1
|
Gim GM, Jang G. Outlook on genome editing application to cattle. J Vet Sci 2024; 25:e10. [PMID: 38311323 PMCID: PMC10839183 DOI: 10.4142/jvs.23133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/04/2023] [Accepted: 08/20/2023] [Indexed: 02/07/2024] Open
Abstract
In livestock industry, there is growing interest in methods to increase the production efficiency of livestock to address food shortages, given the increasing global population. With the advancements in gene engineering technology, it is a valuable tool and has been intensively utilized in research specifically focused on human disease. In historically, this technology has been used with livestock to create human disease models or to produce recombinant proteins from their byproducts. However, in recent years, utilizing gene editing technology, cattle with identified genes related to productivity can be edited, thereby enhancing productivity in response to climate change or specific disease instead of producing recombinant proteins. Furthermore, with the advancement in the efficiency of gene editing, it has become possible to edit multiple genes simultaneously. This cattle breed improvement has been achieved by discovering the genes through the comprehensive analysis of the entire genome of cattle. The cattle industry has been able to address gene bottlenecks that were previously impossible through conventional breeding systems. This review concludes that gene editing is necessary to expand the cattle industry, improving productivity in the future. Additionally, the enhancement of cattle through gene editing is expected to contribute to addressing environmental challenges associated with the cattle industry. Further research and development in gene editing, coupled with genomic analysis technologies, will significantly contribute to solving issues that conventional breeding systems have not been able to address.
Collapse
Affiliation(s)
| | - Goo Jang
- LARTBio Inco, Seoul 06221, Korea
- Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, Seoul 08826, Korea
- Comparative medicine Disease Research Center, Seoul National University, Seoul 08826, Korea
- Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia.
| |
Collapse
|
2
|
Popova J, Bets V, Kozhevnikova E. Perspectives in Genome-Editing Techniques for Livestock. Animals (Basel) 2023; 13:2580. [PMID: 37627370 PMCID: PMC10452040 DOI: 10.3390/ani13162580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Genome editing of farm animals has undeniable practical applications. It helps to improve production traits, enhances the economic value of livestock, and increases disease resistance. Gene-modified animals are also used for biomedical research and drug production and demonstrate the potential to be used as xenograft donors for humans. The recent discovery of site-specific nucleases that allow precision genome editing of a single-cell embryo (or embryonic stem cells) and the development of new embryological delivery manipulations have revolutionized the transgenesis field. These relatively new approaches have already proven to be efficient and reliable for genome engineering and have wide potential for use in agriculture. A number of advanced methodologies have been tested in laboratory models and might be considered for application in livestock animals. At the same time, these methods must meet the requirements of safety, efficiency and availability of their application for a wide range of farm animals. This review aims at covering a brief history of livestock animal genome engineering and outlines possible future directions to design optimal and cost-effective tools for transgenesis in farm species.
Collapse
Affiliation(s)
- Julia Popova
- Laboratory of Bioengineering, Novosibirsk State Agrarian University, 630039 Novosibirsk, Russia; (J.P.); (V.B.)
| | - Victoria Bets
- Laboratory of Bioengineering, Novosibirsk State Agrarian University, 630039 Novosibirsk, Russia; (J.P.); (V.B.)
- Center of Technological Excellence, Novosibirsk State Technical University, 630073 Novosibirsk, Russia
| | - Elena Kozhevnikova
- Laboratory of Bioengineering, Novosibirsk State Agrarian University, 630039 Novosibirsk, Russia; (J.P.); (V.B.)
