1
|
Meng J, Li J, Zhao Y. Comprehensive analysis of lncRNAs modified by m6A methylation in sheep skin. Anim Biosci 2024; 37:1887-1990. [PMID: 38754841 PMCID: PMC11541038 DOI: 10.5713/ab.24.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/11/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
OBJECTIVE N6-methyladenosine (m6A) is the most prevalent methylation of mRNA and plays crucial roles in various physiological processes, including pigmentation. Yet, the regulatory mechanisms, including long noncoding RNAs (lncRNAs) m6A methylation contributing to pigmentation in sheep skin remains unclear. The purpose of this study was to identify potential lncRNAs and the m6A methylation of lncRNAs associated with pigmentation. METHODS RNA-seq and MeRIP-seq were performed to study the expression of lncRNAs and the m6A methylation of lncRNAs in black and white sheep skin. Furthermore, quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the consistency with the RNA-seq and MeRIP-seq data. RESULTS We identified 168 differentially expressed lncRNAs between the two sheep skin colors. The differentially expressed lncRNAs enriched in the pathway of ECM-receptor interaction, Rap1 signaling pathway, and Non-homologous end-joining may play essential roles in pigmentation. We identified 577 m6A peaks and 617 m6A peaks in black and white sheep skin, respectively, among which 20 m6A peaks showed significant differences. The enriched motif in sheep skin was "GGACU", which aligned with the consensus motif "RRACH" (R = A or G, H = A, C or U). Differently methylated lncRNAs enriched in PI3K-Akt signaling pathway and Wnt signaling pathway might participate in skin pigmentation. ENSOARG00020015168 was the unique lncRNA with high expression and methylation (Hyper-Up) in black sheep shin. A lncRNA-mRNA network was constructed, with pigmentation-related genes, such as PSEN2, CCND3, COL2A1, and ERCC3. CONCLUSION The m6A modifications of lncRNAs in black and white colored sheep skin were analyzed comprehensively, providing new candidates for the regulation of pigmentation.
Collapse
Affiliation(s)
- Jinzhu Meng
- Guizhou Provincial Key Laboratory for Biodiversity Conservation and Utilization in the Fanjing Mountain Region, Tongren University, Tongren, Guizhou 554300,
China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128,
China
| | - Jianping Li
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, Jilin 132000,
China
| | - Yuanyuan Zhao
- Guizhou Provincial Key Laboratory for Biodiversity Conservation and Utilization in the Fanjing Mountain Region, Tongren University, Tongren, Guizhou 554300,
China
| |
Collapse
|
2
|
Liang X, Zhang C, Shen L, Ding L, Guo H. Role of non‑coding RNAs in UV‑induced radiation effects (Review). Exp Ther Med 2024; 27:262. [PMID: 38756908 PMCID: PMC11097301 DOI: 10.3892/etm.2024.12550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/04/2024] [Indexed: 05/18/2024] Open
Abstract
Ultraviolet (UV) is divided into UVA (long-wave, 320-400 nm), UVB (middle-wave, 280-320 nm) and UVC (short-wave, 100-280 nm) based on wavelength. UV radiation (UVR) from sunlight (UVA + UVB) is a major cause of skin photodamage including skin inflammation, aging and pigmentation. Accidental exposure to UVC burns the skin and induces skin cancer. In addition to the skin, UV radiation can also impair visual function. Non-coding RNAs (ncRNAs) are a class of functional RNAs that do not have coding activity but can control cellular processes at the post-transcriptional level, including microRNA (miRNA), long non-coding RNA (lncRNA) and circulatory RNA (circRNA). Through a review of the literature, it was determined that UVR can affect the expression of various ncRNAs, and that this regulation may be wavelength specific. Functionally, ncRNAs participate in the regulation of photodamage through various pathways and play pathogenic or protective regulatory roles. In addition, ncRNAs that are upregulated or downregulated by UVR can serve as biomarkers for UV-induced diseases, aiding in diagnosis and prognosis assessment. Therapeutic strategies targeting ncRNAs, including the use of natural drugs and their extracts, have shown protective effects against UV-induced photodamage. In the present review, an extensive summarization of previous studies was performed and the role and mechanism of ncRNAs in UV-induced radiation effects was reviewed to aid in the diagnosis and treatment of UV-related diseases.
