1
|
Wu JW, Wang BX, Shen LP, Chen YL, Du ZY, Du SQ, Lu XJ, Zhao XD. Investigating the Potential Therapeutic Targeting of the JAK-STAT Pathway in Cerebrovascular Diseases: Opportunities and Challenges. Mol Neurobiol 2025:10.1007/s12035-025-04834-4. [PMID: 40102347 DOI: 10.1007/s12035-025-04834-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 03/09/2025] [Indexed: 03/20/2025]
Abstract
Cerebrovascular disease (CVD) is a significant neurological condition resulting from pathological changes in the brain's blood supply and is currently the leading cause of death and disability worldwide. The progression of CVD is closely associated with endothelial damage, plaque formation, and thrombosis, driven by long-term alterations in vascular endothelial cells, smooth muscle cells, microglia, and other immune-inflammatory cells. Among the key molecular pathways involved, the Janus kinase/signal transducer and activator of transcription (JAK-STAT) signaling pathway plays a central role. Dysregulation of the JAK-STAT pathway is implicated in the pathogenesis of CVD by influencing the aforementioned cell types and associated pathological processes. Importantly, the role of the JAK-STAT pathway varies across different types of CVD and throughout different stages of disease progression (e.g., pre-morbid, acute, and chronic phases). This review examines the composition, activation, and regulation of the JAK-STAT pathway and summarizes recent findings on its involvement in CVD. We discuss the distinct roles of JAK-STAT signaling in various CVD conditions, the potential reasons for these differences, and explore the clinical translational prospects and technical challenges of targeting the JAK-STAT pathway for therapeutic intervention in CVD.
Collapse
Affiliation(s)
- Jia-Wei Wu
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, 214002, Jiangsu Province, China
- Wuxi Neurosurgical Institute, Wuxi, 214002, Jiangsu Province, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Bing-Xin Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Li-Ping Shen
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, 214002, Jiangsu Province, China
- Wuxi Neurosurgical Institute, Wuxi, 214002, Jiangsu Province, China
| | - Yong-Lin Chen
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, 214002, Jiangsu Province, China
- Wuxi Neurosurgical Institute, Wuxi, 214002, Jiangsu Province, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Zhi-Yong Du
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, 214002, Jiangsu Province, China
- Wuxi Neurosurgical Institute, Wuxi, 214002, Jiangsu Province, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Shi-Qing Du
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, 214002, Jiangsu Province, China
- Wuxi Neurosurgical Institute, Wuxi, 214002, Jiangsu Province, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Xiao-Jie Lu
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, 214002, Jiangsu Province, China.
- Wuxi Neurosurgical Institute, Wuxi, 214002, Jiangsu Province, China.
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, China.
| | - Xu-Dong Zhao
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, 214002, Jiangsu Province, China.
- Wuxi Neurosurgical Institute, Wuxi, 214002, Jiangsu Province, China.
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|
2
|
Tuncbilek Z, Cakmak NK, Tas A, Ayan D, Silig Y. PEGylated Titanium Dioxide Nanoparticle-bound Doxorubicin and Paclitaxel Drugs Affect Prostate Cancer Cells and Alter the Expression of DUSP Family Genes. Anticancer Agents Med Chem 2025; 25:257-271. [PMID: 39473102 DOI: 10.2174/0118715206330115241015092548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/24/2024] [Accepted: 09/09/2024] [Indexed: 03/25/2025]
Abstract
BACKGROUND Prostate cancer (PC) is among the cancer types with high incidence and mortality. New and effective strategies are being sought for the treatment of deadly cancers, such as PC. In this context, the use of nanocarrier systems containing titanium dioxide (TiO2) can improve treatment outcomes and increase the effectiveness of anticancer drugs. OBJECTIVE This study aimed to evaluate the cytotoxic activity of doxorubicin (DOX) and paclitaxel (PTX) drugs on the PC cell line by attaching them to PEGylated TiO2 nanoparticles and to examine their effect on the expression levels of dual-specificity phosphatase (DUSP) genes. METHODS Free DOX and PTX drugs, DOX and PTX compounds bound to the pegylated TiO2 system were applied to DU-145 cells, a PC cell line, under in vitro conditions, and MTT analysis was performed. Additionally, the IC50 values of these compounds were analyzed. In addition, the expression levels of DUSP1, DUSP2, DUSP4, DUSP6, and DUSP10 genes were measured using RT-PCR. Additionally, bioinformatics and molecular docking analyses were performed on DUSP proteins. RESULTS The cytotoxic activity of PTX compound bound to PEGylated TiO2 was found to be higher than that of DOX compound bound to PEGylated TiO2. Additionally, when the expression levels were compared to the control group, the expression levels of DUSPs were found to be lower in the drugs of the drug carrier systems. CONCLUSION Accordingly, it was predicted that the PEGylated TiO2 nano-based carrier could be effective in PC.
Collapse
Affiliation(s)
- Zuhal Tuncbilek
- Department of Chemistry and Chemical Technologies, Yildizeli Vocational School, Sivas Cumhuriyet University, Sivas, 58500, Türkiye
| | - Nese Keklikcioglu Cakmak
- Department of Chemical Engineering, Faculty of Engineering, Sivas Cumhuriyet University, Sivas, 58140, Türkiye
| | - Ayca Tas
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Sivas Cumhuriyet University, Sivas, 58140, Türkiye
| | - Durmus Ayan
- Department of Medical Biochemistry, Faculty of Medicine, Nigde Omer Halisdemir University, Niğde, 51240, Türkiye
| | - Yavuz Silig
- Department of Medical Biochemistry, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, 58140, Türkiye
| |
Collapse
|
3
|
Jin Y, Tan M, Yin Y, Lin C, Zhao Y, Zhang J, Jiang T, Li H, He M. Oroxylin A alleviates myocardial ischemia-reperfusion injury by quelling ferroptosis via activating the DUSP10/MAPK-Nrf2 pathway. Phytother Res 2024; 38:5290-5308. [PMID: 39225191 DOI: 10.1002/ptr.8315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/30/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Reperfusion therapy is the primary treatment strategy for acute myocardial infarction (AMI). Paradoxically, it can lead to myocardial damage, namely myocardial ischemia/reperfusion injury (MIRI). This study explored whether oroxylin A (OA) protects the myocardium after MIRI by inhibiting ferroptosis and the underlying mechanism. In vivo, we established an MIRI model to investigate the protective effect of OA. In vitro, H9C2 cells were used to explore the regulation of ferroptosis by OA through immunofluorescence staining, western blotting, assay kits, etc. Additionally, RNA sequencing analysis (RNA-seq) and network pharmacology analyses were conducted to elucidate the molecular mechanisms. Our results showed that MIRI caused cardiac structural and functional damage in rats. MIRI promoted ferroptosis, which was consistently observed in vitro. However, pretreatment with OA reversed these effects. The mitogen-activated protein kinases (MAPK) signaling pathway participated in the MIRI process, with dual-specificity phosphatase 10 (DUSP10) found to regulate it. Further confirmation was provided by knocking down DUSP10 using small interfering RNA (siRNA), demonstrating the activation of the DUSP10/MAPK-Nrf2 pathway by OA to protect H9C2 cells from ferroptosis. Our research has demonstrated the mitigating effect of OA on MIRI and the improvement of myocardial function for the first time. The inhibition of ferroptosis has been identified as one of the mechanisms through which OA exerts its myocardial protective effects. Moreover, we have first unveiled that DUSP10 serves as an upstream target involved in mediating ferroptosis, and the regulation of the DUSP10/MAPK-Nrf2 pathway by OA is crucial in inhibiting ferroptosis to protect the myocardium.
Collapse
Affiliation(s)
- Yifeng Jin
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P. R. China
- Department of General Practice, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P. R. China
| | - Mingyue Tan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P. R. China
- Department of Geriatrics, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, P. R. China
| | - Yunfei Yin
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P. R. China
| | - Chen Lin
- Jinjihu Business District Squadron, Suzhou Industrial Park Food and Drug Safety Inspection Team, Suzhou, Jiangsu, P. R. China
| | - Yongjian Zhao
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P. R. China
| | - Jun Zhang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P. R. China
| | - Tingbo Jiang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P. R. China
| | - Hongxia Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P. R. China
| | - Mingqing He
- Department of Gerontology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P. R. China
| |
Collapse
|
4
|
Provost JJ, Cornely KA, Mertz PS, Peterson CN, Riley SG, Tarbox HJ, Narasimhan SR, Pulido AJ, Springer AL. Phosphorylation of mammalian cytosolic and mitochondrial malate dehydrogenase: insights into regulation. Essays Biochem 2024; 68:183-198. [PMID: 38864157 DOI: 10.1042/ebc20230079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/13/2024]
Abstract
Malate dehydrogenase (MDH) is a key enzyme in mammalian metabolic pathways in cytosolic and mitochondrial compartments. Regulation of MDH through phosphorylation remains an underexplored area. In this review we consolidate evidence supporting the potential role of phosphorylation in modulating the function of mammalian MDH. Parallels are drawn with the phosphorylation of lactate dehydrogenase, a homologous enzyme, to reveal its regulatory significance and to suggest a similar regulatory strategy for MDH. Comprehensive mining of phosphorylation databases, provides substantial experimental (primarily mass spectrometry) evidence of MDH phosphorylation in mammalian cells. Experimentally identified phosphorylation sites are overlaid with MDH's functional domains, offering perspective on how these modifications could influence enzyme activity. Preliminary results are presented from phosphomimetic mutations (serine/threonine residues changed to aspartate) generated in recombinant MDH proteins serving as a proof of concept for the regulatory impact of phosphorylation. We also examine and highlight several approaches to probe the structural and cellular impact of phosphorylation. This review highlights the need to explore the dynamic nature of MDH phosphorylation and calls for identifying the responsible kinases and the physiological conditions underpinning this modification. The synthesis of current evidence and experimental data aims to provide insights for future research on understanding MDH regulation, offering new avenues for therapeutic interventions in metabolic disorders and cancer.
Collapse
Affiliation(s)
- Joseph J Provost
- Department of Chemistry and Biochemistry, University of San Diego, San Diego CA, U.S.A
| | - Kathleen A Cornely
- Department of Chemistry and Biochemistry, Providence College, Providence RI, U.S.A
| | - Pamela S Mertz
- Department of Chemistry and Biochemistry, St. Mary's College of Maryland, St. Mary's City, MD, U.S.A
| | | | - Sophie G Riley
- Department of Chemistry and Biochemistry, University of San Diego, San Diego CA, U.S.A
| | - Harrison J Tarbox
- Department of Chemistry and Biochemistry, University of San Diego, San Diego CA, U.S.A
| | - Shree R Narasimhan
- Department of Chemistry and Biochemistry, University of San Diego, San Diego CA, U.S.A
| | - Andrew J Pulido
- Department of Chemistry and Biochemistry, University of San Diego, San Diego CA, U.S.A
| | - Amy L Springer
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, U.S.A
| |
Collapse
|
5
|
Hayashi T, Sadaki S, Tsuji R, Okada R, Fuseya S, Kanai M, Nakamura A, Okamura Y, Muratani M, Wenchao G, Sugasawa T, Mizuno S, Warabi E, Kudo T, Takahashi S, Fujita R. Dual-specificity phosphatases 13 and 27 as key switches in muscle stem cell transition from proliferation to differentiation. Stem Cells 2024; 42:830-847. [PMID: 38975693 PMCID: PMC11384902 DOI: 10.1093/stmcls/sxae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024]
Abstract
Muscle regeneration depends on muscle stem cell (MuSC) activity. Myogenic regulatory factors, including myoblast determination protein 1 (MyoD), regulate the fate transition of MuSCs. However, the direct target of MYOD in the process is not completely clear. Using previously established MyoD knock-in (MyoD-KI) mice, we revealed that MyoD targets dual-specificity phosphatase (Dusp) 13 and Dusp27. In Dusp13:Dusp27 double knock-out mice, the ability for muscle regeneration after injury was reduced. Moreover, single-cell RNA sequencing of MyoD-high expressing MuSCs from MyoD-KI mice revealed that Dusp13 and Dusp27 are expressed only in specific populations within MyoD-high MuSCs, which also express Myogenin. Overexpressing Dusp13 in MuSCs causes premature muscle differentiation. Thus, we propose a model where DUSP13 and DUSP27 contribute to the fate transition of MuSCs from proliferation to differentiation during myogenesis.
