1
|
Matsui S, Granitto M, Buckley M, Ludwig K, Koigi S, Shiley J, Zacharias WJ, Mayhew CN, Lim HW, Iwafuchi M. Pioneer and PRDM transcription factors coordinate bivalent epigenetic states to safeguard cell fate. Mol Cell 2024; 84:476-489.e10. [PMID: 38211589 PMCID: PMC10872272 DOI: 10.1016/j.molcel.2023.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/30/2023] [Accepted: 12/08/2023] [Indexed: 01/13/2024]
Abstract
Pioneer transcription factors (TFs) regulate cell fate by establishing transcriptionally primed and active states. However, cell fate control requires the coordination of both lineage-specific gene activation and repression of alternative-lineage programs, a process that is poorly understood. Here, we demonstrate that the pioneer TF FOXA coordinates with PRDM1 TF to recruit nucleosome remodeling and deacetylation (NuRD) complexes and Polycomb repressive complexes (PRCs), which establish highly occupied, accessible nucleosome conformation with bivalent epigenetic states, thereby preventing precocious and alternative-lineage gene expression during human endoderm differentiation. Similarly, the pioneer TF OCT4 coordinates with PRDM14 to form bivalent enhancers and repress cell differentiation programs in human pluripotent stem cells, suggesting that this may be a common and critical function of pioneer TFs. We propose that pioneer and PRDM TFs coordinate to safeguard cell fate through epigenetic repression mechanisms.
Collapse
Affiliation(s)
- Satoshi Matsui
- Division of Developmental Biology, Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Marissa Granitto
- Division of Developmental Biology, Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Morgan Buckley
- Division of Developmental Biology, Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Katie Ludwig
- Division of Developmental Biology, Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Sandra Koigi
- Division of Developmental Biology, Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Joseph Shiley
- Division of Developmental Biology, Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - William J Zacharias
- Division of Pulmonary Biology and Pulmonary and Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Christopher N Mayhew
- Division of Developmental Biology, Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Hee-Woong Lim
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| | - Makiko Iwafuchi
- Division of Developmental Biology, Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
2
|
Montibus B, Ragheb R, Diamanti E, Dunn SJ, Reynolds N, Hendrich B. The Nucleosome Remodelling and Deacetylation complex coordinates the transcriptional response to lineage commitment in pluripotent cells. Biol Open 2024; 13:bio060101. [PMID: 38149716 PMCID: PMC10836651 DOI: 10.1242/bio.060101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/18/2023] [Indexed: 12/28/2023] Open
Abstract
As cells exit the pluripotent state and begin to commit to a specific lineage they must activate genes appropriate for that lineage while silencing genes associated with pluripotency and preventing activation of lineage-inappropriate genes. The Nucleosome Remodelling and Deacetylation (NuRD) complex is essential for pluripotent cells to successfully undergo lineage commitment. NuRD controls nucleosome density at regulatory sequences to facilitate transcriptional responses, and also has been shown to prevent unscheduled transcription (transcriptional noise) in undifferentiated pluripotent cells. How these activities combine to ensure cells engage a gene expression program suitable for successful lineage commitment has not been determined. Here, we show that NuRD is not required to silence all genes. Rather, it restricts expression of genes primed for activation upon exit from the pluripotent state, but maintains them in a transcriptionally permissive state in self-renewing conditions, which facilitates their subsequent activation upon exit from naïve pluripotency. We further show that NuRD coordinates gene expression changes, which acts to maintain a barrier between different stable states. Thus NuRD-mediated chromatin remodelling serves multiple functions, including reducing transcriptional noise, priming genes for activation and coordinating the transcriptional response to facilitate lineage commitment.
Collapse
Affiliation(s)
- Bertille Montibus
- Wellcome – MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, United Kingdom
| | - Ramy Ragheb
- Wellcome – MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, United Kingdom
| | - Evangelia Diamanti
- Wellcome – MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
| | - Sara-Jane Dunn
- Microsoft Research, 21 Station Road, Cambridge CB1 2FB, UK
| | - Nicola Reynolds
- Wellcome – MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, United Kingdom
| | - Brian Hendrich
- Wellcome – MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QR, UK
| |
Collapse
|
3
|
Lackner A, Müller M, Gamperl M, Stoeva D, Langmann O, Papuchova H, Roitinger E, Dürnberger G, Imre R, Mechtler K, Latos PA. The Fgf/Erf/NCoR1/2 repressive axis controls trophoblast cell fate. Nat Commun 2023; 14:2559. [PMID: 37137875 DOI: 10.1038/s41467-023-38101-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/15/2023] [Indexed: 05/05/2023] Open
Abstract
Placental development relies on coordinated cell fate decisions governed by signalling inputs. However, little is known about how signalling cues are transformed into repressive mechanisms triggering lineage-specific transcriptional signatures. Here, we demonstrate that upon inhibition of the Fgf/Erk pathway in mouse trophoblast stem cells (TSCs), the Ets2 repressor factor (Erf) interacts with the Nuclear Receptor Co-Repressor Complex 1 and 2 (NCoR1/2) and recruits it to key trophoblast genes. Genetic ablation of Erf or Tbl1x (a component of the NCoR1/2 complex) abrogates the Erf/NCoR1/2 interaction. This leads to mis-expression of Erf/NCoR1/2 target genes, resulting in a TSC differentiation defect. Mechanistically, Erf regulates expression of these genes by recruiting the NCoR1/2 complex and decommissioning their H3K27ac-dependent enhancers. Our findings uncover how the Fgf/Erf/NCoR1/2 repressive axis governs cell fate and placental development, providing a paradigm for Fgf-mediated transcriptional control.