Collapse
Affiliation(s)
- Xiaofei Liang
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, Heilongjiang 161000, P.R. China
| | - Chao Zhang
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, Heilongjiang 161000, P.R. China
| | - Lijuan Shen
- Department of Laboratory Medicine, Qiqihar MingZhu Hospital, Qiqihar, Heilongjiang 161000, P.R. China
| | - Ling Ding
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, Heilongjiang 161000, P.R. China
| | - Haipeng Guo
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, Heilongjiang 161000, P.R. China
| |
Collapse
|
3
|
Chang Y, Wu S, Li J, Bao H, Wu C. Identification of Candidate Genes for Red-Eyed (Albinism) Domestic Guppies Using Genomic and Transcriptomic Analyses. Int J Mol Sci 2024; 25:2175. [PMID: 38396851 PMCID: PMC10888696 DOI: 10.3390/ijms25042175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Guppies are small tropical fish with brightly colored bodies and variable tail shapes. There are two phenotypes of domestic guppy eye color: red and black. The wild type is black-eyed. The main object of this study was to identify candidate genes for the red-eyed phenotype in domestic guppies. We hope to provide molecular genetic information for the development of new domestic guppy strains. Additionally, the results also contribute to basic research concerning guppies. In this study, 121 domestic guppies were used for genomic analysis (GWAS), and 44 genes were identified. Furthermore, 21 domestic guppies were used for transcriptomic analysis, and 874 differentially expressed genes (DEGs) were identified, including 357 upregulated and 517 downregulated genes. Through GO and KEGG enrichment, we identified some important terms or pathways mainly related to melanin biosynthesis and ion transport. qRT-PCR was also performed to verify the differential expression levels of four important candidate genes (TYR, OCA2, SLC45A2, and SLC24A5) between red-eyed and black-eyed guppies. Based on the results of genomic and transcriptomic analyses, we propose that OCA2 is the most important candidate gene for the red-eyed phenotype in guppies.
Collapse
Affiliation(s)
| | | | | | - Haigang Bao
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.C.); (S.W.); (J.L.); (C.W.)
| | | |
Collapse
|
4
|
Dong J, Peng Z, Chen M, Lai Y, Zhang X, Yu M, Zhong H, Liu J, Yue Y, Shang J. Long Non-Coding RNA Mir17hg Positively Regulates Melanogenesis by Inhibiting TGFβ Receptor 2 under Psychological Stress. J Invest Dermatol 2024; 144:358-368.e10. [PMID: 37709007 DOI: 10.1016/j.jid.2023.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 09/16/2023]
Abstract
Vitiligo is a common skin depigmentation disorder characterized by the patchy loss of skin color. Nowadays, it is recognized as being correlated with multiple genetic factors as well as the psychological conditions of individuals. Long noncoding RNAs have been reported to underlie the pathogenesis of vitiligo; however, the role of long noncoding RNAs in the stress-related depigmentation process remains largely unknown. In this study, the inhibition of melanocyte function was observed in C57BL/6J mice modeled through chronic restraint stress. Furthermore, downregulation of the expression of the long noncoding RNAs Mir17hg was identified using RNA sequencing. The regulatory role of Mir17hg in melanogenesis was also investigated in melanocytes and zebrafish embryos through overexpression or knockdown. Finally, TGFβ receptor 2 was shown to be a downstream target in Mir17hg-mediated melanogenesis regulation, in which the classical TGFβ/SMAD signaling cascade and the PI3K/AKT/mTOR signaling cascade play important roles. In conclusion, our results revealed an important regulatory role of Mir17hg in melanogenesis through inhibition of TGFβR2, which can provide a potential therapeutic target for treating skin depigmentation disorders.
