1
|
Heindel AJ, Brulet JW, Wang X, Founds MW, Libby AH, Bai DL, Lemke MC, Leace DM, Harris TE, Hafner M, Hsu KL. Chemoproteomic capture of RNA binding activity in living cells. Nat Commun 2023; 14:6282. [PMID: 37805600 PMCID: PMC10560261 DOI: 10.1038/s41467-023-41844-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/20/2023] [Indexed: 10/09/2023] Open
Abstract
Proteomic methods for RNA interactome capture (RIC) rely principally on crosslinking native or labeled cellular RNA to enrich and investigate RNA-binding protein (RBP) composition and function in cells. The ability to measure RBP activity at individual binding sites by RIC, however, has been more challenging due to the heterogenous nature of peptide adducts derived from the RNA-protein crosslinked site. Here, we present an orthogonal strategy that utilizes clickable electrophilic purines to directly quantify protein-RNA interactions on proteins through photoaffinity competition with 4-thiouridine (4SU)-labeled RNA in cells. Our photo-activatable-competition and chemoproteomic enrichment (PACCE) method facilitated detection of >5500 cysteine sites across ~3000 proteins displaying RNA-sensitive alterations in probe binding. Importantly, PACCE enabled functional profiling of canonical RNA-binding domains as well as discovery of moonlighting RNA binding activity in the human proteome. Collectively, we present a chemoproteomic platform for global quantification of protein-RNA binding activity in living cells.
Collapse
Affiliation(s)
- Andrew J Heindel
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Jeffrey W Brulet
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Xiantao Wang
- RNA Molecular Biology Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Disease, Bethesda, MD, 20892, USA
| | - Michael W Founds
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Adam H Libby
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
- University of Virginia Cancer Center, University of Virginia, Charlottesville, VA, 22903, USA
| | - Dina L Bai
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Michael C Lemke
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - David M Leace
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Thurl E Harris
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Markus Hafner
- RNA Molecular Biology Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Disease, Bethesda, MD, 20892, USA
| | - Ku-Lung Hsu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA.
- University of Virginia Cancer Center, University of Virginia, Charlottesville, VA, 22903, USA.
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22908, USA.
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
2
|
Sunder-Plassmann R, Geusau A, Endler G, Weninger W, Wielscher M. Identification of Genetic Risk Factors for Keratinocyte Cancer in Immunosuppressed Solid Organ Transplant Recipients: A Case-Control Study. Cancers (Basel) 2023; 15:3354. [PMID: 37444464 DOI: 10.3390/cancers15133354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Because of long-term immunosuppression, solid organ transplant recipients are at increased risk for keratinocyte cancer. We matched solid organ transplant patients (n = 150), cases with keratinocyte cancers and tumor-free controls, considering the most important risk factors for keratinocyte cancer in solid organ transplant recipients. Using whole exome data of germline DNA from this patient cohort, we identified several genetic loci associated with the occurrence of multiple keratinocyte cancers. We found one genome-wide significant association of a common single nucleotide polymorphism located in EXOC3 (rs72698504). In addition, we found several variants with a p-value of less than 10-5 associated with the number of keratinocyte cancers. These variants were located in the genes CYB561, WASHC1, PITRM1-AS1, MUC8, ABI3BP, and THBS2-AS1. Using whole exome sequencing data, we performed groupwise tests for rare missense variants in our dataset and found robust associations (p < 10-6, Burden Zeggini test) between MC1R, EPHA8, EPO, MYCT1, ADGRG3, and MGME1 and keratinocyte cancer. Thus, overall, we detected genes involved in pigmentation/UV protection, tumor suppression, immunomodulation, intracellular traffic, and response to UV as genetic risk factors for multiple keratinocyte cancers in solid organ transplant recipients. We also grouped selected genes to pathways and found a selection of genes involved in the "cellular response to UV" to be significantly associated with multiple keratinocyte cancers.
Collapse
Affiliation(s)
| | - Alexandra Geusau
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Georg Endler
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Matthias Wielscher
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
3
|
Tubulin TUBB4B Is Involved in Spermatogonia Proliferation and Cell Cycle Processes. Genes (Basel) 2022; 13:genes13061082. [PMID: 35741845 PMCID: PMC9222938 DOI: 10.3390/genes13061082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/06/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
Tubb4b (tubulin β-4b chain) is essential for cell growth and development as a microtubule network protein. Previous studies have shown that TUBB4B affects mouse pronucleus migration, but the gene function has yet to be elucidated. To study TUBB4B-related functions in mouse reproductive development, we designed a single sgRNA in chromosome 2 and generated a knockout spermatogonia cell line of the β-tubulin isoform Tubb4b by the CRISPR/Cas9 system. Tubb4b-KO spermatogonia recognized abnormal lysosomal membranes and cell morphology defects. Compared to control mouse spermatogonia, the proliferation rate was significantly slower and cycling stagnated in the G1/0 population. Although spermatogonia lacking TUBB4B have abnormal divisions, they are not lethal. We detected the mRNA levels of the cell-regulating cyclins CyclinsD1, CyclinsE, Cdk2, Cdk4, P21, Skp2 and the cell growth factors C/EBP α, C/EBP β, and G-CSF in the spermatogonia of Tubb4b-KO and found that the expressions of CyclinsD1, Skp2 and cell growth factors were significantly reduced. Further analysis revealed that 675 genes were expressed differently after Tubb4b deletion and were enriched in negative regulation of cell population proliferation (GO:0008285), negative regulation of cell cycle G2/M phase transition (GO:1902750), and positive regulation of cell death (GO: 0010942). We also found that there is a common gene Cdkn1a (P21) in these three GO pathways related to cell proliferation and cell cycle, and both quantitative analysis and transcriptome sequencing results showed that the expression of this gene was up-regulated in Tubb4b knockout cells. This implies that Tubb4b may be involved in the division of spermatogonia with multiple cell cycle regulatory proteins. Overall, these data indicate that Tubb4b has a specific role in regulating spermatogonia proliferation and cell cycle.
