1
|
Prokaeva T, Jayaraman S, Klimtchuk E, Burke N, Spencer B, Nedelkov D, Chen H, Dasari S, McPhail ED, Pereira L, Payne MC, Wong S, Burks EJ, Sanchorawala V, Gursky O. An unusual phenotype of hereditary AApoAI amyloidosis caused by a novel Asp20Tyr substitution is linked to pH-dependent aggregation of apolipoprotein A-I. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167820. [PMID: 40164396 PMCID: PMC11998993 DOI: 10.1016/j.bbadis.2025.167820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Apolipoprotein A-I (apoA-I) plays beneficial roles as the major structural and functional protein on plasma high-density lipoproteins (HDL). However, APOA1 gene mutations can cause protein misfolding and pathologic amyloid deposition in various organs in human hereditary AApoAI amyloidosis, a potentially lethal systemic disease. We report esophageal and duodenal AApoAI amyloidosis in a 56-year-old patient with Barrett's esophagus, a condition involving chronic acid reflux. Amyloid deposits contained full-length apoA-I featuring a novel D20Y mutation identified by gene sequencing and protein mass spectrometry. Genetic analysis of asymptomatic family members revealed autosomal dominant inheritance. Fibril formation by the full-length variant apoA-I rather than its fragments and the location of the mutation in a conserved amyloid-prone N-terminal segment were highly unusual for hereditary AApoA-I amyloidosis. Structural and stability studies of the recombinant D20Y and wild-type apoA-I showed small but significant mutation-induced structural perturbations in the native lipid-free protein at pH 7.4. Major destabilization and aggregation of the variant protein were observed at pH 4.0. We propose that acidic conditions in Barrett's esophagus promoted protein misfolding and amyloid formation by the D20Y variant. These findings expand our understanding of the clinical features and molecular basis of AApoAI amyloidosis and suggest clinical strategies.
Collapse
Affiliation(s)
- Tatiana Prokaeva
- Amyloidosis Center, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA.
| | - Shobini Jayaraman
- Department of Pharmacology, Physiology & Biophysics, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Elena Klimtchuk
- Amyloidosis Center, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Natasha Burke
- Amyloidosis Center, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Brian Spencer
- Amyloidosis Center, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | | | - Hui Chen
- Department of Pathology and Laboratory Medicine, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Surendra Dasari
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Ellen D McPhail
- Department of Laboratory of Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Lucas Pereira
- Department of Hematology & Medical Oncology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Michael C Payne
- Division of Gastroenterology, Department of Internal Medicine, Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, USA
| | - Sherry Wong
- Amyloidosis Center, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Eric J Burks
- Department of Pathology and Laboratory Medicine, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Vaishali Sanchorawala
- Amyloidosis Center, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Olga Gursky
- Department of Pharmacology, Physiology & Biophysics, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA.
| |
Collapse
|
2
|
Murakami T, Owaku K, Kobayashi N, Itoh Y, Hisada M, Craig LE. Localised apolipoprotein A-I amyloidosis arising in a fibroadnexal hamartoma in a dog. Vet Dermatol 2025; 36:222-226. [PMID: 39648810 DOI: 10.1111/vde.13316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/25/2024] [Accepted: 11/27/2024] [Indexed: 12/10/2024]
Abstract
Canine apolipoprotein A-I (ApoA-I) amyloidosis has only been reported as an age-related pulmonary vascular condition. In this report, the authors identified cutaneous ApoA-I amyloidosis within a fibroadnexal hamartoma in a dog. Based on proteomic analysis using mass spectrometry, the mechanism of ApoA-I amyloidogenesis is discussed.
Collapse
Affiliation(s)
- Tomoaki Murakami
- Laboratory of Veterinary Toxicology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Kenta Owaku
- Laboratory of Veterinary Toxicology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Natsumi Kobayashi
- Laboratory of Veterinary Toxicology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Yoshiyuki Itoh
- Smart-Core-Facility Promotion Organization, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Miki Hisada
- Smart-Core-Facility Promotion Organization, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Linden E Craig
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, College of Veterinary Medicine, Knoxville, Tennessee, USA
| |
Collapse
|
3
|
Cattaneo ER, Gisonno RA, Abba MC, Santana M, Rosú SA, Nucifora E, Aguirre MA, Giordani MC, Tricerri MA, Ramella NA. Hereditary Amyloidosis: Insights Into a Fibrinogen A Variant Protein. Proteins 2024; 92:1366-1374. [PMID: 39031927 DOI: 10.1002/prot.26732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/19/2024] [Accepted: 07/04/2024] [Indexed: 07/22/2024]
Abstract
Amyloidosis are a group of diseases in which soluble proteins aggregate and deposit in fibrillar conformation extracellularly in tissues. The effectiveness of therapeutic strategies depends on the specific protein involved, being crucial to accurately determine its nature. Moreover, following the diagnosis, the search for the mutation within relatives allows the clinical advice. Here we report the precise diagnosis and explored the possible reasons of the structural pathogenicity for a renal amyloidosis related to a fibrinogen Aα-chain variant. Whole-exome sequencing and GATK calling pipeline were leveraged to characterize the protein variant present in a patient with kidney failure. Bioinformatics strategies were applied to suggest potential explanations of the variants aggregation. Our pipeline allowed the identification of a single-point variant of fibrinogen Aα-chain, which opened the possibility of curative transplantation. In silico structural analysis suggested that the pathogenicity of the variant may be attributed to a heightened susceptibility to yield a peptide prone to deposit as an oligomer with a β-sheet structure. Exploiting the comprehensive coverage of whole-genome sequencing, we managed to fill a vacant stage in the diagnosis of hereditary amyloidosis and to stimulate the advancement in biomedicine.
Collapse
Affiliation(s)
- Elizabeth R Cattaneo
- Facultad de Ciencias Médicas, Departamento de Medicina Interna, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET, Universidad Nacional de La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Médicas, Departamento de Medicina Interna, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Romina A Gisonno
- Departamento de Medicina Interna, Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Martín C Abba
- Facultad de Ciencias Médicas, Departamento de Medicina Interna, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET, Universidad Nacional de La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Médicas, Departamento de Medicina Interna, Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Marianela Santana
- Facultad de Ciencias Médicas, Departamento de Medicina Interna, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Silvana A Rosú
- Facultad de Ciencias Médicas, Departamento de Medicina Interna, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET, Universidad Nacional de La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Médicas, Departamento de Medicina Interna, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Elsa Nucifora
- Departamento de Medicina Interna, Hospital Italiano de Buenos Aires (HIBA), Calle Perón, Argentina
| | - María A Aguirre
- Departamento de Medicina Interna, Hospital Italiano de Buenos Aires (HIBA), Calle Perón, Argentina
| | - María C Giordani
- Departamento de Medicina Interna, Hospital Italiano de Buenos Aires (HIBA), Calle Perón, Argentina
| | - M Alejandra Tricerri
- Facultad de Ciencias Médicas, Departamento de Medicina Interna, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET, Universidad Nacional de La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Médicas, Departamento de Medicina Interna, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Nahuel A Ramella
- Facultad de Ciencias Médicas, Departamento de Medicina Interna, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET, Universidad Nacional de La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Médicas, Departamento de Medicina Interna, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| |
Collapse
|
4
|
Namba N, Ohgita T, Tamagaki-Asahina H, Nishitsuji K, Shimanouchi T, Sato T, Saito H. Amyloidogenic 60-71 deletion/ValThr insertion mutation of apolipoprotein A-I generates a new aggregation-prone segment that promotes nucleation through entropic effects. Sci Rep 2023; 13:18514. [PMID: 37898709 PMCID: PMC10613298 DOI: 10.1038/s41598-023-45803-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/24/2023] [Indexed: 10/30/2023] Open
Abstract
The N-terminal fragment of apolipoprotein A-I (apoA-I), comprising residues 1-83, contains three segments prone to aggregation: residues 14-22, 53-58, and 67-72. We previously demonstrated that residues 14-22 are critical in apoA-I fibril formation while residues 53-58 entropically drove the nucleation process. Here, we investigated the impact of amyloidogenic mutations (Δ60-71/VT, Δ70-72, and F71Y) located around residues 67-72 on fibril formation by the apoA-I 1-83 fragment. Thioflavin T fluorescence assay demonstrated that the Δ60-71/VT mutation significantly enhances both nucleation and fibril elongation rates, whereas the Δ70-72 and F71Y mutations had minimal effects. Circular dichroism measurements and microscopic observations revealed that all variant fragments formed straight fibrils, transitioning from random coils to β-sheet structures. Kinetic analysis demonstrated that primary nucleation is the dominant step in fibril formation, with fibril elongation reaching saturation at high protein concentrations. Thermodynamically, both nucleation and fibril elongation were enthalpically and entropically unfavorable in all apoA-I 1-83 variants, in which the entropic barrier of nucleation was almost eliminated for the Δ60-71/VT variant. Taken together, our results suggest the presence of new aggregation-prone segment in the Δ60-71/VT variant that promotes nucleation through entropic effects.