Collapse
Affiliation(s)
- Jing Dong
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zan Peng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Minghan Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yifan Lai
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaofeng Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Meng Yu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hui Zhong
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jun Liu
- New Drug Screening Center, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, China
| | - Yunyun Yue
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Jing Shang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, China; NMPA Key Laboratory for Research and Evaluation of Cosmetics, National Institutes for Food and Drug Control, Beijing, China.
| |
Collapse
|
5
|
Sun D, Qi X, Wen H, Li C, Li J, Chen J, Tao Z, Zhu M, Zhang X, Li Y. The genetic basis and potential molecular mechanism of yellow-albino northern snakehead ( Channa argus). Open Biol 2023; 13:220235. [PMID: 36789536 PMCID: PMC9929503 DOI: 10.1098/rsob.220235] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Body colour is an important economic trait for commercial fishes. Recently, a new colour morph displaying market-favoured yellow skin (termed as yellow-mutant, YM) of northern snakehead (Channa argus) was discovered in China. We confirmed that YM snakehead is an albino with complete loss of melanin in the skin and eyes by histological and ultrastructural observations, and inherited as a recessive Mendelian trait. By applying genomic analysis approaches, in combination with gene knockdown and rescue experiments, we suggested a non-sense mutation in slc45a2 (c.383G > A) is the causation for the YM snakehead. Notably, significantly higher levels of key melanogenesis genes (tyr, tyrp1, dct and pmel) and phospho-MITF protein were detected in YM snakehead than those in wild-type individuals, and the underlying mechanism was further investigated by comparative transcriptomic analysis. Results revealed that differential expressed genes involved in pathways like MAPK, WNT and calcium signalling were significantly induced in YM snakehead, which might account for the increased amount of melanogenesis elements, and presumably be stimulated by fibroblast-derived melanogenic factors in a paracrine manner. Our study clarified the genetic basis of colour variation in C. argus and provided the preliminary clue indicating the potential involvement of fibroblasts in pigmentation in fish.
Collapse
Affiliation(s)
- Donglei Sun
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Xin Qi
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Haishen Wen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Jianlong Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Jiwei Chen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Zexin Tao
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Mingxin Zhu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Xiaoyan Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Yun Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao 266003, People's Republic of China
| |
Collapse
|
6
|
Soheilifar MH, Masoudi-Khoram N, Shirkavand A, Ghorbanifar S. Non-coding RNAs in photoaging-related mechanisms: a new paradigm in skin health. Biogerontology 2022; 23:289-306. [PMID: 35587318 DOI: 10.1007/s10522-022-09966-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/02/2022] [Indexed: 11/25/2022]
Abstract
The aging of skin is a biological process affected by environmental or genetic factors. Exposure to ultraviolet (UV) radiation is the main environmental factor causing skin aging. Cumulative UV-induced photodamage of the skin tissue is associated with premature cellular senescence, extracellular degradation, and inflammatory responses in photoaging processes. Non-coding RNAs (ncRNAs) are untranslated transcripts and master regulators of protein-coding genes. ncRNAs have a critical regulatory role in maintaining skin structure, skin barrier function, morphogenesis, and development. Altered ncRNA expression has been reported in various skin disorders such as photoaging and skin cancers. ncRNAs contribute to the suppression and promotion of photoaging by modulating signaling pathways such as mitogen-activated protein kinase (MAPK) pathway and regulating inflammatory cytokines, matrix metalloproteinases (MMPs), and senescence-associated genes. Elucidation of the functions of ncRNAs will improve the identification of molecular mechanisms underlying photoaging, and can be used in the development of therapeutic approaches in skin health and prevention of sun-induced aging. This review summarized the currently described ncRNAs and their functions in photoaging.