Collapse
Affiliation(s)
- Andreas Lackner
- Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090, Vienna, Austria
| | - Michael Müller
- Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090, Vienna, Austria
| | - Magdalena Gamperl
- Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090, Vienna, Austria
| | - Delyana Stoeva
- Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090, Vienna, Austria
| | - Olivia Langmann
- Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090, Vienna, Austria
| | - Henrieta Papuchova
- Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090, Vienna, Austria
| | | | | | - Richard Imre
- Institute of Molecular Pathology, A-1030, Vienna, Austria
| | - Karl Mechtler
- Institute of Molecular Pathology, A-1030, Vienna, Austria
| | - Paulina A Latos
- Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090, Vienna, Austria.
| |
Collapse
|
4
|
Oliviero G, Kovalchuk S, Rogowska-Wrzesinska A, Schwämmle V, Jensen ON. Distinct and diverse chromatin-proteomes of ageing mouse organs reveal protein signatures that correlate with physiological functions. eLife 2022; 11:73524. [PMID: 35259090 PMCID: PMC8933006 DOI: 10.7554/elife.73524] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Temporal molecular changes in ageing mammalian organs are of relevance to disease aetiology because many age-related diseases are linked to changes in the transcriptional and epigenetic machinery that regulate gene expression. We performed quantitative proteome analysis of chromatin-enriched protein extracts to investigate the dynamics of the chromatin proteomes of the mouse brain, heart, lung, kidney, liver, and spleen at 3, 5, 10, and 15 months of age. Each organ exhibited a distinct chromatin proteome and sets of unique proteins. The brain and spleen chromatin proteomes were the most extensive, diverse, and heterogenous among the six organs. The spleen chromatin proteome appeared static during the lifespan, presenting a young phenotype that reflects the permanent alertness state and important role of this organ in physiological defence and immunity. We identified a total of 5928 proteins, including 2472 nuclear or chromatin-associated proteins across the six mouse organs. Up to 3125 proteins were quantified in each organ, demonstrating distinct and organ-specific temporal protein expression timelines and regulation at the post-translational level. Bioinformatics meta-analysis of these chromatin proteomes revealed distinct physiological and ageing-related features for each organ. Our results demonstrate the efficiency of organelle-specific proteomics for in vivo studies of a model organism and consolidate the hypothesis that chromatin-associated proteins are involved in distinct and specific physiological functions in ageing organs.
Collapse
Affiliation(s)
- Giorgio Oliviero
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Sergey Kovalchuk
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | | - Veit Schwämmle
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Ole N Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
5
|
Abstract
Chromatin is highly dynamic, undergoing continuous global changes in its structure and type of histone and DNA modifications governed by processes such as transcription, repair, replication, and recombination. Members of the chromodomain helicase DNA-binding (CHD) family of enzymes are ATP-dependent chromatin remodelers that are intimately involved in the regulation of chromatin dynamics, altering nucleosomal structure and DNA accessibility. Genetic studies in yeast, fruit flies, zebrafish, and mice underscore essential roles of CHD enzymes in regulating cellular fate and identity, as well as proper embryonic development. With the advent of next-generation sequencing, evidence is emerging that these enzymes are subjected to frequent DNA copy number alterations or mutations and show aberrant expression in malignancies and other human diseases. As such, they might prove to be valuable biomarkers or targets for therapeutic intervention.
Collapse
Affiliation(s)
- Andrej Alendar
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam 1066CX, The Netherlands
| | - Anton Berns
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam 1066CX, The Netherlands
| |
Collapse
|
6
|
Breakers and amplifiers in chromatin circuitry: acetylation and ubiquitination control the heterochromatin machinery. Curr Opin Struct Biol 2021; 71:156-163. [PMID: 34303934 PMCID: PMC8667873 DOI: 10.1016/j.sbi.2021.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/06/2021] [Accepted: 06/13/2021] [Indexed: 11/30/2022]
Abstract
Eukaryotic genomes are segregated into active euchromatic and repressed heterochromatic compartments. Gene regulatory networks, chromosomal structures, and genome integrity rely on the timely and locus-specific establishment of active and silent states to protect the genome and provide the basis for cell division and specification of cellular identity. Here, we focus on the mechanisms and molecular machinery that establish heterochromatin in Schizosaccharomyces pombe and compare it with Saccharomyces cerevisiae and the mammalian polycomb system. We present recent structural and mechanistic evidence, which suggests that histone acetylation protects active transcription by disrupting the positive feedback loops used by the heterochromatin machinery and that H2A and H3 monoubiquitination actively drives heterochromatin, whereas H2B monoubiquitination mobilizes the defenses to quench heterochromatin. Heterochromatin-associated complexes are attracted and repelled by histone marks. Acetylation of specific lysine residues protects euchromatin from silencing. Methylation of histone H3 lysine 9 and 27 amplifies heterochromatin. Nucleosome ubiquitination licences and enforces feedback loops.
Collapse
|
7
|
Gil L, Niño SA, Capdeville G, Jiménez-Capdeville ME. Aging and Alzheimer's disease connection: Nuclear Tau and lamin A. Neurosci Lett 2021; 749:135741. [PMID: 33610669 DOI: 10.1016/j.neulet.2021.135741] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/12/2021] [Accepted: 02/11/2021] [Indexed: 12/24/2022]
Abstract
Age-related pathologies like Alzheimer`s disease (AD) imply cellular responses directed towards repairing DNA damage. Postmitotic neurons show progressive accumulation of oxidized DNA during decades of brain aging, which is especially remarkable in AD brains. The characteristic cytoskeletal pathology of AD neurons is brought about by the progressive changes that neurons undergo throughout aging, and their irreversible nuclear transformation initiates the disease. This review focusses on critical molecular events leading to the loss of plasticity that underlies cognitive deficits in AD. During healthy neuronal aging, nuclear Tau participates in the regulation of the structure and function of the chromatin. The aberrant cell cycle reentry initiated for DNA repair triggers a cascade of events leading to the dysfunctional AD neuron, whereby Tau protein exits the nucleus leading to chromatin disorganization. Lamin A, which is not typically expressed in neurons, appears at the transformation from senile to AD neurons and contributes to halting the consequences of cell cycle reentry and nuclear Tau exit, allowing the survival of the neuron. Nevertheless, this irreversible nuclear transformation alters the nucleic acid and protein synthesis machinery as well as the nuclear lamina and cytoskeleton structures, leading to neurofibrillary tangles formation and final neurodegeneration.