- Laboratory of Experimental Models of Cognitive and Emotional Disorders, Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia
| |
Collapse
|
3
|
Gim GM, Eom KH, Kwon DH, Jung DJ, Kim DH, Yi JK, Ha JJ, Lee JH, Lee SB, Son WJ, Yum SY, Lee WW, Jang G. Generation of double knockout cattle via CRISPR-Cas9 ribonucleoprotein (RNP) electroporation. J Anim Sci Biotechnol 2023; 14:103. [PMID: 37543609 PMCID: PMC10404370 DOI: 10.1186/s40104-023-00902-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/04/2023] [Indexed: 08/07/2023] Open
Abstract
BACKGROUND Genome editing has been considered as powerful tool in agricultural fields. However, genome editing progress in cattle has not been fast as in other mammal species, for some disadvantages including long gestational periods, single pregnancy, and high raising cost. Furthermore, technically demanding methods such as microinjection and somatic cell nuclear transfer (SCNT) are needed for gene editing in cattle. In this point of view, electroporation in embryos has been risen as an alternative. RESULTS First, editing efficiency of our electroporation methods were tested for embryos. Presence of mutation on embryo was confirmed by T7E1 assay. With first combination, mutation rates for MSTN and PRNP were 57.6% ± 13.7% and 54.6% ± 13.5%, respectively. In case of MSTN/BLG, mutation rates were 83.9% ± 23.6% for MSTN, 84.5% ± 18.0% for BLG. Afterwards, the double-KO embryos were transferred to surrogates and mutation rate was identified in resultant calves by targeted deep sequencing. Thirteen recipients were transferred for MSTN/PRNP, 4 calves were delivered, and one calf underwent an induction for double KO. Ten surrogates were given double-KO embryos for MSTN/BLG, and four of the six calves that were born had mutations in both genes. CONCLUSIONS These data demonstrated that production of genome edited cattle via electroporation of RNP could be effectively applied. Finally, MSTN and PRNP from beef cattle and MSTN and BLG from dairy cattle have been born and they will be valuable resources for future precision breeding.
Collapse
Affiliation(s)
- Gyeong-Min Gim
- Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, Seoul, Republic of Korea
- LARTBio Co., Ltd., Seoul, Republic of Korea
| | - Kyeong-Hyeon Eom
- Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, Seoul, Republic of Korea
- LARTBio Co., Ltd., Seoul, Republic of Korea
| | - Dong-Hyeok Kwon
- Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Dae-Jin Jung
- Gyeongsangbukdo Livestock Research Institute, Yeongju, Republic of Korea
| | - Dae-Hyun Kim
- Gyeongsangbukdo Livestock Research Institute, Yeongju, Republic of Korea
| | - Jun-Koo Yi
- Gyeongsangbukdo Livestock Research Institute, Yeongju, Republic of Korea
| | - Jae-Jung Ha
- Gyeongsangbukdo Livestock Research Institute, Yeongju, Republic of Korea
| | | | | | | | | | - Won-Wu Lee
- LARTBio Co., Ltd., Seoul, Republic of Korea
| | - Goo Jang
- Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, Seoul, Republic of Korea.
- LARTBio Co., Ltd., Seoul, Republic of Korea.
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Díaz A, Diab M, Mata-Espinosa D, Bini E, D'Attilio L, Bottasso O, Hernández-Pando R, Bay ML, Bongiovanni B. The relationship between host defense peptides and adrenal steroids. An account of reciprocal influences. Cytokine 2023; 168:156229. [PMID: 37244247 DOI: 10.1016/j.cyto.2023.156229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/29/2023]
Abstract
AIM β-defensins 2 and -3 (HBD-2 and HBD-3) and cathelicidin LL-37 are host defense peptides (HDPs) that play a crucial role in the immune response against mycobacteria. Given our former studies in tuberculosis patients wherein their plasma levels of such peptides correlated with steroid hormone concentrations, we now studied the reciprocal influence of cortisol and/or dehydroepiandrosterone (DHEA) on HDPs biosynthesis and LL-37 on adrenal steroidogenesis. MAIN METHODS Cultures of macrophages derived from the THP-1 line were treated with cortisol (10-6M) and/or DHEA (10-6M and 10-7M) and stimulated with irradiated M. tuberculosis (Mi) or infected M. tuberculosis strain H37Rv to assess cytokine production, HDPs, reactive oxygen species (ROS) and colony forming units. Cultures of NCI-H295-R adrenal line were treated with LL37 (5, 10, and 15 µg/ml) for 24 h to further measure cortisol and DHEA levels together with steroidogenic enzyme transcripts. KEY FINDINGS In macrophages, M. tuberculosis produced an increase of IL-1β, TNFα, IL-6, IL-10, LL-37, HBD-2, and HBD-3 levels, irrespective of DHEA treatment. Adding cortisol to M. tuberculosis-stimulated cultures (with or without DHEA) decreased the amounts of these mediators, compared to only stimulated cultures. Although M. tuberculosis reduced ROS levels, DHEA increased these values in addition to diminishing intracellular mycobacterial growth (no matter cortisol treatment). In turn, studies on adrenal cells showed that LL-37 reduced the production of cortisol and DHEA besides modifying transcripts for some steroidogenic enzymes. SIGNIFICANCE while adrenal steroids seem to influence the production of HDPs, the former compounds are also likely to modulate adrenal biogenesis.