Collapse
Affiliation(s)
- Mohammad Hasan Soheilifar
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, Academic Center for Education, Culture and Research (ACECR), Enghelab St, 1315795613, Tehran, Iran.
| | - Nastaran Masoudi-Khoram
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Afshan Shirkavand
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, Academic Center for Education, Culture and Research (ACECR), Enghelab St, 1315795613, Tehran, Iran
| | - Shima Ghorbanifar
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, Academic Center for Education, Culture and Research (ACECR), Enghelab St, 1315795613, Tehran, Iran
| |
Collapse
|
7
|
Melixetian M, Pelicci PG, Lanfrancone L. Regulation of LncRNAs in Melanoma and Their Functional Roles in the Metastatic Process. Cells 2022; 11:577. [PMID: 35159386 PMCID: PMC8834033 DOI: 10.3390/cells11030577] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are key regulators of numerous intracellular processes leading to tumorigenesis. They are frequently deregulated in cancer, functioning as oncogenes or tumor suppressors. As they act through multiple mechanisms, it is not surprising that they may exert dual functions in the same tumor. In melanoma, a highly invasive and metastatic tumor with the propensity to rapidly develop drug resistance, lncRNAs play different roles in: (i) guiding the phenotype switch and leading to metastasis formation; (ii) predicting the response of melanoma patients to immunotherapy; (iii) triggering adaptive responses to therapy and acquisition of drug resistance phenotypes. In this review we summarize the most recent findings on the lncRNAs involved in melanoma growth and spreading to distant sites, focusing on their role as biomarkers for disease diagnosis and patient prognosis, or targets for novel therapeutic approaches.
Collapse
Affiliation(s)
- Marine Melixetian
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (M.M.); (P.G.P.)
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (M.M.); (P.G.P.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Luisa Lanfrancone
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (M.M.); (P.G.P.)
| |
Collapse
|
8
|
Yang M, Weng T, Zhang W, Zhang M, He X, Han C, Wang X. The Roles of Non-coding RNA in the Development and Regeneration of Hair Follicles: Current Status and Further Perspectives. Front Cell Dev Biol 2021; 9:720879. [PMID: 34708037 PMCID: PMC8542792 DOI: 10.3389/fcell.2021.720879] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Alopecia is a common problem that affects almost every age group and is considered to be an issue for cosmetic or psychiatric reasons. The loss of hair follicles (HFs) and hair caused by alopecia impairs self-esteem, thermoregulation, tactile sensation and protection from ultraviolet light. One strategy to solve this problem is HF regeneration. Many signalling pathways and molecules participate in the morphology and regeneration of HF, such as Wnt/β-catenin, Sonic hedgehog, bone morphogenetic protein and Notch. Non-coding RNAs (ncRNAs), especially microRNAs and long ncRNAs, have significant modulatory roles in HF development and regeneration via regulation of these signalling pathways. This review provides a comprehensive overview of the status and future prospects of ncRNAs in HF regeneration and could prompt novel ncRNA-based therapeutic strategies.