Collapse
|
4
|
Sahabi K, Selvarajah GT, Mokrish A, Rasedee A, Kqueen CY. Development and molecular characterization of doxorubicin-resistant canine mammary gland tumour cells. JOURNAL OF APPLIED ANIMAL RESEARCH 2022. [DOI: 10.1080/09712119.2022.2032719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Kabiru Sahabi
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Gayathri T. Selvarajah
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
- UPM-MAKNA Cancer Research Laboratory (CANRES), Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Ajat Mokrish
- Department of Veterinary Preclinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Abdullah Rasedee
- Department of Veterinary Diagnostic Laboratory, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Cheah Y. Kqueen
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- UPM-MAKNA Cancer Research Laboratory (CANRES), Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
5
|
Kaur D, Behl T, Sehgal A, Singh S, Sharma N, Badavath VN, Ul Hassan SS, Hasan MM, Bhatia S, Al-Harassi A, Khan H, Bungau S. Unravelling the potential neuroprotective facets of erythropoietin for the treatment of Alzheimer's disease. Metab Brain Dis 2022; 37:1-16. [PMID: 34436747 DOI: 10.1007/s11011-021-00820-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023]
Abstract
During the last three decades, recombinant DNA technology has produced a wide range of hematopoietic and neurotrophic growth factors, including erythropoietin (EPO), which has emerged as a promising protein drug in the treatment of several diseases. Cumulative studies have recently indicated the neuroprotective role of EPO in preclinical models of acute and chronic neurodegenerative disorders, including Alzheimer's disease (AD). AD is one of the most prevalent neurodegenerative illnesses in the elderly, characterized by the accumulation of extracellular amyloid-ß (Aß) plaques and intracellular neurofibrillary tangles (NFTs), which serve as the disease's two hallmarks. Unfortunately, AD lacks a successful treatment strategy due to its multifaceted and complex pathology. Various clinical studies, both in vitro and in vivo, have been conducted to identify the various mechanisms by which erythropoietin exerts its neuroprotective effects. The results of clinical trials in patients with AD are also promising. Herein, it is summarized and reviews all such studies demonstrating erythropoietin's potential therapeutic benefits as a pleiotropic neuroprotective agent in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Dapinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | | | - Syed Shams Ul Hassan
- School of Medicine and Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
- Amity Institute of Pharmacy, Amity University, Noida, Haryana, India
| | - Ahmed Al-Harassi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
6
|
Zhao H, Chen W, Zhu Y, Lou J. Hypoxia promotes pancreatic cancer cell migration, invasion, and epithelial-mesenchymal transition via modulating the FOXO3a/DUSP6/ERK axis. J Gastrointest Oncol 2021; 12:1691-1703. [PMID: 34532120 DOI: 10.21037/jgo-21-359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/22/2021] [Indexed: 01/05/2023] Open
Abstract
Background Pancreatic cancer (PC) is among the most aggressive types of cancer. Hypoxia has been identified as a key risk factor for cancer progression. The forkhead box (FOX) proteins are multidirectional transcriptional factors that are strongly implicated in malignancies. However, whether FOXO3a, a member of the FOX protein family, is involved in the pro-oncogenic functions of hypoxia in PC has remained largely unelucidated. In this study, we attempted to clarify the role of FOXO3a in metastasis under hypoxic conditions and its underlying mechanism. Methods MTT and flow cytometry assays were performed to detect the cell proliferation and cell cycle distribution respectively. Transwell assays were used to determine the potential of cell migration and invasion. qPCR and western blot assays were used to assess the expression of mRNA and protein. Immunofluorescence assay was performed to evaluate the cellular localization of FOXO3a. FOXO3a overexpression plasmid was constructed to perform the rescue experiment. Results Our data indicated that PANC-1 and SW1990 cells represented enhanced cell migration and invasion abilities under hypoxia, while no statistical differences in cell proliferation and cell cycle distribution were observed. Hypoxia upregulated the messenger RNA (mRNA) and protein expressions of HIF-1α, FOXO3a, and the key epithelial-mesenchymal transition (EMT)-related (EMT) molecules N-cadherin and vimentin, as well as the phosphorylation of FOXO3a. Interestingly, hypoxia promoted the extranuclear localization of FOXO3a. Overexpression of FOXO3a not only significantly decreased the invasion, migration, and EMT of PC cell lines, but also reversed hypoxia-induced extranuclear localization. Finally, FOXO3a might act as a tumor suppressor in PC by inhibiting the ERK signaling pathway by inducing DUSP6 expression, and the ERK activator fisetin could effectively attenuate the inhibitory role of FOXO3a on ERK. Conclusions Taken together, our results identified that hypoxia-induced extranuclear localization of FOXO3a promoted cell migration and invasion of human PC by modulating the DUSP6/ERK pathway.
