, and Pagel trait correlations. RESULTS Our results point to multiple evolutionary origins of fire adaptations. We find certain climates, particularly Subtropical and Mediterranean, are highly correlated with species possessing fire adaptations. Several lineages evolved fire adaptations after the Mid-Miocene Climactic Optimum, which coincides with the expansion of the then novel Mediterranean Climate type. Generally possessing a fire adaptation does not increase diversification rates, with the possible exceptions of Pinus subsections Australes and Ponderosae. CONCLUSIONS The appearance of novel climates and associated fire regimes seem to have been the primary drivers of fire adaptation evolution in conifers. However, most increases in diversification rates are within clades that responded favorably to cooler drier climates post Mid-Miocene Climactic Optimum, regardless of whether the clade is fire adapted.
Collapse
Affiliation(s)
- Daniel F Turck
- Department of Biology, University of Idaho, Moscow, 83844, Idaho, USA
| | - Orlando Schwery
- Department of Biology, University of Idaho, Moscow, 83844, Idaho, USA
- New Mexico Consortium, Los Alamos, 87544, New Mexico, USA
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, 24061, Virginia, USA
- Department of Biological Sciences, Louisiana State University, Baton Rouge, 70803, Louisiana, USA
| | - Luke J Harmon
- Department of Biology, University of Idaho, Moscow, 83844, Idaho, USA
- Institute for Interdisciplinary Data Science, University of Idaho, Moscow, 83844, Idaho, USA
| | - David C Tank
- Department of Biology, University of Idaho, Moscow, 83844, Idaho, USA
- Department of Botany, University of Wyoming, Laramie, 82071, Wyoming, USA
| |
Collapse
|
10
|
Hagen ER, Beaulieu JM. New beginnings for dead ends: polyploidy, -SSE models and the dead-end hypothesis. ANNALS OF BOTANY 2024; 134:923-932. [PMID: 39297611 PMCID: PMC11687621 DOI: 10.1093/aob/mcae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/04/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Since the mid-20th century, it has been argued by some that the transition from diploidy to polyploidy is an 'evolutionary dead end' in plants. Although this point has been debated ever since, multiple definitions of 'dead end' have been used in the polyploidy literature, without sufficient differentiation between alternative uses. SCOPE Here, we focus on the two most common conceptions of the dead-end hypothesis currently discussed: the 'lowering diversification' hypothesis and the 'rarely successful' hypothesis. We discuss the evidence for both hypotheses, and we use a recently developed method of inferring tip diversification rates to demonstrate tests for the effect of ploidy on diversification in Solanaceae. CONCLUSIONS We find that diversification rates in the family are not strongly correlated with ploidy or with the closely related trait of breeding system. We also outline recent work in the field that moves beyond the relatively simple question of whether polyploidy increases, decreases or does not significantly affect diversification rates in plants.
Collapse
Affiliation(s)
- Eric R Hagen
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Jeremy M Beaulieu
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
11
|
Parins‐Fukuchi CT, Stull GW, Wen J, Beaulieu JM. Transitions Into Freezing Environments Linked With Shifts in Phylogenetic Integration Between Vitaceae Leaf Traits. Ecol Evol 2024; 14:e70553. [PMID: 39544388 PMCID: PMC11563691 DOI: 10.1002/ece3.70553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024] Open
Abstract
Understanding how the intrinsic ability of populations and species to meet shifting selective demands shapes evolutionary patterns over both short and long timescales is a major question in biology. One major axis of evolutionary flexibility can be measured by phenotypic integration and modularity. The strength, scale, and structure of integration may constrain or catalyze evolution in the face of new selective pressures. We analyze a dataset of seven leaf measurements across Vitaceae to examine how correlations in trait divergence are linked to transitions between freezing and nonfreezing habitats. We assess this by applying a custom algorithm to compare the timing of habitat shifts to changes in the structure of evolutionary trait correlation at discrete points along a phylogeny. We also explore these patterns in relation to lineage diversification rates to understand how and whether patterns in the evolvability of complex multivariate phenotypes are linked to higher-level macroevolutionary dynamics. We found that shifts in the structure, but not the overall strength, of phylogenetic integration of leaves precipitate colonization of freezing climates. Lineages that underwent associated shifts in leaf trait integration and subsequent movement into freezing habitats also displayed lower turnover and higher net diversification, suggesting a link among shifting vectors of selection, internal constraint, and lineage persistence in the face of changing environments.
Collapse
Affiliation(s)
| | - Gregory W. Stull
- Department of BotanyNational Museum of Natural History, Smithsonian InstitutionWashingtonDCUSA
| | - Jun Wen
- Department of BotanyNational Museum of Natural History, Smithsonian InstitutionWashingtonDCUSA
| | - Jeremy M. Beaulieu
- Department of Biological SciencesUniversity of ArkansasFayettevilleArkansasUSA
| |
Collapse
|
12
|
Nappo HC, Colli G. Colonization of North America Boosted the Diversification of Whiptail Lizards. Ecol Evol 2024; 14:e70418. [PMID: 39445179 PMCID: PMC11496772 DOI: 10.1002/ece3.70418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/10/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
Diversification is frequently associated with change-anything from colonizing a new area to evolving a new trait. Once a lineage changes, the organisms may be able to exploit previously unavailable ecological opportunities and release pressures from predators, parasites, and competitors, which may increase the speciation rate. Modern teiid lizards originated in South America but managed to colonize and diversify in North America. We assessed whether geographic distribution, body size, and body temperatures are associated with teiid diversification using GeoHiSSE and inverse equal-splits statistics with simulation tests. We also estimated speciation rates with MiSSE to account for the effect of unmeasured variables. Moreover, we assessed the ecological niche overlap between North American (including Caribbean) teiids and their sister clade in South America. Our results indicate that only distribution range affected diversification, but we discuss that the available data might not have been enough to assess the effect of body temperatures. We also show that North American teiids have a broader ecological niche encompassing almost all environmental conditions used by their sister clade in South America but expanding mainly toward arid areas. Our results suggest that this expansion significantly impacted teiid diversification due to the seizing of ecological opportunities or ecological release, but we do not discard possible effects of phenotypic evolution.