Collapse
Affiliation(s)
- Min Yang
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
| | - Tingting Weng
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
| | - Wei Zhang
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
| | - Manjia Zhang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaojie He
- Department of General Practice, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Chunmao Han
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
| | - Xingang Wang
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
| |
Collapse
|
9
|
Zhou S, Zeng H, Huang J, Lei L, Tong X, Li S, Zhou Y, Guo H, Khan M, Luo L, Xiao R, Chen J, Zeng Q. Epigenetic regulation of melanogenesis. Ageing Res Rev 2021; 69:101349. [PMID: 33984527 DOI: 10.1016/j.arr.2021.101349] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023]
Abstract
Melanogenesis is a complex process in which melanin is synthesized in melanocytes and transported to keratinocytes, which involves multiple genes and signaling pathways. Epigenetics refers to the potential genetic changes that affect gene expression without involving changes in the original sequence of DNA nucleotides. DNA methylation regulates the expression of key genes such as tyrosinase (TYR), tyrosinase-related protein 1 (TYRP1), dopachrome tautomerase (DCT) and microphthalmia-associated transcription factor (MITF), as well as paracrine factors such as stem cell factor (SCF) and endothelin-1 (ET-1) in melanogenesis. Potential DNA methylation sites are present in the genes of melanogenesis-related signaling pathways such as "Wnt", "PI3K/Akt/CREB" and "MAPK". H3K27 acetylation is abundant in melanogenesis-related genes. Both the upstream activation and downstream regulation of MITF depend on histone acetyltransferase CBP/p300, and pH-induced H3K27 acetylation may be the amplifying mechanism of MITF's effect. HDAC1 and HDAC10 catalyze histone deacetylation of melanogenesis-related gene promoters. Chromatin remodelers SWI/SNF complex and ISWI complex use the energy of ATP hydrolysis to rearrange nucleosomes, while their active subunits BRG1, BRM and BPTF, act as activators and cofactors of MITF. MicroRNAs (miRNAs) can directly target a large number of melanogenesis-related genes, while long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) regulate melanogenesis in a variety of ways. Interactions exist among the epigenetic mechanisms of melanogenesis. For example, the methyl CpG binding domain protein 2 (MeCP2) links DNA methylation, histone deacetylation, and histone methylation. Epigenetic-based therapy provides novel opportunities for treating dermatoses that are caused by pigmentation disturbances. This review summarizes the epigenetic regulation mechanisms of melanogenesis, and examines the pathogenesis and treatment of epigenetics in pigmentation disorders.
Collapse
|
10
|
Alhelf M, Rashed LA, Ragab N, Elmasry MF. Association between long noncoding RNA taurine-upregulated gene 1 and microRNA-377 in vitiligo. Int J Dermatol 2021; 61:199-207. [PMID: 34014568 DOI: 10.1111/ijd.15669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/15/2021] [Accepted: 04/22/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Taurine-upregulated gene 1 (TUG1) is one of the long noncoding RNAs (lncRNAs) that plays a role in melanogenesis. MicroRNA-377 (miRNA-377) is a conserved noncoding RNA that regulates angiogenesis and promotes oxidative stress. Peroxisome proliferator-activated receptors (PPARs) are components of the nuclear hormone receptor superfamily. PPAR-γ activators stimulate melanogenesis. Interleukin (IL)-17 has been implicated in the pathogenesis of several immunological diseases. This work aimed at detecting the expression levels of lncRNA TUG1, miRNA-377, PPAR-γ, and IL-17 among vitiligo subjects and to investigate their possible role in the pathogenesis of vitiligo. METHODS This study was conducted on 30 healthy controls and 30 vitiligo patients. LncRNA TUG1 and miRNA-377 were detected in serum by real-time polymerase chain reaction (PCR). Also, expressions of PPAR-γ and IL-17 were assessed in tissue by real-time PCR. RESULTS LncRNA TUG1 and PPAR-γ levels were significantly downregulated in the vitiligo group compared with the control group. On the other hand, miRNA-377 and IL-17 were significantly upregulated in the vitiligo group compared with the control group. CONCLUSION This study demonstrated the dysregulated expressions of lncRNA TUG1 and miRNA-377 in patients with vitiligo suggesting that both contributed to the pathogenesis of vitiligo that might be through PPAR-γ downregulation and IL-17 upregulation.