Collapse
Affiliation(s)
- Takuto Hayashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Shunya Sadaki
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
- PhD Program in Humanics, School of Integrative and Global Majors, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Ryosuke Tsuji
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
- PhD Program in Humanics, School of Integrative and Global Majors, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Risa Okada
- JEM Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Ibaraki 305-8505, Japan
| | - Sayaka Fuseya
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8565, Japan
| | - Maho Kanai
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Ayano Nakamura
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Yui Okamura
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Masafumi Muratani
- Department of Genome Biology, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Gu Wenchao
- Department of Diagnostic and Interventional Radiology, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Takehito Sugasawa
- Laboratory of Clinical Examination and Sports Medicine, Department of Clinical Medicine, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Laboratory Animal Science, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Eiji Warabi
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Takashi Kudo
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Ryo Fujita
- Division of Regenerative Medicine, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
6
|
Coronell-Tovar A, Pardo JP, Rodríguez-Romero A, Sosa-Peinado A, Vásquez-Bochm L, Cano-Sánchez P, Álvarez-Añorve LI, González-Andrade M. Protein tyrosine phosphatase 1B (PTP1B) function, structure, and inhibition strategies to develop antidiabetic drugs. FEBS Lett 2024; 598:1811-1838. [PMID: 38724486 DOI: 10.1002/1873-3468.14901] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 08/13/2024]
Abstract
Tyrosine protein phosphatase non-receptor type 1 (PTP1B; also known as protein tyrosine phosphatase 1B) is a member of the protein tyrosine phosphatase (PTP) family and is a soluble enzyme that plays an essential role in different physiological processes, including the regulation of metabolism, specifically in insulin and leptin sensitivity. PTP1B is crucial in the pathogenesis of type 2 diabetes mellitus and obesity. These biological functions have made PTP1B validated as an antidiabetic and anti-obesity, and potentially anticancer, molecular target. Four main approaches aim to inhibit PTP1B: orthosteric, allosteric, bidentate inhibition, and PTPN1 gene silencing. Developing a potent and selective PTP1B inhibitor is still challenging due to the enzyme's ubiquitous expression, subcellular location, and structural properties. This article reviews the main advances in the study of PTP1B since it was first isolated in 1988, as well as recent contextual information related to the PTP family to which this protein belongs. Furthermore, we offer an overview of the role of PTP1B in diabetes and obesity, and the challenges to developing selective, effective, potent, bioavailable, and cell-permeable compounds that can inhibit the enzyme.
Collapse
Affiliation(s)
- Andrea Coronell-Tovar
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Juan P Pardo
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Alejandro Sosa-Peinado
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Luz Vásquez-Bochm
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Patricia Cano-Sánchez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Laura Iliana Álvarez-Añorve
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Martin González-Andrade
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
7
|
Wang A, Zhang Y, Lv X, Liang G. Therapeutic potential of targeting protein tyrosine phosphatases in liver diseases. Acta Pharm Sin B 2024; 14:3295-3311. [PMID: 39220870 PMCID: PMC11365412 DOI: 10.1016/j.apsb.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 09/04/2024] Open
Abstract
Protein tyrosine phosphorylation is a post-translational modification that regulates protein structure to modulate demic organisms' homeostasis and function. This physiological process is regulated by two enzyme families, protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). As an important regulator of protein function, PTPs are indispensable for maintaining cell intrinsic physiology in different systems, as well as liver physiological and pathological processes. Dysregulation of PTPs has been implicated in multiple liver-related diseases, including chronic liver diseases (CLDs), hepatocellular carcinoma (HCC), and liver injury, and several PTPs are being studied as drug therapeutic targets. Therefore, given the regulatory role of PTPs in diverse liver diseases, a collated review of their function and mechanism is necessary. Moreover, based on the current research status of targeted therapy, we emphasize the inclusion of several PTP members that are clinically significant in the development and progression of liver diseases. As an emerging breakthrough direction in the treatment of liver diseases, this review summarizes the research status of PTP-targeting compounds in liver diseases to illustrate their potential in clinical treatment. Overall, this review aims to support the development of novel PTP-based treatment pathways for liver diseases.
Collapse
Affiliation(s)
- Ao Wang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
| | - Yi Zhang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Xinting Lv
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Guang Liang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
8
|
Li J, Zhan X. Mass spectrometry analysis of phosphotyrosine-containing proteins. MASS SPECTROMETRY REVIEWS 2024; 43:857-887. [PMID: 36789499 DOI: 10.1002/mas.21836] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 12/19/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Tyrosine phosphorylation is a crucial posttranslational modification that is involved in various aspects of cell biology and often has functions in cancers. It is necessary not only to identify the specific phosphorylation sites but also to quantify their phosphorylation levels under specific pathophysiological conditions. Because of its high sensitivity and accuracy, mass spectrometry (MS) has been widely used to identify endogenous and synthetic phosphotyrosine proteins/peptides across a range of biological systems. However, phosphotyrosine-containing proteins occur in extremely low abundance and they degrade easily, severely challenging the application of MS. This review highlights the advances in both quantitative analysis procedures and enrichment approaches to tyrosine phosphorylation before MS analysis and reviews the differences among phosphorylation, sulfation, and nitration of tyrosine residues in proteins. In-depth insights into tyrosine phosphorylation in a wide variety of biological systems will offer a deep understanding of how signal transduction regulates cellular physiology and the development of tyrosine phosphorylation-related drugs as cancer therapeutics.
Collapse
Affiliation(s)
- Jiajia Li
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, Jinan, People's Republic of China
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Central South University, Changsha, Hunan, People's Republic of China
| | - Xianquan Zhan
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, Jinan, People's Republic of China
| |
Collapse
|
9
|
Taki S, Boron WF, Moss FJ. Novel RPTPγ and RPTPζ splice variants from mixed neuron-astrocyte hippocampal cultures as well as from the hippocampi of newborn and adult mice. Front Physiol 2024; 15:1406448. [PMID: 38952869 PMCID: PMC11215419 DOI: 10.3389/fphys.2024.1406448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/06/2024] [Indexed: 07/03/2024] Open
Abstract
Receptor protein tyrosine phosphatases γ and ζ (RPTPγ and RPTPζ) are transmembrane signaling proteins with extracellular carbonic anhydrase-like domains that play vital roles in the development and functioning of the central nervous system (CNS) and are implicated in tumor suppression, neurodegeneration, and sensing of extracellular [CO2] and [HCO3 -]. RPTPγ expresses throughout the body, whereas RPTPζ preferentially expresses in the CNS. Here, we investigate differential RPTPγ-RPTPζ expression in three sources derived from a wild-type laboratory strain of C57BL/6 mice: (a) mixed neuron-astrocyte hippocampal (HC) cultures 14 days post isolation from P0-P2 pups; (b) P0-P2 pup hippocampi; and (c) 9- to 12-week-old adult hippocampi. Regarding RPTPγ, we detect the Ptprg variant-1 (V1) transcript, representing canonical exons 1-30. Moreover, we newly validate the hypothetical assembly [XM_006517956] (propose name, Ptprg-V3), which lacks exon 14. Both transcripts are in all three HC sources. Regarding RPTPζ, we confirm the expression of Ptprz1-V1, detecting it in pups and adults but not in cultures, and Ptprz1-V3 through Ptprz1-V7 in all three preparations. We newly validate hypothetical assemblies Ptprz1-X1 (in cultures and pups), Ptprz1-X2 (in all three), and Ptprz1-X5 (in pups and adults) and propose to re-designate them as Ptprz1-V0, Ptprz1-V2, and Ptprz1-V8, respectively. The diversity of RPTPγ and RPTPζ splice variants likely corresponds to distinct signaling functions, in different cellular compartments, during development vs later life. In contrast to previous studies that report divergent RPTPγ and RPTPζ protein expressions in neurons and sometimes in the glia, we observe that RPTPγ and RPTPζ co-express in the somata and processes of almost all HC neurons but not in astrocytes, in all three HC preparations.
Collapse
Affiliation(s)
- Sara Taki
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Walter F. Boron
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Fraser J. Moss
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
10
|
Kelam LM, Chhabra V, Dhiman S, Kumari D, Sobhia ME. Protein tyrosine phosphatase inhibitors: a patent review and update (2012-2023). Expert Opin Ther Pat 2024; 34:187-209. [PMID: 38920057 DOI: 10.1080/13543776.2024.2362203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024]
Abstract
INTRODUCTION Protein tyrosine phosphatases (PTPs), essential and evolutionarily highly conserved enzymes, govern cellular functions by modulating tyrosine phosphorylation, a pivotal post-translational modification for signal transduction. The recent strides in phosphatase drug discovery, leading to the identification of selective modulators for enzymes, restoring interest in the therapeutic targeting of protein phosphatases. AREAS COVERED The compilation of patents up to the year 2023 focuses on the efficacy of various classes of Tyrosine phosphatases and their inhibitors, detailing their chemical structure and biochemical characteristics. These findings have broad implications, as they can be applied to treating diverse conditions like cancer, diabetes, autoimmune disorders, and neurological diseases. The search for scientific articles and patent literature was conducted using well known different platforms to gather information up to 2023. EXPERT OPINION The latest improvements in protein tyrosine phosphatase (PTP) research include the discovery of new inhibitors targeting specific PTP enzymes, with a focus on developing allosteric site covalent inhibitors for enhanced efficacy and specificity. These advancements have not only opened up new possibilities for therapeutic interventions in various disease conditions but also hold the potential for innovative treatments. PTPs offer promising avenues for drug discovery efforts and innovative treatments across a spectrum of health conditions.
Collapse
Affiliation(s)
- Lakshmi Mounika Kelam
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, India
| | - Vaishnavi Chhabra
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, India
| | - Sarika Dhiman
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, India
| | - Deevena Kumari
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, India
| | | |
Collapse
|
11
|
Scott BM, Koh K, Rix GD. Structural and functional profile of phytases across the domains of life. Curr Res Struct Biol 2024; 7:100139. [PMID: 38562944 PMCID: PMC10982552 DOI: 10.1016/j.crstbi.2024.100139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/03/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Phytase enzymes are a crucial component of the natural phosphorus cycle, as they help make phosphate bioavailable by releasing it from phytate, the primary reservoir of organic phosphorus in grain and soil. Phytases also comprise a significant segment of the agricultural enzyme market, used primarily as an animal feed additive. At least four structurally and mechanistically distinct classes of phytases have evolved in bacteria and eukaryotes, and the natural diversity of each class is explored here using advances in protein structure prediction and functional annotation. This graphical review aims to provide a succinct description of the major classes of phytase enzymes across phyla, including their structures, conserved motifs, and mechanisms of action.