Collapse
Affiliation(s)
- Humberto Coelho Nappo
- Programa de Pós‐Graduação em Ecologia, Instituto de Ciências BiológicasUniversidade de BrasíliaBrasíliaDFBrazil
| | - Guarino Rinaldi Colli
- Departamento de Zoologia, Instituto de Ciências BiológicasUniversidade de BrasíliaBrasíliaDFBrazil
| |
Collapse
|
13
|
Alencar LRV, Schwery O, Gade MR, Domínguez-Guerrero SF, Tarimo E, Bodensteiner BL, Uyeda JC, Muñoz MM. Opportunity begets opportunity to drive macroevolutionary dynamics of a diverse lizard radiation. Evol Lett 2024; 8:623-637. [PMID: 39328284 PMCID: PMC11424082 DOI: 10.1093/evlett/qrae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/15/2024] [Accepted: 05/14/2024] [Indexed: 09/28/2024] Open
Abstract
Evolution proceeds unevenly across the tree of life, with some lineages accumulating diversity more rapidly than others. Explaining this disparity is challenging as similar evolutionary triggers often do not result in analogous shifts across the tree, and similar shifts may reflect different evolutionary triggers. We used a combination of approaches to directly consider such context-dependency and untangle the complex network of processes that shape macroevolutionary dynamics, focusing on Pleurodonta, a diverse radiation of lizards. Our approach shows that some lineage-wide signatures are lost when conditioned on sublineages: while viviparity appears to accelerate diversification, its effect size is overestimated by its association with the Andean mountains. Conversely, some signals that erode at broader phylogenetic scales emerge at shallower ones. Mountains, in general, do not affect speciation rates; rather, the occurrence in the Andean mountains specifically promotes diversification. Likewise, the evolution of larger sizes catalyzes diversification rates, but only within certain ecological and geographical settings. We caution that conventional methods of fitting models to entire trees may mistakenly assign diversification heterogeneity to specific factors despite evidence against their plausibility. Our study takes a significant stride toward disentangling confounding factors and identifying plausible sources of ecological opportunities in the diversification of large evolutionary radiations.
Collapse
Affiliation(s)
- Laura R V Alencar
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| | - Orlando Schwery
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Meaghan R Gade
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| | | | - Eliza Tarimo
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Brooke L Bodensteiner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| | - Josef C Uyeda
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Martha M Muñoz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| |
Collapse
|
14
|
Soewongsono AC, Landis MJ. A Diffusion-Based Approach for Simulating Forward-in-Time State-Dependent Speciation and Extinction Dynamics. Bull Math Biol 2024; 86:101. [PMID: 38970749 DOI: 10.1007/s11538-024-01337-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024]
Abstract
We establish a general framework using a diffusion approximation to simulate forward-in-time state counts or frequencies for cladogenetic state-dependent speciation-extinction (ClaSSE) models. We apply the framework to various two- and three-region geographic-state speciation-extinction (GeoSSE) models. We show that the species range state dynamics simulated under tree-based and diffusion-based processes are comparable. We derive a method to infer rate parameters that are compatible with given observed stationary state frequencies and obtain an analytical result to compute stationary state frequencies for a given set of rate parameters. We also describe a procedure to find the time to reach the stationary frequencies of a ClaSSE model using our diffusion-based approach, which we demonstrate using a worked example for a two-region GeoSSE model. Finally, we discuss how the diffusion framework can be applied to formalize relationships between evolutionary patterns and processes under state-dependent diversification scenarios.
Collapse
Affiliation(s)
- Albert C Soewongsono
- Department of Biology, Washington University in St. Louis, Rebstock Hall, St. Louis, MO, 63130, USA.
| | - Michael J Landis
- Department of Biology, Washington University in St. Louis, Rebstock Hall, St. Louis, MO, 63130, USA
| |
Collapse
|
15
|
Frandsen PB, Holzenthal RW, Espeland M, Breinholt J, Thomas Thorpe JA, Simon S, Kawahara AY, Plotkin D, Hotaling S, Li Y, Nelson CR, Niehuis O, Mayer C, Podsiadlowski L, Donath A, Misof B, Moriarty Lemmon E, Lemmon A, Morse JC, Liu S, Pauls SU, Zhou X. Phylogenomics recovers multiple origins of portable case making in caddisflies (Insecta: Trichoptera), nature's underwater architects. Proc Biol Sci 2024; 291:20240514. [PMID: 38955232 PMCID: PMC11285404 DOI: 10.1098/rspb.2024.0514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/11/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024] Open
Abstract
Caddisflies (Trichoptera) are among the most diverse groups of freshwater animals with more than 16 000 described species. They play a fundamental role in freshwater ecology and environmental engineering in streams, rivers and lakes. Because of this, they are frequently used as indicator organisms in biomonitoring programmes. Despite their importance, key questions concerning the evolutionary history of caddisflies, such as the timing and origin of larval case making, remain unanswered owing to the lack of a well-resolved phylogeny. Here, we estimated a phylogenetic tree using a combination of transcriptomes and targeted enrichment data for 207 species, representing 48 of 52 extant families and 174 genera. We calibrated and dated the tree with 33 carefully selected fossils. The first caddisflies originated approximately 295 million years ago in the Permian, and major suborders began to diversify in the Triassic. Furthermore, we show that portable case making evolved in three separate lineages, and shifts in diversification occurred in concert with key evolutionary innovations beyond case making.