Collapse
Affiliation(s)
- Maha Alhelf
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt.,Biotechnology School, Nile University, Giza, Egypt
| | - Laila A Rashed
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Noura Ragab
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Maha F Elmasry
- Dermatology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
11
|
Tobin DJ. How to design robust assays for human skin pigmentation: A "Tortoise and Hare challenge". Exp Dermatol 2021; 30:624-627. [PMID: 33899266 DOI: 10.1111/exd.14350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Desmond J Tobin
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland.,The Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
12
|
Li S, Zeng H, Huang J, Lu J, Chen J, Zhou Y, Mi L, Zhao X, Lei L, Zeng Q. Identification of the Competing Endogenous RNA Networks in Oxidative Stress Injury of Melanocytes. DNA Cell Biol 2021; 40:192-208. [PMID: 33471583 DOI: 10.1089/dna.2020.5455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Competing endogenous RNAs (ceRNAs), including long noncoding RNA (lncRNA), circular RNA (circRNA), pseudogenes, synthetic miRNA inhibitors, etc. are classes of RNAs that can compete and interact with each other within an organism. There are regions in these RNAs that can be bound by messenger-RNA-interfering complementary RNA (microRNA), called microRNA response elements (MREs). These RNAs compete with each other to combine complementary microRNAs and MREs to form ceRNA regulatory mechanisms and participate in the regulation of many biological processes. The oxidative stress injury of melanocytes is one of the crucial mechanisms of vitiligo. However, it is unclear whether the ceRNA regulation mechanism is involved in the oxidative stress injury of melanocytes. The purpose of this study is to explore the changes of messenger RNA (mRNA), lncRNAs, and circRNAs in melanocytes under oxidative stress and to identify the key ceRNA regulatory networks. Compared with the normal cells, the chip detection of ceRNA expression profile showed that the expression of 491 mRNAs, 865 lncRNAs, and 1161 circRNAs were altered more than fivefold during the oxidative stress injury of melanocytes. The oxidative stress-related genes (SOD2, PTGS2, DHFR, HMOX1, FOSL1, and PARP1), cell cycle-related genes (CDK1, CCNB1, CCNA2, OIP5, and MK167), and apoptosis-related gene (BIRC5) were identified in the formation of ceRNA regulation networks with lncRNAs and circRNAs, which shares the common MREs. Further verification found that LNCV6_120941_PI430048170 or hsa_circ_0048910 might regulate the expression of SOD2 by sponging hsa-miR-4755-3p, LNCV6_119109_PI430048170, or hsa_circ_0048909 might regulate the expression of HMOX1 by sponging hsa-miR-6721-5p in the oxidative stress injury of melanocytes. In conclusion, complex changes of the ceRNA regulatory network in the oxidative stress response of melanocytes are evident. Oxidative stress may mediate melanocyte injury through the ceRNA regulation mechanism and induce the pathogenesis of vitiligo.
Collapse
Affiliation(s)
- Si Li
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Hongliang Zeng
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China
| | - Jinhua Huang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jianyun Lu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jing Chen
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Ying Zhou
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Lan Mi
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaojiao Zhao
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Li Lei
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Paus R. Shining a (blue) light on hair follicle chronobiology and photobiomodulation. Exp Dermatol 2021; 30:189-192. [PMID: 33433942 DOI: 10.1111/exd.14271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ralf Paus
- Dr Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Centre for Dermatology Research, University of Manchester, NIHR Manchester Biomedical Research Centre, Manchester, UK.,Monasterium Laboratory, Münster, Germany
| |
Collapse
|
14
|
Guo C, Qi Y, Qu J, Gai L, Shi Y, Yuan C. Pathophysiological Functions of the lncRNA TUG1. Curr Pharm Des 2020; 26:688-700. [PMID: 31880241 DOI: 10.2174/1381612826666191227154009] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 12/23/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) with little or no coding capacity are associated with a plethora of cellular functions, participating in various biological processes. Cumulative study of lncRNA provides explanations to the physiological and pathological processes and new perspectives to the diagnosis, prevention, and treatment of some clinical diseases. Long non-coding RNA taurine-upregulated gene 1(TUG1) is one of the first identified lncRNAs associated with human disease, which actively involved in various physiological processes, including regulating genes at epigenetics, transcription, post-transcription, translation, and posttranslation. The aim of this review was to explore the molecular mechanism of TUG1 in various types of human diseases. METHODS In this review, we summarized and analyzed the latest findings related to the physiologic and pathophysiological processes of TUG1 in human diseases. The related studies were retrieved and selected the last six years of research articles in PubMed with lncRNA and TUG1 as keywords. RESULTS TUG1 is a valuable lncRNA that its dysregulated expression and regulating the biological processes were found in a variety of human diseases. TUG1 is found to exhibit aberrant expression in a variety of malignancies. Dysregulation of TUG1 has been shown to contribute to proliferation, migration, cell cycle changes, inhibited apoptosis, and drug resistance of cancer cells, which revealed an oncogenic role for this lncRNA, but some reports have shown downregulation of TUG1 in lung cancer samples compared with noncancerous samples. In addition, the molecular and biological functions of TUG1 in physiology and disease (relevant to endocrinology, metabolism, immunology, neurobiology) have also been highlighted. Finally, we discuss the limitations and tremendous diagnostic/therapeutic potential of TUG1 in cancer and other diseases. CONCLUSION Long non-coding RNA-TUG1 likely served as useful disease biomarkers or therapy targets and effectively applied in different kinds of diseases, such as human cancer and cardiovascular diseases.