Collapse
Affiliation(s)
- Laura Gil
- Departamento de Genética, Escuela de Medicina, Universidad "Alfonso X el Sabio", Madrid, Spain
| | - Sandra A Niño
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Mexico
| | | | | |
Collapse
|
8
|
Farcas AM, Nagarajan S, Cosulich S, Carroll JS. Genome-Wide Estrogen Receptor Activity in Breast Cancer. Endocrinology 2021; 162:bqaa224. [PMID: 33284960 PMCID: PMC7787425 DOI: 10.1210/endocr/bqaa224] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Indexed: 12/13/2022]
Abstract
The largest subtype of breast cancer is characterized by the expression and activity of the estrogen receptor alpha (ERalpha/ER). Although several effective therapies have significantly improved survival, the adaptability of cancer cells means that patients frequently stop responding or develop resistance to endocrine treatment. ER does not function in isolation and multiple associating factors have been reported to play a role in regulating the estrogen-driven transcriptional program. This review focuses on the dynamic interplay between some of these factors which co-occupy ER-bound regulatory elements, their contribution to estrogen signaling, and their possible therapeutic applications. Furthermore, the review illustrates how some ER association partners can influence and reprogram the genomic distribution of the estrogen receptor. As this dynamic ER activity enables cancer cell adaptability and impacts the clinical outcome, defining how this plasticity is determined is fundamental to our understanding of the mechanisms of disease progression.
Collapse
Affiliation(s)
- Anca M Farcas
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, UK
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Sankari Nagarajan
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | | | - Jason S Carroll
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Trizzino M, Zucco A, Deliard S, Wang F, Barbieri E, Veglia F, Gabrilovich D, Gardini A. EGR1 is a gatekeeper of inflammatory enhancers in human macrophages. SCIENCE ADVANCES 2021; 7:7/3/eaaz8836. [PMID: 33523892 PMCID: PMC7806227 DOI: 10.1126/sciadv.aaz8836] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/20/2020] [Indexed: 05/20/2023]
Abstract
Monocytes and monocyte-derived macrophages originate through a multistep differentiation process. First, hematopoietic stem cells generate lineage-restricted progenitors that eventually develop into peripheral, postmitotic monocytes. Second, blood-circulating monocytes undergo differentiation into macrophages, which are specialized phagocytic cells capable of tissue infiltration. While monocytes mediate some level of inflammation and cell toxicity, macrophages boast the widest set of defense mechanisms against pathogens and elicit robust inflammatory responses. Here, we analyze the molecular determinants of monocytic and macrophagic commitment by profiling the EGR1 transcription factor. EGR1 is essential for monopoiesis and binds enhancers that regulate monocytic developmental genes such as CSF1R However, differentiating macrophages present a very different EGR1 binding pattern. We identify novel binding sites of EGR1 at a large set of inflammatory enhancers, even in the absence of its binding motif. We show that EGR1 repressive activity results in suppression of inflammatory genes and is mediated by the NuRD corepressor complex.
Collapse
Affiliation(s)
- Marco Trizzino
- The Wistar Institute, 3601 Spruce street, Philadelphia, PA 19104, USA
| | - Avery Zucco
- The Wistar Institute, 3601 Spruce street, Philadelphia, PA 19104, USA
| | - Sandra Deliard
- The Wistar Institute, 3601 Spruce street, Philadelphia, PA 19104, USA
| | - Fang Wang
- The Wistar Institute, 3601 Spruce street, Philadelphia, PA 19104, USA
| | - Elisa Barbieri
- The Wistar Institute, 3601 Spruce street, Philadelphia, PA 19104, USA
| | - Filippo Veglia
- The Wistar Institute, 3601 Spruce street, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
10
|
Differential regulation of lineage commitment in human and mouse primed pluripotent stem cells by the nucleosome remodelling and deacetylation complex. Stem Cell Res 2020; 46:101867. [PMID: 32535494 PMCID: PMC7347010 DOI: 10.1016/j.scr.2020.101867] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/04/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Abstract
Differentiation of mammalian pluripotent cells involves large-scale changes in transcription and, among the molecules that orchestrate these changes, chromatin remodellers are essential to initiate, establish and maintain a new gene regulatory network. The Nucleosome Remodelling and Deacetylation (NuRD) complex is a highly conserved chromatin remodeller which fine-tunes gene expression in embryonic stem cells. While the function of NuRD in mouse pluripotent cells has been well defined, no study yet has defined NuRD function in human pluripotent cells. Here we find that while NuRD activity is required for lineage commitment from primed pluripotency in both human and mouse cells, the nature of this requirement is surprisingly different. While mouse embryonic stem cells (mESC) and epiblast stem cells (mEpiSC) require NuRD to maintain an appropriate differentiation trajectory as judged by gene expression profiling, human induced pluripotent stem cells (hiPSC) lacking NuRD fail to even initiate these trajectories. Further, while NuRD activity is dispensable for self-renewal of mESCs and mEpiSCs, hiPSCs require NuRD to maintain a stable self-renewing state. These studies reveal that failure to properly fine-tune gene expression and/or to reduce transcriptional noise through the action of a highly conserved chromatin remodeller can have different consequences in human and mouse pluripotent stem cells.
Collapse
|
11
|
Abstract
Stomatal cell fate and patterning, which are regulated by key transcriptional factors and intercellular communications, are critical for plant growth and survival. The known regulators of stomatal development do not appear to have microRNAs (miRNAs) regulating them. Thus, it remains elusive as to whether and how miRNAs are involved in stomatal development. This study identifies stomatal lineage miRNAs including developmental stage-specific miRNAs. Genetic analysis shows that stomatal lineage miRNAs positively or negatively regulate stomatal formation and patterning. Moreover, biological processes modulated by stomatal lineage miRNAs reveal previously unknown regulatory pathways in stomatal development, indicating that miRNAs function as a critical element of stomatal development. These results provide a resource for guiding the study of stomatal development. Stomata in the plant epidermis play a critical role in growth and survival by controlling gas exchange, transpiration, and immunity to pathogens. Plants modulate stomatal cell fate and patterning through key transcriptional factors and signaling pathways. MicroRNAs (miRNAs) are known to contribute to developmental plasticity in multicellular organisms; however, no miRNAs appear to target the known regulators of stomatal development. It remains unclear as to whether miRNAs are involved in stomatal development. Here, we report highly dynamic, developmentally stage-specific miRNA expression profiles from stomatal lineage cells. We demonstrate that stomatal lineage miRNAs positively and negatively regulate stomatal formation and patterning to avoid clustered stomata. Target prediction of stomatal lineage miRNAs implicates potential cellular processes in stomatal development. We show that miR399-mediated PHO2 regulation, involved in phosphate homeostasis, contributes to the control of stomatal development. Our study demonstrates that miRNAs constitute a critical component in the regulatory mechanisms controlling stomatal development.