Collapse
Affiliation(s)
- Hua Zhao
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Chen
- The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Zhu
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianying Lou
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Wang Y, Wu H, Dong N, Su X, Duan M, Wei Y, Wei J, Liu G, Peng Q, Zhao Y. Sulforaphane induces S-phase arrest and apoptosis via p53-dependent manner in gastric cancer cells. Sci Rep 2021; 11:2504. [PMID: 33510228 PMCID: PMC7843980 DOI: 10.1038/s41598-021-81815-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 12/30/2020] [Indexed: 01/30/2023] Open
Abstract
Sulforaphane (SFN) extracted from broccoli sprout has previously been investigated for its potential properties in cancers, however, the underlying mechanisms of the anticancer activity of SFN remain not fully understood. In the present study, we investigate the effects of SFN on cell proliferation, cell cycle, cell apoptosis, and also the expression of several cell cycle and apoptosis-related genes by MTT assay, flow cytometry and western blot analysis in gastric cancer (GC) cells. The results showed that SFN could impair the colony-forming ability in BGC-823 and MGC-803 cell lines compared with the control. In addition, SFN significantly suppressed cell proliferation by arresting the cell cycle at the S phase and enhancing cell apoptosis in GC cells in a dose-dependent manner. Western blot results showed that SFN treatment significantly increased the expression levels of p53, p21 and decreased CDK2 expression, which directly regulated the S phase transition. The Bax and cleaved-caspase-3 genes involved in apoptosis executive functions were significantly increased in a dose-dependent manner in BGC-823 and MGC-803 cells. These results suggested that SFN-induced S phase cell cycle arrest and apoptosis through p53-dependent manner in GC cells, which suggested that SFN has a potential therapeutic application in the treatment and prevention of GC.
Collapse
Affiliation(s)
- Yuan Wang
- School of Public Health, Bengbu Medical College, Bengbu, 233030, People's Republic of China
| | - Huazhang Wu
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, 233030, People's Republic of China.
| | - Nannan Dong
- School of Public Health, Bengbu Medical College, Bengbu, 233030, People's Republic of China
| | - Xu Su
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, 233030, People's Republic of China
| | - Mingxiu Duan
- School of Public Health, Bengbu Medical College, Bengbu, 233030, People's Republic of China
| | - Yaqin Wei
- School of Clinical Medicine, Bengbu Medical College, Bengbu, 233030, People's Republic of China
| | - Jun Wei
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233030, Anhui, People's Republic of China
| | - Gaofeng Liu
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, 233030, People's Republic of China
| | - Qingjie Peng
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, 233030, People's Republic of China
| | - Yunli Zhao
- School of Public Health, Bengbu Medical College, Bengbu, 233030, People's Republic of China.
| |
Collapse
|
8
|
Lu H, Xie X, Wang K, Chen Q, Cai S, Liu D, Luo J, Kong J. Circular RNA hsa_circ_0096157 contributes to cisplatin resistance by proliferation, cell cycle progression, and suppressing apoptosis of non-small-cell lung carcinoma cells. Mol Cell Biochem 2020; 475:63-77. [PMID: 32767026 DOI: 10.1007/s11010-020-03860-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 07/26/2020] [Indexed: 12/11/2022]
Abstract
Circular RNAs (circRNAs) play a major role in cancer development and chemotherapy resistance. This study aimed to characterize circRNA profiles associated with Cisplatin (diamminedichloroplatinum, DDP) resistance of non-small-cell lung carcinoma (NSCLC) cells. The half-maximal inhibitory concentration (IC50) of A549 and A549/DDP cells was determined using CCK-8 assay. Further, circRNA profiles and differentially expressed genes in A549 and A549/DDP cells were characterized by deep sequencing and cell proliferation was measured using MTS assay. Cell cycle progression was analyzed using flow cytometry. Apoptosis experiment was performed by TUNEL assay and flow cytometry. Cell migration and invasion were assessed using the Transwell system. Finally, signalling protein levels related to cell cycle progression and migration were measured by western blot. CCK-8 assay showed that A549/DDP cells obtained strong DDP resistance. Further deep sequencing results showed that 689 circRNAs and 87 circRNAs were significantly upregulated and downregulated in A549/DDP cells compared to A549 cells, respectively. Moreover, the circRNA hsa_circ_0096157 with the highest expression level in A549/DPP cells was further analyzed for its potential mechanism of DDP resistance in A549/DDP. With or without DDP treatment, hsa_circ_0096157 knockdown inhibited proliferation, migration, invasion and cell cycle progression but promoted apoptosis of A549/DDP cells. In addition, the western blot results also showed that hsa_circ_0096157 knockdown in A549/DDP cells increased P21 and E-cadherin but decreased CDK4, Cyclin D1, Bcl-2, N-cadherin, and Vimentin protein expression levels, indicating that cell cycle progression might be inhibited by increased P21 protein level to inhibit the expression of CDK4-cyclin D1 complex and decreased Bcl-2 protein level; and migration and invasion were suppressed by the increased E-cadherin and decreased N-cadherin and Vimentin expression levels. In contrast, hsa_circ_0096157 overexpression in A549 cells caused the opposite cellular and molecular alterations. DDP resistance in NSCLC cells was associated with significant circRNA profile alterations. Moreover, increased hsa_circ_0096157 expression contributed to DDP resistance in NSCLC cells by promoting cell proliferation, migration, invasion and cell cycle progression and inhibiting apoptosis.