Collapse
Affiliation(s)
- Paul B. Frandsen
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| | | | - Marianne Espeland
- Museum Koenig Bonn, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Bonn, Germany
| | | | | | - Sabrina Simon
- Rosenheim University of Applied Sciences, Rosenheim, Germany
| | - Akito Y. Kawahara
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - David Plotkin
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Scott Hotaling
- Department of Watershed Sciences, Utah State University, Logan, UT, USA
| | - Yiyuan Li
- Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang Province, People’s Republic of China
| | - C. Riley Nelson
- Department of Biology, Brigham Young University, Provo, UT, USA
| | - Oliver Niehuis
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), University of Freiburg, Freiburg, Germany
| | - Christoph Mayer
- Museum Koenig Bonn, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Bonn, Germany
| | - Lars Podsiadlowski
- Museum Koenig Bonn, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Bonn, Germany
| | - Alexander Donath
- Museum Koenig Bonn, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Bonn, Germany
| | - Bernhard Misof
- Museum Koenig Bonn, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Bonn, Germany
- Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | | | - Alan Lemmon
- Department of Scientific Computing, Florida State University, Dirac Science Library, Tallahassee, FL, USA
| | - John C. Morse
- Department of Plant & Environmental Sciences, Clemson University, Clemson, SC, USA
| | - Shanlin Liu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, People’s Republic of China
| | - Steffen U. Pauls
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
- Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt, Germany
- Department of Insect Biotechnology, Justus-Liebig-University Gießen, Gießen, Germany
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
16
|
Quintero I, Lartillot N, Morlon H. Imbalanced speciation pulses sustain the radiation of mammals. Science 2024; 384:1007-1012. [PMID: 38815022 DOI: 10.1126/science.adj2793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 04/23/2024] [Indexed: 06/01/2024]
Abstract
The evolutionary histories of major clades, including mammals, often comprise changes in their diversification dynamics, but how these changes occur remains debated. We combined comprehensive phylogenetic and fossil information in a new "birth-death diffusion" model that provides a detailed characterization of variation in diversification rates in mammals. We found an early rising and sustained diversification scenario, wherein speciation rates increased before and during the Cretaceous-Paleogene (K-Pg) boundary. The K-Pg mass extinction event filtered out more slowly speciating lineages and was followed by a subsequent slowing in speciation rates rather than rebounds. These dynamics arose from an imbalanced speciation process, with separate lineages giving rise to many, less speciation-prone descendants. Diversity seems to have been brought about by these isolated, fast-speciating lineages, rather than by a few punctuated innovations.
Collapse
Affiliation(s)
- Ignacio Quintero
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Nicolas Lartillot
- Université Claude Bernard Lyon 1, CNRS, VetAgroSup, LBBE, UMR 5558, F-69100 Villeurbanne, France
| | - Hélène Morlon
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| |
Collapse
|
17
|
Augustijnen H, Bätscher L, Cesanek M, Chkhartishvili T, Dincă V, Iankoshvili G, Ogawa K, Vila R, Klopfstein S, de Vos JM, Lucek K. A macroevolutionary role for chromosomal fusion and fission in Erebia butterflies. SCIENCE ADVANCES 2024; 10:eadl0989. [PMID: 38630820 PMCID: PMC11023530 DOI: 10.1126/sciadv.adl0989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/14/2024] [Indexed: 04/19/2024]
Abstract
The impact of large-scale chromosomal rearrangements, such as fusions and fissions, on speciation is a long-standing conundrum. We assessed whether bursts of change in chromosome numbers resulting from chromosomal fusion or fission are related to increased speciation rates in Erebia, one of the most species-rich and karyotypically variable butterfly groups. We established a genome-based phylogeny and used state-dependent birth-death models to infer trajectories of karyotype evolution. We demonstrated that rates of anagenetic chromosomal changes (i.e., along phylogenetic branches) exceed cladogenetic changes (i.e., at speciation events), but, when cladogenetic changes occur, they are mostly associated with chromosomal fissions rather than fusions. We found that the relative importance of fusion and fission differs among Erebia clades of different ages and that especially in younger, more karyotypically diverse clades, speciation is more frequently associated with cladogenetic chromosomal changes. Overall, our results imply that chromosomal fusions and fissions have contrasting macroevolutionary roles and that large-scale chromosomal rearrangements are associated with bursts of species diversification.
Collapse
Affiliation(s)
- Hannah Augustijnen
- Department of Environmental Science, University of Basel, 4056 Basel, Switzerland
| | - Livio Bätscher
- Department of Environmental Science, University of Basel, 4056 Basel, Switzerland
| | - Martin Cesanek
- Slovak Entomological Society, Slovak Academy of Sciences, Bratislava 1, Slovakia
| | | | - Vlad Dincă
- Ecology and Genetics Research Unit, University of Oulu, 90570 Oulu, Finland
| | | | - Kota Ogawa
- Faculty of Social and Cultural Studies, Kyushu University, Fukuoka 819-0395, Japan
- Insect Sciences and Creative Entomology Center, Kyushu University, Fukuoka 819-0395, Japan
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Univ. Pompeu Fabra), 08003 Barcelona, Spain
| | - Seraina Klopfstein
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Life Sciences, Natural History Museum Basel, 4051 Basel, Switzerland
| | - Jurriaan M. de Vos
- Department of Environmental Science, University of Basel, 4056 Basel, Switzerland
| | - Kay Lucek
- Department of Environmental Science, University of Basel, 4056 Basel, Switzerland
- Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| |
Collapse
|
18
|
Martínez-Gómez J, Song MJ, Tribble CM, Kopperud BT, Freyman WA, Höhna S, Specht CD, Rothfels CJ. Commonly used Bayesian diversification methods lead to biologically meaningful differences in branch-specific rates on empirical phylogenies. Evol Lett 2024; 8:189-199. [PMID: 39070288 PMCID: PMC11275465 DOI: 10.1093/evlett/qrad044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 07/30/2024] Open
Abstract
Identifying along which lineages shifts in diversification rates occur is a central goal of comparative phylogenetics; these shifts may coincide with key evolutionary events such as the development of novel morphological characters, the acquisition of adaptive traits, polyploidization or other structural genomic changes, or dispersal to a new habitat and subsequent increase in environmental niche space. However, while multiple methods now exist to estimate diversification rates and identify shifts using phylogenetic topologies, the appropriate use and accuracy of these methods are hotly debated. Here we test whether five Bayesian methods-Bayesian Analysis of Macroevolutionary Mixtures (BAMM), two implementations of the Lineage-Specific Birth-Death-Shift model (LSBDS and PESTO), the approximate Multi-Type Birth-Death model (MTBD; implemented in BEAST2), and the Cladogenetic Diversification Rate Shift model (ClaDS2)-produce comparable results. We apply each of these methods to a set of 65 empirical time-calibrated phylogenies and compare inferences of speciation rate, extinction rate, and net diversification rate. We find that the five methods often infer different speciation, extinction, and net-diversification rates. Consequently, these different estimates may lead to different interpretations of the macroevolutionary dynamics. The different estimates can be attributed to fundamental differences among the compared models. Therefore, the inference of shifts in diversification rates is strongly method dependent. We advise biologists to apply multiple methods to test the robustness of the conclusions or to carefully select the method based on the validity of the underlying model assumptions to their particular empirical system.