Collapse
|
12
|
Burgold T, Barber M, Kloet S, Cramard J, Gharbi S, Floyd R, Kinoshita M, Ralser M, Vermeulen M, Reynolds N, Dietmann S, Hendrich B. The Nucleosome Remodelling and Deacetylation complex suppresses transcriptional noise during lineage commitment. EMBO J 2019; 38:embj.2018100788. [PMID: 31036553 PMCID: PMC6576150 DOI: 10.15252/embj.2018100788] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 03/30/2019] [Accepted: 04/02/2019] [Indexed: 12/11/2022] Open
Abstract
Multiprotein chromatin remodelling complexes show remarkable conservation of function amongst metazoans, even though components present in invertebrates are often found as multiple paralogous proteins in vertebrate complexes. In some cases, these paralogues specify distinct biochemical and/or functional activities in vertebrate cells. Here, we set out to define the biochemical and functional diversity encoded by one such group of proteins within the mammalian Nucleosome Remodelling and Deacetylation (NuRD) complex: Mta1, Mta2 and Mta3. We find that, in contrast to what has been described in somatic cells, MTA proteins are not mutually exclusive within embryonic stem (ES) cell NuRD and, despite subtle differences in chromatin binding and biochemical interactions, serve largely redundant functions. ES cells lacking all three MTA proteins exhibit complete NuRD loss of function and are viable, allowing us to identify a previously unreported function for NuRD in reducing transcriptional noise, which is essential for maintaining a proper differentiation trajectory during early stages of lineage commitment.
Collapse
Affiliation(s)
- Thomas Burgold
- Wellcome- MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Michael Barber
- Wellcome- MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Susan Kloet
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University, Nijmegen, The Netherlands
| | - Julie Cramard
- Wellcome- MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Sarah Gharbi
- Wellcome- MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Robin Floyd
- Wellcome- MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Masaki Kinoshita
- Wellcome- MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Meryem Ralser
- Wellcome- MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University, Nijmegen, The Netherlands
| | - Nicola Reynolds
- Wellcome- MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Sabine Dietmann
- Wellcome- MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Brian Hendrich
- Wellcome- MRC Stem Cell Institute, University of Cambridge, Cambridge, UK .,Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
13
|
Cofre J, Saalfeld K, Abdelhay E. Cancer as an Embryological Phenomenon and Its Developmental Pathways: A Hypothesis regarding the Contribution of the Noncanonical Wnt Pathway. ScientificWorldJournal 2019; 2019:4714781. [PMID: 30940992 PMCID: PMC6421044 DOI: 10.1155/2019/4714781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 12/18/2018] [Accepted: 01/29/2019] [Indexed: 02/07/2023] Open
Abstract
For gastrulation to occur in human embryos, a mechanism that simultaneously regulates many different processes, such as cell differentiation, proliferation, migration, and invasion, is required to consistently and effectively create a human being during embryonic morphogenesis. The striking similarities in the processes of cancer and gastrulation have prompted speculation regarding the developmental pathways involved in their regulation. One of the fundamental requirements for the developmental pathways in gastrulation and cancer is the ability to respond to environmental stimuli, and it has been proposed that the Kaiso and noncanonical Wnt pathways participate in the mechanisms regulating these developmental pathways. In particular, these pathways might also explain the notable differences in invasive capacity between cancers of endodermal and mesodermal origins and cancers of ectodermal origin. Nevertheless, the available information indicates that cancer is an abnormal state of adult human cells in which developmental pathways are reactivated in inappropriate temporal and spatial contexts.
Collapse
Affiliation(s)
- Jaime Cofre
- Laboratório de Embriologia Molecular e Câncer, Universidade Federal de Santa Catarina, Sala 313b, 88040-900 Florianópolis, SC, Brazil
| | - Kay Saalfeld
- Laboratório de Filogenia Animal, Universidade Federal de Santa Catarina, Brazil
| | - Eliana Abdelhay
- Divisão de Laboratórios do CEMO, Instituto Nacional do Câncer, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Saudenova M, Wicky C. The Chromatin Remodeler LET-418/Mi2 is Required Cell Non-Autonomously for the Post-Embryonic Development of Caenorhabditis elegans. J Dev Biol 2018; 7:jdb7010001. [PMID: 30586943 PMCID: PMC6473691 DOI: 10.3390/jdb7010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 12/13/2022] Open
Abstract
Chromatin condition is crucial for the cells to respond to their environment. In C. elegans, post-embryonic development is accompanied by the exit of progenitor cells from quiescence in response to food. The chromatin protein LET-418/Mi2 is required for this transition in development indicating that proper chromatin structure in cells of the freshly hatched larvae is important to respond to food. However, the identity of the tissue or cells where LET-418/Mi2 is required, as well as the developmental signals that it is modulating have not been elucidated. By restoring the activity of LET-418/Mi2 in specific tissues, we demonstrate that its activity in the intestine and the hypodermis is able to promote in a cell non-autonomous manner the exit of blast cells from quiescence and further development. Furthermore, we identify the IIS (insulin/insulin-like growth factor signaling) pathway to be one of the signaling pathways that is conveying LET-418/Mi2 cell non-autonomous effect on development.