Collapse
Affiliation(s)
- Norihiro Namba
- Laboratory of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Takashi Ohgita
- Laboratory of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Hiroko Tamagaki-Asahina
- Division of Liberal Arts Sciences, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Kazuchika Nishitsuji
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Toshinori Shimanouchi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Takeshi Sato
- Division of Liberal Arts Sciences, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Hiroyuki Saito
- Laboratory of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan.
| |
Collapse
|
5
|
Del Giudice R, Lindvall M, Nilsson O, Monti DM, Lagerstedt JO. The Apparent Organ-Specificity of Amyloidogenic ApoA-I Variants Is Linked to Tissue-Specific Extracellular Matrix Components. Int J Mol Sci 2022; 24:318. [PMID: 36613763 PMCID: PMC9820410 DOI: 10.3390/ijms24010318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Apolipoprotein A-I (ApoA-I) amyloidosis is a rare protein misfolding disease where fibrils of the N-terminal domain of the protein accumulate in several organs, leading to their failure. Although ApoA-I amyloidosis is systemic, the different amyloidogenic variants show a preferential tissue accumulation that appears to correlate with the location of the mutation in the protein sequence and with the local extracellular microenvironment. However, the factors leading to cell/tissues damage, as well as the mechanisms behind the observed organ specificity are mostly unknown. Therefore, we investigated the impact of ApoA-I variants on cell physiology and the mechanisms driving the observed tissue specificity. We focused on four ApoA-I amyloidogenic variants and analyzed their cytotoxicity as well as their ability to alter redox homeostasis in cell lines from different tissues (liver, kidney, heart, skin). Moreover, variant-specific interactions with extracellular matrix (ECM) components were measured by synchrotron radiation circular dichroism and enzyme-linked immunosorbent assay. Data indicated that ApoA-I variants exerted a cytotoxic effect in a time and cell-type-specific manner that seems to be due to protein accumulation in lysosomes. Interestingly, the ApoA-I variants exhibited specific preferential binding to the ECM components, reflecting their tissue accumulation pattern in vivo. While the binding did not to appear to affect protein conformations in solution, extended incubation of the amyloidogenic variants in the presence of different ECM components resulted in different aggregation propensity and aggregation patterns.
Collapse
Affiliation(s)
- Rita Del Giudice
- Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Mikaela Lindvall
- Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Oktawia Nilsson
- Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Daria Maria Monti
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Sant’Angelo, 80126 Napoli, Italy
- Istituto Nazionale di Biostrutture e Biosistemi (INBB), 00136 Rome, Italy
| | - Jens O. Lagerstedt
- Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, 20506 Malmö, Sweden
| |
Collapse
|
6
|
Bhale AS, Venkataraman K. Leveraging knowledge of HDLs major protein ApoA1: Structure, function, mutations, and potential therapeutics. Biomed Pharmacother 2022; 154:113634. [PMID: 36063649 DOI: 10.1016/j.biopha.2022.113634] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/02/2022] Open
Abstract
Apolipoprotein A1 (ApoA1) is a member of the Apolipoprotein family of proteins. It's a vital protein that helps in the production of high-density lipoprotein (HDL) particles, which are crucial for reverse cholesterol transport (RCT). It also has anti-inflammatory, anti-atherogenic, anti-apoptotic, and anti-thrombotic properties. These functions interact to give HDL particles their cardioprotective characteristics. ApoA1 has recently been investigated for its potential role in atherosclerosis, diabetes, neurological diseases, cancer, and certain infectious diseases. Since ApoA1's discovery, numerous mutations have been reported that affect its structural integrity and alter its function. Hence these insights have led to the development of clinically relevant peptides and synthetic reconstituted HDL (rHDL) that mimics the function of ApoA1. As a result, this review has aimed to provide an organized explanation of our understanding of the ApoA1 protein structure and its role in various essential pathways. Furthermore, we have comprehensively reviewed the important ApoA1 mutations (24 mutations) that are reported to be involved in various diseases. Finally, we've focused on the therapeutic potentials of some of the beneficial mutations, small peptides, and synthetic rHDL that are currently being researched or developed, since these will aid in the development of novel therapeutics in the future.
Collapse
Affiliation(s)
- Aishwarya Sudam Bhale
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Krishnan Venkataraman
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
7
|
On the Aggregation of Apolipoprotein A-I. Int J Mol Sci 2022; 23:ijms23158780. [PMID: 35955915 PMCID: PMC9369196 DOI: 10.3390/ijms23158780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
In vivo, apolipoprotein A-I (ApoA-I) is commonly found together with lipids in so-called lipoprotein particles. The protein has also been associated with several diseases—such as atherosclerosis and amyloidosis—where insoluble aggregates containing ApoA-I are deposited in various organs or arteries. The deposited ApoA-I has been found in the form of amyloid fibrils, suggesting that amyloid formation may be involved in the development of these diseases. In the present study we investigated ApoA-I aggregation into amyloid fibrils and other aggregate morphologies. We studied the aggregation of wildtype ApoA-I as well as a disease-associated mutant, ApoA-I K107Δ, under different solution conditions. The aggregation was followed using thioflavin T fluorescence intensity. For selected samples the aggregates formed were characterized in terms of size, secondary structure content, and morphology using circular dichroism spectroscopy, dynamic light scattering, atomic force microscopy and cryo transmission electron microscopy. We find that ApoA-I may form globular protein-only condensates, in which the α-helical conformation of the protein is retained. The protein in its unmodified form appears resistant to amyloid formation; however, the conversion into amyloid fibrils rich in β-sheet is facilitated by oxidation or mutation. In particular, the K107Δ mutant shows higher amyloid formation propensity, and the end state appears to be a co-existence of β-sheet rich amyloid fibrils and α-helix-rich condensates.
Collapse
|
8
|
Lewkowicz E, Gursky O. Dynamic protein structures in normal function and pathologic misfolding in systemic amyloidosis. Biophys Chem 2022; 280:106699. [PMID: 34773861 PMCID: PMC9416430 DOI: 10.1016/j.bpc.2021.106699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 02/08/2023]
Abstract
Dynamic and disordered regions in native proteins are often critical for their function, particularly in ligand binding and signaling. In certain proteins, however, such regions can contribute to misfolding and pathologic deposition as amyloid fibrils in vivo. For example, dynamic and disordered regions can promote amyloid formation by destabilizing the native structure, by directly triggering the aggregation, by promoting protein condensation, or by acting as sites of early proteolytic cleavage that favor a release of aggregation-prone fragments or facilitate fibril maturation. At the same time, enhanced dynamics in the native protein state accelerates proteolytic degradation that counteracts amyloid accumulation in vivo. Therefore, the functional need for dynamic protein regions must be balanced against their inherently labile nature. How exactly this balance is achieved and how is it shifted upon amyloidogenic mutations or post-translational modifications? To illustrate possible scenarios, here we review the beneficial and pathologic roles of dynamic and disordered regions in the native states of three families of human plasma proteins that form amyloid precursors in systemic amyloidoses: immunoglobulin light chain, apolipoproteins, and serum amyloid A. Analysis of structure, stability and local dynamics of these diverse proteins and their amyloidogenic variants exemplifies how disordered/dynamic regions can provide a functional advantage as well as an Achilles heel in pathologic amyloid formation.
Collapse
|
9
|
Ohgita T, Furutani Y, Nakano M, Hattori M, Suzuki A, Nakagawa M, Naniwa S, Morita I, Oyama H, Nishitsuji K, Kobayashi N, Saito H. Novel conformation‐selective monoclonal antibodies against apoA‐I amyloid fibrils. FEBS J 2021. [DOI: 10.1111/febs.15487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Takashi Ohgita
- Department of Biophysical Chemistry Kyoto Pharmaceutical University Japan
| | - Yuki Furutani
- Department of Biophysical Chemistry Kyoto Pharmaceutical University Japan
| | - Miyu Nakano
- Department of Biophysical Chemistry Kyoto Pharmaceutical University Japan
| | - Megumi Hattori
- Department of Biophysical Chemistry Kyoto Pharmaceutical University Japan
| | - Ayane Suzuki
- Department of Biophysical Chemistry Kyoto Pharmaceutical University Japan
| | - Miho Nakagawa
- Department of Biophysical Chemistry Kyoto Pharmaceutical University Japan
| | - Sera Naniwa
- Department of Bioanalytical Chemistry Kobe Pharmaceutical University Japan
| | - Izumi Morita
- Department of Bioanalytical Chemistry Kobe Pharmaceutical University Japan
| | - Hiroyuki Oyama
- Department of Bioanalytical Chemistry Kobe Pharmaceutical University Japan
| | | | - Norihiro Kobayashi
- Department of Bioanalytical Chemistry Kobe Pharmaceutical University Japan
| | - Hiroyuki Saito
- Department of Biophysical Chemistry Kyoto Pharmaceutical University Japan
| |
Collapse
|
10
|
Gaddi GM, Gisonno RA, Rosú SA, Curto LM, Prieto ED, Schinella GR, Finarelli GS, Cortez MF, Bauzá L, Elías EE, Ramella NA, Tricerri MA. Structural analysis of a natural apolipoprotein A-I variant (L60R) associated with amyloidosis. Arch Biochem Biophys 2020; 685:108347. [DOI: 10.1016/j.abb.2020.108347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 01/11/2023]
|
11
|
Zanoni P, von Eckardstein A. Inborn errors of apolipoprotein A-I metabolism: implications for disease, research and development. Curr Opin Lipidol 2020; 31:62-70. [PMID: 32022753 DOI: 10.1097/mol.0000000000000667] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW We review current knowledge regarding naturally occurring mutations in the human apolipoprotein A-I (APOA1) gene with a focus on their clinical complications as well as their exploitation for the elucidation of structure-function-(disease) relationships and therapy. RECENT FINDINGS Bi-allelic loss-of-function mutations in APOA1 cause HDL deficiency and, in the majority of patients, premature atherosclerotic cardiovascular disease (ASCVD) and corneal opacities. Heterozygous HDL-cholesterol decreasing mutations in APOA1 were associated with increased risk of ASCVD in several but not all studies. Some missense mutations in APOA1 cause familial amyloidosis. Structure-function-reationships underlying the formation of amyloid as well as the manifestion of amyloidosis in specific tissues are better understood. Lessons may also be learnt from the progress in the treatment of amyloidoses induced by transthyretin variants. Infusion of reconstituted HDL (rHDL) containing apoA-I (Milano) did not cause regression of atherosclerosis in coronary arteries of patients with acute coronary syndrome. However, animal experiments indicate that rHDL with apoA-I (Milano) or apoA-I mimetic peptides may be useful for the treatment of heart failure of inflammatory bowel disease. SUMMARY Specific mutations in APOA1 are the cause of premature ASCVD or familial amyloidosis. Synthetic mimetics of apoA-I (mutants) may be useful for the treatment of several diseases beyond ASCVD.