Collapse
Affiliation(s)
- Benjamin M. Scott
- Global Institute for Food Security, University of Saskatchewan, 421 Downey Road, S7N 4L8, Saskatoon, Saskatchewan, Canada
| | - Kevin Koh
- Global Institute for Food Security, University of Saskatchewan, 421 Downey Road, S7N 4L8, Saskatoon, Saskatchewan, Canada
| | - Gregory D. Rix
- Inspiralis Ltd., Innovation Centre, Norwich Research Park, Colney Lane, NR4 7UH, Norwich, UK
| |
Collapse
|
12
|
Bhavana, Kohal R, Kumari P, Das Gupta G, Kumar Verma S. Druggable targets of protein tyrosine phosphatase Family, viz. PTP1B, SHP2, Cdc25, and LMW-PTP: Current scenario on medicinal Attributes, and SAR insights. Bioorg Chem 2024; 144:107121. [PMID: 38237392 DOI: 10.1016/j.bioorg.2024.107121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/02/2024] [Accepted: 01/10/2024] [Indexed: 02/17/2024]
Abstract
Protein tyrosine phosphatases (PTPs) are the class of dephosphorylation enzymes that catalyze the removal of phosphate groups from tyrosine residues on proteins responsible for various cellular processes. Any disbalance in signal pathways mediated by PTPs leads to various disease conditions like diabetes, obesity, cancers, and autoimmune disorders. Amongst the PTP superfamily, PTP1B, SHP2, Cdc25, and LMW-PTP have been prioritized as druggable targets for developing medicinal agents. PTP1B is an intracellular PTP enzyme that downregulates insulin and leptin signaling pathways and is involved in insulin resistance and glucose homeostasis. SHP2 is involved in the RAS-MAPK pathway and T cell immunity. Cdk-cyclin complex activation occurs by Cdc25-PTPs involved in cell cycle regulation. LMW-PTPs are involved in PDGF/PDGFR, Eph/ephrin, and insulin signaling pathways, resulting in certain diseases like diabetes mellitus, obesity, and cancer. The signaling cascades of PTP1B, SHP2, Cdc25, and LMW-PTPs have been described to rationalize their medicinal importance in the pathophysiology of diabetes, obesity, and cancer. Their binding sites have been explored to overcome the hurdles in discovering target selective molecules with optimum potency. Recent developments in the synthetic molecules bearing heterocyclic moieties against these targets have been explored to gain insight into structural features. The elaborated SAR investigation revealed the effect of substituents on the potency and target selectivity, which can be implicated in the further discovery of newer medicinal agents targeting the druggable members of the PTP superfamily.
Collapse
Affiliation(s)
- Bhavana
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142 001, (Punjab), India
| | - Rupali Kohal
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142 001, (Punjab), India
| | - Preety Kumari
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142 001, (Punjab), India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga 142 001, (Punjab), India
| | - Sant Kumar Verma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142 001, (Punjab), India.
| |
Collapse
|
13
|
Stanford SM, Nguyen TP, Chang J, Zhao Z, Hackman GL, Santelli E, Sanders CM, Katiki M, Dondossola E, Brauer BL, Diaz MA, Zhan Y, Ramsey SH, Watson PA, Sankaran B, Paindelli C, Parietti V, Mikos AG, Lodi A, Bagrodia A, Elliott A, McKay RR, Murali R, Tiziani S, Kettenbach AN, Bottini N. Targeting prostate tumor low-molecular weight tyrosine phosphatase for oxidation-sensitizing therapy. SCIENCE ADVANCES 2024; 10:eadg7887. [PMID: 38295166 PMCID: PMC10830117 DOI: 10.1126/sciadv.adg7887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 12/29/2023] [Indexed: 02/02/2024]
Abstract
Protein tyrosine phosphatases (PTPs) play major roles in cancer and are emerging as therapeutic targets. Recent reports suggest low-molecular weight PTP (LMPTP)-encoded by the ACP1 gene-is overexpressed in prostate tumors. We found ACP1 up-regulated in human prostate tumors and ACP1 expression inversely correlated with overall survival. Using CRISPR-Cas9-generated LMPTP knockout C4-2B and MyC-CaP cells, we identified LMPTP as a critical promoter of prostate cancer (PCa) growth and bone metastasis. Through metabolomics, we found that LMPTP promotes PCa cell glutathione synthesis by dephosphorylating glutathione synthetase on inhibitory Tyr270. PCa cells lacking LMPTP showed reduced glutathione, enhanced activation of eukaryotic initiation factor 2-mediated stress response, and enhanced reactive oxygen species after exposure to taxane drugs. LMPTP inhibition slowed primary and bone metastatic prostate tumor growth in mice. These findings reveal a role for LMPTP as a critical promoter of PCa growth and metastasis and validate LMPTP inhibition as a therapeutic strategy for treating PCa through sensitization to oxidative stress.
Collapse
Affiliation(s)
| | - Tiffany P. Nguyen
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Joseph Chang
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Zixuan Zhao
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - G. Lavender Hackman
- Department of Nutritional Sciences, College of Natural Sciences and Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Eugenio Santelli
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Kao Autoimmunity Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Colton M. Sanders
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Eleonora Dondossola
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brooke L. Brauer
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Michael A. Diaz
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yuan Zhan
- Department of Pediatrics and Department of Oncology, Dell Medical School, Livestrong Cancer Institutes, College of Natural Sciences, The University of Texas at Austin, Austin, TX USA
| | - Sterling H. Ramsey
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Philip A. Watson
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Banumathi Sankaran
- Department of Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Claudia Paindelli
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vanessa Parietti
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Alessia Lodi
- Department of Nutritional Sciences, College of Natural Sciences and Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Aditya Bagrodia
- Department of Urology, University of California, San Diego, La Jolla, CA, USA
| | - Andrew Elliott
- Department of Clinical and Translational Research, Caris Life Sciences, Phoenix, AZ, USA
| | - Rana R. McKay
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ramachandran Murali
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stefano Tiziani
- Department of Nutritional Sciences, College of Natural Sciences and Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Department of Pediatrics and Department of Oncology, Dell Medical School, Livestrong Cancer Institutes, College of Natural Sciences, The University of Texas at Austin, Austin, TX USA
| | - Arminja N. Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Nunzio Bottini
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Kao Autoimmunity Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
14
|
Torices L, Nunes-Xavier CE, Mingo J, Luna S, Erramuzpe A, Cortés JM, Pulido R. Induction of Translational Readthrough on Protein Tyrosine Phosphatases Targeted by Premature Termination Codon Mutations in Human Disease. Methods Mol Biol 2024; 2743:1-19. [PMID: 38147205 DOI: 10.1007/978-1-0716-3569-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Nonsense mutations generating premature termination codons (PTCs) in various genes are frequently associated with somatic cancer and hereditary human diseases since PTCs commonly generate truncated proteins with defective or altered function. Induced translational readthrough during protein biosynthesis facilitates the incorporation of an amino acid at the position of a PTC, allowing the synthesis of a complete protein. This may evade the pathological effect of the PTC mutation and provide new therapeutic opportunities. Several protein tyrosine phosphatases (PTPs) genes are targeted by PTC in human disease, the tumor suppressor PTEN being the more prominent paradigm. Here, using PTEN and laforin as examples, two PTPs from the dual-specificity phosphatase subfamily, we describe methodologies to analyze in silico the distribution and frequency of pathogenic PTC in PTP genes. We also summarize laboratory protocols and technical notes to study the induced translational readthrough reconstitution of the synthesis of PTP targeted by PTC in association with disease in cellular models.
Collapse
Affiliation(s)
- Leire Torices
- Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Caroline E Nunes-Xavier
- Biobizkaia Health Research Institute, Barakaldo, Spain
- Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Janire Mingo
- Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Sandra Luna
- Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Asier Erramuzpe
- Biobizkaia Health Research Institute, Barakaldo, Spain
- Ikerbasque, The Basque Foundation for Science, Bilbao, Spain
| | - Jesús M Cortés
- Biobizkaia Health Research Institute, Barakaldo, Spain
- Ikerbasque, The Basque Foundation for Science, Bilbao, Spain
- Cell Biology and Histology Department, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Rafael Pulido
- Biobizkaia Health Research Institute, Barakaldo, Spain.
- Ikerbasque, The Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
15
|
Stanford SM, Bottini N. Targeting protein phosphatases in cancer immunotherapy and autoimmune disorders. Nat Rev Drug Discov 2023; 22:273-294. [PMID: 36693907 PMCID: PMC9872771 DOI: 10.1038/s41573-022-00618-w] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 01/25/2023]
Abstract
Protein phosphatases act as key regulators of multiple important cellular processes and are attractive therapeutic targets for various diseases. Although extensive effort has been dedicated to phosphatase-targeted drug discovery, early expeditions for competitive phosphatase inhibitors were plagued by druggability issues, leading to the stigmatization of phosphatases as difficult targets. Despite challenges, persistent efforts have led to the identification of several drug-like, non-competitive modulators of some of these enzymes - including SH2 domain-containing protein tyrosine phosphatase 2, protein tyrosine phosphatase 1B, vascular endothelial protein tyrosine phosphatase and protein phosphatase 1 - reigniting interest in therapeutic targeting of phosphatases. Here, we discuss recent progress in phosphatase drug discovery, with emphasis on the development of selective modulators that exhibit biological activity. The roles and regulation of protein phosphatases in immune cells and their potential as powerful targets for immuno-oncology and autoimmunity indications are assessed.
Collapse
Affiliation(s)
| | - Nunzio Bottini
- Department of Medicine, University of California, San Diego, CA, USA.
| |
Collapse
|
16
|
Hendriks WJAJ, van Cruchten RTP, Pulido R. Hereditable variants of classical protein tyrosine phosphatase genes: Will they prove innocent or guilty? Front Cell Dev Biol 2023; 10:1051311. [PMID: 36755664 PMCID: PMC9900141 DOI: 10.3389/fcell.2022.1051311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/28/2022] [Indexed: 01/24/2023] Open
Abstract
Protein tyrosine phosphatases, together with protein tyrosine kinases, control many molecular signaling steps that control life at cellular and organismal levels. Impairing alterations in the genes encoding the involved proteins is expected to profoundly affect the quality of life-if compatible with life at all. Here, we review the current knowledge on the effects of germline variants that have been reported for genes encoding a subset of the protein tyrosine phosphatase superfamily; that of the thirty seven classical members. The conclusion must be that the newest genome research tools produced an avalanche of data that suggest 'guilt by association' for individual genes to specific disorders. Future research should face the challenge to investigate these accusations thoroughly and convincingly, to reach a mature genotype-phenotype map for this intriguing protein family.