Collapse
Affiliation(s)
- Jesús Martínez-Gómez
- Department of Integrative Biology and the University Herbarium, University of California, Berkeley, CA, United States
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, United States
| | - Michael J Song
- Department of Integrative Biology and the University Herbarium, University of California, Berkeley, CA, United States
- Department of Biology, Skyline College, San Bruno, CA, United States
| | - Carrie M Tribble
- Department of Integrative Biology and the University Herbarium, University of California, Berkeley, CA, United States
- School of Life Sciences, University of Hawai’i at Manoa, HI, United States
| | - Bjørn T Kopperud
- GeoBio-Center, Ludwig-Maximilians-Universitat München, Munich, Germany
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Sebastian Höhna
- GeoBio-Center, Ludwig-Maximilians-Universitat München, Munich, Germany
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Chelsea D Specht
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States
| | - Carl J Rothfels
- Department of Integrative Biology and the University Herbarium, University of California, Berkeley, CA, United States
- Department of Biology, Utah State University, Logan, UT, United States
| |
Collapse
|
19
|
Cyriac VP, Mohan AV, Dinesh KP, Torsekar V, Jayarajan A, Swamy P, Vijayakumar SP, Shanker K. Diversifying in the mountains: spatiotemporal diversification of frogs in the Western Ghats biodiversity hotspot. Evolution 2024; 78:701-715. [PMID: 38252792 DOI: 10.1093/evolut/qpae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 01/02/2024] [Accepted: 01/18/2024] [Indexed: 01/24/2024]
Abstract
Mountain ranges are hotspots of biodiversity. However, the mechanisms that generate biodiversity patterns in different mountainous regions and taxa are not apparent. The Western Ghats (WG) escarpment in India is a globally recognized biodiversity hotspot with high species richness and endemism. Most studies have either invoked paleoclimatic conditions or climatic stability in the southern WG refugium to explain this high diversity and endemism. However, the factors driving macroevolutionary change remain unexplored for most taxa. Here, we generated the most comprehensive dated phylogeny to date for ranoid frogs in the WG and tested the role of paleoclimatic events or climatic stability in influencing frog diversification. We found that the diversity of different ranoid frog clades in the WG either accumulated at a constant rate through time or underwent a decrease in speciation rates around 3-2.5 Ma during the Pleistocene glaciation cycles. We also find no significant difference in diversification rate estimates across elevational gradients and the three broad biogeographic zones in the WG (northern, central, and southern WG). However, time-for-speciation explained regional species richness within clades, wherein older lineages have more extant species diversity. Overall, we find that global paleoclimatic events have had little impact on WG frog diversification throughout most of its early history until the Quaternary and that the WG may have been climatically stable allowing lineages to accumulate and persist over evolutionary time.
Collapse
Affiliation(s)
- Vivek Philip Cyriac
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, Karnataka, India
| | | | - K P Dinesh
- Zoological Survey of India, Western Regional Centre, Pune, Maharashtra, India
| | - Varun Torsekar
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Aditi Jayarajan
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, Karnataka, India
- Department of Biology, Florida Museum of Natural History, University of Florida, Gainesville, FL, United States
| | - Priyanka Swamy
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, Karnataka, India
- Department of Studies in Zoology, University of Mysore, Manasagangothri, Mysuru, Karnataka, India
| | - S P Vijayakumar
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Kartik Shanker
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, Karnataka, India
| |
Collapse
|
20
|
Title PO, Singhal S, Grundler MC, Costa GC, Pyron RA, Colston TJ, Grundler MR, Prates I, Stepanova N, Jones MEH, Cavalcanti LBQ, Colli GR, Di-Poï N, Donnellan SC, Moritz C, Mesquita DO, Pianka ER, Smith SA, Vitt LJ, Rabosky DL. The macroevolutionary singularity of snakes. Science 2024; 383:918-923. [PMID: 38386744 DOI: 10.1126/science.adh2449] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 01/02/2024] [Indexed: 02/24/2024]
Abstract
Snakes and lizards (Squamata) represent a third of terrestrial vertebrates and exhibit spectacular innovations in locomotion, feeding, and sensory processing. However, the evolutionary drivers of this radiation remain poorly known. We infer potential causes and ultimate consequences of squamate macroevolution by combining individual-based natural history observations (>60,000 animals) with a comprehensive time-calibrated phylogeny that we anchored with genomic data (5400 loci) from 1018 species. Due to shifts in the dynamics of speciation and phenotypic evolution, snakes have transformed the trophic structure of animal communities through the recurrent origin and diversification of specialized predatory strategies. Squamate biodiversity reflects a legacy of singular events that occurred during the early history of snakes and reveals the impact of historical contingency on vertebrate biodiversity.