Collapse
Affiliation(s)
- Paolo Zanoni
- Institute of Medical Genetics, University of Zurich
| | | |
Collapse
|
12
|
Doherty CPA, Ulamec SM, Maya-Martinez R, Good SC, Makepeace J, Khan GN, van Oosten-Hawle P, Radford SE, Brockwell DJ. A short motif in the N-terminal region of α-synuclein is critical for both aggregation and function. Nat Struct Mol Biol 2020; 27:249-259. [PMID: 32157247 PMCID: PMC7100612 DOI: 10.1038/s41594-020-0384-x] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/22/2020] [Indexed: 02/04/2023]
Abstract
Aggregation of human α-synuclein (αSyn) is linked to Parkinson’s disease (PD) pathology. The central region of the αSyn sequence contains the non-amyloid β-component (NAC) crucial for aggregation. However, how NAC flanking regions modulate αSyn aggregation remains unclear. Using bioinformatics, mutation, and NMR we identify a 7-residue sequence, named P1 (residues 36-42), that controls αSyn aggregation. Deletion or substitution of this ‘master-controller’ prevents aggregation at pH 7.5 in vitro. At lower pH, P1 synergises with a sequence containing the PreNAC region (P2, residues 45-57) to prevent aggregation. Deleting P1 (ΔP1) or both P1 and P2 (ΔΔ) also prevents age-dependent αSyn aggregation and toxicity in C. elegans models and prevents αSyn-mediated vesicle fusion by altering the conformational properties of the protein when lipid-bound. The results highlight the importance of a master-controller sequence motif that controls both αSyn aggregation and function- a region that could be targeted to prevent aggregation in disease.
Collapse
Affiliation(s)
- Ciaran P A Doherty
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Sabine M Ulamec
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Roberto Maya-Martinez
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Sarah C Good
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Jemma Makepeace
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - G Nasir Khan
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Patricija van Oosten-Hawle
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| |
Collapse
|
13
|
Zamanian-Daryoush M, Gogonea V, DiDonato AJ, Buffa JA, Choucair I, Levison BS, Hughes RA, Ellington AD, Huang Y, Li XS, DiDonato JA, Hazen SL. Site-specific 5-hydroxytryptophan incorporation into apolipoprotein A-I impairs cholesterol efflux activity and high-density lipoprotein biogenesis. J Biol Chem 2020; 295:4836-4848. [PMID: 32098873 DOI: 10.1074/jbc.ra119.012092] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/13/2020] [Indexed: 12/20/2022] Open
Abstract
Apolipoprotein A-I (apoA-I) is the major protein constituent of high-density lipoprotein (HDL) and a target of myeloperoxidase-dependent oxidation in the artery wall. In atherosclerotic lesions, apoA-I exhibits marked oxidative modifications at multiple sites, including Trp72 Site-specific mutagenesis studies have suggested, but have not conclusively shown, that oxidative modification of Trp72 of apoA-I impairs many atheroprotective properties of this lipoprotein. Herein, we used genetic code expansion technology with an engineered Saccharomyces cerevisiae tryptophanyl tRNA-synthetase (Trp-RS):suppressor tRNA pair to insert the noncanonical amino acid 5-hydroxytryptophan (5-OHTrp) at position 72 in recombinant human apoA-I and confirmed site-specific incorporation utilizing MS. In functional characterization studies, 5-OHTrp72 apoA-I (compared with WT apoA-I) exhibited reduced ABC subfamily A member 1 (ABCA1)-dependent cholesterol acceptor activity in vitro (41.73 ± 6.57% inhibition; p < 0.01). Additionally, 5-OHTrp72 apoA-I displayed increased activation and stabilization of paraoxonase 1 (PON1) activity (μmol/min/mg) when compared with WT apoA-I and comparable PON1 activation/stabilization compared with reconstituted HDL (WT apoA-I, 1.92 ± 0.04; 5-OHTrp72 apoA-I, 2.35 ± 0.0; and HDL, 2.33 ± 0.1; p < 0.001, p < 0.001, and p < 0.001, respectively). Following injection into apoA-I-deficient mice, 5-OHTrp72 apoA-I reached plasma levels comparable with those of native apoA-I yet exhibited significantly reduced (48%; p < 0.01) lipidation and evidence of HDL biogenesis. Collectively, these findings unequivocally reveal that site-specific oxidative modification of apoA-I via 5-OHTrp at Trp72 impairs cholesterol efflux and the rate-limiting step of HDL biogenesis both in vitro and in vivo.
Collapse
Affiliation(s)
- Maryam Zamanian-Daryoush
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195.,Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, Ohio 44195
| | - Valentin Gogonea
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195.,Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, Ohio 44195.,Department of Chemistry, Cleveland State University, Cleveland, Ohio 44115
| | - Anthony J DiDonato
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195.,Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, Ohio 44195
| | - Jennifer A Buffa
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195.,Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, Ohio 44195
| | - Ibrahim Choucair
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195.,Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, Ohio 44195.,Department of Chemistry, Cleveland State University, Cleveland, Ohio 44115
| | - Bruce S Levison
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Randall A Hughes
- United States Army Research Laboratory South, University of Texas, Austin, Texas 78712
| | - Andrew D Ellington
- Center for Systems and Synthetic Biology, University of Texas, Austin, Texas 78712
| | - Ying Huang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195.,Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, Ohio 44195
| | - Xinmin S Li
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195.,Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, Ohio 44195
| | - Joseph A DiDonato
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195.,Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, Ohio 44195
| | - Stanley L Hazen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195 .,Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, Ohio 44195.,Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio 44195
| |
Collapse
|
14
|
Gisonno RA, Prieto ED, Gorgojo JP, Curto LM, Rodriguez ME, Rosú SA, Gaddi GM, Finarelli GS, Cortez MF, Schinella GR, Tricerri MA, Ramella NA. Fibrillar conformation of an apolipoprotein A-I variant involved in amyloidosis and atherosclerosis. Biochim Biophys Acta Gen Subj 2020; 1864:129515. [PMID: 31904503 DOI: 10.1016/j.bbagen.2020.129515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/21/2019] [Accepted: 12/30/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Different protein conformations may be involved in the development of clinical manifestations associated with human amyloidosis. Although a fibrillar conformation is usually the signature of damage in the tissues of patients, it is not clear whether this species is per se the cause or the consequence of the disease. Hereditary amyloidosis due to variants of apolipoprotein A-I (apoA-I) with a substitution of a single amino acid is characterized by the presence of fibrillar protein within the lesions. Thus mutations result in increased protein aggregation. Here we set up to characterize the folding of a natural variant with a mutation leading to a deletion at position 107 (apoA-I Lys107-0). Patients carrying this variant show amyloidosis and severe atherosclerosis. METHODS We oxidized this variant under controlled concentrations of hydrogen peroxide and analyzed the structure obtained after 30-day incubation by fluorescence, circular dichroism and microscopy approaches. Neutrophils activation was characterized by confocal microscopy. RESULTS We obtained a high yield of well-defined stable fibrillar structures of apoA-I Lys107-0. In an in vitro neutrophils system, we were able to detect the induction of Neutrophils Extracellular Traps (NETs) when we incubated with oxidized apoA-I variants. This effect was exacerbated by the fibrillar structure of oxidized Lys 107-0. CONCLUSIONS We conclude that a pro-inflammatory microenvironment could result in the formation of aggregation-prone species, which, in addition may induce a positive feed-back in the activation of an inflammatory response. GENERAL SIGNIFICANCE These events may explain a close association between amyloidosis due to apoA-I Lys107-0 and atherosclerosis.