Collapse
Affiliation(s)
- Wiljan J. A. J. Hendriks
- Department of Cell Biology, Radboud University Medical Centre, Nijmegen, The Netherlands,*Correspondence: Wiljan J. A. J. Hendriks,
| | | | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
17
|
Gu SH, Chen CH, Chang CH, Lin PL. Expression of tyrosine phosphatases in relation to PTTH-stimulated ecdysteroidogenesis in prothoracic glands of the silkworm, Bombyx mori. Gen Comp Endocrinol 2023; 331:114165. [PMID: 36368438 DOI: 10.1016/j.ygcen.2022.114165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/19/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
Protein tyrosine phosphorylation is a reversible, dynamic process regulated by the activities of tyrosine kinases and tyrosine phosphatases. Although the involvement of tyrosine kinases in the prothoracicotropic hormone (PTTH)-stimulated ecdysteroidogenesis in insect prothoracic glands (PGs) has been documented, few studies have been conducted on the involvement of protein tyrosine phosphatases (PTPs) in PTTH-stimulated ecdysteroidogenesis. In the present study, we investigated the correlation between PTPs and PTTH-stimulated ecdysteroidogenesis in Bombyx mori PGs. Our results showed that the basal PTP enzymatic activities exhibited development-specific changes during the last larval instar and pupation stage, with high activities being detected during the later stages of the last larval instar. PTP enzymatic activity was stimulated by PTTH treatment both in vitro and in vivo. Pretreatment with phenylarsine oxide (PAO) and benzylphosphonic acid (BPA), two chemical inhibitors of tyrosine phosphatase, reduced PTTH-stimulated enzymatic activity. Determination of ecdysteroid secretion showed that treatment with PAO and BPA did not affect basal ecdysteroid secretion, but greatly inhibited PTTH-stimulated ecdysteroid secretion, indicating that PTTH-stimulated PTP activity is indeed involved in ecdysteroid secretion. PTTH-stimulated phosphorylation of the extracellular signal-regulated kinase (ERK) and 4E-binding protein (4E-BP) was partially inhibited by pretreatment with either PAO or BPA, indicating the potential link between PTPs and phosphorylation of ERK and 4E-BP. In addition, we also found that in vitro treatment with 20-hydroxyecdysone did not affect PTP enzymatic activity. We further investigated the expressions of two important PTPs (PTP 1B (PTP1B) and the phosphatase and tension homologue (PTEN)) in Bombyx PGs. Our immunoblotting analysis showed that B. mori PGs contained the proteins of PTP1B and PTEN, with PTP1B protein undergoing development-specific changes. Protein levels of PTP1B and PTEN were not affected by PTTH treatment. The gene expression levels of PTP1B and PTEN showed development-specific changes. From these results, we suggest that PTTH-regulated PTP signaling may crosstalk with ERK and target of rapamycin (TOR) signaling pathways and is a necessary component for stimulation of ecdysteroid secretion.
Collapse
Affiliation(s)
- Shi-Hong Gu
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC.
| | - Chien-Hung Chen
- Chung Hwa University of Medical Technology, 89 Wen-Hwa 1st Road, Jen-Te Township, Tainan County 717, Taiwan, ROC
| | - Chia-Hao Chang
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC
| | - Pei-Ling Lin
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC
| |
Collapse
|
18
|
Singh JP, Chen YY, Huang YT, Hsu STD, Meng TC. Application of hybrid biophysical-biochemical methods to unravel the molecular basis for auto-inhibition and activation of protein tyrosine phosphatase TCPTP/PTPN2. Methods Enzymol 2023; 682:351-374. [PMID: 36948707 DOI: 10.1016/bs.mie.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Since the discovery of protein tyrosine phosphorylation as one of the critical post-translational modifications, it has been well known that the activity of protein tyrosine kinases (PTKs) is tightly regulated. On the other hand, protein tyrosine phosphatases (PTPs) are often regarded to act constitutively active, but recently we and others have shown that many PTPs are expressed in an inactive form due to allosteric inhibition by their unique structural features. Furthermore, their cellular activity is highly regulated in a spatiotemporal manner. In general, PTPs share a conserved catalytic domain comprising about 280 residues that is flanked by either an N-terminal or a C-terminal non-catalytic segment, which differs significantly in size and structure from each other and is known to regulate specific PTP's catalytic activity. The well-characterized non-catalytic segments can be globular or intrinsically disordered. In this work, we have focused on the T-Cell Protein Tyrosine Phosphatase (TCPTP/PTPN2) and demonstrated how the hybrid biophysical-biochemical methods can be applied to unravel the underlying mechanism through which TCPTP's catalytic activity is regulated by the non-catalytic C-terminal segment. Our analysis showed that TCPTP is auto-inhibited by its intrinsically disordered tail and trans-activated by Integrin alpha-1's cytosolic region.
Collapse
Affiliation(s)
| | - Yi-Yun Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Academia Sinica Common Mass Spectrometry Facilities for Proteomics and Protein Modification Analysis, Taipei, Taiwan
| | - Yu-Ting Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Shang-Te Danny Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Tzu-Ching Meng
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
19
|
Hayashi T, Hatakeyama M. Exploring Allosteric Inhibitors of Protein Tyrosine Phosphatases Through High-Throughput Screening. Methods Mol Biol 2023; 2691:235-245. [PMID: 37355550 DOI: 10.1007/978-1-0716-3331-1_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
High-throughput screening (HTS) using a natural or synthetic chemical or natural product library is a powerful technique for discovering novel small-molecular-weight compounds in order to develop drugs that specifically inhibit or activate molecular targets, malfunctioning of which underlies the development of diseases, especially malignant neoplasms. In contrast to a large number of successful cases in obtaining inhibitors against protein tyrosine kinases (PTKs) using HTS, however, the development of selective inhibitors for protein tyrosine phosphatases (PTPs) has lagged since PTP family members share highly conserved catalytic domain structures. Here, in this chapter we describe a novel method for exploring seed compounds of allosteric PTP inhibitors from a chemical/natural product library through HTS.
Collapse
Affiliation(s)
- Takeru Hayashi
- Laboratory of Microbial Carcinogenesis, Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, Tokyo, Japan
| | - Masanori Hatakeyama
- Laboratory of Microbial Carcinogenesis, Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, Tokyo, Japan.
- Center of Infection-Associated Cancer, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
20
|
Sun H, Ma D, Cheng Y, Li J, Zhang W, Jiang T, Li Z, Li X, Meng H. The JAK-STAT Signaling Pathway in Epilepsy. Curr Neuropharmacol 2023; 21:2049-2069. [PMID: 36518035 PMCID: PMC10556373 DOI: 10.2174/1570159x21666221214170234] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 12/16/2022] Open
Abstract
Epilepsy is defined as spontaneous recurrent seizures in the brain. There is increasing evidence that inflammatory mediators and immune cells are involved in epileptic seizures. As more research is done on inflammatory factors and immune cells in epilepsy, new targets for the treatment of epilepsy will be revealed. The Janus kinase-signal transducer and transcriptional activator (JAKSTAT) signaling pathway is strongly associated with many immune and inflammatory diseases, At present, more and more studies have found that the JAK-STAT pathway is involved in the development and development of epilepsy, indicating the JAK-STAT pathway's potential promise as a target in epilepsy treatment. In this review, we discuss the composition, activation, and regulation of the JAK-STAT pathway and the relationship between the JAK-STAT pathway and epilepsy. In addition, we summarize the common clinical inhibitors of JAK and STAT that we would expect to be used in epilepsy treatment in the future.
Collapse
Affiliation(s)
- Huaiyu Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Di Ma
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yu Cheng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jiaai Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Wuqiong Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Ting Jiang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Zhaoran Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Xuewei Li
- Department of Radiology, The First Hospital of Jilin University, Changchun, China
| | - Hongmei Meng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
21
|
Xu L, Mu X, Liu M, Wang Z, Shen C, Mu Q, Feng B, Xu Y, Hou T, Gao L, Jiang H, Li J, Zhou Y, Wang W. Novel thieno[2,3-b]quinoline-procaine hybrid molecules: A new class of allosteric SHP-1 activators evolved from PTP1B inhibitors. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Zhang S, Meng Y, Zhou L, Qiu L, Wang H, Su D, Zhang B, Chan K, Han J. Targeting epigenetic regulators for inflammation: Mechanisms and intervention therapy. MedComm (Beijing) 2022; 3:e173. [PMID: 36176733 PMCID: PMC9477794 DOI: 10.1002/mco2.173] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/28/2022] [Accepted: 08/05/2022] [Indexed: 11/11/2022] Open
Abstract
Emerging evidence indicates that resolution of inflammation is a critical and dynamic endogenous process for host tissues defending against external invasive pathogens or internal tissue injury. It has long been known that autoimmune diseases and chronic inflammatory disorders are characterized by dysregulated immune responses, leading to excessive and uncontrol tissue inflammation. The dysregulation of epigenetic alterations including DNA methylation, posttranslational modifications to histone proteins, and noncoding RNA expression has been implicated in a host of inflammatory disorders and the immune system. The inflammatory response is considered as a critical trigger of epigenetic alterations that in turn intercede inflammatory actions. Thus, understanding the molecular mechanism that dictates the outcome of targeting epigenetic regulators for inflammatory disease is required for inflammation resolution. In this article, we elucidate the critical role of the nuclear factor-κB signaling pathway, JAK/STAT signaling pathway, and the NLRP3 inflammasome in chronic inflammatory diseases. And we formulate the relationship between inflammation, coronavirus disease 2019, and human cancers. Additionally, we review the mechanism of epigenetic modifications involved in inflammation and innate immune cells. All that matters is that we propose and discuss the rejuvenation potential of interventions that target epigenetic regulators and regulatory mechanisms for chronic inflammation-associated diseases to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Su Zhang
- Laboratory of Cancer Epigenetics and GenomicsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yang Meng
- Laboratory of Cancer Epigenetics and GenomicsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Lian Zhou
- Laboratory of Cancer Epigenetics and GenomicsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Lei Qiu
- Laboratory of Cancer Epigenetics and GenomicsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Heping Wang
- Department of NeurosurgeryTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Dan Su
- Laboratory of Cancer Epigenetics and GenomicsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Bo Zhang
- Laboratory of Cancer Epigenetics and GenomicsDepartment of Gastrointestinal SurgeryFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
| | - Kui‐Ming Chan
- Department of Biomedical SciencesCity University of Hong KongHong KongChina
| | - Junhong Han
- Laboratory of Cancer Epigenetics and GenomicsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
23
|
TNS1: Emerging Insights into Its Domain Function, Biological Roles, and Tumors. BIOLOGY 2022; 11:biology11111571. [PMID: 36358270 PMCID: PMC9687257 DOI: 10.3390/biology11111571] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 01/25/2023]
Abstract
Tensins are a family of cellular-adhesion constituents that have been extensively studied. They have instrumental roles in the pathogenesis of numerous diseases. The mammalian tensin family comprises four members: tensin1 (TNS1), tensin2, tensin3, and tensin4. Among them, TNS1 has recently received attention from researchers because of its structural properties. TNS1 engages in various biological processes, such as cell adhesion, polarization, migration, invasion, proliferation, apoptosis, and mechano-transduction, by interacting with various partner proteins. Moreover, the abnormal expression of TNS1 in vivo is associated with the development of various diseases, especially tumors. Interestingly, the role of TNS1 in different tumors is still controversial. Here, we systematically summarize three aspects of TNS1: the gene structure, the biological processes underlying its action, and the dual regulatory role of TNS1 in different tumors through different mechanisms, of which we provide the first overview.
Collapse
|
24
|
Kim M, Ryu SE. Crystal structure of the catalytic domain of human RPTPH. Acta Crystallogr F Struct Biol Commun 2022; 78:265-269. [PMID: 35787553 PMCID: PMC9254897 DOI: 10.1107/s2053230x22006173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/10/2022] [Indexed: 11/10/2022] Open
Abstract
Receptor-type protein tyrosine phosphatases (RPTPs) receive extracellular stimuli and transfer them into cells. They regulate cell growth, differentiation and death via specific signals. They have also been implicated in cancer, diabetes and neurological diseases. RPTPH, a member of the type 3 RPTP (R3-PTP) family, is an important regulator of colorectal cancer and hepatic carcinoma. Despite its importance in drug development, the structure of RPTPH has not yet been resolved. Here, the crystal structure of the catalytic domain of RPTPH was determined at 1.56 Å resolution. Despite similarities to other R3-PTPs in its overall structure, RPTPH exhibited differences in its loop regions and side-chain conformations. Compared with other R3-PTPs, RPTPH has unique side chains near its active site that may confer specificity for inhibitor binding. Therefore, detailed information on the structure of RPTPH provides clues for the development of specific inhibitors.