Collapse
Affiliation(s)
| | - Chantal Wicky
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland.
| |
Collapse
|
15
|
Bornelöv S, Reynolds N, Xenophontos M, Gharbi S, Johnstone E, Floyd R, Ralser M, Signolet J, Loos R, Dietmann S, Bertone P, Hendrich B. The Nucleosome Remodeling and Deacetylation Complex Modulates Chromatin Structure at Sites of Active Transcription to Fine-Tune Gene Expression. Mol Cell 2018; 71:56-72.e4. [PMID: 30008319 PMCID: PMC6039721 DOI: 10.1016/j.molcel.2018.06.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 03/20/2018] [Accepted: 05/31/2018] [Indexed: 01/03/2023]
Abstract
Chromatin remodeling complexes play essential roles in metazoan development through widespread control of gene expression, but the precise molecular mechanisms by which they do this in vivo remain ill defined. Using an inducible system with fine temporal resolution, we show that the nucleosome remodeling and deacetylation (NuRD) complex controls chromatin architecture and the protein binding repertoire at regulatory regions during cell state transitions. This is primarily exerted through its nucleosome remodeling activity while deacetylation at H3K27 follows changes in gene expression. Additionally, NuRD activity influences association of RNA polymerase II at transcription start sites and subsequent nascent transcript production, thereby guiding the establishment of lineage-appropriate transcriptional programs. These findings provide a detailed molecular picture of genome-wide modulation of lineage-specific transcription by an essential chromatin remodeling complex as well as insight into the orchestration of molecular events involved in transcriptional transitions in vivo. Video Abstract
NuRD increases nucleosome density, expelling TFs or inhibiting recruitment NuRD displaces RNA Pol II from TSSs, reducing nascent transcription Local gains in TF and Mediator occupancy can be indirect effects of NuRD activity Resetting protein binding at regulatory elements can promote or suppress transcription
Collapse
Affiliation(s)
- Susanne Bornelöv
- Wellcome-MRC Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Nicola Reynolds
- Wellcome-MRC Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Maria Xenophontos
- Wellcome-MRC Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK; European Bioinformatics Institute, European Molecular Biology Laboratory (EMBL), Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK
| | - Sarah Gharbi
- Wellcome-MRC Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Ewan Johnstone
- Wellcome-MRC Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK; European Bioinformatics Institute, European Molecular Biology Laboratory (EMBL), Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK
| | - Robin Floyd
- Wellcome-MRC Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Meryem Ralser
- Wellcome-MRC Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Jason Signolet
- Wellcome-MRC Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Remco Loos
- Wellcome-MRC Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK; European Bioinformatics Institute, European Molecular Biology Laboratory (EMBL), Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK
| | - Sabine Dietmann
- Wellcome-MRC Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Paul Bertone
- Wellcome-MRC Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK; European Bioinformatics Institute, European Molecular Biology Laboratory (EMBL), Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK.
| | - Brian Hendrich
- Wellcome-MRC Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.
| |
Collapse
|
16
|
Mohd-Sarip A, Teeuwssen M, Bot AG, De Herdt MJ, Willems SM, Baatenburg de Jong RJ, Looijenga LHJ, Zatreanu D, Bezstarosti K, van Riet J, Oole E, van Ijcken WFJ, van de Werken HJG, Demmers JA, Fodde R, Verrijzer CP. DOC1-Dependent Recruitment of NURD Reveals Antagonism with SWI/SNF during Epithelial-Mesenchymal Transition in Oral Cancer Cells. Cell Rep 2018; 20:61-75. [PMID: 28683324 DOI: 10.1016/j.celrep.2017.06.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 04/24/2017] [Accepted: 06/04/2017] [Indexed: 11/30/2022] Open
Abstract
The Nucleosome Remodeling and Deacetylase (NURD) complex is a key regulator of cell differentiation that has also been implicated in tumorigenesis. Loss of the NURD subunit Deleted in Oral Cancer 1 (DOC1) is associated with human oral squamous cell carcinomas (OSCCs). Here, we show that restoration of DOC1 expression in OSCC cells leads to a reversal of epithelial-mesenchymal transition (EMT). This is caused by the DOC1-dependent targeting of NURD to repress key transcriptional regulators of EMT. NURD recruitment drives extensive epigenetic reprogramming, including eviction of the SWI/SNF remodeler, formation of inaccessible chromatin, H3K27 deacetylation, and binding of PRC2 and KDM1A, followed by H3K27 methylation and H3K4 demethylation. Strikingly, depletion of SWI/SNF mimics the effects of DOC1 re-expression. Our results suggest that SWI/SNF and NURD function antagonistically to control chromatin state and transcription. We propose that disturbance of this dynamic equilibrium may lead to defects in gene expression that promote oncogenesis.
Collapse
Affiliation(s)
- Adone Mohd-Sarip
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, UK, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands; Department of Biochemistry, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands.
| | - Miriam Teeuwssen
- Department of Pathology, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Alice G Bot
- Department of Biochemistry, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Maria J De Herdt
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Stefan M Willems
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands
| | - Robert J Baatenburg de Jong
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Leendert H J Looijenga
- Department of Pathology, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Diana Zatreanu
- Department of Biochemistry, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Karel Bezstarosti
- Proteomics Centre, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Job van Riet
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands; Department of Urology, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Edwin Oole
- Center for Biomics, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Wilfred F J van Ijcken
- Center for Biomics, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Harmen J G van de Werken
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands; Department of Urology, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Jeroen A Demmers
- Proteomics Centre, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Riccardo Fodde
- Department of Pathology, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - C Peter Verrijzer
- Department of Biochemistry, Erasmus University Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands.
| |
Collapse
|
17
|
Malisetty VL, Penugurti V, Panta P, Chitta SK, Manavathi B. MTA1 expression in human cancers - Clinical and pharmacological significance. Biomed Pharmacother 2017; 95:956-964. [PMID: 28915537 DOI: 10.1016/j.biopha.2017.09.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 02/09/2023] Open
Abstract
Remarkably, majority of the cancer deaths are due to metastasis, not because of primary tumors. Metastasis is one of the important hallmarks of cancer. During metastasis invasion of primary tumor cells from the site of origin to a new organ occurs. Metastasis associated proteins (MTAs) are a small family of transcriptional coregulators that are closely associated with tumor metastasis. These proteins are integral components of nuclear remodeling and deacetylation complex (NuRD). By virtue of being integral components of NuRD, these proteins regulate the gene expression by altering the epigenetic changes such as acetylation and methylation on the target gene chromatin. Among the MTA proteins, MTA1 expression is very closely correlated with the aggressiveness of several cancers that includes breast, liver, colon, pancreas, prostate, blood, esophageal, gastro-intestinal etc. Considering its close association with aggressiveness in human cancers, MTA1 may be considered as a potential therapeutic target for cancer treatment. The recent developments in its crystal structure further strengthened the idea of developing small molecule inhibitors for MTA1. In this review, we discuss the recent trends on the diverse functions of MTA1 and its role in various cancers, with the focus to consider MTA1 as a 'druggable' target in the control of human cancers.