Collapse
Affiliation(s)
- Romina A Gisonno
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Argentina; Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, La Plata, Argentina
| | - Eduardo D Prieto
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), La Plata, Argentina
| | - Juan P Gorgojo
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), La Plata, Argentina
| | - Lucrecia M Curto
- Instituto de Química y Fisicoquímica Biológicas "Profesor Alejandro C. Paladini" (IQUIFIB) y Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CABA, Argentina
| | - M Eugenia Rodriguez
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), La Plata, Argentina
| | - Silvana A Rosú
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Argentina; Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, La Plata, Argentina
| | - Gisela M Gaddi
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Argentina; Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, La Plata, Argentina
| | | | - M Fernanda Cortez
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Argentina
| | - Guillermo R Schinella
- Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, La Plata, Argentina
| | - M Alejandra Tricerri
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Argentina; Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, La Plata, Argentina.
| | - Nahuel A Ramella
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Argentina; Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, La Plata, Argentina.
| |
Collapse
|
15
|
Mizuguchi C, Nakagawa M, Namba N, Sakai M, Kurimitsu N, Suzuki A, Fujita K, Horiuchi S, Baba T, Ohgita T, Nishitsuji K, Saito H. Mechanisms of aggregation and fibril formation of the amyloidogenic N-terminal fragment of apolipoprotein A-I. J Biol Chem 2019; 294:13515-13524. [PMID: 31341020 DOI: 10.1074/jbc.ra119.008000] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 07/20/2019] [Indexed: 01/26/2023] Open
Abstract
The N-terminal (1-83) fragment of the major constituent of plasma high-density lipoprotein, apolipoprotein A-I (apoA-I), strongly tends to form amyloid fibrils, leading to systemic amyloidosis. Here, using a series of deletion variants, we examined the roles of two major amyloidogenic segments (residues 14-22 and 50-58) in the aggregation and fibril formation of an amyloidogenic G26R variant of the apoA-I 1-83 fragment (apoA-I 1-83/G26R). Thioflavin T fluorescence assays and atomic force microscopy revealed that elimination of residues 14-22 completely inhibits fibril formation of apoA-I 1-83/G26R, whereas Δ32-40 and Δ50-58 variants formed fibrils with markedly reduced nucleation and fibril growth rates. CD measurements revealed structural transitions from random coil to β-sheet structures in all deletion variants except for the Δ14-22 variant, indicating that residues 14-22 are critical for the β-transition and fibril formation. Thermodynamic analysis of the kinetics of fibril formation by apoA-I 1-83/G26R indicated that both nucleation and fibril growth are enthalpically unfavorable, whereas entropically, nucleation is favorable, but fibril growth is unfavorable. Interestingly, the nucleation of the Δ50-58 variant was entropically unfavorable, indicating that residues 50-58 entropically promote the nucleation step in fibril formation of apoA-I 1-83/G26R. Moreover, a residue-level structural investigation of apoA-I 1-83/G26R fibrils with site-specific pyrene labeling indicated that the two amyloidogenic segments are in close proximity to form an amyloid core structure, whereas the N- and C-terminal tail regions are excluded from the amyloid core. These results provide critical insights into the aggregation mechanism and fibril structure of the amyloidogenic N-terminal fragment of apoA-I.
Collapse
Affiliation(s)
- Chiharu Mizuguchi
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Miho Nakagawa
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Norihiro Namba
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Misae Sakai
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Naoko Kurimitsu
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Ayane Suzuki
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Kaho Fujita
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Sayaka Horiuchi
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Teruhiko Baba
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Takashi Ohgita
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Kazuchika Nishitsuji
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Hiroyuki Saito
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan.
| |
Collapse
|
16
|
Del Giudice R, Lagerstedt JO. High-efficient bacterial production of human ApoA-I amyloidogenic variants. Protein Sci 2018; 27:2101-2109. [PMID: 30291643 PMCID: PMC6237697 DOI: 10.1002/pro.3522] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/26/2018] [Accepted: 10/01/2018] [Indexed: 12/17/2022]
Abstract
Apolipoprotein A-I (ApoA-I)-related amyloidosis is a rare disease caused by missense mutations in the APOA1 gene. These mutations lead to protein aggregation and abnormal accumulation of ApoA-I amyloid fibrils in heart, liver, kidneys, skin, nerves, ovaries, or testes. Consequently, the carriers are at risk of single- or multi-organ failure and of need of organ transplantation. Understanding the basic molecular structure and function of ApoA-I amyloidogenic variants, as well as their biological effects, is, therefore, of great interest. However, the intrinsic low stability of this type of proteins makes their overexpression and purification difficult. To overcome this barrier, we here describe an optimized production and purification procedure for human ApoA-I amyloidogenic proteins that efficiently provides between 46 mg and 91 mg (depending on the protein variant) of pure protein per liter of Escherichia coli culture. Structural integrity of the amyloidogenic and native ApoA-I proteins were verified by circular dichroism spectroscopy and intrinsic fluorescence analysis, and preserved functionality was demonstrated by use of a lipid clearance assay as well as by reconstitution of high-density lipoprotein (HDL) particles. In conclusion, the use of the described high-yield protein production system to obtain amyloidogenic ApoA-I proteins, and their native counterpart, will enable molecular and cellular experimental studies aimed to explain the molecular basis for this rare disease.
Collapse
Affiliation(s)
- Rita Del Giudice
- Department of Experimental Medical ScienceLund UniversityS‐221 84LundSweden
| | - Jens O. Lagerstedt
- Department of Experimental Medical ScienceLund UniversityS‐221 84LundSweden
| |
Collapse
|
17
|
Morgado I, Panahi A, Burwash AG, Das M, Straub JE, Gursky O. Molecular Insights into Human Hereditary Apolipoprotein A-I Amyloidosis Caused by the Glu34Lys Mutation. Biochemistry 2018; 57:5738-5747. [PMID: 30184436 PMCID: PMC11259198 DOI: 10.1021/acs.biochem.8b00817] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hereditary apolipoprotein A-I (apoA-I) amyloidosis is a life-threatening incurable genetic disorder whose molecular underpinnings are unclear. In this disease, variant apoA-I, the major structural and functional protein of high-density lipoprotein, is released in a free form, undergoes an α-helix to intermolecular cross-β-sheet conversion along with a proteolytic cleavage, and is deposited as amyloid fibrils in various organs, which can cause organ damage and death. Glu34Lys is the only known charge inversion mutation in apoA-I that causes human amyloidosis. To elucidate the structural underpinnings of the amyloidogenic behavior of Glu34Lys apoA-I, we generated its recombinant globular N-terminal domain (residues 1-184) and compared the conformation and dynamics of its lipid-free form with those of two other naturally occurring apoA-I variants, Phe71Tyr (amyloidogenic) and Leu159Arg (non-amyloidogenic). All variants showed reduced structural stability and altered aromatic residue packing. The greatest decrease in stability was observed in the non-amyloidogenic variant, suggesting that amyloid formation is driven by local structural perturbations at sensitive sites. Molecular dynamics simulations revealed local helical unfolding and suggested that transient opening of the Trp72 side chain induced mutation-dependent structural perturbations in a sensitive region, including the major amyloid hot spot residues Leu14-Leu22. We posit that a shift from the "closed" to the "open" orientation of the Trp72 side chain modulates structural protection of amyloid hot spots, suggesting a previously unknown early step in the protein misfolding pathway.
Collapse
Affiliation(s)
- Isabel Morgado
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118-2526, United States
| | - Afra Panahi
- Department of Chemistry, Boston University, Boston, Massachusetts 02215-2521, United States
| | - Andrew G. Burwash
- Department of Chemistry, Boston University, Boston, Massachusetts 02215-2521, United States
| | - Madhurima Das
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118-2526, United States
| | - John E. Straub
- Department of Chemistry, Boston University, Boston, Massachusetts 02215-2521, United States
| | - Olga Gursky
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118-2526, United States
- Amyloidosis Treatment and Research Center, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| |
Collapse
|
18
|
Gorbenko GP, Trusova V, Mizuguchi C, Saito H. Lipid Bilayer Interactions of Amyloidogenic N-Terminal Fragment of Apolipoprotein A-I Probed by Förster Resonance Energy Transfer and Molecular Dynamics Simulations. J Fluoresc 2018; 28:1037-1047. [DOI: 10.1007/s10895-018-2267-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 07/10/2018] [Indexed: 11/25/2022]
|
19
|
Wilson CJ, Das M, Jayaraman S, Gursky O, Engen JR. Effects of Disease-Causing Mutations on the Conformation of Human Apolipoprotein A-I in Model Lipoproteins. Biochemistry 2018; 57:4583-4596. [PMID: 30004693 DOI: 10.1021/acs.biochem.8b00538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plasma high-density lipoproteins (HDLs) are protein-lipid nanoparticles that transport lipids and protect against atherosclerosis. Human apolipoprotein A-I (apoA-I) is the principal HDL protein whose mutations can cause either aberrant lipid metabolism or amyloid disease. Hydrogen-deuterium exchange (HDX) mass spectrometry (MS) was used to study the apoA-I conformation in model discoidal lipoproteins similar in size to large plasma HDL. We examined how point mutations associated with hereditary amyloidosis (F71Y and L170P) or atherosclerosis (L159R) influence the local apoA-I conformation in model lipoproteins. Unlike other apoA-I forms, the large particles showed minimal conformational heterogeneity, suggesting a fully extended protein conformation. Mutation-induced structural perturbations in lipid-bound protein were attenuated compared to the free protein and indicated close coupling between the two belt-forming apoA-I molecules. These perturbations propagated to distant lipoprotein sites, either increasing or decreasing their protection. This HDX MS study of large model HDL, compared with previous studies of smaller particles, ascertained that apoA-I's central region helps accommodate the protein conformation to lipoproteins of various sizes. This study also reveals that the effects of mutations on lipoprotein conformational dynamics are much weaker than those in a lipid-free protein. Interestingly, the mutation-induced perturbations propagate to distant sites nearly 10 nm away and alter their protection in ways that cannot be predicted from the lipoprotein structure and stability. We propose that long-range mutational effects are mediated by both protein and lipid and can influence lipoprotein functionality.