Collapse
Affiliation(s)
- Chong Guo
- Department of Biochemistry, China Three Gorges University, Yichang City Hubei Province, China
| | - Yuying Qi
- Department of Biochemistry, China Three Gorges University, Yichang City Hubei Province, China
| | - Jiayuan Qu
- Department of Biochemistry, China Three Gorges University, Yichang City Hubei Province, China
| | - Liyue Gai
- Department of Biochemistry, China Three Gorges University, Yichang City Hubei Province, China
| | - Yue Shi
- Department of Biochemistry, China Three Gorges University, Yichang City Hubei Province, China
| | - Chengfu Yuan
- Department of Biochemistry, China Three Gorges University, Yichang City Hubei Province, China.,Tumor Microenvironment and Immunotherapy Key Laboratory of Hubei province in China, Yichang City, China
| |
Collapse
|
15
|
Cheng J, Duan Y, Zhang F, Shi J, Li H, Wang F, Li H. The Role of lncRNA TUG1 in the Parkinson Disease and Its Effect on Microglial Inflammatory Response. Neuromolecular Med 2020; 23:327-334. [PMID: 33085068 DOI: 10.1007/s12017-020-08626-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/12/2020] [Indexed: 10/23/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease in the middle-aged and elderly populations. The purpose of this study was to investigate the clinical value of lncRNA TUG1 in PD and its effect on the microglial inflammatory response. A total of 181 subjects were recruited for the study, including 97 patients with PD (male/female 50/47) and 84 healthy individuals (male/female 41/43). There was no significant difference for gender and age distribution between the groups. The expression of serum TUG1 was determined by qRT-PCR. The receiver operating curve (ROC) was applied for diagnostic value analysis. CCK-8 was used to detect the effect of TUG1 on the proliferation of BV2 cells. The motor coordination ability of mice was tested by the rotarod and pole tests. ELISA was used to detect serum pro-inflammatory factors. TUG1 was highly expressed in the serum of PD patients. Serum TUG1 can distinguish PD patients to form healthy controls with the AUC of 0.902. Serum TUG1 was positively correlated with the levels of UPDRS, IL-6, IL-1β, and TNF-α in PD patients. Cell experiment results showed that the downregulation of TUG1 significantly inhibited cell proliferation and the release of TNF-α, IL-6, and IL-1β. Besides, animal experiments suggested that the downregulation of TUG1 significantly improved the motor coordination ability of the PD mice and inhibited the expression of inflammatory factors. lncRNA TUG1 is a latent biomarker of PD patients. TUG1 downregulation may inhibit the inflammatory response in the progression of PD. These findings provide a possible target for the early diagnosis and therapeutic intervention of PD.