Collapse
Affiliation(s)
- Ariana Díaz
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER CONICET-UNR), Suipacha 590 (S2002LRL), Rosario, Argentina; Facultad de Cs. Médicas, UNR, Santa Fe 3100 (S2002KTR) Rosario, Argentina.
| | - Magdalena Diab
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER CONICET-UNR), Suipacha 590 (S2002LRL), Rosario, Argentina.
| | - Dulce Mata-Espinosa
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco De Quiroga 15, Tlalpan, México D.F (CP14080), México.
| | - Estela Bini
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco De Quiroga 15, Tlalpan, México D.F (CP14080), México.
| | - Luciano D'Attilio
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER CONICET-UNR), Suipacha 590 (S2002LRL), Rosario, Argentina; Facultad de Cs. Médicas, UNR, Santa Fe 3100 (S2002KTR) Rosario, Argentina.
| | - Oscar Bottasso
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER CONICET-UNR), Suipacha 590 (S2002LRL), Rosario, Argentina; Facultad de Cs. Médicas, UNR, Santa Fe 3100 (S2002KTR) Rosario, Argentina.
| | - Rogelio Hernández-Pando
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco De Quiroga 15, Tlalpan, México D.F (CP14080), México.
| | - María Luisa Bay
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER CONICET-UNR), Suipacha 590 (S2002LRL), Rosario, Argentina; Facultad de Cs. Médicas, UNR, Santa Fe 3100 (S2002KTR) Rosario, Argentina.
| | - Bettina Bongiovanni
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER CONICET-UNR), Suipacha 590 (S2002LRL), Rosario, Argentina; Facultad de Cs. Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Suipacha 570 (S2002LRL), Rosario, Argentina.
| |
Collapse
|
5
|
Flores-Villalva S, Remot A, Carreras F, Winter N, Gordon SV, Meade KG. Vitamin D induced microbicidal activity against Mycobacterium bovis BCG is dependent on the synergistic activity of bovine peripheral blood cell populations. Vet Immunol Immunopathol 2023; 256:110536. [PMID: 36586390 DOI: 10.1016/j.vetimm.2022.110536] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/17/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
A growing appreciation is emerging of the beneficial role of vitamin D for health and resistance against infectious diseases, including tuberculosis. However, research has predominantly focused on murine and human species and functional data in bovines is limited. Therefore, the objective of this study was to assess the microbicidal activity and immunoregulatory effect of the vitamin D metabolite 1,25(OH)2D3 on bovine peripheral blood leukocytes (PBL) in response to Mycobacterium bovis BCG (BCG) infection using a combination of functional assays and gene expression profiling. Blood from Holstein-Friesian bull calves with low circulating levels of 25(OH)D was stimulated with 1,25(OH)2D3 for 2 h, and then infected with M. bovis BCG. Results showed that 1,25(OH)2D3 supplementation significantly increased BCG killing by on average 16 %, although responses varied between 1 % and 38 % killing. Serial cell subset depletion was then performed on PBL prior to 1,25(OH)2D3 incubation and BCG infected as before to analyse the contribution of major cell types to mycobacterial growth control. Specific antibodies and either magnetic cell separation or density gradient centrifugation of monocytes, granulocytes, CD3+, CD4+, and CD8+ T lymphocytes were used to capture each cell subset. Results showed that depletion of granulocytes had the greatest impact on BCG growth, leading to a significant enhancement of bacterial colonies. In contrast, depletion of CD4+ or CD8+ T cells individually, or in combination (CD3+), had no impact on mycobacterial growth control. In agreement with our previous data, 1,25(OH)2D3 significantly increased bacterial killing in PBL, in monocyte depleted samples, and a similar trend was observed in the granulocyte depleted subset. In addition, specific analysis of sorted neutrophils treated with 1,25(OH)2D3 showed an enhanced microbicidal activity against both BCG and a virulent strain of M. bovis. Lastly, data showed that 1,25(OH)2D3 stimulation increased reactive oxygen species (ROS) production and the expression of genes encoding host defence peptides (HDP) and pathogen recognition receptors (PRRs), factors that play an important role in the microbicidal activity against mycobacteria. In conclusion, the vitamin D metabolite 1,25(OH)2D3 improves antimycobacterial killing in bovine PBLs via the synergistic activity of monocytes and granulocytes and enhanced activation of innate immunity.