Collapse
Affiliation(s)
| | - Vasudevarao Penugurti
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Prashanth Panta
- Department of Oral Medicine and Radiology, MNR Dental College and Hospital, Sangareddy, Telangana, India
| | - Suresh Kumar Chitta
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapuramu, AP, India
| | - Bramanandam Manavathi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
18
|
Wijetunga NA, Pascual M, Tozour J, Delahaye F, Alani M, Adeyeye M, Wolkoff AW, Verma A, Greally JM. A pre-neoplastic epigenetic field defect in HCV-infected liver at transcription factor binding sites and polycomb targets. Oncogene 2017; 36:2030-2044. [PMID: 27721404 PMCID: PMC5383522 DOI: 10.1038/onc.2016.340] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 07/26/2016] [Accepted: 08/05/2016] [Indexed: 12/11/2022]
Abstract
The predisposition of patients with Hepatitis C virus (HCV) infection to hepatocellular carcinoma (HCC) involves components of viral infection, inflammation and time. The development of multifocal, genetically distinct tumours is suggestive of a field defect affecting the entire liver. The molecular susceptibility mediating such a field defect is not understood. One potential mediator of long-term cellular reprogramming is heritable (epigenetic) regulation of transcription, exemplified by DNA methylation. We studied epigenetic and transcriptional changes in HCV-infected livers in comparison with control, uninfected livers and HCC, allowing us to identify pre-neoplastic epigenetic and transcriptional events. We find the HCV-infected liver to have a pattern of acquisition of DNA methylation targeted to candidate enhancers active in liver cells, enriched for the binding sites of the FOXA1, FOXA2 and HNF4A transcription factors. These enhancers can be subdivided into those proximal to genes implicated in liver cancer or to genes involved in stem cell development, the latter distinguished by increased CG dinucleotide density and polycomb-mediated repression, manifested by the additional acquisition of histone H3 lysine 27 trimethylation (H3K27me3). Transcriptional studies on our samples showed that the increased DNA methylation at enhancers was associated with decreased local gene expression, results validated in independent samples from The Cancer Genome Atlas. Pharmacological depletion of H3K27me3 using the EZH2 inhibitor GSK343 in HepG2 cells suppressed cell growth and also revealed that local acquired DNA methylation was not dependent upon the presence of polycomb-mediated repression. The results support a model of HCV infection influencing the binding of transcription factors to cognate sites in the genome, with consequent local acquisition of DNA methylation, and the added repressive influence of polycomb at a subset of CG-dense cis-regulatory sequences. These epigenetic events occur before neoplastic transformation, resulting in what may be a pharmacologically reversible epigenetic field defect in HCV-infected liver.
Collapse
Affiliation(s)
- N A Wijetunga
- Department of Genetics and Center for Epigenomics, Bronx, NY, USA
| | - M Pascual
- Department of Genetics and Center for Epigenomics, Bronx, NY, USA
- Centro de Investigación Médica Aplicada (CIMA), IDISNA, Oncohematology Department, Pamplona, Spain
| | - J Tozour
- Department of Genetics and Center for Epigenomics, Bronx, NY, USA
| | - F Delahaye
- Department of Obstetrics, Gynecology and Women's Health, Bronx, NY, USA
| | - M Alani
- Department of Medicine (Division of Gastroenterology and Liver Diseases), Bronx, NY, USA
- Marion Bessin Liver Research Center, Bronx, NY, USA
| | - M Adeyeye
- Department of Genetics and Center for Epigenomics, Bronx, NY, USA
| | - A W Wolkoff
- Department of Medicine (Division of Gastroenterology and Liver Diseases), Bronx, NY, USA
- Marion Bessin Liver Research Center, Bronx, NY, USA
| | - A Verma
- Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY, USA
| | - J M Greally
- Department of Genetics and Center for Epigenomics, Bronx, NY, USA
- Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx NY 10461, USA. E-mail:
| |
Collapse
|
19
|
Birnbaum KD, Roudier F. Epigenetic memory and cell fate reprogramming in plants. ACTA ACUST UNITED AC 2017; 4:15-20. [PMID: 28316791 PMCID: PMC5350078 DOI: 10.1002/reg2.73] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 12/30/2022]
Abstract
Plants have a high intrinsic capacity to regenerate from adult tissues, with the ability to reprogram adult cell fates. In contrast, epigenetic mechanisms have the potential to stabilize cell identity and maintain tissue organization. The question is whether epigenetic memory creates a barrier to reprogramming that needs to be erased or circumvented in plant regeneration. Early evidence suggests that, while chromatin dynamics impact gene expression in the meristem, a lasting constraint on cell fate is not established until late stages of plant cell differentiation. It is not yet clear whether the plasticity of plant cells arises from the ability of cells to erase identity memory or to deploy cells that may exhibit cellular specialization but still lack an epigenetic restriction on cell fate alteration.