Collapse
Affiliation(s)
- Pascal O Title
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
- Environmental Resilience Institute, Indiana University, Bloomington, IN 47408, USA
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sonal Singhal
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biology, California State University, Dominguez Hills, Carson, CA 90747, USA
| | - Michael C Grundler
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gabriel C Costa
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biology and Environmental Sciences, Auburn University at Montgomery, Montgomery, AL 36117, USA
| | - R Alexander Pyron
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20560, USA
| | - Timothy J Colston
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20560, USA
- Biology Department, University of Puerto Rico at Mayagüez, Mayagüez 00680, Puerto Rico
| | - Maggie R Grundler
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA 94720, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ivan Prates
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Natasha Stepanova
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marc E H Jones
- Science Group: Fossil Reptiles, Amphibians and Birds Section, Natural History Museum, London SW7 5BD, UK
- Research Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
- Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Lucas B Q Cavalcanti
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, João Pessoa, Paraíba 58051-900, Brazil
| | - Guarino R Colli
- Departamento de Zoologia, Universidade de Brasília, Brasília, Distrito Federal 70910-900, Brazil
| | - Nicolas Di-Poï
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | | | - Craig Moritz
- Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| | - Daniel O Mesquita
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, João Pessoa, Paraíba 58051-900, Brazil
| | - Eric R Pianka
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Stephen A Smith
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Laurie J Vitt
- Sam Noble Museum and Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Daniel L Rabosky
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
21
|
Wu S, Rheindt FE, Zhang J, Wang J, Zhang L, Quan C, Li Z, Wang M, Wu F, Qu Y, Edwards SV, Zhou Z, Liu L. Genomes, fossils, and the concurrent rise of modern birds and flowering plants in the Late Cretaceous. Proc Natl Acad Sci U S A 2024; 121:e2319696121. [PMID: 38346181 PMCID: PMC10895254 DOI: 10.1073/pnas.2319696121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/29/2023] [Indexed: 02/15/2024] Open
Abstract
The phylogeny and divergence timing of the Neoavian radiation remain controversial despite recent progress. We analyzed the genomes of 124 species across all Neoavian orders, using data from 25,460 loci spanning four DNA classes, including 5,756 coding sequences, 12,449 conserved nonexonic elements, 4,871 introns, and 2,384 intergenic segments. We conducted a comprehensive sensitivity analysis to account for the heterogeneity across different DNA classes, leading to an optimal tree of Neoaves with high resolution. This phylogeny features a novel Neoavian dichotomy comprising two monophyletic clades: a previously recognized Telluraves (land birds) and a newly circumscribed Aquaterraves (waterbirds and relatives). Molecular dating analyses with 20 fossil calibrations indicate that the diversification of modern birds began in the Late Cretaceous and underwent a constant and steady radiation across the KPg boundary, concurrent with the rise of angiosperms as well as other major Cenozoic animal groups including placental and multituberculate mammals. The KPg catastrophe had a limited impact on avian evolution compared to the Paleocene-Eocene Thermal Maximum, which triggered a rapid diversification of seabirds. Our findings suggest that the evolution of modern birds followed a slow process of gradualism rather than a rapid process of punctuated equilibrium, with limited interruption by the KPg catastrophe. This study places bird evolution into a new context within vertebrates, with ramifications for the evolution of the Earth's biota.
Collapse
Affiliation(s)
- Shaoyuan Wu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu International Joint Center of Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Frank E Rheindt
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Jin Zhang
- School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China
| | - Jiajia Wang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu International Joint Center of Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Lei Zhang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu International Joint Center of Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Cheng Quan
- School of Earth Science and Resources, Chang'an University, Xi'an, Shaanxi 710054, China
| | - Zhiheng Li
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Min Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Feixiang Wu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Zhonghe Zhou
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Liang Liu
- Department of Statistics, Institute of Bioinformatics, University of Georgia, Athens, GA 30606
| |
Collapse
|
22
|
Sato H. The evolution of ectomycorrhizal symbiosis in the Late Cretaceous is a key driver of explosive diversification in Agaricomycetes. THE NEW PHYTOLOGIST 2024; 241:444-460. [PMID: 37292019 DOI: 10.1111/nph.19055] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023]
Abstract
Ectomycorrhizal (EcM) symbiosis, a ubiquitous plant-fungus interaction in forests, evolved in parallel in fungi. Why the evolution of EcM fungi did not necessarily increase ecological opportunities for explosive diversification remains unclear. This study aimed to reveal the driving mechanism of the evolutionary diversification in the fungal class Agaricomycetes, specifically by testing whether the evolution of EcM symbiosis in the Late Cretaceous increased ecological opportunities. The historical character transitions of trophic state and fruitbody form were estimated based on phylogenies inferred from fragments of 89 single-copy genes. Moreover, five analyses were used to estimate the net diversification rates (speciation rate minus extinction rate). The results indicate that the unidirectional evolution of EcM symbiosis occurred 27 times, ranging in date from the Early Triassic to the Early Paleogene. The increased diversification rates appeared to occur intensively at the stem of EcM fungal clades diverging in the Late Cretaceous, coinciding with the rapid diversification of EcM angiosperms. By contrast, the evolution of fruitbody form was not strongly linked with the increased diversification rates. These findings suggest that the evolution of EcM symbiosis in the Late Cretaceous, supposedly with coevolving EcM angiosperms, was the key drive of the explosive diversification in Agaricomycetes.