Collapse
Affiliation(s)
- Huasong Lu
- Pulmonary and Critical Care Medicine Ward, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, People's Republic of China
| | - Xun Xie
- Pulmonary and Critical Care Medicine Ward, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, People's Republic of China
| | - Ke Wang
- Pulmonary and Critical Care Medicine Ward, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, People's Republic of China
| | - Quanfang Chen
- Pulmonary and Critical Care Medicine Ward, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, People's Republic of China
| | - Shuangqi Cai
- Pulmonary and Critical Care Medicine Ward, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, People's Republic of China
| | - Dongmei Liu
- Pulmonary and Critical Care Medicine Ward, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, People's Republic of China
| | - Jin Luo
- Pulmonary and Critical Care Medicine Ward, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, People's Republic of China.
| | - Jinliang Kong
- Pulmonary and Critical Care Medicine Ward, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, People's Republic of China.
| |
Collapse
|
9
|
Ma X, Qiu Y, Zhu L, Zhao Y, Lin Y, Ma D, Qin Z, Sun C, Shen X, Li T, Han L. NOD1 inhibits proliferation and enhances response to chemotherapy via suppressing SRC-MAPK pathway in hepatocellular carcinoma. J Mol Med (Berl) 2019; 98:221-232. [PMID: 31872284 DOI: 10.1007/s00109-019-01868-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 11/25/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022]
Abstract
NOD1 is an innate immune sensor playing an important role in fighting against infection. However, its role in cancer is far from being clarified, and whether NOD1 plays a role in the progression of hepatocellular carcinoma (HCC) has never been reported. Here, we found that NOD1 expression was significantly decreased in hepatocellular carcinoma tissues and overexpression of NOD1 significantly inhibited tumorigenesis in vivo. In vitro experiments demonstrated that NOD1 inhibited proliferation of HCC cells by directly targeting proto-oncogene SRC and inducing cell cycle arrest at G1 phase. Further investigation showed that NOD1 exerted its antitumor effect by inhibiting SRC activation and further suppressing SRC/MAPK axis in hepatocellular carcinoma cells. Moreover, NOD1 dramatically enhanced the response of HCC cells to chemotherapy via inhibition of SRC-MAPK axis both in vitro and in vivo. Collectively, these data indicated that NOD1 suppressed proliferation and enhanced response to sorafenib or 5-FU treatment through inhibiting SRC-MAPK axis in hepatocellular carcinoma. KEY MESSAGES: NOD1 significantly inhibited tumorigenesis of HCC in cellular and animal models. NOD1 inhibited proliferation of HCC cells by inducing cell cycle arrest. NOD1 exerted its antitumor effect on HCC by directly interacting with SRC and inhibiting SRC-MAPK axis. NOD1 significantly enhanced the chemosensitivity of HCC cells to chemotherapeutic drugs.
Collapse
Affiliation(s)
- Xiaomin Ma
- Shandong Provincial Key Laboratory of Infection & Immunology, Department of Immunology, Shandong University School of Basic Medical Sciences, 44 Wenhua Xi Road, Jinan, 250012, China
| | - Yumin Qiu
- Shandong Provincial Key Laboratory of Infection & Immunology, Department of Immunology, Shandong University School of Basic Medical Sciences, 44 Wenhua Xi Road, Jinan, 250012, China
| | - Lihui Zhu
- Shandong Provincial Key Laboratory of Infection & Immunology, Department of Immunology, Shandong University School of Basic Medical Sciences, 44 Wenhua Xi Road, Jinan, 250012, China
| | - Yunxue Zhao
- Department of Pharmacology, Shandong University School of Basic Medical Sciences, Jinan, 250012, China
| | - Yueke Lin
- Shandong Provincial Key Laboratory of Infection & Immunology, Department of Immunology, Shandong University School of Basic Medical Sciences, 44 Wenhua Xi Road, Jinan, 250012, China
| | - Dapeng Ma
- Shandong Provincial Key Laboratory of Infection & Immunology, Department of Immunology, Shandong University School of Basic Medical Sciences, 44 Wenhua Xi Road, Jinan, 250012, China
| | - Zhenzhi Qin
- Shandong Provincial Key Laboratory of Infection & Immunology, Department of Immunology, Shandong University School of Basic Medical Sciences, 44 Wenhua Xi Road, Jinan, 250012, China
| | - Caiyu Sun
- Shandong Provincial Key Laboratory of Infection & Immunology, Department of Immunology, Shandong University School of Basic Medical Sciences, 44 Wenhua Xi Road, Jinan, 250012, China
| | - Xuecheng Shen
- Shandong Provincial Key Laboratory of Infection & Immunology, Department of Immunology, Shandong University School of Basic Medical Sciences, 44 Wenhua Xi Road, Jinan, 250012, China
| | - Tao Li
- Department of Gastroenterology, Provincial Hospital Affiliated with Shandong University, Jinan, 250021, China
| | - Lihui Han
- Shandong Provincial Key Laboratory of Infection & Immunology, Department of Immunology, Shandong University School of Basic Medical Sciences, 44 Wenhua Xi Road, Jinan, 250012, China.