Collapse
Affiliation(s)
- Myeongbin Kim
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04673, Republic of Korea
| | - Seong Eon Ryu
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04673, Republic of Korea
| |
Collapse
|
25
|
Murphy RD, Chen T, Lin J, He R, Wu L, Pearson CR, Sharma S, Vander Kooi CD, Sinai AP, Zhang ZY, Vander Kooi CW, Gentry MS. The Toxoplasma glucan phosphatase TgLaforin utilizes a distinct functional mechanism that can be exploited by therapeutic inhibitors. J Biol Chem 2022; 298:102089. [PMID: 35640720 PMCID: PMC9254107 DOI: 10.1016/j.jbc.2022.102089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 01/19/2023] Open
Abstract
Toxoplasma gondii is an intracellular parasite that generates amylopectin granules (AGs), a polysaccharide associated with bradyzoites that define chronic T. gondii infection. AGs are postulated to act as an essential energy storage molecule that enable bradyzoite persistence, transmission, and reactivation. Importantly, reactivation can result in the life-threatening symptoms of toxoplasmosis. T. gondii encodes glucan dikinase and glucan phosphatase enzymes that are homologous to the plant and animal enzymes involved in reversible glucan phosphorylation and which are required for efficient polysaccharide degradation and utilization. However, the structural determinants that regulate reversible glucan phosphorylation in T. gondii are unclear. Herein, we define key functional aspects of the T. gondii glucan phosphatase TgLaforin (TGME49_205290). We demonstrate that TgLaforin possesses an atypical split carbohydrate-binding-module domain. AlphaFold2 modeling combined with hydrogen-deuterium exchange mass spectrometry and differential scanning fluorimetry also demonstrate the unique structural dynamics of TgLaforin with regard to glucan binding. Moreover, we show that TgLaforin forms a dual specificity phosphatase domain-mediated dimer. Finally, the distinct properties of the glucan phosphatase catalytic domain were exploited to identify a small molecule inhibitor of TgLaforin catalytic activity. Together, these studies define a distinct mechanism of TgLaforin activity, opening up a new avenue of T. gondii bradyzoite biology as a therapeutic target.
Collapse
Affiliation(s)
- Robert D Murphy
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky, USA; Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Tiantian Chen
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Jianping Lin
- Departments of Medicinal Chemistry and Molecular Pharmacology and of Chemistry, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana, USA
| | - Rongjun He
- Departments of Medicinal Chemistry and Molecular Pharmacology and of Chemistry, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana, USA
| | - Li Wu
- Departments of Medicinal Chemistry and Molecular Pharmacology and of Chemistry, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana, USA
| | - Caden R Pearson
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Savita Sharma
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Carl D Vander Kooi
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Anthony P Sinai
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Zhong-Yin Zhang
- Departments of Medicinal Chemistry and Molecular Pharmacology and of Chemistry, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana, USA.
| | - Craig W Vander Kooi
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky, USA.
| | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky, USA.
| |
Collapse
|
26
|
Progress in the mechanism of neuronal surface P antigen modulating hippocampal function and implications for autoimmune brain disease. Curr Opin Neurol 2022; 35:436-442. [PMID: 35674087 DOI: 10.1097/wco.0000000000001054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW The aim of this study was to present a new regulation system in the hippocampus constituted by the neuronal surface P antigen (NSPA) and the tyrosine phosphatase PTPMEG/PTPN4, which provides mechanistic and therapeutic possibilities for cognitive dysfunction driven by antiribosomal P protein autoantibodies in patients with systemic lupus erythematosus (SLE). RECENT FINDINGS Mice models lacking the function of NSPA as an E3 ubiquitin ligase show impaired glutamatergic synaptic plasticity, decreased levels of NMDAR at the postsynaptic density in hippocampus and memory deficits. The levels of PTPMEG/PTPN4 are increased due to lower ubiquitination and proteasomal degradation, resulting in dephosphorylation of tyrosines that control endocytosis in GluN2 NMDAR subunits. Adult hippocampal neurogenesis (AHN) that normally contributes to memory processes is also defective in the absence of NSPA. SUMMARY NSPA function is crucial in memory processes controlling the stability of NMDAR at PSD through the ubiquitination of PTPMEG/PTPN4 and also through AHN. As anti-P autoantibodies reproduce the impairments of glutamatergic transmission, plasticity and memory performance seen in the absence of NSPA, it might be expected to perturb the NSPA/PTPMEG/PTPN4 pathway leading to hypofunction of NMDAR. This neuropathogenic mechanism contrasts with that of anti-NMDAR antibodies also involved in lupus cognitive dysfunction. Testing this hypothesis might open new therapeutic possibilities for cognitive dysfunction in SLE patients bearing anti-P autoantibodies.
Collapse
|
27
|
Menegatti ACO. Targeting protein tyrosine phosphatases for the development of antivirulence agents: Yersinia spp. and Mycobacterium tuberculosis as prototypes. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140782. [PMID: 35470106 DOI: 10.1016/j.bbapap.2022.140782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Protein phosphorylation mediated by protein kinases and phosphatases has a central regulatory function in many cellular processes in eukaryotes and prokaryotes. As a result, several diseases caused by imbalance in phosphorylation levels are known, especially due to protein tyrosine phosphatases (PTPs) activity, an important family of signaling enzymes. Furthermore, over the last decades several studies have shown the main role of PTPs in pathogenic bacteria: they are associated with growth, cell division, cell wall biosynthesis, biofilm formation, metabolic processes, as well as virulence factor. In this way, PTPs have ascended as targets for antibacterial drug design, particularly in view of the antibiotic resistance in pathogenic bacteria, which demands novel therapeutics strategies. Targeting secreted PTPs is an antivirulence strategy to combat the emergence of antimicrobial resistance (AMR). This review focuses on the recent advances in understanding the role of PTPs and the approaches to target them, with an emphasis in Yersinia spp. and Mycobacterium tuberculosis pathogenesis.
Collapse
Affiliation(s)
- Angela Camila Orbem Menegatti
- Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, Paraíba, Brazil.
| |
Collapse
|
28
|
Wang H, Perera L, Jork N, Zong G, Riley AM, Potter BVL, Jessen HJ, Shears SB. A structural exposé of noncanonical molecular reactivity within the protein tyrosine phosphatase WPD loop. Nat Commun 2022; 13:2231. [PMID: 35468885 PMCID: PMC9038691 DOI: 10.1038/s41467-022-29673-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 03/25/2022] [Indexed: 01/06/2023] Open
Abstract
Structural snapshots of protein/ligand complexes are a prerequisite for gaining atomic level insight into enzymatic reaction mechanisms. An important group of enzymes has been deprived of this analytical privilege: members of the protein tyrosine phosphatase (PTP) superfamily with catalytic WPD-loops lacking the indispensable general-acid/base within a tryptophan-proline-aspartate/glutamate context. Here, we provide the ligand/enzyme crystal complexes for one such PTP outlier: Arabidopsis thaliana Plant and Fungi Atypical Dual Specificity Phosphatase 1 (AtPFA-DSP1), herein unveiled as a regioselective and efficient phosphatase towards inositol pyrophosphate (PP-InsP) signaling molecules. Although the WPD loop is missing its canonical tripeptide motif, this structural element contributes to catalysis by assisting PP-InsP delivery into the catalytic pocket, for a choreographed exchange with phosphate reaction product. Subsequently, an intramolecular proton donation by PP-InsP substrate is posited to substitute functionally for the absent aspartate/glutamate general-acid. Overall, we expand mechanistic insight into adaptability of the conserved PTP structural elements.
Collapse
Affiliation(s)
- Huanchen Wang
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA.
| | - Lalith Perera
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Nikolaus Jork
- Institute of Organic Chemistry, and CIBSS - the Center for Integrative Biological Signaling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Guangning Zong
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Andrew M Riley
- Drug Discovery and Medicinal Chemistry, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Barry V L Potter
- Drug Discovery and Medicinal Chemistry, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Henning J Jessen
- Institute of Organic Chemistry, and CIBSS - the Center for Integrative Biological Signaling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Stephen B Shears
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
29
|
Downregulated Expression of miRNA-130a-5p Aggravates Hepatoma Progression via Targeting PTP4A2. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2021:4439505. [PMID: 34992672 PMCID: PMC8727122 DOI: 10.1155/2021/4439505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/08/2021] [Accepted: 12/11/2021] [Indexed: 01/10/2023]
Abstract
Background Hepatoma is a leading cause of death worldwide, with high metastasis and recurrence rates. The aberrant expression of miRNA-130a-5p is involved in the development and progression of various cancers. However, there are no studies investigating the role of miRNA-130a-5p in hepatoma. The present study is aimed at clarifying the functional role of miRNA-130a-5p in hepatoma progression. Methods The expression levels of miRNA-130a-5p in hepatoma tissues and cell lines were detected by qRT-PCR assays. Bioinformatic analysis, gain-/loss-of-function experiments, and luciferase activity assays were conducted to verify whether miRNA-130a-5p is targeted by protein tyrosine phosphatase 4A2 (PTP4A2). The functions of miRNA-130a-5p and PTP4A2 in hepatoma were determined by cell proliferation assays. Results The expression of miRNA-130a-5p was downregulated in hepatoma tissues and was related to poor prognosis. However, the expression level of PTP4A2 was contradictory to that of miRNA-130a-5p, and PTP4A2 upregulation could aggravate hepatoma progression. The ectopic overexpression of PTP4A2 promoted hepatoma cell proliferation in vitro, which could be reversed by miRNA-130a-5p. Conclusions Our study implies that miRNA-130a-5p, which is downregulated in hepatoma tissues, can suppress hepatoma cell proliferation via targeting PTP4A2.
Collapse
|
30
|
Li H, Xiong J, Du Y, Huang Y, Zhao J. Dual-Specificity Phosphatases and Kidney Diseases. KIDNEY DISEASES (BASEL, SWITZERLAND) 2022; 8:13-25. [PMID: 35224004 DOI: 10.1159/000520142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/09/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Dual-specificity phosphatases (DUSPs) belong to the family of protein tyrosine phosphatases, which can dephosphorylate both serine/threonine and tyrosine residues. During the past decades, DUSPs have been implicated in various physiological and pathological activities. Besides mitogen-activated protein kinases (MAPKs) as the main substrates, other protein and nonprotein substrates can also be dephosphorylated by DUSPs. Aberrant regulations of DUSPs have been found in various diseases such as cancer, neurological disorders, and kidney diseases, suggesting the involvement of DUSPs in the pathogenesis of diseases. SUMMARY In this review, we summarize the general characteristics of DUSPs and the research progress made in the field of kidney diseases, including diabetic nephropathy, hypertensive nephropathy, chronic kidney disease, acute kidney injury, and lupus nephritis. As the main biochemical function of DUSPs is to dephosphorylate MAPKs activity, decreased DUSPs are found in kidney disease models, whereas forced DUSPs expression reverses the disease presentation, which was proved by using transgenic or gene knockout model. KEY MESSAGES Mounting evidence demonstrates that DUSPs have essential physiological and pathological functions in kidney disease. Fully understanding the functions and mechanisms of DUSPs in kidney disease contributes to their clinical application in translation medicine.