Collapse
Affiliation(s)
- Christopher J Wilson
- Department of Chemistry and Chemical Biology , Northeastern University , 360 Huntington Avenue , Boston , Massachusetts 02115 , United States
| | - Madhurima Das
- Department of Physiology & Biophysics , Boston University School of Medicine , 700 Albany Street , Boston , Massachusetts 02118 , United States
| | - Shobini Jayaraman
- Department of Physiology & Biophysics , Boston University School of Medicine , 700 Albany Street , Boston , Massachusetts 02118 , United States
| | - Olga Gursky
- Department of Physiology & Biophysics , Boston University School of Medicine , 700 Albany Street , Boston , Massachusetts 02118 , United States.,Amyloidosis Research Center , Boston University School of Medicine , Boston , Massachusetts 02118 , United States
| | - John R Engen
- Department of Chemistry and Chemical Biology , Northeastern University , 360 Huntington Avenue , Boston , Massachusetts 02115 , United States
| |
Collapse
|
20
|
Gaglione R, Smaldone G, Di Girolamo R, Piccoli R, Pedone E, Arciello A. Cell milieu significantly affects the fate of AApoAI amyloidogenic variants: predestination or serendipity? Biochim Biophys Acta Gen Subj 2017; 1862:377-384. [PMID: 29174954 DOI: 10.1016/j.bbagen.2017.11.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/17/2017] [Accepted: 11/21/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Specific apolipoprotein A-I variants are associated to severe hereditary amyloidoses. The organ distribution of AApoAI amyloidosis seems to depend on the position of the mutation, since mutations in residues from 1 to 75 are mainly associated to hepatic and renal amyloidosis, while mutations in residues from 173 to 178 are mostly responsible for cardiac, laryngeal, and cutaneous amyloidosis. Molecular bases of this tissue specificity are still poorly understood, but it is increasingly emerging that protein destabilization induced by amyloidogenic mutations is neither necessary nor sufficient for amyloidosis development. METHODS By using a multidisciplinary approach, including circular dichroism, dynamic light scattering, spectrofluorometric and atomic force microscopy analyses, the effect of target cells on the conformation and fibrillogenic pathway of the two AApoAI amyloidogenic variants AApoAIL75P and AApoAIL174S has been monitored. RESULTS Our data show that specific cell milieus selectively affect conformation, aggregation propensity and fibrillogenesis of the two AApoAI amyloidogenic variants. CONCLUSIONS An intriguing picture emerged indicating that defined cell contexts selectively induce fibrillogenesis of specific AApoAI variants. GENERAL SIGNIFICANCE An innovative methodological approach, based on the use of whole intact cells to monitor the effects of cell context on AApoAI variants fibrillogenic pathway, has been set up.
Collapse
Affiliation(s)
- Rosa Gaglione
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | | | - Rocco Di Girolamo
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Renata Piccoli
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; Istituto Nazionale di Biostrutture e Biosistemi (INBB), Italy
| | - Emilia Pedone
- Istituto di Biostrutture e Bioimmagini, CNR, Naples, Italy; Research Centre on Bioactive Peptides (CIRPeB), University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy.
| | - Angela Arciello
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; Istituto Nazionale di Biostrutture e Biosistemi (INBB), Italy.
| |
Collapse
|
21
|
Del Giudice R, Domingo-Espín J, Iacobucci I, Nilsson O, Monti M, Monti DM, Lagerstedt JO. Structural determinants in ApoA-I amyloidogenic variants explain improved cholesterol metabolism despite low HDL levels. Biochim Biophys Acta Mol Basis Dis 2017; 1863:3038-3048. [PMID: 28887204 DOI: 10.1016/j.bbadis.2017.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 11/19/2022]
Abstract
Twenty Apolipoprotein A-I (ApoA-I) variants are responsible for a systemic hereditary amyloidosis in which protein fibrils can accumulate in different organs, leading to their failure. Several ApoA-I amyloidogenic mutations are also associated with hypoalphalipoproteinemia, low ApoA-I and high-density lipoprotein (HDL)-cholesterol plasma levels; however, subjects affected by ApoA-I-related amyloidosis do not show a higher risk of cardiovascular diseases (CVD). The structural features, the lipid binding properties and the functionality of four ApoA-I amyloidogenic variants were therefore inspected in order to clarify the paradox observed in the clinical phenotype of the affected subjects. Our results show that ApoA-I amyloidogenic variants are characterized by a different oligomerization pattern and that the position of the mutation in the ApoA-I sequence affects the molecular structure of the formed HDL particles. Although lipidation increases ApoA-I proteins stability, all the amyloidogenic variants analyzed show a lower affinity for lipids, both in vitro and in ex vivo mouse serum. Interestingly, the lower efficiency at forming HDL particles is compensated by a higher efficiency at catalysing cholesterol efflux from macrophages. The decreased affinity of ApoA-I amyloidogenic variants for lipids, together with the increased efficiency in the cholesterol efflux process, could explain why, despite the unfavourable lipid profile, patients affected by ApoA-I related amyloidosis do not show a higher CVD risk.
Collapse
Affiliation(s)
- Rita Del Giudice
- Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden.
| | - Joan Domingo-Espín
- Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Ilaria Iacobucci
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; CEINGE Biotecnologie Avanzate, 80145 Naples, Italy
| | - Oktawia Nilsson
- Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; Istituto Nazionale di Biostrutture e Biosistemi (INBB), Rome, Italy
| | - Daria Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; Istituto Nazionale di Biostrutture e Biosistemi (INBB), Rome, Italy
| | - Jens O Lagerstedt
- Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden.
| |
Collapse
|
22
|
Lu C, Zuo K, Lu Y, Liang S, Huang X, Zeng C, Zhang J, An Y, Wang J. Apolipoprotein A-1-related amyloidosis 2 case reports and review of the literature. Medicine (Baltimore) 2017; 96:e8148. [PMID: 28953655 PMCID: PMC5626298 DOI: 10.1097/md.0000000000008148] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
RATIONALE Apolipoprotein A-1 (ApoA-1)-related amyloidosis is characterized by the deposition of ApoA-1 in various organs and can be either hereditary or nonhereditary. It is rare and easily misdiagnosed. Renal involvement is common in hereditary ApoA-1 amyloidosis, but rare in the nonhereditary form. PATIENT CONCERNS We reported two cases with ApoA-1 amyloidosis, a 64-year-old man suffering from nephrotic syndrome and a 40-year-old man with nephrotic syndrome and splenomegaly. Renal biopsies revealed glomerular, interstitial and vascular amyloid deposits and positive phospholipase A2 receptor staining in the glomerular capillary loop in case 1, and mesangial amyloid deposits in case 2. DIAGNOSES After immunostaining failed to determine the specific amyloid protein, proteomic analysis of amyloid deposits by mass spectrometry was performed and demonstrated the ApoA-1 origin of the amyloid. Genetic testing revealed no mutation of the APOA1 gene in case 1 but a heterozygous mutation, Trp74Arg, in case 2. Case 1 was thus diagnosed as nonhereditary ApoA-1 associated renal amyloidosis with membranous nephropathy, and case 2 as hereditary ApoA-1 amyloidosis with multiorgan injuries (kidney and spleen) and a positive family history. INTERVENTIONS Case 1 was treated with glucocorticoid combined with cyclosporine. Case 2 was treated with calcitriol and angiotensin converting enzyme inhibitors. OUTCOMES Two cases were followed up for 5 months and 2 years, respectively; and case 1 was found to have attenuated proteinuria while case 2 had an elevation of cholestasis indices along with renal insufficiency. LESSONS Proteomic analysis by mass spectrometry of the amyloid deposits combined with genetic analysis can provide accurate diagnosis of ApoA-1 amyloidosis. Besides, these 2 cases expand our knowledge of ApoA-1-related renal amyloidosis.
Collapse
|
23
|
Kimura H, Mikawa S, Mizuguchi C, Horie Y, Morita I, Oyama H, Ohgita T, Nishitsuji K, Takeuchi A, Lund-Katz S, Akaji K, Kobayashi N, Saito H. Immunochemical Approach for Monitoring of Structural Transition of ApoA-I upon HDL Formation Using Novel Monoclonal Antibodies. Sci Rep 2017; 7:2988. [PMID: 28592796 PMCID: PMC5462821 DOI: 10.1038/s41598-017-03208-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/24/2017] [Indexed: 11/24/2022] Open
Abstract
Apolipoprotein A-I (apoA-I) undergoes a large conformational reorganization during remodeling of high-density lipoprotein (HDL) particles. To detect structural transition of apoA-I upon HDL formation, we developed novel monoclonal antibodies (mAbs). Splenocytes from BALB/c mice immunized with a recombinant human apoA-I, with or without conjugation with keyhole limpet hemocyanin, were fused with P3/NS1/1-Ag4-1 myeloma cells. After the HAT-selection and cloning, we established nine hybridoma clones secreting anti-apoA-I mAbs in which four mAbs recognize epitopes on the N-terminal half of apoA-I while the other five mAbs recognize the central region. ELISA and bio-layer interferometry measurements demonstrated that mAbs whose epitopes are within residues 1–43 or 44–65 obviously discriminate discoidal and spherical reconstituted HDL particles despite their great reactivities to lipid-free apoA-I and plasma HDL, suggesting the possibility of these mAbs to detect structural transition of apoA-I on HDL. Importantly, a helix-disrupting mutation of W50R into residues 44–65 restored the immunoreactivity of mAbs whose epitope being within residues 44–65 against reconstituted HDL particles, indicating that these mAbs specifically recognize the epitope region in a random coil state. These results encourage us to develop mAbs targeting epitopes in the N-terminal residues of apoA-I as useful probes for monitoring formation and remodeling of HDL particles.