| |
Collapse
|
10
|
FOXO3a-dependent up-regulation of Mxi1-0 promotes hypoxia-induced apoptosis in endothelial cells. Cell Signal 2018; 51:233-242. [DOI: 10.1016/j.cellsig.2018.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/13/2018] [Accepted: 08/13/2018] [Indexed: 02/07/2023]
|
11
|
Wu Y, Wang Y, Liu M, Nie M, Wang Y, Deng Y, Yao B, Gui T, Li X, Ma L, Guo C, Ma C, Ju J, Zhao Q. Suv4-20h1 promotes G1 to S phase transition by downregulating p21 WAF1/CIP1 expression in chronic myeloid leukemia K562 cells. Oncol Lett 2018; 15:6123-6130. [PMID: 29616094 PMCID: PMC5876467 DOI: 10.3892/ol.2018.8092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/04/2017] [Indexed: 12/17/2022] Open
Abstract
Methylation of histone H4 lysine 20 (H4K20) has been associated with cancer. However, the functions of the histone methyltransferases that trigger histone H4K20 methylation in cancers, including suppressor of variegation 4–20 homolog 1 (Suv4-20h1), remain elusive. In the present study, it was demonstrated that the knockdown of the histone H4K20 methyltransferase Suv4-20h1 resulted in growth inhibition in chronic myeloid leukemia K562 cells. Disruption of Suv4-20h1 expression induced G1 arrest in the cell cycle and increased expression levels of cyclin dependent kinase inhibitor 1A (p21WAF1/CIP1), an essential cell cycle protein involved in checkpoint regulation. Chromatin immunoprecipitation analysis demonstrated that Suv4-20h1 directly binds to the promoter of the p21 gene and that methylation of histone H4K20 correlates with repression of p21 expression. Thus, these data suggest that Suv4-20h1 is important for the regulation of the cell cycle in K562 cells and may be a potential therapeutic target for leukemia.
Collapse
Affiliation(s)
- Yupeng Wu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, P.R. China.,Anhui Research Institute for Family Planning, Anhui Research Center for Population and Birth Control, Hefei, Anhui 230031, P.R. China
| | - Yadong Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Ming Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Min Nie
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Ying Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Yexuan Deng
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Bing Yao
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Tao Gui
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Xinyu Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Lingling Ma
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Chan Guo
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Chi Ma
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Junyi Ju
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Quan Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
12
|
Tanaka T, Goto K, Iino M. Sec8 modulates TGF-β induced EMT by controlling N-cadherin via regulation of Smad3/4. Cell Signal 2017; 29:115-126. [DOI: 10.1016/j.cellsig.2016.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/13/2016] [Accepted: 10/16/2016] [Indexed: 10/20/2022]
|
13
|
Zhao Y, Hou J, Mi P, Mao L, Xu L, Zhang Y, Xiao L, Cao H, Zhang W, Zhang B, Song G, Hu T, Zhan YY. Exo70 is transcriptionally up-regulated by hepatic nuclear factor 4α and contributes to cell cycle control in hepatoma cells. Oncotarget 2016; 7:9150-62. [PMID: 26848864 PMCID: PMC4891032 DOI: 10.18632/oncotarget.7133] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/19/2016] [Indexed: 11/25/2022] Open
Abstract
Exo70, a member of the exocyst complex, is involved in cell exocytosis, migration, invasion and autophagy. However, the expression regulation and function of Exo70 in hepatocellular carcinoma are still poorly understood. In this study, we found Exo70 expression in human hepatoma cells was greatly reduced after knocking down hepatic nuclear factor 4α (HNF4α), the most important and abundant transcription factor in liver. This regulation occurred at the transcriptional level but not post-translational level. HNF4α transactivated Exo70 promoter through directly binding to the HNF4α-response element in this promoter. Cell cycle analysis further revealed that down-regulation of HNF4α and Exo70 was essential to berberine-stimulated G2/M cell cycle arrest in hepatoma cells. Moreover, knocking down either Exo70 or HNF4α induced G2/M phase arrest of hepatoma cells. Exo70 acted downstream of HNF4α to stimulate G2/M transition via increasing Cdc2 expression. Together, our results identify Exo70 as a novel transcriptional target of HNF4α to promote cell cycle progression in hepatoma, thus provide a basis for the development of therapeutic strategies for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yujie Zhao
- Cancer Research Center, Xiamen University Medical College, Xiamen 361102, Fujian Province, PR China
| | - Jihuan Hou
- Cancer Research Center, Xiamen University Medical College, Xiamen 361102, Fujian Province, PR China
| | - Panying Mi
- Cancer Research Center, Xiamen University Medical College, Xiamen 361102, Fujian Province, PR China
| | - Liyuan Mao
- Cancer Research Center, Xiamen University Medical College, Xiamen 361102, Fujian Province, PR China
| | - Liang Xu
- Cancer Research Center, Xiamen University Medical College, Xiamen 361102, Fujian Province, PR China
| | - Youyu Zhang
- Cancer Research Center, Xiamen University Medical College, Xiamen 361102, Fujian Province, PR China
| | - Li Xiao
- Cancer Research Center, Xiamen University Medical College, Xiamen 361102, Fujian Province, PR China.,Department of Oncology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen 361004, Fujian Province, PR China
| | - Hanwei Cao
- Cancer Research Center, Xiamen University Medical College, Xiamen 361102, Fujian Province, PR China
| | - Wenqing Zhang
- Cancer Research Center, Xiamen University Medical College, Xiamen 361102, Fujian Province, PR China
| | - Bing Zhang
- Department of Basic Medicine, Xiamen University Medical College, Xiamen 361102, Fujian Province, PR China
| | - Gang Song