Collapse
Affiliation(s)
- Hirotoshi Sato
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo, Kyoto, 606-8501, Japan
| |
Collapse
|
23
|
Lambert S, Voznica J, Morlon H. Deep Learning from Phylogenies for Diversification Analyses. Syst Biol 2023; 72:1262-1279. [PMID: 37556735 DOI: 10.1093/sysbio/syad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 06/20/2023] [Accepted: 08/08/2023] [Indexed: 08/11/2023] Open
Abstract
Birth-death (BD) models are widely used in combination with species phylogenies to study past diversification dynamics. Current inference approaches typically rely on likelihood-based methods. These methods are not generalizable, as a new likelihood formula must be established each time a new model is proposed; for some models, such a formula is not even tractable. Deep learning can bring solutions in such situations, as deep neural networks can be trained to learn the relation between simulations and parameter values as a regression problem. In this paper, we adapt a recently developed deep learning method from pathogen phylodynamics to the case of diversification inference, and we extend its applicability to the case of the inference of state-dependent diversification models from phylogenies associated with trait data. We demonstrate the accuracy and time efficiency of the approach for the time-constant homogeneous BD model and the Binary-State Speciation and Extinction model. Finally, we illustrate the use of the proposed inference machinery by reanalyzing a phylogeny of primates and their associated ecological role as seed dispersers. Deep learning inference provides at least the same accuracy as likelihood-based inference while being faster by several orders of magnitude, offering a promising new inference approach for the deployment of future models in the field.
Collapse
Affiliation(s)
- Sophia Lambert
- Institut de Biologie de l'École Normale Supérieure, École Normale Supérieure, CNRS, INSERM, Université Paris Sciences et Lettres, 46 Rue d'Ulm, 75005 Paris, France
- Institute of Ecology and Evolution, Department of Biology, 5289 University of Oregon, Eugene, OR 97403, USA
| | - Jakub Voznica
- Institut Pasteur, Université Paris Cité, Unité Bioinformatique Evolutive, 25-28 Rue du Dr Roux, 75015 Paris, France
- Unité de Biologie Computationnelle, USR 3756 CNRS, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Hélène Morlon
- Institut de Biologie de l'École Normale Supérieure, École Normale Supérieure, CNRS, INSERM, Université Paris Sciences et Lettres, 46 Rue d'Ulm, 75005 Paris, France
| |
Collapse
|
24
|
Scott JE. The macroevolutionary dynamics of activity pattern in mammals: Primates in context. J Hum Evol 2023; 184:103436. [PMID: 37741141 DOI: 10.1016/j.jhevol.2023.103436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/25/2023]
Abstract
Activity pattern has played a prominent role in discussions of primate evolutionary history. Most primates are either diurnal or nocturnal, but a small number are active both diurnally and nocturnally. This pattern-cathemerality-also occurs at low frequency across mammals. Using a large sample of mammalian species, this study evaluates two macroevolutionary hypotheses proposed to explain why cathemerality is less common than diurnality and nocturnality: 1) that cathemeral lineages have higher extinction probabilities (differential diversification) and 2) that transitions out of cathemerality are more frequent, making it a less persistent state (differential state persistence). Rates of speciation, extinction, and transition between character states were estimated using hidden-rates models applied to a phylogenetic tree containing 3013 mammals classified by activity pattern. The models failed to detect consistent differences in diversification dynamics among activity patterns, but there is strong support for differential state persistence. Transition rates out of cathemerality tend to be much higher than transition rates out of nocturnality. Transition rates out of diurnality are similar to those for cathemerality in most clades, with two important exceptions: diurnality is unusually persistent in anthropoid primates and sciurid rodents. These two groups combine very low rates of transition out of diurnality with high speciation rates. This combination has no parallels among cathemeral lineages, explaining why diurnality has become more common than cathemerality in mammals. Similarly, the combination of rates found in anthropoids is sufficient to explain the low relative frequency of cathemerality in primates, making it unnecessary to appeal to high extinction probabilities in cathemeral lineages in this clade. These findings support the hypothesis that the distribution of activity patterns across mammals has been influenced primarily by differential state persistence, whereas the effect of differential diversification appears to have been more idiosyncratic.
Collapse
Affiliation(s)
- Jeremiah E Scott
- Department of Medical Anatomical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA.
| |
Collapse
|
25
|
Cerezer FO, Dambros CS, Coelho MTP, Cassemiro FAS, Barreto E, Albert JS, Wüest RO, Graham CH. Accelerated body size evolution in upland environments is correlated with recent speciation in South American freshwater fishes. Nat Commun 2023; 14:6070. [PMID: 37770447 PMCID: PMC10539357 DOI: 10.1038/s41467-023-41812-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023] Open
Abstract
Speciation rates vary greatly among taxa and regions and are shaped by both biotic and abiotic factors. However, the relative importance and interactions of these factors are not well understood. Here we investigate the potential drivers of speciation rates in South American freshwater fishes, the most diverse continental vertebrate fauna, by examining the roles of multiple biotic and abiotic factors. We integrate a dataset on species geographic distribution, phylogenetic, morphological, climatic, and habitat data. We find that Late Neogene-Quaternary speciation events are strongly associated with body-size evolution, particularly in lineages with small body sizes that inhabit higher elevations near the continental periphery. Conversely, the effects of temperature, area, and diversity-dependence, often thought to facilitate speciation, are negligible. By evaluating multiple factors simultaneously, we demonstrate that habitat characteristics associated with elevation, as well as body size evolution, correlate with rapid speciation in South American freshwater fishes. Our study emphasizes the importance of integrative approaches that consider the interplay of biotic and abiotic factors in generating macroecological patterns of species diversity.
Collapse
Affiliation(s)
- Felipe O Cerezer
- Swiss Federal Research Institute for Forest, Snow, and Landscape (WSL), Birmensdorf, Switzerland.