Collapse
Affiliation(s)
- Hitoshi Kimura
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan.,Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan
| | - Shiho Mikawa
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan.,Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan
| | - Chiharu Mizuguchi
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan.,Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, 770-8505, Japan
| | - Yuki Horie
- Department of Bioanalytical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Izumi Morita
- Department of Bioanalytical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Hiroyuki Oyama
- Department of Bioanalytical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Takashi Ohgita
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Kazuchika Nishitsuji
- Department of Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Atsuko Takeuchi
- Analytical Laboratory, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Sissel Lund-Katz
- Lipid Research Group, Gastroenterology, Hepatology and Nutrition Division, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, 19104-4318, USA
| | - Kenichi Akaji
- Department of Medicinal Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Norihiro Kobayashi
- Department of Bioanalytical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Hiroyuki Saito
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan.
| |
Collapse
|
24
|
Lucato CM, Lupton CJ, Halls ML, Ellisdon AM. Amyloidogenicity at a Distance: How Distal Protein Regions Modulate Aggregation in Disease. J Mol Biol 2017; 429:1289-1304. [PMID: 28342736 DOI: 10.1016/j.jmb.2017.03.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/12/2017] [Accepted: 03/14/2017] [Indexed: 12/14/2022]
Abstract
The misfolding of proteins to form amyloid is a key pathological feature of several progressive, and currently incurable, diseases. A mechanistic understanding of the pathway from soluble, native protein to insoluble amyloid is crucial for therapeutic design, and recent efforts have helped to elucidate the key molecular events that trigger protein misfolding. Generally, either global or local structural perturbations occur early in amyloidogenesis to expose aggregation-prone regions of the protein that can then self-associate to form toxic oligomers. Surprisingly, these initiating structural changes are often caused or influenced by protein regions distal to the classically amyloidogenic sequences. Understanding the importance of these distal regions in the pathogenic process has highlighted many remaining knowledge gaps regarding the precise molecular events that occur in classic aggregation pathways. In this review, we discuss how these distal regions can influence aggregation in disease and the recent technical and conceptual advances that have allowed this insight.
Collapse
Affiliation(s)
- Christina M Lucato
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Christopher J Lupton
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Michelle L Halls
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Andrew M Ellisdon
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
25
|
Townsend D, Hughes E, Hussain R, Siligardi G, Baldock S, Madine J, Middleton DA. Heparin and Methionine Oxidation Promote the Formation of Apolipoprotein A-I Amyloid Comprising α-Helical and β-Sheet Structures. Biochemistry 2017; 56:1632-1644. [DOI: 10.1021/acs.biochem.6b01120] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- David Townsend
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Eleri Hughes
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Rohanah Hussain
- Diamond Light Source Ltd., Diamond House, Harwell Science & Innovation Campus, Didcot OX11 0DE, Oxon, England
| | - Giuliano Siligardi
- Diamond Light Source Ltd., Diamond House, Harwell Science & Innovation Campus, Didcot OX11 0DE, Oxon, England
| | - Sarah Baldock
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Jillian Madine
- Department of Biochemistry, Institute
of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - David A. Middleton
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| |
Collapse
|
26
|
Das M, Wilson CJ, Mei X, Wales T, Engen JR, Gursky O. Structural stability and local dynamics in disease-causing mutants of human apolipoprotein a-I: what makes the protein amyloidogenic? Amyloid 2017; 24:11-12. [PMID: 28042708 PMCID: PMC5557347 DOI: 10.1080/13506129.2016.1269737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Madhurima Das
- a Department of Physiology & Biophysics , Boston University School of Medicine , Boston , MA , USA and
| | | | - Xiaohu Mei
- a Department of Physiology & Biophysics , Boston University School of Medicine , Boston , MA , USA and
| | - Thomas Wales
- b Department of Chemistry , Northeastern University , Boston , MA , USA
| | - John R Engen
- b Department of Chemistry , Northeastern University , Boston , MA , USA
| | - Olga Gursky
- a Department of Physiology & Biophysics , Boston University School of Medicine , Boston , MA , USA and
| |
Collapse
|
27
|
Oda MN. Lipid-free apoA-I structure - Origins of model diversity. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:221-233. [PMID: 27890580 DOI: 10.1016/j.bbalip.2016.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 10/20/2016] [Accepted: 11/20/2016] [Indexed: 01/22/2023]
Abstract
Apolipoprotein A-I (apoA-I) is a prominent member of the exchangeable apolipoprotein class of proteins, capable of transitioning between lipid-bound and lipid-free states. It is the primary structural and functional protein of high density lipoprotein (HDL). Lipid-free apoA-I is critical to de novo HDL formation as it is the preferred substrate of the lipid transporter, ATP Binding Cassette Transporter A1 (ABCA1) Remaley et al. (2001) [1]. Lipid-free apoA-I is an important element in reverse cholesterol transport and comprehension of its structure is a core issue in our understanding of cholesterol metabolism. However, lipid-free apoA-I is highly conformationally dynamic making it a challenging subject for structural analysis. Over the past 20years there have been significant advances in overcoming the dynamic nature of lipid-free apoA-I, which have resulted in a multitude of proposed conformational models.
Collapse
Affiliation(s)
- Michael N Oda
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, United States.
| |
Collapse
|
28
|
Arciello A, Piccoli R, Monti DM. Apolipoprotein A-I: the dual face of a protein. FEBS Lett 2016; 590:4171-4179. [DOI: 10.1002/1873-3468.12468] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/12/2016] [Accepted: 10/24/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Angela Arciello
- Department of Chemical Sciences; University of Naples Federico II; Italy
- Istituto Nazionale di Biostrutture e Biosistemi (INBB); Rome Italy
| | - Renata Piccoli
- Department of Chemical Sciences; University of Naples Federico II; Italy
- Istituto Nazionale di Biostrutture e Biosistemi (INBB); Rome Italy
| | - Daria Maria Monti
- Department of Chemical Sciences; University of Naples Federico II; Italy
- Istituto Nazionale di Biostrutture e Biosistemi (INBB); Rome Italy
| |
Collapse
|
29
|
Mikawa S, Mizuguchi C, Nishitsuji K, Baba T, Shigenaga A, Shimanouchi T, Sakashita N, Otaka A, Akaji K, Saito H. Heparin promotes fibril formation by the N-terminal fragment of amyloidogenic apolipoprotein A-I. FEBS Lett 2016; 590:3492-3500. [DOI: 10.1002/1873-3468.12426] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/05/2016] [Accepted: 09/11/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Shiho Mikawa
- Department of Biophysical Chemistry; Kyoto Pharmaceutical University; Japan
- Institute of Biomedical Sciences; Graduate School of Pharmaceutical Sciences; Tokushima University; Japan
| | - Chiharu Mizuguchi
- Department of Biophysical Chemistry; Kyoto Pharmaceutical University; Japan
- Institute of Biomedical Sciences; Graduate School of Pharmaceutical Sciences; Tokushima University; Japan
| | - Kazuchika Nishitsuji
- Department of Molecular Pathology; Institute of Biomedical Sciences; Tokushima University Graduate School; Japan
| | - Teruhiko Baba
- Biotechnology Research Institute for Drug Discovery; National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba Japan
| | - Akira Shigenaga
- Institute of Biomedical Sciences; Graduate School of Pharmaceutical Sciences; Tokushima University; Japan
| | | | - Naomi Sakashita
- Department of Molecular Pathology; Institute of Biomedical Sciences; Tokushima University Graduate School; Japan
| | - Akira Otaka
- Institute of Biomedical Sciences; Graduate School of Pharmaceutical Sciences; Tokushima University; Japan
| | - Kenichi Akaji
- Department of Medicinal Chemistry; Kyoto Pharmaceutical University; Japan
| | - Hiroyuki Saito
- Department of Biophysical Chemistry; Kyoto Pharmaceutical University; Japan
| |
Collapse
|
30
|
Schönfeld HJ, Roessner D, Seelig J. Self-Association of Apo A-1 Studied with Dynamic and Static Light Scattering. J Phys Chem B 2016; 120:1228-35. [DOI: 10.1021/acs.jpcb.5b12397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | - Dierk Roessner
- Wyatt Technology Europe GmbH, Hochstraße 12a, DE-56307 Dernbach, Germany
| | - Joachim Seelig
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| |
Collapse
|
31
|
Protein conformational perturbations in hereditary amyloidosis: Differential impact of single point mutations in ApoAI amyloidogenic variants. Biochim Biophys Acta Gen Subj 2016; 1860:434-44. [DOI: 10.1016/j.bbagen.2015.10.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/15/2015] [Accepted: 10/23/2015] [Indexed: 12/31/2022]
|
32
|
Gogonea V. Structural Insights into High Density Lipoprotein: Old Models and New Facts. Front Pharmacol 2016; 6:318. [PMID: 26793109 PMCID: PMC4709926 DOI: 10.3389/fphar.2015.00318] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 12/22/2015] [Indexed: 11/13/2022] Open
Abstract
The physiological link between circulating high density lipoprotein (HDL) levels and cardiovascular disease is well-documented, albeit its intricacies are not well-understood. An improved appreciation of HDL function and overall role in vascular health and disease requires at its foundation a better understanding of the lipoprotein's molecular structure, its formation, and its process of maturation through interactions with various plasma enzymes and cell receptors that intervene along the pathway of reverse cholesterol transport. This review focuses on summarizing recent developments in the field of lipid free apoA-I and HDL structure, with emphasis on new insights revealed by newly published nascent and spherical HDL models constructed by combining low resolution structures obtained from small angle neutron scattering (SANS) with contrast variation and geometrical constraints derived from hydrogen-deuterium exchange (HDX), crosslinking mass spectrometry, electron microscopy, Förster resonance energy transfer, and electron spin resonance. Recently published low resolution structures of nascent and spherical HDL obtained from SANS with contrast variation and isotopic labeling of apolipoprotein A-I (apoA-I) will be critically reviewed and discussed in terms of how they accommodate existing biophysical structural data from alternative approaches. The new low resolution structures revealed and also provided some answers to long standing questions concerning lipid organization and particle maturation of lipoproteins. The review will discuss the merits of newly proposed SANS based all atom models for nascent and spherical HDL, and compare them with accepted models. Finally, naturally occurring and bioengineered mutations in apoA-I, and their impact on HDL phenotype, are reviewed and discuss together with new therapeutics employed for restoring HDL function.