- Cancer Research Center, Xiamen University Medical College, Xiamen 361102, Fujian Province, PR China
| | - Tianhui Hu
- Cancer Research Center, Xiamen University Medical College, Xiamen 361102, Fujian Province, PR China
| | - Yan-yan Zhan
- Cancer Research Center, Xiamen University Medical College, Xiamen 361102, Fujian Province, PR China
| |
Collapse
|
14
|
Tanaka T, Goto K, Iino M. Diverse Functions and Signal Transduction of the Exocyst Complex in Tumor Cells. J Cell Physiol 2016; 232:939-957. [DOI: 10.1002/jcp.25619] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/23/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Toshiaki Tanaka
- Department of Anatomy and Cell Biology; School of Medicine; Yamagata University; Yamagata Japan
- Department of Dentistry, Oral and Maxillofacial Surgery; Plastic and Reconstructive Surgery; School of Medicine; Yamagata University; Yamagata Japan
| | - Kaoru Goto
- Department of Anatomy and Cell Biology; School of Medicine; Yamagata University; Yamagata Japan
| | - Mitsuyoshi Iino
- Department of Dentistry, Oral and Maxillofacial Surgery; Plastic and Reconstructive Surgery; School of Medicine; Yamagata University; Yamagata Japan
| |
Collapse
|
15
|
Shao H, Mohamed EM, Xu GG, Waters M, Jing K, Ma Y, Zhang Y, Spiegel S, Idowu MO, Fang X. Carnitine palmitoyltransferase 1A functions to repress FoxO transcription factors to allow cell cycle progression in ovarian cancer. Oncotarget 2016; 7:3832-46. [PMID: 26716645 PMCID: PMC4826173 DOI: 10.18632/oncotarget.6757] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/26/2015] [Indexed: 01/19/2023] Open
Abstract
Cancer cells rely on hyperactive de novo lipid synthesis for maintaining malignancy. Recent studies suggest involvement in cancer of fatty acid oxidation, a process functionally opposite to lipogenesis. A mechanistic link from lipid catabolism to oncogenic processes is yet to be established. Carnitine palmitoyltransferase 1 (CPT1) is a rate-limiting enzyme of fatty acid β-oxidation (FAO) that catalyzes the transfer of long-chain acyl group of the acyl-CoA ester to carnitine, thereby shuttling fatty acids into the mitochondrial matrix for β-oxidation. In the present study, we demonstrated that CPT1A was highly expressed in most ovarian cancer cell lines and primary ovarian serous carcinomas. Overexpression of CPT1A correlated with a poor overall survival of ovarian cancer patients. Inactivation of CPT1A decreased cellular ATP levels and induced cell cycle arrest at G0/G1, suggesting that ovarian cancer cells depend on or are addicted to CPT1A-mediated FAO for cell cycle progression. CPT1A deficiency also suppressed anchorage-independent growth and formation of xenografts from ovarian cancer cell lines. The cyclin-dependent kinase inhibitor p21WAF1 (p21) was identified as most consistently and robustly induced cell cycle regulator upon inactivation of CPT1A. Furthermore, p21 was transcriptionally upregulated by the FoxO transcription factors, which were in turn phosphorylated and activated by AMP-activated protein kinase and the mitogen-activated protein kinases JNK and p38. Our results established the oncogenic relevance of CPT1A and a mechanistic link from lipid catabolism to cell cycle regulation, suggesting that CPT1A could be a prognostic biomarker and rational target for therapeutic intervention of cancer.
Collapse
Affiliation(s)
- Huanjie Shao
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA.,Institute of Biological Sciences, Shaanxi Normal University, Xi'an, China
| | - Esraa M Mohamed
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Guoyan G Xu
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Michael Waters
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Kai Jing
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Yibao Ma
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Yan Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Sarah Spiegel
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Michael O Idowu
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Xianjun Fang
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
16
|
Tanaka T, Iino M. Nuclear Translocation of p65 is Controlled by Sec6 via the Degradation of IκBα. J Cell Physiol 2016; 231:719-30. [PMID: 26247921 DOI: 10.1002/jcp.25122] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/04/2015] [Indexed: 12/18/2022]
Abstract
Nuclear factor-κB (NF-κB) is an inducible transcription factor that mediates immune and inflammatory responses. NF-κB pathways are also involved in cell adhesion, differentiation, proliferation, autophagy, senescence, and protection against apoptosis. The deregulation of NF-κB activity is found in a number of disease states, including cancer, arthritis, chronic inflammation, asthma, neurodegenerative diseases, and heart disease. The 90 kDa ribosomal S6 kinase (p90RSK) family, which is serine/threonine kinases, is phosphorylated by extracellular signal-regulated kinase1/2 (ERK1/2) and is related to NF-κB pathways. Our previous studies revealed that Sec6, a component of the exocyst complex, plays specific roles in cell-cell adhesion and cell cycle arrest. However, the mechanism by which Sec6 regulates the NF-κB signaling pathway is unknown. We demonstrated that Sec6 knockdown inhibited the degradation of IκBα and delayed the nucleus-cytoplasm translocation of p65 in HeLa cells transfected with Sec6 siRNAs after treatment with tumor necrosis factor alpha (TNF-α). Furthermore, the binding of p65 and cAMP response element binding protein (CREB) binding protein (CBP) or p300 decreased and NF-κB related genes which were inhibitors of NF-κB alpha (IκBα), A20, B cell lymphoma protein 2 (Bcl-2), and monocyte chemoattractant protein-1 (MCP-1) were low in cells transfected with Sec6 siRNAs in response to TNF-α stimulation. Sec6 knockdown decreased the expression of p90RSKs and the phosphorylation of ERK or p90RSK1 at Ser380 or IκBα at Ser32. The present study suggests that Sec6 regulates NF-κB transcriptional activity via the control of the phosphorylation of IκBα, p90RSK1, and ERK.