- Programa de Pós-Graduação em Biodiversidade Animal, Departamento de Ecologia e Evolução, Universidade Federal de Santa Maria, Santa Maria, Brazil.
| | - Cristian S Dambros
- Programa de Pós-Graduação em Biodiversidade Animal, Departamento de Ecologia e Evolução, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Marco T P Coelho
- Swiss Federal Research Institute for Forest, Snow, and Landscape (WSL), Birmensdorf, Switzerland
| | - Fernanda A S Cassemiro
- Programa de Pós-Graduação em Ecologia e Evolução, Universidade Federal de Goiás, Goiânia, Brazil
| | - Elisa Barreto
- Swiss Federal Research Institute for Forest, Snow, and Landscape (WSL), Birmensdorf, Switzerland
| | - James S Albert
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, USA
| | - Rafael O Wüest
- Swiss Federal Research Institute for Forest, Snow, and Landscape (WSL), Birmensdorf, Switzerland
| | - Catherine H Graham
- Swiss Federal Research Institute for Forest, Snow, and Landscape (WSL), Birmensdorf, Switzerland
| |
Collapse
|
26
|
Wiens JJ. Trait-based species richness: ecology and macroevolution. Biol Rev Camb Philos Soc 2023; 98:1365-1387. [PMID: 37015839 DOI: 10.1111/brv.12957] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 04/06/2023]
Abstract
Understanding the origins of species richness patterns is a fundamental goal in ecology and evolutionary biology. Much research has focused on explaining two kinds of species richness patterns: (i) spatial species richness patterns (e.g. the latitudinal diversity gradient), and (ii) clade-based species richness patterns (e.g. the predominance of angiosperm species among plants). Here, I highlight a third kind of richness pattern: trait-based species richness (e.g. the number of species with each state of a character, such as diet or body size). Trait-based richness patterns are relevant to many topics in ecology and evolution, from ecosystem function to adaptive radiation to the paradox of sex. Although many studies have described particular trait-based richness patterns, the origins of these patterns remain far less understood, and trait-based richness has not been emphasised as a general category of richness patterns. Here, I describe a conceptual framework for how trait-based richness patterns arise compared to other richness patterns. A systematic review suggests that trait-based richness patterns are most often explained by when each state originates within a group (i.e. older states generally have higher richness), and not by differences in transition rates among states or faster diversification of species with certain states. This latter result contrasts with the widespread emphasis on diversification rates in species-richness research. I show that many recent studies of spatial richness patterns are actually studies of trait-based richness patterns, potentially confounding the causes of these patterns. Finally, I describe a plethora of unanswered questions related to trait-based richness patterns.
Collapse
Affiliation(s)
- John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, USA
| |
Collapse
|
27
|
Quintero I, Landis MJ, Jetz W, Morlon H. The build-up of the present-day tropical diversity of tetrapods. Proc Natl Acad Sci U S A 2023; 120:e2220672120. [PMID: 37159475 PMCID: PMC10194011 DOI: 10.1073/pnas.2220672120] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/04/2023] [Indexed: 05/11/2023] Open
Abstract
The extraordinary number of species in the tropics when compared to the extra-tropics is probably the most prominent and consistent pattern in biogeography, suggesting that overarching processes regulate this diversity gradient. A major challenge to characterizing which processes are at play relies on quantifying how the frequency and determinants of tropical and extra-tropical speciation, extinction, and dispersal events shaped evolutionary radiations. We address this question by developing and applying spatiotemporal phylogenetic and paleontological models of diversification for tetrapod species incorporating paleoenvironmental variation. Our phylogenetic model results show that area, energy, or species richness did not uniformly affect speciation rates across tetrapods and dispute expectations of a latitudinal gradient in speciation rates. Instead, both neontological and fossil evidence coincide in underscoring the role of extra-tropical extinctions and the outflow of tropical species in shaping biodiversity. These diversification dynamics accurately predict present-day levels of species richness across latitudes and uncover temporal idiosyncrasies but spatial generality across the major tetrapod radiations.
Collapse
Affiliation(s)
- Ignacio Quintero
- Institut de Biologie de l’ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université Paris Science & Lettres, Paris75005, France
| | - Michael J. Landis
- Landis Lab, Department of Biology, Washington University in St. Louis, St. Louis, MO63130
| | - Walter Jetz
- Jetz Lab, Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT06511
- Center for Biodiversity and Global Change, Yale University, New Haven, CT06511
| | - Hélène Morlon
- Institut de Biologie de l’ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université Paris Science & Lettres, Paris75005, France
| |
Collapse
|
28
|
Blaimer BB, Santos BF, Cruaud A, Gates MW, Kula RR, Mikó I, Rasplus JY, Smith DR, Talamas EJ, Brady SG, Buffington ML. Key innovations and the diversification of Hymenoptera. Nat Commun 2023; 14:1212. [PMID: 36869077 PMCID: PMC9984522 DOI: 10.1038/s41467-023-36868-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
The order Hymenoptera (wasps, ants, sawflies, and bees) represents one of the most diverse animal lineages, but whether specific key innovations have contributed to its diversification is still unknown. We assembled the largest time-calibrated phylogeny of Hymenoptera to date and investigated the origin and possible correlation of particular morphological and behavioral innovations with diversification in the order: the wasp waist of Apocrita; the stinger of Aculeata; parasitoidism, a specialized form of carnivory; and secondary phytophagy, a reversal to plant-feeding. Here, we show that parasitoidism has been the dominant strategy since the Late Triassic in Hymenoptera, but was not an immediate driver of diversification. Instead, transitions to secondary phytophagy (from parasitoidism) had a major influence on diversification rate in Hymenoptera. Support for the stinger and the wasp waist as key innovations remains equivocal, but these traits may have laid the anatomical and behavioral foundations for adaptations more directly associated with diversification.
Collapse
Affiliation(s)
- Bonnie B Blaimer
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Center for Integrative Biodiversity Discovery, Invalidenstraße 43, Berlin, 10115, Germany.