Collapse
Affiliation(s)
- Valentin Gogonea
- Department of Chemistry, Cleveland State UniversityCleveland, OH, USA; Departments of Cellular and Molecular Medicine and the Center for Cardiovascular Diagnostics and Prevention, Cleveland ClinicCleveland, OH, USA
| |
Collapse
|
33
|
Das M, Wilson CJ, Mei X, Wales TE, Engen JR, Gursky O. Structural Stability and Local Dynamics in Disease-Causing Mutants of Human Apolipoprotein A-I: What Makes the Protein Amyloidogenic? J Mol Biol 2015; 428:449-62. [PMID: 26562506 DOI: 10.1016/j.jmb.2015.10.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 01/27/2023]
Abstract
ApoA-I, the major protein of plasma high-density lipoprotein, removes cellular cholesterol and protects against atherosclerosis. ApoA-I mutations can cause familial amyloidosis, a life-threatening disease wherein N-terminal protein fragments form fibrils in vital organs. To unveil the protein misfolding mechanism and to understand why some mutations cause amyloidosis while others do not, we analyzed the structure, stability, and lipid-binding properties of naturally occurring mutants of full-length human apoA-I causing either amyloidosis (G26R, W50R, F71Y, and L170P) or aberrant lipid metabolism (L159R). Global and local protein conformation and dynamics in solution were assessed by circular dichroism, fluorescence, and hydrogen-deuterium exchange mass spectrometry. All mutants showed increased deuteration in residues 14-22, supporting our hypothesis that decreased protection of this major amyloid "hot spot" can trigger protein misfolding. In addition, L159R showed local helical unfolding near the mutation site, consistent with cleavage of this mutant in plasma to generate the labile 1-159 fragment. Together, the results suggest that reduced protection of the major amyloid "hot spot", combined with the structural integrity of the native helix bundle conformation, shifts the balance from protein clearance to β-aggregation. A delicate balance between the overall structural integrity of a globular protein and the local destabilization of its amyloidogenic segments may be a fundamental determinant of this and other amyloid diseases. Furthermore, mutation-induced conformational changes observed in the helix bundle, which comprises the N-terminal 75% of apoA-I, and its flexible C-terminal tail suggest the propagation of structural perturbations to distant sites via an unexpected template-induced ensemble-based mechanism, challenging the classical structure-based view.
Collapse
Affiliation(s)
- Madhurima Das
- Department of Physiology & Biophysics, Boston University School of Medicine, 700 Albany Street, Boston, MA 02118, USA
| | - Christopher J Wilson
- Department of Chemistry & Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Xiaohu Mei
- Department of Physiology & Biophysics, Boston University School of Medicine, 700 Albany Street, Boston, MA 02118, USA
| | - Thomas E Wales
- Department of Chemistry & Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - John R Engen
- Department of Chemistry & Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Olga Gursky
- Department of Physiology & Biophysics, Boston University School of Medicine, 700 Albany Street, Boston, MA 02118, USA.
| |
Collapse
|
34
|
Gorbenko G, Trusova V, Girych M, Adachi E, Mizuguchi C, Akaji K, Saito H. FRET evidence for untwisting of amyloid fibrils on the surface of model membranes. SOFT MATTER 2015; 11:6223-6234. [PMID: 26153461 DOI: 10.1039/c5sm00183h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Apolipoprotein A-I (apoA-I) is an amyloid-forming protein whose amyloidogenic properties are attributed mainly to its N-terminal fragment. Cell membranes are thought to be the primary target for the toxic amyloid aggregates. In the present study Förster resonance energy transfer (FRET) between the membrane fluorescent probe Laurdan as a donor and amyloid-specific dye Thioflavin T (ThT) as an acceptor was employed to explore the interactions of amyloid fibrils from apoA-I variants 1-83/G26R and 1-83/G26R/W@8 with the model membranes composed of phosphatidylcholine and its mixture with cholesterol. The changes in FRET efficiency upon fibril-lipid binding were found to correlate with the extent of protein fibrillization. AFM imaging revealed the presence of two polymorphic states of fibrillar 1-83/G26R/W@8 with the helical and twisted ribbon morphologies. The simulation-based analysis of the experimental FRET profiles provided the arguments in favor of untwisting of fibrillar assemblies upon their interaction with the model membranes. Evidence for the face-on orientation and superficial bilayer location of the membrane-bound fragments of 1-83/G26R/W@8 fibrils was obtained.
Collapse
Affiliation(s)
- Galyna Gorbenko
- Department of Nuclear and Medical Physics, V.N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkov, 61022, Ukraine.
| | | | | | | | | | | | | |
Collapse
|
35
|
Mizuguchi C, Ogata F, Mikawa S, Tsuji K, Baba T, Shigenaga A, Shimanouchi T, Okuhira K, Otaka A, Saito H. Amyloidogenic Mutation Promotes Fibril Formation of the N-terminal Apolipoprotein A-I on Lipid Membranes. J Biol Chem 2015; 290:20947-20959. [PMID: 26175149 DOI: 10.1074/jbc.m115.664227] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Indexed: 02/01/2023] Open
Abstract
The N-terminal amino acid 1-83 fragment of apolipoprotein A-I (apoA-I) has a strong propensity to form amyloid fibrils at physiological neutral pH. Because apoA-I has an ability to bind to lipid membranes, we examined the effects of the lipid environment on fibril-forming properties of the N-terminal fragment of apoA-I variants. Thioflavin T fluorescence assay as well as fluorescence and transmission microscopies revealed that upon lipid binding, fibril formation by apoA-I 1-83 is strongly inhibited, whereas the G26R mutant still retains the ability to form fibrils. Such distinct effects of lipid binding on fibril formation were also observed for the amyloidogenic prone region-containing peptides, apoA-I 8-33 and 8-33/G26R. This amyloidogenic region shifts from random coil to α-helical structure upon lipid binding. The G26R mutation appears to prevent this helix transition because lower helical propensity and more solvent-exposed conformation of the G26R variant upon lipid binding were observed in the apoA-I 1-83 fragment and 8-33 peptide. With a partially α-helical conformation induced by the presence of 2,2,2-trifluoroethanol, fibril formation by apoA-I 1-83 was strongly inhibited, whereas the G26R variant can form amyloid fibrils. These findings suggest a new possible pathway for amyloid fibril formation by the N-terminal fragment of apoA-I variants: the amyloidogenic mutations partially destabilize the α-helical structure formed upon association with lipid membranes, resulting in physiologically relevant conformations that allow fibril formation.