Collapse
Affiliation(s)
- Kenneth D Birnbaum
- Center for Genomics and Systems Biology New York University 12 Waverly Place, New York NY 10003 USA
| | - François Roudier
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS) UMR 8197 Institut National de la Santé et de la Recherche Médicale (INSERM) U1024 Ecole Normale Supérieure, 46 rue d'Ulm, 75230 Paris Cedex 05 France; Laboratoire de Reproduction et Développement des Plantes, Centre National de la Recherche Scientifique (CNRS) UMR 5667, Institut National de la Recherche Agronomique (INRA) UMR 879, Ecole Normale Supérieure de LyonUniversité Lyon 1 (UCBL) 46 Allée d'Italie, 69364 Lyon Cedex 07 France
| |
Collapse
|
20
|
Chenette EJ. The FEBS Journalpast … and present. FEBS J 2016; 283:4408-4411. [DOI: 10.1111/febs.13974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Affiliation(s)
- J David Sweatt
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
22
|
Miller A, Ralser M, Kloet SL, Loos R, Nishinakamura R, Bertone P, Vermeulen M, Hendrich B. Sall4 controls differentiation of pluripotent cells independently of the Nucleosome Remodelling and Deacetylation (NuRD) complex. Development 2016; 143:3074-84. [PMID: 27471257 PMCID: PMC5047675 DOI: 10.1242/dev.139113] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/18/2016] [Indexed: 12/19/2022]
Abstract
Sall4 is an essential transcription factor for early mammalian development and is frequently overexpressed in cancer. Although it is reported to play an important role in embryonic stem cell (ESC) self-renewal, whether it is an essential pluripotency factor has been disputed. Here, we show that Sall4 is dispensable for mouse ESC pluripotency. Sall4 is an enhancer-binding protein that prevents precocious activation of the neural gene expression programme in ESCs but is not required for maintenance of the pluripotency gene regulatory network. Although a proportion of Sall4 protein physically associates with the Nucleosome Remodelling and Deacetylase (NuRD) complex, Sall4 neither recruits NuRD to chromatin nor influences transcription via NuRD; rather, free Sall4 protein regulates transcription independently of NuRD. We propose a model whereby enhancer binding by Sall4 and other pluripotency-associated transcription factors is responsible for maintaining the balance between transcriptional programmes in pluripotent cells. Highlighted article: Sall4 and Sall1 inhibit neural differentiation in ESCs by acting at enhancer sequences independently of the NuRD complex, and are dispensable for the maintenance of pluripotency.
Collapse
Affiliation(s)
- Anzy Miller
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK Department of Biochemistry, University of Cambridge, Cambridge CB2 1QR, UK
| | - Meryem Ralser
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| | - Susan L Kloet
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6525 GA Nijmegen, The Netherlands
| | - Remco Loos
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK
| | - Ryuichi Nishinakamura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Paul Bertone
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6525 GA Nijmegen, The Netherlands
| | - Brian Hendrich
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK Department of Biochemistry, University of Cambridge, Cambridge CB2 1QR, UK
| |
Collapse
|
23
|
The Chromatin Remodeling Complex Chd4/NuRD Controls Striated Muscle Identity and Metabolic Homeostasis. Cell Metab 2016; 23:881-92. [PMID: 27166947 DOI: 10.1016/j.cmet.2016.04.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 02/19/2016] [Accepted: 04/13/2016] [Indexed: 01/01/2023]
Abstract
Heart muscle maintains blood circulation, while skeletal muscle powers skeletal movement. Despite having similar myofibrilar sarcomeric structures, these striated muscles differentially express specific sarcomere components to meet their distinct contractile requirements. The mechanism responsible is still unclear. We show here that preservation of the identity of the two striated muscle types depends on epigenetic repression of the alternate lineage gene program by the chromatin remodeling complex Chd4/NuRD. Loss of Chd4 in the heart triggers aberrant expression of the skeletal muscle program, causing severe cardiomyopathy and sudden death. Conversely, genetic depletion of Chd4 in skeletal muscle causes inappropriate expression of cardiac genes and myopathy. In both striated tissues, mitochondrial function was also dependent on the Chd4/NuRD complex. We conclude that an epigenetic mechanism controls cardiac and skeletal muscle structural and metabolic identities and that loss of this regulation leads to hybrid striated muscle tissues incompatible with life.
Collapse
|
24
|
Kour S, Rath PC. Long noncoding RNAs in aging and age-related diseases. Ageing Res Rev 2016; 26:1-21. [PMID: 26655093 DOI: 10.1016/j.arr.2015.12.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/08/2015] [Accepted: 12/01/2015] [Indexed: 12/14/2022]
Abstract
Aging is the universal, intrinsic, genetically-controlled, evolutionarily-conserved and time-dependent intricate biological process characterised by the cumulative decline in the physiological functions and their coordination in an organism after the attainment of adulthood resulting in the imbalance of neurological, immunological and metabolic functions of the body. Various biological processes and mechanisms along with altered levels of mRNAs and proteins have been reported to be involved in the progression of aging. It is one of the major risk factors in the patho-physiology of various diseases and disorders. Recently, the discovery of pervasive transcription of a vast pool of heterogeneous regulatory noncoding RNAs (ncRNAs), including small ncRNAs (sncRNAs) and long ncRNAs (lncRNAs), in the mammalian genome have provided an alternative way to study and explore the missing links in the aging process, its mechanism(s) and related diseases in a whole new dimension. The involvement of small noncoding RNAs in aging and age-related diseases have been extensively studied and recently reviewed. However, lncRNAs, whose function is far less explored in relation to aging, have emerged as a class of major regulators of genomic functions. Here, we have described some examples of known as well as novel lncRNAs that have been implicated in the progression of the aging process and age-related diseases. This may further stimulate research on noncoding RNAs and the aging process.