Collapse
Affiliation(s)
- Haiyang Li
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiachuan Xiong
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yu Du
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yinghui Huang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jinghong Zhao
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
31
|
Nunes-Xavier CE, Zaldumbide L, Mosteiro L, López-Almaraz R, García de Andoin N, Aguirre P, Emaldi M, Torices L, López JI, Pulido R. Protein Tyrosine Phosphatases in Neuroblastoma: Emerging Roles as Biomarkers and Therapeutic Targets. Front Cell Dev Biol 2021; 9:811297. [PMID: 34957126 PMCID: PMC8692838 DOI: 10.3389/fcell.2021.811297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
Neuroblastoma is a type of cancer intimately related with early development and differentiation of neuroendocrine cells, and constitutes one of the pediatric cancers with higher incidence and mortality. Protein tyrosine phosphatases (PTPs) are key regulators of cell growth and differentiation by their direct effect on tyrosine dephosphorylation of specific protein substrates, exerting major functions in the modulation of intracellular signaling during neuron development in response to external cues driving cell proliferation, survival, and differentiation. We review here the current knowledge on the role of PTPs in neuroblastoma cell growth, survival, and differentiation. The potential of PTPs as biomarkers and molecular targets for inhibition in neuroblastoma therapies is discussed.
Collapse
Affiliation(s)
- Caroline E. Nunes-Xavier
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- *Correspondence: Caroline E. Nunes-Xavier, ; Rafael Pulido,
| | - Laura Zaldumbide
- Department of Pathology, Cruces University Hospital, Barakaldo, Spain
| | - Lorena Mosteiro
- Department of Pathology, Cruces University Hospital, Barakaldo, Spain
| | | | | | - Pablo Aguirre
- Department of Pathology, Donostia University Hospital, San Sebastian, Spain
| | - Maite Emaldi
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Leire Torices
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - José I. López
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Department of Pathology, Cruces University Hospital, Barakaldo, Spain
| | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- *Correspondence: Caroline E. Nunes-Xavier, ; Rafael Pulido,
| |
Collapse
|
32
|
Recent advances in PTP1B signaling in metabolism and cancer. Biosci Rep 2021; 41:230148. [PMID: 34726241 PMCID: PMC8630396 DOI: 10.1042/bsr20211994] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 12/16/2022] Open
Abstract
Protein tyrosine phosphorylation is one of the major post-translational modifications in eukaryotic cells and represents a critical regulatory mechanism of a wide variety of signaling pathways. Aberrant protein tyrosine phosphorylation has been linked to various diseases, including metabolic disorders and cancer. Few years ago, protein tyrosine phosphatases (PTPs) were considered as tumor suppressors, able to block the signals emanating from receptor tyrosine kinases. However, recent evidence demonstrates that misregulation of PTPs activity plays a critical role in cancer development and progression. Here, we will focus on PTP1B, an enzyme that has been linked to the development of type 2 diabetes and obesity through the regulation of insulin and leptin signaling, and with a promoting role in the development of different types of cancer through the activation of several pro-survival signaling pathways. In this review, we discuss the molecular aspects that support the crucial role of PTP1B in different cellular processes underlying diabetes, obesity and cancer progression, and its visualization as a promising therapeutic target.
Collapse
|
33
|
Wang J, Du L, Tang H. Suppression of Interferon-α Treatment Response by Host Negative Factors in Hepatitis B Virus Infection. Front Med (Lausanne) 2021; 8:784172. [PMID: 34901094 PMCID: PMC8651562 DOI: 10.3389/fmed.2021.784172] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/03/2021] [Indexed: 02/05/2023] Open
Abstract
Chronic hepatitis B virus (CHB) infection remains a major global public health issue for which there is still lacking effective curative treatment. Interferon-α (IFN-α) and its pegylated form have been approved as an anti-HBV drug with the advantage of antiviral activity and host immunity against HBV infection enhancement, however, IFN-α treatment failure in CHB patients is a challenging obstacle with 70% of CHB patients respond poorly to exogenous IFN-α treatment. The IFN-α treatment response is negatively regulated by both viral and host factors, and the role of viral factors has been extensively illustrated, while much less attention has been paid to host negative factors. Here, we summarized evidence of host negative regulators and parameters involved in IFN-α therapy failure, review the mechanisms responsible for these effects, and discuss the possible improvement of IFN-based therapy and the rationale of combining the inhibitors of negative regulators in achieving an HBV cure.
Collapse
Affiliation(s)
- Jiayi Wang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Lingyao Du
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
34
|
Xie F, Dong H, Zhang H. Regulatory Functions of Protein Tyrosine Phosphatase Receptor Type O in Immune Cells. Front Immunol 2021; 12:783370. [PMID: 34880876 PMCID: PMC8645932 DOI: 10.3389/fimmu.2021.783370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/04/2021] [Indexed: 01/01/2023] Open
Abstract
The members of the protein tyrosine phosphatase (PTP) family are key regulators in multiple signal transduction pathways and therefore they play important roles in many cellular processes, including immune response. As a member of PTP family, protein tyrosine phosphatase receptor type O (PTPRO) belongs to the R3 receptor-like protein tyrosine phosphatases. The expression of PTPRO isoforms is tissue-specific and the truncated PTPRO (PTPROt) is mainly observed in hematopoietic cells, including B cells, T cells, macrophages and other immune cells. Therefore, PTPROt may play an important role in immune cells by affecting their growth, differentiation, activation and immune responses. In this review, we will focus on the regulatory roles and underlying molecular mechanisms of PTPRO/PTPROt in immune cells, including B cells, T cells, and macrophages.
Collapse
Affiliation(s)
- Feiling Xie
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Hongmei Dong
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Hao Zhang
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Minister of Education Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China
| |
Collapse
|
35
|
Sledzieski S, Singh R, Cowen L, Berger B. D-SCRIPT translates genome to phenome with sequence-based, structure-aware, genome-scale predictions of protein-protein interactions. Cell Syst 2021; 12:969-982.e6. [PMID: 34536380 PMCID: PMC8586911 DOI: 10.1016/j.cels.2021.08.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/01/2021] [Accepted: 08/19/2021] [Indexed: 11/29/2022]
Abstract
We combine advances in neural language modeling and structurally motivated design to develop D-SCRIPT, an interpretable and generalizable deep-learning model, which predicts interaction between two proteins using only their sequence and maintains high accuracy with limited training data and across species. We show that a D-SCRIPT model trained on 38,345 human PPIs enables significantly improved functional characterization of fly proteins compared with the state-of-the-art approach. Evaluating the same D-SCRIPT model on protein complexes with known 3D structure, we find that the inter-protein contact map output by D-SCRIPT has significant overlap with the ground truth. We apply D-SCRIPT to screen for PPIs in cow (Bos taurus) at a genome-wide scale and focusing on rumen physiology, identify functional gene modules related to metabolism and immune response. The predicted interactions can then be leveraged for function prediction at scale, addressing the genome-to-phenome challenge, especially in species where little data are available.
Collapse
Affiliation(s)
- Samuel Sledzieski
- Computer Science and Artificial Intelligence Lab., Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rohit Singh
- Computer Science and Artificial Intelligence Lab., Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lenore Cowen
- Department of Computer Science, Tufts University, Medford, MA 02155, USA.
| | - Bonnie Berger
- Computer Science and Artificial Intelligence Lab., Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
36
|
Chen TC, Chern M, Steinwand M, Ruan D, Wang Y, Isharani A, Ronald P. Paladin, a tyrosine phosphatase-like protein, is required for XA21-mediated immunity in rice. PLANT COMMUNICATIONS 2021; 2:100215. [PMID: 34327325 PMCID: PMC8299082 DOI: 10.1016/j.xplc.2021.100215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/16/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
XA21 encodes a rice immune receptor that confers robust resistance to most strains of the Gram-negative bacterium Xanthomonas oryzae pv. oryzae (Xoo). XA21-mediated immunity is triggered by recognition of a small protein called RaxX-sY (required for activation of XA21-mediated immunity X, tyrosine-sulfated) secreted by Xoo. To identify components regulating XA21-mediated immunity, we generated and screened a mutant population of fast-neutron-mutagenized rice expressing Ubi:Myc-XA21 for those susceptible to Xoo. Here, we report the characterization of one of these rice mutants, named sxi2 (suppressor of XA21-mediated immunity-2). Whole-genome sequencing revealed that sxi2 carries a deletion of the PALADIN (PALD) gene encoding a protein with three putative protein tyrosine phosphatase-like domains (PTP-A, -B, and -C). Expression of PALD in the sxi2 genetic background was sufficient to complement the susceptible phenotype, which requires the catalytic cysteine of the PTP-A active site to restore resistance. PALD co-immunoprecipitated with the full-length XA21 protein, whose levels are positively regulated by the presence of the PALD transgene. Furthermore, we foundd that sxi2 retains many hallmarks of XA21-mediated immunity, similar to the wild type. These results reveal that PALD, a previously uncharacterized class of phosphatase, functions in rice innate immunity, and suggest that the conserved cysteine in the PTP-A domain of PALD is required for its immune function.
Collapse
|
37
|
Melrose J, Hayes AJ, Bix G. The CNS/PNS Extracellular Matrix Provides Instructive Guidance Cues to Neural Cells and Neuroregulatory Proteins in Neural Development and Repair. Int J Mol Sci 2021; 22:5583. [PMID: 34070424 PMCID: PMC8197505 DOI: 10.3390/ijms22115583] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The extracellular matrix of the PNS/CNS is unusual in that it is dominated by glycosaminoglycans, especially hyaluronan, whose space filling and hydrating properties make essential contributions to the functional properties of this tissue. Hyaluronan has a relatively simple structure but its space-filling properties ensure micro-compartments are maintained in the brain ultrastructure, ensuring ionic niches and gradients are maintained for optimal cellular function. Hyaluronan has cell-instructive, anti-inflammatory properties and forms macro-molecular aggregates with the lectican CS-proteoglycans, forming dense protective perineuronal net structures that provide neural and synaptic plasticity and support cognitive learning. AIMS To highlight the central nervous system/peripheral nervous system (CNS/PNS) and its diverse extracellular and cell-associated proteoglycans that have cell-instructive properties regulating neural repair processes and functional recovery through interactions with cell adhesive molecules, receptors and neuroregulatory proteins. Despite a general lack of stabilising fibrillar collagenous and elastic structures in the CNS/PNS, a sophisticated dynamic extracellular matrix is nevertheless important in tissue form and function. CONCLUSIONS This review provides examples of the sophistication of the CNS/PNS extracellular matrix, showing how it maintains homeostasis and regulates neural repair and regeneration.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Sydney Medical School, Northern, The University of Sydney, Sydney, NSW 2052, Australia
- Faculty of Medicine and Health, The University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| | - Anthony J. Hayes
- Bioimaging Research Hub, Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK;
| | - Gregory Bix
- Clinical Neuroscience Research Center, Departments of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| |
Collapse
|
38
|
Gao PP, Qi XW, Sun N, Sun YY, Zhang Y, Tan XN, Ding J, Han F, Zhang Y. The emerging roles of dual-specificity phosphatases and their specific characteristics in human cancer. Biochim Biophys Acta Rev Cancer 2021; 1876:188562. [PMID: 33964330 DOI: 10.1016/j.bbcan.2021.188562] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/15/2021] [Accepted: 05/02/2021] [Indexed: 12/15/2022]
Abstract
Reversible phosphorylation of proteins, controlled by kinases and phosphatases, is involved in various cellular processes. Dual-specificity phosphatases (DUSPs) can dephosphorylate phosphorylated serine, threonine and tyrosine residues. This family consists of 61 members, 44 of which have been identified in human, and these 44 members are classified into six subgroups, the phosphatase and tensin homolog (PTEN) protein phosphatases (PTENs), mitogen-activated protein kinase phosphatases (MKPs), atypical DUSPs, cell division cycle 14 (CDC14) phosphatases (CDC14s), slingshot protein phosphatases (SSHs), and phosphatases of the regenerating liver (PRLs). Growing evidence has revealed dysregulation of DUSPs as one of the common phenomenons and highlighted their key roles in human cancers. Furthermore, their differential expression may be a potential biomarker for tumor prognosis. Despite this, there are still many unstudied members of DUSPs need to further explore their precise roles and mechanism in cancers. Most importantly, the systematic review is very limited on the functional/mechanistic characteristics and clinical application of DUSPs at present. In this review, the structures, functions and underlying mechanisms of DUSPs are systematically reviewed, and the molecular and functional characteristics of DUSPs in different tumor types according to the current researches are summarized. In addition, the potential roles of the unstudied members and the possible different mechanisms of DUSPs in cancer are discussed and classified based on homology alignment and structural domain analyses. Moreover, the specific characteristics of their expression and prognosis are further determined in more than 30 types of human cancers by using the online databases. Finally, their potential application in precise diagnosis, prognosis and treatment of different types of cancers, and the main possible problems for the clinical application at present are prospected.