Collapse
Affiliation(s)
- Toshiaki Tanaka
- Department of Anatomy and Cell Biology, School of Medicine, Yamagata University, 2-2-2 Iidanishi, Yamagata, Japan.,Department of Dentistry, Oral and Maxillofacial Surgery, Plastic and Reconstructive Surgery, School of Medicine, Yamagata University, 2-2-2 Iidanishi, Yamagata, Japan
| | - Mitsuyoshi Iino
- Department of Dentistry, Oral and Maxillofacial Surgery, Plastic and Reconstructive Surgery, School of Medicine, Yamagata University, 2-2-2 Iidanishi, Yamagata, Japan
| |
Collapse
|
17
|
Sec6/8 regulates Bcl-2 and Mcl-1, but not Bcl-xl, in malignant peripheral nerve sheath tumor cells. Apoptosis 2016; 21:594-608. [DOI: 10.1007/s10495-016-1230-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Abstract
Globally, greater than 30 million individuals are afflicted with disorders of the nervous system accompanied by tens of thousands of new cases annually with limited, if any, treatment options. Erythropoietin (EPO) offers an exciting and novel therapeutic strategy to address both acute and chronic neurodegenerative disorders. EPO governs a number of critical protective and regenerative mechanisms that can impact apoptotic and autophagic programmed cell death pathways through protein kinase B (Akt), sirtuins, mammalian forkhead transcription factors, and wingless signaling. Translation of the cytoprotective pathways of EPO into clinically effective treatments for some neurodegenerative disorders has been promising, but additional work is necessary. In particular, development of new treatments with erythropoiesis-stimulating agents such as EPO brings several important challenges that involve detrimental vascular outcomes and tumorigenesis. Future work that can effectively and safely harness the complexity of the signaling pathways of EPO will be vital for the fruitful treatment of disorders of the nervous system.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, Newark, New Jersey 07101
| |
Collapse
|
19
|
Zhou R, Lu Z, Liu K, Guo J, Liu J, Zhou Y, Yang J, Mi M, Xu H. Platycodin D induces tumor growth arrest by activating FOXO3a expression in prostate cancer in vitro and in vivo. Curr Cancer Drug Targets 2015; 14:860-71. [PMID: 25431082 PMCID: PMC4997962 DOI: 10.2174/1568009614666141128104642] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 11/14/2014] [Accepted: 11/27/2014] [Indexed: 12/18/2022]
Abstract
Platycodin D (PD), a major saponin derived from Platycodin grandiflorum, exerted cytotoxicity against prostate cancer cell lines (PC3, DU145 and LNCaP cells) with IC50 values in the range of 11.17 to 26.13μmol/L, whereas RWPE-1cells (a non-malignant human prostate epithelial cell line) were not significantly affected. A further study in these cell lines showed that PD could potently affect cell proliferation (indicated by the bromodeoxyuridine assay), induce cell apoptosis (determined by Annexin V-FITC flow cytometry) and cause cell cycle arrest (indicated by PI staining). After being treated with PD for 48 hours, DU145 and LNCaP cells were arrested in the G0 /G1 phase, and PC3 cells were arrested in the G2/M phase. A Western blotting analysis indicated that PD increased the expression of the FOXO3a transcription factor, decreased the expression of p-FOXO3a and MDM2 and increased the expression of FOXO-responsive genes, p21 and p27. MDM2 silencing (transiently by siRNA-MDM2) increased the PD-induced FOXO3a protein expression, while MDM2 overexpression (in cells transiently transfected with a pcDNA3-MDM2 plasmid) decreased the PD-induced expression of the FOXO3a protein. Moreover, PD dose-dependently inhibited the growth of PC3 xenograft tumors in BALB/c nude mice. A Western blotting analysis of the excised xenograft tumors indicated that similar changes in protein expression also occurred in vivo. These results suggest that PD exhibits significant activity against prostate cancer in vitro and in vivo. The FOXO3a transcription factor appears to be involved in the activity of PD. Together, all of these findings provide a basis for the future development of this agent for human prostate cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hongxia Xu
- Department of Nutrition, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China.
| |
Collapse
|
20
|
Maiese K. FoxO proteins in the nervous system. Anal Cell Pathol (Amst) 2015; 2015:569392. [PMID: 26171319 PMCID: PMC4478359 DOI: 10.1155/2015/569392] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 05/31/2015] [Indexed: 02/07/2023] Open
Abstract
Acute as well as chronic disorders of the nervous system lead to significant morbidity and mortality for millions of individuals globally. Given the ability to govern stem cell proliferation and differentiated cell survival, mammalian forkhead transcription factors of the forkhead box class O (FoxO) are increasingly being identified as potential targets for disorders of the nervous system, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and auditory neuronal disease. FoxO proteins are present throughout the body, but they are selectively expressed in the nervous system and have diverse biological functions. The forkhead O class transcription factors interface with an array of signal transduction pathways that include protein kinase B (Akt), serum- and glucocorticoid-inducible protein kinase (SgK), IκB kinase (IKK), silent mating type information regulation 2 homolog 1 (S. cerevisiae) (SIRT1), growth factors, and Wnt signaling that can determine the activity and integrity of FoxO proteins. Ultimately, there exists a complex interplay between FoxO proteins and their signal transduction pathways that can significantly impact programmed cell death pathways of apoptosis and autophagy as well as the development of clinical strategies for the treatment of neurodegenerative disorders.