Collapse
Affiliation(s)
- Chiharu Mizuguchi
- Institute of Biomedical Sciences, Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Fuka Ogata
- Institute of Biomedical Sciences, Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Shiho Mikawa
- Institute of Biomedical Sciences, Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Kohei Tsuji
- Institute of Biomedical Sciences, Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Teruhiko Baba
- Research Center for Stem Cell Engineering (SCRC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| | - Akira Shigenaga
- Institute of Biomedical Sciences, Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Toshinori Shimanouchi
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Keiichiro Okuhira
- Institute of Biomedical Sciences, Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Akira Otaka
- Institute of Biomedical Sciences, Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Hiroyuki Saito
- Institute of Biomedical Sciences, Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan.
| |
Collapse
|
36
|
Louros NN, Tsiolaki PL, Griffin MDW, Howlett GJ, Hamodrakas SJ, Iconomidou VA. Chameleon 'aggregation-prone' segments of apoA-I: A model of amyloid fibrils formed in apoA-I amyloidosis. Int J Biol Macromol 2015; 79:711-8. [PMID: 26049118 DOI: 10.1016/j.ijbiomac.2015.05.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/20/2015] [Accepted: 05/22/2015] [Indexed: 11/18/2022]
Abstract
Apolipoprotein A-I (apoA-I) is the major component of high density lipoproteins and plays a vital role in reverse cholesterol transport. Lipid-free apoA-I is the main constituent of amyloid deposits found in atherosclerotic plaques, an acquired type of amyloidosis, whereas its N-terminal fragments have been associated with a hereditary form, known as familial apoA-I amyloidosis. Here, we identified and verified four "aggregation-prone" segments of apoA-I with amyloidogenic properties, utilizing electron microscopy, X-ray fiber diffraction, ATR FT-IR spectroscopy and polarized light microscopy. These segments may act as conformational switches, possibly controlling the transition of the α-helical apoA-I content into the "cross-β" architecture of amyloid fibrils. A structural model illuminating the structure of amyloid fibrils formed by the N-terminal fragments of apoA-I is proposed, indicating that two of the identified chameleon segments may play a vital part in the formation of amyloid fibrils in familial apoA-I amyloidosis.
Collapse
Affiliation(s)
- Nikolaos N Louros
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 157 01, Greece
| | - Paraskevi L Tsiolaki
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 157 01, Greece
| | - Michael D W Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Geoffrey J Howlett
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Stavros J Hamodrakas
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 157 01, Greece
| | - Vassiliki A Iconomidou
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 157 01, Greece.
| |
Collapse
|
37
|
Rosú SA, Rimoldi OJ, Prieto ED, Curto LM, Delfino JM, Ramella NA, Tricerri MA. Amyloidogenic propensity of a natural variant of human apolipoprotein A-I: stability and interaction with ligands. PLoS One 2015; 10:e0124946. [PMID: 25950566 PMCID: PMC4423886 DOI: 10.1371/journal.pone.0124946] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/19/2015] [Indexed: 12/18/2022] Open
Abstract
A number of naturally occurring mutations of human apolipoprotein A-I (apoA-I) have been associated with hereditary amyloidoses. The molecular mechanisms involved in amyloid-associated pathology remain largely unknown. Here we examined the effects of the Arg173Pro point mutation in apoA-I on the structure, stability, and aggregation propensity, as well as on the ability to bind to putative ligands. Our results indicate that the mutation induces a drastic loss of stability, and a lower efficiency to bind to phospholipid vesicles at physiological pH, which could determine the observed higher tendency to aggregate as pro-amyloidogenic complexes. Incubation under acidic conditions does not seem to induce significant desestabilization or aggregation tendency, neither does it contribute to the binding of the mutant to sodium dodecyl sulfate. While the binding to this detergent is higher for the mutant as compared to wt apoA-I, the interaction of the Arg173Pro variant with heparin depends on pH, being lower at pH 5.0 and higher than wt under physiological pH conditions. We suggest that binding to ligands as heparin or other glycosaminoglycans could be key events tuning the fine details of the interaction of apoA-I variants with the micro-environment, and probably eliciting the toxicity of these variants in hereditary amyloidoses.
Collapse
Affiliation(s)
- Silvana A. Rosú
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET, La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Omar J. Rimoldi
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET, La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Eduardo D. Prieto
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET, La Plata, Buenos Aires, Argentina
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata-CONICET, La Plata, Buenos Aires, Argentina
| | - Lucrecia M. Curto
- Departamento de Química Biológica e Instituto de Bioquímica y Biofísica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - José M. Delfino
- Departamento de Química Biológica e Instituto de Bioquímica y Biofísica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nahuel A. Ramella
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET, La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - M. Alejandra Tricerri
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET, La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
38
|
Structural stability and functional remodeling of high-density lipoproteins. FEBS Lett 2015; 589:2627-39. [PMID: 25749369 DOI: 10.1016/j.febslet.2015.02.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 02/16/2015] [Accepted: 02/23/2015] [Indexed: 12/28/2022]
Abstract
Lipoproteins are protein-lipid nanoparticles that transport lipids in circulation and are central in atherosclerosis and other disorders of lipid metabolism. Apolipoproteins form flexible structural scaffolds and important functional ligands on the particle surface and direct lipoprotein metabolism. Lipoproteins undergo multiple rounds of metabolic remodeling that is crucial to lipid transport. Important aspects of this remodeling, including apolipoprotein dissociation and particle fusion, are mimicked in thermal or chemical denaturation and are modulated by free energy barriers. Here we review the biophysical studies that revealed the kinetic mechanism of lipoprotein stabilization and unraveled its structural basis. The main focus is on high-density lipoprotein (HDL). An inverse correlation between stability and functions of various HDLs in cholesterol transport suggests the functional role of structural disorder. A mechanism for the conformational adaptation of the major HDL proteins, apoA-I and apoA-II, to the increasing lipid load is proposed. Together, these studies help understand why HDL forms discrete subclasses separated by kinetic barriers, which have distinct composition, conformation and functional properties. Understanding these properties may help improve HDL quality and develop novel therapies for cardiovascular disease.
Collapse
|
39
|
Membrane Effects of N-Terminal Fragment of Apolipoprotein A-I: A Fluorescent Probe Study. J Fluoresc 2015; 25:253-61. [DOI: 10.1007/s10895-015-1501-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 01/02/2015] [Indexed: 10/24/2022]
|
40
|
Computational Approaches to Identification of Aggregation Sites and the Mechanism of Amyloid Growth. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 855:213-39. [DOI: 10.1007/978-3-319-17344-3_9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
41
|
Interactions of Lipid Membranes with Fibrillar Protein Aggregates. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 855:135-55. [PMID: 26149929 DOI: 10.1007/978-3-319-17344-3_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Amyloid fibrils are an intriguing class of protein aggregates with distinct physicochemical, structural and morphological properties. They display peculiar membrane-binding behavior, thus adding complexity to the problem of protein-lipid interactions. The consensus that emerged during the past decade is that amyloid cytotoxicity arises from a continuum of cross-β-sheet assemblies including mature fibrils. Based on literature survey and our own data, in this chapter we address several aspects of fibril-lipid interactions, including (i) the effects of amyloid assemblies on molecular organization of lipid bilayer; (ii) competition between fibrillar and monomeric membrane-associating proteins for binding to the lipid surface; and (iii) the effects of lipids on the structural morphology of fibrillar aggregates. To illustrate some of the processes occurring in fibril-lipid systems, we present and analyze fluorescence data reporting on lipid bilayer interactions with fibrillar lysozyme and with the N-terminal 83-residue fragment of amyloidogenic mutant apolipoprotein A-I, 1-83/G26R/W@8. The results help understand possible mechanisms of interaction and mutual remodeling of amyloid fibers and lipid membranes, which may contribute to amyloid cytotoxicity.
Collapse
|
42
|
Amyloid-Forming Properties of Human Apolipoproteins: Sequence Analyses and Structural Insights. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 855:175-211. [PMID: 26149931 DOI: 10.1007/978-3-319-17344-3_8] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Apolipoproteins are protein constituents of lipoproteins that transport cholesterol and fat in circulation and are central to cardiovascular health and disease. Soluble apolipoproteins can transiently dissociate from the lipoprotein surface in a labile free form that can misfold, potentially leading to amyloid disease. Misfolding of apoA-I, apoA-II, and serum amyloid A (SAA) causes systemic amyloidoses, apoE4 is a critical risk factor in Alzheimer's disease, and apolipoprotein misfolding is also implicated in cardiovascular disease. To explain why apolipoproteins are over-represented in amyloidoses, it was proposed that the amphipathic α-helices, which form the lipid surface-binding motif in this protein family, have high amyloid-forming propensity. Here, we use 12 sequence-based bioinformatics approaches to assess amyloid-forming potential of human apolipoproteins and to identify segments that are likely to initiate β-aggregation. Mapping such segments on the available atomic structures of apolipoproteins helps explain why some of them readily form amyloid while others do not. Our analysis shows that nearly all amyloidogenic segments: (i) are largely hydrophobic, (ii) are located in the lipid-binding amphipathic α-helices in the native structures of soluble apolipoproteins, (iii) are predicted in both native α-helices and β-sheets in the insoluble apoB, and (iv) are predicted to form parallel in-register β-sheet in amyloid. Most of these predictions have been verified experimentally for apoC-II, apoA-I, apoA-II and SAA. Surprisingly, the rank order of the amino acid sequence propensity to form amyloid (apoB>apoA-II>apoC-II≥apoA-I, apoC-III, SAA, apoC-I>apoA-IV, apoA-V, apoE) does not correlate with the proteins' involvement in amyloidosis. Rather, it correlates directly with the strength of the protein-lipid association, which increases with increasing protein hydrophobicity. Therefore, the lipid surface-binding function and the amyloid-forming propensity are both rooted in apolipoproteins' hydrophobicity, suggesting that functional constraints make it difficult to completely eliminate pathogenic apolipoprotein misfolding. We propose that apolipoproteins have evolved protective mechanisms against misfolding, such as the sequestration of the amyloidogenic segments via the native protein-lipid and protein-protein interactions involving amphipathic α-helices and, in case of apoB, β-sheets.
Collapse
|