Collapse
Affiliation(s)
- Ping-Ping Gao
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Xiao-Wei Qi
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Na Sun
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Yuan-Yuan Sun
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China; Department of Clinical Pharmacy, Jilin University School of Pharmaceutical Sciences, Changchun, Jilin 130023, China
| | - Ye Zhang
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Xuan-Ni Tan
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Jun Ding
- Department of Hepatobiliary Surgery, Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Fei Han
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China.
| | - Yi Zhang
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
39
|
May EA, Kalocsay M, D'Auriac IG, Schuster PS, Gygi SP, Nachury MV, Mick DU. Time-resolved proteomics profiling of the ciliary Hedgehog response. J Cell Biol 2021; 220:211991. [PMID: 33856408 PMCID: PMC8054476 DOI: 10.1083/jcb.202007207] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 02/01/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
The primary cilium is a signaling compartment that interprets Hedgehog signals through changes of its protein, lipid, and second messenger compositions. Here, we combine proximity labeling of cilia with quantitative mass spectrometry to unbiasedly profile the time-dependent alterations of the ciliary proteome in response to Hedgehog. This approach correctly identifies the three factors known to undergo Hedgehog-regulated ciliary redistribution and reveals two such additional proteins. First, we find that a regulatory subunit of the cAMP-dependent protein kinase (PKA) rapidly exits cilia together with the G protein-coupled receptor GPR161 in response to Hedgehog, and we propose that the GPR161/PKA module senses and amplifies cAMP signals to modulate ciliary PKA activity. Second, we identify the phosphatase Paladin as a cell type-specific regulator of Hedgehog signaling that enters primary cilia upon pathway activation. The broad applicability of quantitative ciliary proteome profiling promises a rapid characterization of ciliopathies and their underlying signaling malfunctions.
Collapse
Affiliation(s)
- Elena A May
- Center of Human and Molecular Biology, Saarland University School of Medicine, Homburg, Germany
| | - Marian Kalocsay
- Department of Systems Biology, Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA.,Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Inès Galtier D'Auriac
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA
| | - Patrick S Schuster
- Center of Human and Molecular Biology, Saarland University School of Medicine, Homburg, Germany
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Maxence V Nachury
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA
| | - David U Mick
- Center of Human and Molecular Biology, Saarland University School of Medicine, Homburg, Germany.,Center for Molecular Signaling, Department of Medical Biochemistry and Molecular Biology, Saarland University School of Medicine, Homburg, Germany
| |
Collapse
|
40
|
Gu SH, Chen CH, Lin PL. Expression of protein tyrosine phosphatases and Bombyx embryonic development. JOURNAL OF INSECT PHYSIOLOGY 2021; 130:104198. [PMID: 33549567 DOI: 10.1016/j.jinsphys.2021.104198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/25/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Protein phosphorylation is an integral component of signal transduction pathways within eukaryotic cells, and it is regulated by coordinated interactions between protein kinases and protein phosphatases. Our previous study demonstrated differential expressions of serine/threonine protein phosphatases (PP2A and calcineurin) between diapause and developing eggs in Bombyx mori. In the present study, we further investigated expression of protein tyrosine phosphatases (PTPs) in relation to the Bombyx embryonic development. An immunoblot analysis showed that eggs contained the proteins of the 51-kDa PTP 1B (PTP1B), the 55-kDa phosphatase and tensin homologue (PTEN), and the 70-kDa Src homology 2 (SH2) domain-containing phosphatase 2 (SHP2), which undergo differential changes between diapause and developing eggs. Protein level of PTP1B and PTEN in eggs whose diapause initiation was prevented by HCl gradually increased toward embryonic development. The protein level of SHP2 also showed a dramatic increase on days 7 and 8 after HCl treatment. However, protein levels of PTP1B, PTEN, and SHP2 in diapause eggs remained at low levels during the first 9 days after oviposition. These differential changing patterns in protein levels were further confirmed using both non-diapause eggs and eggs in which diapause had been terminated by chilling of diapausing eggs at 5 °C for 70 days and then were transferred to 25 °C. Direct determination of PTP enzymatic activities showed higher activities in developing eggs (HCl-treated eggs, non-diapause eggs, and chilled eggs) compared to those in diapause eggs. Examination of temporal changes in mRNA expression levels of PTP1B, PTEN, and SHP2 did not show significant differences between diapause eggs and HCl-treated eggs except high expression in SHP2 variant B during the later embryonic development in HCl-treated eggs. These results demonstrate that higher protein levels of PTP1B, PTEN, and SHP2 and increased tyrosine phosphatase enzymatic activities in developing eggs are likely related to embryonic development of B. mori.
Collapse
Affiliation(s)
- Shi-Hong Gu
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC.
| | - Chien-Hung Chen
- Chung Hwa University of Medical Technology, 89 Wen-Hwa 1st Road, Jen-Te Township, Tainan County 717, Taiwan, ROC
| | - Pei-Ling Lin
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC
| |
Collapse
|
41
|
Yang C, Zeng Y, Liao Y, Deng Y, Du X, Wang Q. Integrated GC-MS- and LC-MS-Based Untargeted Metabolomics Studies of the Effect of Vitamin D3 on Pearl Production Traits in Pearl Oyster Pinctada fucata martensii. Front Mol Biosci 2021; 8:614404. [PMID: 33748187 PMCID: PMC7973263 DOI: 10.3389/fmolb.2021.614404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/14/2021] [Indexed: 12/24/2022] Open
Abstract
Pearl oyster Pinctada fucata martensii is widely recognized for biomineralization and has been cultured for high-quality marine pearl production. To ascertain how dietary vitamin D3 (VD3) levels affect the features of pearl production by P. f. martensii and discover the mechanisms regulating this occurrence, five experimental diets with variable levels of VD3 were used with inclusion levels of 0, 500, 1,000, 3,000, and 10,000 IU/kg. The distinct inclusion levels were distributed into five experimental groups (EG1, EG2, EG3, EG4, and EG5). All the experimental groups were reared indoors except the control group (CG) reared at the sea. Pearl oysters, one year and a half old, were used in the grafting operation to culture pearls. During the growing period that lasted 137 days, EG3 had the highest survival rate, retention rate, and high-quality pearl rate. A similar trend was found for EG3 and CG with significantly higher pearl thickness and nacre deposition rates than other groups, but no significant differences were observed between them. A metabolomics profiling using GC–MS and LC–MS of pearl oysters fed with low quantities of dietary VD3 and optimal levels of dietary VD3 revealed 135 statistically differential metabolites (SDMs) (VIP > 1 and p < 0.05). Pathway analysis indicated that SDMs were involved in 32 pathways, such as phenylalanine metabolism, histidine metabolism, glycerophospholipid metabolism, alanine aspartate and glutamate metabolism, arginine and proline metabolism, glycerolipid metabolism, amino sugar and nucleotide sugar metabolism, and tyrosine metabolism. These results provide a theoretical foundation for understanding the impacts of VD3 on pearl production traits in pearl oyster and reinforce forthcoming prospects and application of VD3 in pearl oyster in aquaculture rearing conditions.
Collapse
Affiliation(s)
- Chuangye Yang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China.,Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, China.,Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang, China.,Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, China
| | - Yetao Zeng
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Yongshan Liao
- Fisheries College, Guangdong Ocean University, Zhanjiang, China.,Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, China.,Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang, China
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang, China.,Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, China.,Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang, China.,Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, China
| | - Xiaodong Du
- Fisheries College, Guangdong Ocean University, Zhanjiang, China.,Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, China.,Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang, China.,Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, China
| | - Qingheng Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China.,Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, China.,Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang, China.,Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, China
| |
Collapse
|
42
|
Liao YC, Lo SH. Tensins - emerging insights into their domain functions, biological roles and disease relevance. J Cell Sci 2021; 134:jcs254029. [PMID: 33597154 PMCID: PMC10660079 DOI: 10.1242/jcs.254029] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Tensins are a family of focal adhesion proteins consisting of four members in mammals (TNS1, TNS2, TNS3 and TNS4). Their multiple domains and activities contribute to the molecular linkage between the extracellular matrix and cytoskeletal networks, as well as mediating signal transduction pathways, leading to a variety of physiological processes, including cell proliferation, attachment, migration and mechanical sensing in a cell. Tensins are required for maintaining normal tissue structures and functions, especially in the kidney and heart, as well as in muscle regeneration, in animals. This Review discusses our current understanding of the domain functions and biological roles of tensins in cells and mice, as well as highlighting their relevance to human diseases.
Collapse
Affiliation(s)
- Yi-Chun Liao
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Su Hao Lo
- Department of Biochemistry and Molecular Medicine, University of California-Davis, Sacramento, CA 95817, USA
| |
Collapse
|
43
|
Protein tyrosine phosphatases (PTPs) in diabetes: causes and therapeutic opportunities. Arch Pharm Res 2021; 44:310-321. [PMID: 33590390 DOI: 10.1007/s12272-021-01315-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/26/2021] [Indexed: 10/22/2022]
Abstract
Protein tyrosine phosphatases (PTPs) have an emerging paradigm for the development of antidiabetic drugs. Herein, we provide a comprehensive overview of the relevance of PTPs to type 2 diabetes (T2D) and the therapeutic opportunities thereof, while critically evaluating the potential challenges for PTP inhibitors to be next generation antidiabetics. This review briefly discusses the structure and function of PTPs. An account of importance and relevance of PTPs in various human diseases is presented with special attention to diabetes. The PTPs relevant to T2D have been targeted by small molecule inhibitors such as natural products and synthetic compounds as well as antisense nucleic acids. This review will give better understanding of the important concepts helpful in outlining the strategies for the development of new therapeutic agents with promising antidiabetic activities.
Collapse
|
44
|
Nitzsche A, Pietilä R, Love DT, Testini C, Ninchoji T, Smith RO, Ekvärn E, Larsson J, Roche FP, Egaña I, Jauhiainen S, Berger P, Claesson‐Welsh L, Hellström M. Paladin is a phosphoinositide phosphatase regulating endosomal VEGFR2 signalling and angiogenesis. EMBO Rep 2021; 22:e50218. [PMID: 33369848 PMCID: PMC7857541 DOI: 10.15252/embr.202050218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 11/07/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022] Open
Abstract
Cell signalling governs cellular behaviour and is therefore subject to tight spatiotemporal regulation. Signalling output is modulated by specialized cell membranes and vesicles which contain unique combinations of lipids and proteins. The phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 ), an important component of the plasma membrane as well as other subcellular membranes, is involved in multiple processes, including signalling. However, which enzymes control the turnover of non-plasma membrane PI(4,5)P2 , and their impact on cell signalling and function at the organismal level are unknown. Here, we identify Paladin as a vascular PI(4,5)P2 phosphatase regulating VEGFR2 endosomal signalling and angiogenesis. Paladin is localized to endosomal and Golgi compartments and interacts with vascular endothelial growth factor receptor 2 (VEGFR2) in vitro and in vivo. Loss of Paladin results in increased internalization of VEGFR2, over-activation of extracellular regulated kinase 1/2, and hypersprouting of endothelial cells in the developing retina of mice. These findings suggest that inhibition of Paladin, or other endosomal PI(4,5)P2 phosphatases, could be exploited to modulate VEGFR2 signalling and angiogenesis, when direct and full inhibition of the receptor is undesirable.