Collapse
Affiliation(s)
- Jiang Cheng
- Department of Neurology, General Hospital of Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, NO.804 Shengli Street, Xingqing District, Yinchuan, 750004, Ningxia, China
| | - Yangyang Duan
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Fengting Zhang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Jin Shi
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Hui Li
- Department of Computer Science, Jiangsu Ocean University, Lianyungang, 222000, Jiangsu, China
| | - Feng Wang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, NO.804 Shengli Street, Xingqing District, Yinchuan, 750004, Ningxia, China.
| | - Haining Li
- Department of Neurology, General Hospital of Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, NO.804 Shengli Street, Xingqing District, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
16
|
Targeting steroid receptor RNA activator (SRA), a long non-coding RNA, enhances melanogenesis through activation of TRP1 and inhibition of p38 phosphorylation. PLoS One 2020; 15:e0237577. [PMID: 32790741 PMCID: PMC7425936 DOI: 10.1371/journal.pone.0237577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 07/29/2020] [Indexed: 12/20/2022] Open
Abstract
Abnormal skin melanin homeostasis results in refractory pigmentary diseases. Melanogenesis is influenced by gene regulation, ultraviolet radiation, and host epigenetic responses. Steroid receptor RNA activator (SRA), a long noncoding RNA, is known to regulate steroidogenesis and tumorigenesis. However, how SRA contributes to melanogenesis remains unknown. Using RNA interference against SRA in B16 and A375 melanoma cells, we observed increased pigmentation and increased expression of TRP1 and TRP2 at transcriptional and translational levels only in B16 cells. The constitutive phosphorylation of p38 in B16-shCtrl cells was inhibited in cells with knocked down SRAi. Moreover, the melanin content of control B16 cells was increased by SB202190, a p38 inhibitor. Furthermore, reduced p38 phosphorylation, enhanced TRP1 expression, and hypermelanosis were observed in A375 cells with RNA interference. These results indicate that SRA-p38-TRP1 axis has a regulatory role in melanin homeostasis and that SRA might be a potential therapeutic target for treating pigmentary diseases.
Collapse
|
17
|
Hu Y, Huang J, Li Y, Jiang L, Ouyang Y, Li Y, Yang L, Zhao X, Huang L, Xiang H, Chen J, Zeng Q. Cistanche deserticola polysaccharide induces melanogenesis in melanocytes and reduces oxidative stress via activating NRF2/HO-1 pathway. J Cell Mol Med 2020; 24:4023-4035. [PMID: 32096914 PMCID: PMC7171403 DOI: 10.1111/jcmm.15038] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/27/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
As a main part of pigmentation disorders, skin depigmentation diseases such as vitiligo and achromic naevus are very common and get more attention now. The pathogenesis of depigmentation includes melanocyte dysfunction and loss, which are possibly caused by heredity, autoimmunity and oxidative stress. Among them, oxidative stress plays a key role; however, few clinical treatments can deal with oxidative stress. As reported, Cistanche deserticola polysaccharide (CDP) is an effective antioxidant; based on that, we evaluated its role in melanocyte and further revealed the mechanisms. In this study, we found that CDP could promote melanogenesis in human epidermal melanocytes (HEMs) and mouse melanoma B16F10 cells, it also induced pigmentation in zebrafish. Furthermore, CDP could activate mitogen‐activated protein kinase (MAPK) signal pathway, then up‐regulated the expression of microphthalmia‐associated transcription factor (MITF) and downstream genes TYR, TRP1, TRP2 and RAB27A. Otherwise, we found that CDP could attenuate H2O2‐induced cytotoxicity and apoptosis in melanocytes. Further evidence revealed that CDP could enhance NRF2/HO‐1 antioxidant pathway and scavenge intracellular ROS. In summary, CDP can promote melanogenesis and prevent melanocytes from oxidative stress injury, suggesting that CDP helps maintain the normal status of melanocytes. Thus, CDP may be a novel drug for the treatment of depigmentation diseases.
Collapse
Affiliation(s)
- Yibo Hu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jinhua Huang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yixiao Li
- Department of Urology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Ling Jiang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yujie Ouyang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yumeng Li
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Lun Yang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaojiao Zhao
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Lihua Huang
- Medicine Experimental Center, Third Xiangya Hospital, Central South University, Changsha, China
| | - Hong Xiang
- Medicine Experimental Center, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jing Chen
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|