- National Museum of Natural History, Smithsonian Institution, 10th & Constitution Ave. NW, Washington, DC, USA.
| | - Bernardo F Santos
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Center for Integrative Biodiversity Discovery, Invalidenstraße 43, Berlin, 10115, Germany
- National Museum of Natural History, Smithsonian Institution, 10th & Constitution Ave. NW, Washington, DC, USA
| | - Astrid Cruaud
- CBGP, INRAe, CIRAD, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Michael W Gates
- Systematic Entomology Laboratory, USDA-ARS, c/o NMNH, Smithsonian Institution, 10th & Constitution Ave. NW, Washington, DC, USA
| | - Robert R Kula
- Systematic Entomology Laboratory, USDA-ARS, c/o NMNH, Smithsonian Institution, 10th & Constitution Ave. NW, Washington, DC, USA
| | - István Mikó
- Department of Biological Sciences, University of New Hampshire, Durham, NH, USA
| | - Jean-Yves Rasplus
- CBGP, INRAe, CIRAD, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - David R Smith
- Systematic Entomology Laboratory, USDA-ARS, c/o NMNH, Smithsonian Institution, 10th & Constitution Ave. NW, Washington, DC, USA
| | - Elijah J Talamas
- Florida State Collection of Arthropods, Division of Plant Industry, Florida Department of Agriculture and Consumer Services, 1911 SW 34th St, Gainesville, FL, 32608, USA
| | - Seán G Brady
- National Museum of Natural History, Smithsonian Institution, 10th & Constitution Ave. NW, Washington, DC, USA
| | - Matthew L Buffington
- Systematic Entomology Laboratory, USDA-ARS, c/o NMNH, Smithsonian Institution, 10th & Constitution Ave. NW, Washington, DC, USA
| |
Collapse
|
29
|
Liow LH, Uyeda J, Hunt G. Cross-disciplinary information for understanding macroevolution. Trends Ecol Evol 2023; 38:250-260. [PMID: 36456381 DOI: 10.1016/j.tree.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/30/2022]
Abstract
Many different macroevolutionary models can produce the same observations. Despite efforts in building more complex and realistic models, it may still be difficult to distinguish the processes that have generated the biodiversity we observe. In this opinion we argue that we can make new progress by reaching out across disciplines, relying on independent data and theory to constrain macroevolutionary inference. Using mainly paleontological insights and data, we illustrate how we can eliminate less plausible or implausible models, and/or parts of parameter space, while applying comparative phylogenetic approaches. We emphasize that such cross-disciplinary insights and data can be drawn between many other disciplines relevant to macroevolution. We urge cross-disciplinary training, and collaboration using common-use databases as a platform for increasing our understanding.
Collapse
Affiliation(s)
- Lee Hsiang Liow
- Natural History Museum, University of Oslo, Oslo 0562, Norway.
| | - Josef Uyeda
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Gene Hunt
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| |
Collapse
|
30
|
Scott JE. Variation in macroevolutionary dynamics among extant primates. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022; 179:405-416. [PMCID: PMC9826261 DOI: 10.1002/ajpa.24622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/05/2022] [Accepted: 09/03/2022] [Indexed: 09/25/2023]
Abstract
Objectives This study examines how speciation and extinction rates vary across primates, with a focus on the recent macroevolutionary dynamics that have shaped extant primate biodiversity. Materials and methods Lineage‐specific macroevolutionary rates were estimated for each tip in a tree containing 307 species using a hidden‐state likelihood model. Differences in tip rates among major clades were evaluated using phylogenetic ANOVA. Differences among diurnal, nocturnal, and cathemeral lineages were also evaluated, based on previous work indicating that activity pattern influences primate diversification. Results Rate variation in extant primates is low within clades and high between clades. As in previous studies, cercopithecoids stand out in having high net diversification rates, driven by high speciation rates and very low extinction rates. Platyrrhines combine high speciation and high extinction rates, giving them high rates of lineage turnover. Strepsirrhines and tarsiids have low rates of speciation, extinction, turnover, and net diversification. Hominoids are intermediate between platyrrhines and the strepsirrhine‐tarsiid group, and there is evidence for differentiation between hominids and hylobatids. Diurnal lineages have significantly higher speciation rates than nocturnal lineages. Conclusions Recent anthropoid macroevolution has been characterized by marked variation in diversification dynamics among clades. Strepsirrhines and tarsiids are more uniform, despite divergent evolutionary and biogeographic histories. Higher speciation rates in diurnal lineages may be driven by greater ecological opportunity or reliance on visual signals for mate recognition. However, the differences among anthropoids indicate that factors other than activity pattern (e.g., clade competition, historical contingency) have had a more influential role in shaping recent primate diversification.
Collapse
Affiliation(s)
- Jeremiah E. Scott
- Department of Medical Anatomical Sciences, College of Osteopathic Medicine of the PacificWestern University of Health SciencesPomonaCaliforniaUSA
| |
Collapse
|
31
|
Beaulieu JM, O'Meara BC. Fossils Do Not Substantially Improve, and May Even Harm, Estimates of Diversification Rate Heterogeneity. Syst Biol 2022; 72:50-61. [PMID: 35861420 DOI: 10.1093/sysbio/syac049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/14/2022] Open
Abstract
The fossilized birth-death (FBD) model is a naturally appealing way of directly incorporating fossil information when estimating diversification rates. However, an important yet often overlooked property of the original FBD derivation is that it distinguishes between two types of sampled lineages. Here we first discuss and demonstrate the impact of severely undersampling, and even not including fossils that represent samples of lineages that also had sampled descendants. We then explore the benefits of including fossils, generally, by implementing and then testing two-types of FBD models, including one that converts a fossil set into stratigraphic ranges, in more complex likelihood-based models that assume multiple rate classes across the tree. Under various simulation scenarios, including a scenario that exists far outside the set of models we evaluated, including fossils rarely outperforms analyses that exclude them altogether. At best, the inclusion of fossils improves precision but does not influence bias. Similarly, we found that converting the fossil set to stratigraphic ranges, which is one way to remedy the effects of undercounting the number of k-type fossils, results in turnover rates and extinction fraction estimates that are generally underestimated. While fossils remain essential for understanding diversification through time, in the specific case of understanding diversification given an existing, largely modern tree, they are not especially beneficial.
Collapse
Affiliation(s)
- Jeremy M Beaulieu
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, 72701 USA
| | - Brian C O'Meara
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, 37996-1610 USA
| |
Collapse
|