Collapse
Affiliation(s)
- Anja Nitzsche
- Science for Life LaboratoryThe Rudbeck LaboratoryDepartment of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
- Present address:
Université de ParisParis Cardiovascular Research CenterINSERM U970ParisFrance
| | - Riikka Pietilä
- Science for Life LaboratoryThe Rudbeck LaboratoryDepartment of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| | - Dominic T Love
- Science for Life LaboratoryThe Rudbeck LaboratoryDepartment of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| | - Chiara Testini
- Science for Life LaboratoryThe Rudbeck LaboratoryDepartment of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
- Present address:
Division of NephrologyDepartment of MedicineBoston Children’s HospitalBostonMAUSA
| | - Takeshi Ninchoji
- Science for Life LaboratoryThe Rudbeck LaboratoryDepartment of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| | - Ross O Smith
- Science for Life LaboratoryThe Rudbeck LaboratoryDepartment of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| | - Elisabet Ekvärn
- Science for Life LaboratoryThe Rudbeck LaboratoryDepartment of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
- Present address:
Cepheid ABSolnaSweden
| | - Jimmy Larsson
- Science for Life LaboratoryThe Rudbeck LaboratoryDepartment of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
- Present address:
Department of Cell and Molecular BiologyUppsala UniversityUppsalaSweden
| | - Francis P Roche
- Science for Life LaboratoryThe Rudbeck LaboratoryDepartment of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| | - Isabel Egaña
- Science for Life LaboratoryThe Rudbeck LaboratoryDepartment of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| | - Suvi Jauhiainen
- Science for Life LaboratoryThe Rudbeck LaboratoryDepartment of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| | - Philipp Berger
- Laboratory of Nanoscale BiologyPaul‐Scherrer InstituteVilligenSwitzerland
| | - Lena Claesson‐Welsh
- Science for Life LaboratoryThe Rudbeck LaboratoryDepartment of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| | - Mats Hellström
- Science for Life LaboratoryThe Rudbeck LaboratoryDepartment of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| |
Collapse
|
45
|
Sierra-López F, Baylón-Pacheco L, Vanegas-Villa SC, Rosales-Encina JL. Characterization of low molecular weight protein tyrosine phosphatases of Entamoeba histolytica. Biochimie 2021; 180:43-53. [PMID: 33122104 DOI: 10.1016/j.biochi.2020.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/20/2020] [Accepted: 10/24/2020] [Indexed: 12/12/2022]
Abstract
Entamoeba histolytica is an intestinal protozoan parasite of humans and is endemic in developing countries. E. histolytica has two low molecular weight protein tyrosine phosphatase (LMW-PTP) genes, EhLMW-PTP1 and EhLMW-PTP2, which are expressed in cultured trophozoites, clinical isolates, and cysts. The amino acid sequences of proteins EhLMW-PTP1 and EhLMW-PTP2 showed only one amino acid difference between them at position A85V, respectively. Both genes are expressed in cultured trophozoites, mainly EhLMW-PTP2, and in trophozoites recovered from amoebic liver abscess, the expression of EhLMW-PTP1 is downregulated. We cloned the two genes and purified the corresponding recombinant (rEhLMW-PTPs) proteins. Antibodies anti-rEhLMW-PTP2 showed that during red blood cells uptake by E. histolytica, the EhLMW-PTPs were found in the phagocytic cups based on analysis of fluorescence signals. On the other hand, rEhLMW-PTPs showed an optimum phosphatase activity at pH 6.0 with p-nitrophenyl phosphate as the substrate. They dephosphorylate phosphotyrosine and 3-O-methylfluorescein phosphate, but not phosphoserine or phosphothreonine, and the enzymatic activity is inhibited by orthovanadate. rEhLMW-PTP1 and rEhLMW-PTP2 exhibited optimum temperatures of activities at 60 °C and 58 °C, respectively, with high thermal stability at 50 °C. Also, the rEhLMW-PTPs showed high specific activities and specific km value with pNPP or OMFP as the substrates at the physiological temperature (37 °C).
Collapse
Affiliation(s)
- Francisco Sierra-López
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N., Ciudad de México, Mexico.
| | - Lidia Baylón-Pacheco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N., Ciudad de México, Mexico.
| | - Sonia Cynthia Vanegas-Villa
- Programa de Doctorado en Ciencias Biomédicas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de, Mexico.
| | - José Luis Rosales-Encina
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N., Ciudad de México, Mexico.
| |
Collapse
|
46
|
Structural Insights into the Active Site Formation of DUSP22 in N-loop-containing Protein Tyrosine Phosphatases. Int J Mol Sci 2020; 21:ijms21207515. [PMID: 33053837 PMCID: PMC7589817 DOI: 10.3390/ijms21207515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Cysteine-based protein tyrosine phosphatases (Cys-based PTPs) perform dephosphorylation to regulate signaling pathways in cellular responses. The hydrogen bonding network in their active site plays an important conformational role and supports the phosphatase activity. Nearly half of dual-specificity phosphatases (DUSPs) use three conserved residues, including aspartate in the D-loop, serine in the P-loop, and asparagine in the N-loop, to form the hydrogen bonding network, the D-, P-, N-triloop interaction (DPN-triloop interaction). In this study, DUSP22 is used to investigate the importance of the DPN-triloop interaction in active site formation. Alanine mutations and somatic mutations of the conserved residues, D57, S93, and N128 substantially decrease catalytic efficiency (kcat/KM) by more than 102-fold. Structural studies by NMR and crystallography reveal that each residue can perturb the three loops and induce conformational changes, indicating that the hydrogen bonding network aligns the residues in the correct positions for substrate interaction and catalysis. Studying the DPN-triloop interaction reveals the mechanism maintaining phosphatase activity in N-loop-containing PTPs and provides a foundation for further investigation of active site formation in different members of this protein class.
Collapse
|
47
|
Sarmasti Emami S, Zhang D, Yang X. Interaction of the Hippo Pathway and Phosphatases in Tumorigenesis. Cancers (Basel) 2020; 12:E2438. [PMID: 32867200 PMCID: PMC7564220 DOI: 10.3390/cancers12092438] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 01/05/2023] Open
Abstract
The Hippo pathway is an emerging tumor suppressor signaling pathway involved in a wide range of cellular processes. Dysregulation of different components of the Hippo signaling pathway is associated with a number of diseases including cancer. Therefore, identification of the Hippo pathway regulators and the underlying mechanism of its regulation may be useful to uncover new therapeutics for cancer therapy. The Hippo signaling pathway includes a set of kinases that phosphorylate different proteins in order to phosphorylate and inactivate its main downstream effectors, YAP and TAZ. Thus, modulating phosphorylation and dephosphorylation of the Hippo components by kinases and phosphatases play critical roles in the regulation of the signaling pathway. While information regarding kinase regulation of the Hippo pathway is abundant, the role of phosphatases in regulating this pathway is just beginning to be understood. In this review, we summarize the most recent reports on the interaction of phosphatases and the Hippo pathway in tumorigenesis. We have also introduced challenges in clarifying the role of phosphatases in the Hippo pathway and future direction of crosstalk between phosphatases and the Hippo pathway.
Collapse
Affiliation(s)
| | | | - Xiaolong Yang
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (S.S.E.); (D.Z.)
| |
Collapse
|
48
|
Egbe E, Levy CW, Tabernero L. Computational and structure-guided design of phosphoinositide substrate specificity into the tyrosine specific LMW-PTP enzyme. PLoS One 2020; 15:e0235133. [PMID: 32584877 PMCID: PMC7316235 DOI: 10.1371/journal.pone.0235133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/09/2020] [Indexed: 11/23/2022] Open
Abstract
We have used a combination of computational and structure-based redesign of the low molecular weight protein tyrosine phosphatase, LMW-PTP, to create new activity towards phosphoinositide substrates for which the wild-type enzyme had little or no activity. The redesigned enzymes retain catalytic activity despite residue alterations in the active site, and kinetic experiments confirmed specificity for up to four phosphoinositide substrates. Changes in the shape and overall volume of the active site where critical to facilitate access of the new substrates for catalysis. The kinetics data suggest that both the position and the combination of amino acid mutations are important for specificity towards the phosphoinositide substrates. The introduction of basic residues proved essential to establish new interactions with the multiple phosphate groups in the inositol head, thus promoting catalytically productive complexes. The crystallographic structures of the top-ranking designs confirmed the computational predictions and showed that residue substitutions do not alter the overall folding of the phosphatase or the conformation of the active site P-loop. The engineered LMW-PTP mutants with new activities can be useful reagents in investigating cell signalling pathways and offer the potential for therapeutic applications.
Collapse
Affiliation(s)
- Eyong Egbe
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, England, United Kingdom
| | - Colin W Levy
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, England, United Kingdom
| | - Lydia Tabernero
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, England, United Kingdom
| |
Collapse
|
49
|
The role of small molecule Flt3 receptor protein-tyrosine kinase inhibitors in the treatment of Flt3-positive acute myelogenous leukemias. Pharmacol Res 2020; 155:104725. [DOI: 10.1016/j.phrs.2020.104725] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 02/08/2023]
|
50
|
Sánchez-Rodríguez R, González GM, Becerril-García MA, Treviño-Rangel RDJ, Marcos-Vilchis A, González-Pedrajo B, Valvano MA, Andrade A. The BPtpA protein from Burkholderia cenocepacia belongs to a new subclass of low molecular weight protein tyrosine phosphatases. Arch Biochem Biophys 2020; 681:108277. [PMID: 31978399 DOI: 10.1016/j.abb.2020.108277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 11/24/2022]
Abstract
Low molecular weight protein tyrosine phosphatases (LMW-PTP) are ubiquitous enzymes found across a spectrum of genera from prokaryotes to higher eukaryotes. LMW-PTP belong to the Cys-based PTP class II protein family. Here, we show that LMW-PTP can be categorized into two different groups, referred as class II subdivision I (class II.I) and subdivision II (class II.II). Using BPtpA from the opportunistic pathogen Burkholderia cenocepacia, as a representative member of the LMW-PTP class II.I, we demonstrated that four conserved residues (W47, H48, D80, and F81) are required for enzyme function. Guided by an in silico model of BPtpA, we show that the conserved residues at α3-helix (D80 and F81) contribute to protein stability, while the other conserved residues in the W-loop (W47 and H48) likely play a role in substrate recognition. Overall, our results provide new information on LMW-PTP protein family and establish B. cenocepacia as a suitable model to investigate how substrates are recognized and sorted by these proteins.
Collapse
Affiliation(s)
- Rebeca Sánchez-Rodríguez
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Microbiología. Monterrey, Nuevo León, 64460, Mexico
| | - Gloria M González
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Microbiología. Monterrey, Nuevo León, 64460, Mexico
| | - Miguel A Becerril-García
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Microbiología. Monterrey, Nuevo León, 64460, Mexico
| | - Rogelio de J Treviño-Rangel
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Microbiología. Monterrey, Nuevo León, 64460, Mexico
| | - Arely Marcos-Vilchis
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, 70-243, Mexico
| | - Bertha González-Pedrajo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, 70-243, Mexico
| | - Miguel A Valvano
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, United Kingdom
| | - Angel Andrade
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Microbiología. Monterrey, Nuevo León, 64460, Mexico.
| |
Collapse
|