Collapse
Affiliation(s)
- Sukhleen Kour
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pramod C Rath
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
25
|
Wang W, Qin JJ, Voruganti S, Nag S, Zhou J, Zhang R. Polycomb Group (PcG) Proteins and Human Cancers: Multifaceted Functions and Therapeutic Implications. Med Res Rev 2015; 35:1220-67. [PMID: 26227500 DOI: 10.1002/med.21358] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Polycomb group (PcG) proteins are transcriptional repressors that regulate several crucial developmental and physiological processes in the cell. More recently, they have been found to play important roles in human carcinogenesis and cancer development and progression. The deregulation and dysfunction of PcG proteins often lead to blocking or inappropriate activation of developmental pathways, enhancing cellular proliferation, inhibiting apoptosis, and increasing the cancer stem cell population. Genetic and molecular investigations of PcG proteins have long been focused on their PcG functions. However, PcG proteins have recently been shown to exert non-classical-Pc-functions, contributing to the regulation of diverse cellular functions. We and others have demonstrated that PcG proteins regulate the expression and function of several oncogenes and tumor suppressor genes in a PcG-independent manner, and PcG proteins are associated with the survival of patients with cancer. In this review, we summarize the recent advances in the research on PcG proteins, including both the Pc-repressive and non-classical-Pc-functions. We specifically focus on the mechanisms by which PcG proteins play roles in cancer initiation, development, and progression. Finally, we discuss the potential value of PcG proteins as molecular biomarkers for the diagnosis and prognosis of cancer, and as molecular targets for cancer therapy.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106.,Center for Cancer Biology and Therapy, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106
| | - Jiang-Jiang Qin
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106
| | - Sukesh Voruganti
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106
| | - Subhasree Nag
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106
| | - Jianwei Zhou
- Department of Molecular Cell Biology and Toxicology, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Ruiwen Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106.,Center for Cancer Biology and Therapy, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106
| |
Collapse
|
26
|
van Kruijsbergen I, Hontelez S, Veenstra GJC. Recruiting polycomb to chromatin. Int J Biochem Cell Biol 2015; 67:177-87. [PMID: 25982201 DOI: 10.1016/j.biocel.2015.05.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/04/2015] [Accepted: 05/05/2015] [Indexed: 10/23/2022]
Abstract
Polycomb group (PcG) proteins are key regulators in establishing a transcriptional repressive state. Polycomb Repressive Complex 2 (PRC2), one of the two major PcG protein complexes, is essential for proper differentiation and maintenance of cellular identity. Multiple factors are involved in recruiting PRC2 to its genomic targets. In this review, we will discuss the role of DNA sequence, transcription factors, pre-existing histone modifications, and RNA in guiding PRC2 towards specific genomic loci. The DNA sequence itself influences the DNA methylation state, which is an important determinant of PRC2 recruitment. Other histone modifications are also important for PRC2 binding as PRC2 can respond to different cellular states via crosstalk between histone modifications. Additionally, PRC2 might be able to sense the transcriptional status of genes by binding to nascent RNA, which could also guide the complex to chromatin. In this review, we will discuss how all these molecular aspects define a local chromatin state which controls accurate, cell-type-specific epigenetic silencing by PRC2. This article is part of a Directed Issue entitled: Epigenetics dynamics in development and disease.
Collapse
Affiliation(s)
- Ila van Kruijsbergen
- Radboud University Nijmegen, Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Nijmegen 6500 HB, The Netherlands
| | - Saartje Hontelez
- Radboud University Nijmegen, Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Nijmegen 6500 HB, The Netherlands
| | - Gert Jan C Veenstra
- Radboud University Nijmegen, Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Nijmegen 6500 HB, The Netherlands.
| |
Collapse
|
27
|
Knock E, Pereira J, Lombard PD, Dimond A, Leaford D, Livesey FJ, Hendrich B. The methyl binding domain 3/nucleosome remodelling and deacetylase complex regulates neural cell fate determination and terminal differentiation in the cerebral cortex. Neural Dev 2015; 10:13. [PMID: 25934499 PMCID: PMC4432814 DOI: 10.1186/s13064-015-0040-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/17/2015] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Chromatin-modifying complexes have key roles in regulating various aspects of neural stem cell biology, including self-renewal and neurogenesis. The methyl binding domain 3/nucleosome remodelling and deacetylation (MBD3/NuRD) co-repressor complex facilitates lineage commitment of pluripotent cells in early mouse embryos and is important for stem cell homeostasis in blood and skin, but its function in neurogenesis had not been described. Here, we show for the first time that MBD3/NuRD function is essential for normal neurogenesis in mice. RESULTS Deletion of MBD3, a structural component of the NuRD complex, in the developing mouse central nervous system resulted in reduced cortical thickness, defects in the proper specification of cortical projection neuron subtypes and neonatal lethality. These phenotypes are due to alterations in PAX6+ apical progenitor cell outputs, as well as aberrant terminal neuronal differentiation programmes of cortical plate neurons. Normal numbers of PAX6+ apical neural progenitor cells were generated in the MBD3/NuRD-mutant cortex; however, the PAX6+ apical progenitor cells generate EOMES+ basal progenitor cells in reduced numbers. Cortical progenitor cells lacking MBD3/NuRD activity generate neurons that express both deep- and upper-layer markers. Using laser capture microdissection, gene expression profiling and chromatin immunoprecipitation, we provide evidence that MBD3/NuRD functions to control gene expression patterns during neural development. CONCLUSIONS Our data suggest that although MBD3/NuRD is not required for neural stem cell lineage commitment, it is required to repress inappropriate transcription in both progenitor cells and neurons to facilitate appropriate cell lineage choice and differentiation programmes.
Collapse
Affiliation(s)
- Erin Knock
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, CB2 1QR, UK.
- Tanz Centre for Research in Neurodegenerative Diseases, Krembil Discovery Tower, 6KD-404, 60 Leonard Avenue, Toronto, ON, Canada.
| | - João Pereira
- Gurdon Institute, University of Cambridge, Cambridge, CB2 1QW, UK.
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QN, UK.
| | - Patrick D Lombard
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, CB2 1QR, UK.
| | - Andrew Dimond
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QN, UK.
| | - Donna Leaford
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, CB2 1QR, UK.
| | - Frederick J Livesey
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, CB2 1QR, UK.
- Gurdon Institute, University of Cambridge, Cambridge, CB2 1QW, UK.
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QN, UK.
| | - Brian Hendrich
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, CB2 1QR, UK.
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QN, UK.
| |
Collapse
|
28
|
Muñoz-Cánoves P, Di Croce L. Special issue: epigenetics: introduction. FEBS J 2015; 282:1569-70. [PMID: 25828932 DOI: 10.1111/febs.13281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 03/25/2015] [Indexed: 12/17/2022]
Abstract
Epigenetic studies focus on changes in genetic information that rely on histone modification, which complements information encoded by the DNA sequence. Research in this rapidly expanding field has greatly contributed to a better understanding of processes such as gene regulation, chromatin structure, and cell differentiation and disease. The most recent advances in this area are reviewed in the collection of papers included in this Special Issue.
Collapse
Affiliation(s)
- Pura Muñoz-Cánoves
- Department of Experimental and Health Sciences, Pompeu Fabra University, CIBER on Neurodegenerative Diseases, Barcelona, Spain; Institucio Catalana de Recerca i Estudis Avancçats, Barcelona, Spain.
| | | |
Collapse
|