Collapse
|
21
|
Fu Y, Kadioglu O, Wiench B, Wei Z, Gao C, Luo M, Gu C, Zu Y, Efferth T. Cell cycle arrest and induction of apoptosis by cajanin stilbene acid from Cajanus cajan in breast cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:462-468. [PMID: 25925968 DOI: 10.1016/j.phymed.2015.02.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 02/26/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND The low abundant cajanin stilbene acid (CSA) from Pigeon Pea (Cajanus cajan) has been shown to kill estrogen receptor α positive cancer cells in vitro and in vivo. Downstream effects such as cell cycle and apoptosis-related mechanisms have not been analyzed yet. MATERIAL AND METHODS We analyzed the activity of CSA by means of flow cytometry (cell cycle distribution, mitochondrial membrane potential, MMP), confocal laser scanning microscopy (MMP), DNA fragmentation assay (apoptosis), Western blotting (Bax and Bcl-2 expression, caspase-3 activation) as well as mRNA microarray hybridization and Ingenuity pathway analysis. RESULTS CSA induced G2/M arrest and apoptosis in a concentration-dependent manner from 8.88 to 14.79 µM. The MMP broke down, Bax was upregulated, Bcl-2 downregulated and caspase-3 activated. Microarray profiling revealed that CSA affected BRCA-related DNA damage response and cell cycle-regulated chromosomal replication pathways. CONCLUSION CSA inhibited breast cancer cells by DNA damage and cell cycle-related signaling pathways leading to cell cycle arrest and apoptosis.
Collapse
Affiliation(s)
- Yujie Fu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Onat Kadioglu
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Benjamin Wiench
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Zuofu Wei
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Chang Gao
- Peking University People's Hospital, Beijing 100044, China
| | - Meng Luo
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Chengbo Gu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Yuangang Zu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
22
|
Maiese K. FoxO Transcription Factors and Regenerative Pathways in Diabetes Mellitus. Curr Neurovasc Res 2015; 12:404-13. [PMID: 26256004 PMCID: PMC4567483 DOI: 10.2174/1567202612666150807112524] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 07/24/2015] [Accepted: 07/27/2015] [Indexed: 02/07/2023]
Abstract
Mammalian forkhead transcription factors of the O class (FoxO) are exciting targets under consideration for the development of new clinical entities to treat metabolic disorders and diabetes mellitus (DM). DM, a disorder that currently affects greater than 350 million individuals globally, can become a devastating disease that leads to cellular injury through oxidative stress pathways and affects multiple systems of the body. FoxO proteins can regulate insulin signaling, gluconeogenesis, insulin resistance, immune cell migration, and cell senescence. FoxO proteins also control cell fate through oxidative stress and pathways of autophagy and apoptosis that either lead to tissue regeneration or cell demise. Furthermore, FoxO signaling can be dependent upon signal transduction pathways that include silent mating type information regulation 2 homolog 1 (S. cerevisiae) (SIRT1), Wnt, and Wnt1 inducible signaling pathway protein 1 (WISP1). Cellular metabolic pathways driven by FoxO proteins are complex, can lead to variable clinical outcomes, and require in-depth analysis of the epigenetic and post-translation protein modifications that drive FoxO protein activation and degradation.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, Newark, New Jersey 07101, USA.
| |
Collapse
|
23
|
Tanaka T, Iino M, Goto K. Knockdown of Sec8 enhances the binding affinity of c-Jun N-terminal kinase (JNK)-interacting protein 4 for mitogen-activated protein kinase kinase 4 (MKK4) and suppresses the phosphorylation of MKK4, p38, and JNK, thereby inhibiting apoptosis. FEBS J 2014; 281:5237-50. [PMID: 25244576 DOI: 10.1111/febs.13063] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 09/15/2014] [Accepted: 09/18/2014] [Indexed: 01/19/2023]
Abstract
The exocyst complex, also called the Sec6/8 complex, is important for targeting exocytic vesicles to specific docking sites on the plasma membrane in yeast and mammalian cells. In addition to these original findings, recent results of studies suggest that Sec8 is also involved in oncogenesis, although the functional implications of Sec8 in cancer cells are not well understood. c-Jun N-terminal kinase-interacting protein 4 (JIP4) is a scaffold protein that plays a crucial role in the regulation of mitogen-activated protein kinase (MAPK) signaling cascades. The present study examined how Sec8 is involved in JIP4-mediated MAPK signaling under apoptotic conditions. It was found that Sec8 binds to and regulates JIP4, and that knockdown of Sec8 enhances the binding of JIP4 to MAPK kinase 4, thereby decreasing the phosphorylation of MAPK kinase 4, JNK, and p38. These results raise the possibility that Sec8 serves as an important regulator of MAPK signaling cascades.
Collapse
Affiliation(s)
- Toshiaki Tanaka
- Department of Anatomy and Cell Biology, Yamagata University School of Medicine, Japan; Department of Dentistry, Oral and Maxillofacial Surgery, Plastic and Reconstructive Surgery, Yamagata University School of Medicine, Japan
| | | | | |
Collapse
|
24
|
Tanaka T, Iino M. Sec6 regulated cytoplasmic translocation and degradation of p27 via interactions with Jab1 and Siah1. Cell Signal 2014; 26:2071-85. [DOI: 10.1016/j.cellsig.2014.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/06/2014] [Accepted: 06/09/2014] [Indexed: 11/25/2022]
|