Collapse
Affiliation(s)
- Susana Flores-Villalva
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland; CENID Fisiología, INIFAP, Querétaro, Mexico
| | - Aude Remot
- INRAE, Université de Tours, ISP, F-37380 Nouzilly, France
| | | | | | - Stephen V Gordon
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kieran G Meade
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland; Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
6
|
Yamashita MS, Melo EO. Animal Transgenesis and Cloning: Combined Development and Future Perspectives. Methods Mol Biol 2023; 2647:121-149. [PMID: 37041332 DOI: 10.1007/978-1-0716-3064-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
The revolution in animal transgenesis began in 1981 and continues to become more efficient, cheaper, and faster to perform. New genome editing technologies, especially CRISPR-Cas9, are leading to a new era of genetically modified or edited organisms. Some researchers advocate this new era as the time of synthetic biology or re-engineering. Nonetheless, we are witnessing advances in high-throughput sequencing, artificial DNA synthesis, and design of artificial genomes at a fast pace. These advances in symbiosis with animal cloning by somatic cell nuclear transfer (SCNT) allow the development of improved livestock, animal models of human disease, and heterologous production of bioproducts for medical applications. In the context of genetic engineering, SCNT remains a useful technology to generate animals from genetically modified cells. This chapter addresses these fast-developing technologies driving this biotechnological revolution and their association with animal cloning technology.
Collapse
Affiliation(s)
- Melissa S Yamashita
- Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
- Graduation Program in Animal Biology, University of Brasília, Brasília, Distrito Federal, Brazil
| | - Eduardo O Melo
- Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil.
- Graduation Program in Biotechnology, University of Tocantins, Gurupi, Tocantins, Brazil.
| |
Collapse
|
7
|
Liu Y, Zhang H, Dong S, Li B, Ma W, Ge L, Hu Z, Su F. Secretion of IFN-γ by Transgenic Mammary Epithelial Cells in vitro Reduced Mastitis Infection Risk in Goats. Front Vet Sci 2022; 9:898635. [PMID: 35812858 PMCID: PMC9263845 DOI: 10.3389/fvets.2022.898635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Mastitis results in great economic loss to the dairy goat industry. Many approaches have attempted to decrease the morbidity associated with this disease, and among these, transgenic strategy have been recognized as a potential approach. A previous mammalian study reports that interferon-gamma (IFN-γ) has potential anti-bacterial bioactivity against infection in vitro; however, its capacity in vivo is ambiguous. In this study, we initially constructed targeting and homologous recombination vectors (containing the IFN-γ gene) and then transferred the vectors into goat mammary gland epithelial cells (GMECs). Enzyme digestion and sequencing analysis indicated that the vectors used in this study were built correctly. Subsequently, monoclonal cells were selected using puromycin and the polymerase chain reaction (PCR) test indicated that IFN-γ was correctly inserted downstream of the casein promoter. Monoclonal cells were then assessed for reducible expression, and reverse transcriptase-PCR (RT-PCR) and Western blot tests confirmed that monoclonal cells could express IFN-γ. Finally, anti-bacterial capacity was evaluated using bacterial counts and flow cytometry analysis. Decreased bacterial counts and cell apoptosis rates in transgenic GMECs demonstrated that the secretion of IFN-γ could inhibit bacterial proliferation. Therefore, IFN-γ gene transfection in goat mammary epithelial cells could inhibit bacterial proliferation and reduce the risk of mammary gland infection in goats.
Collapse
Affiliation(s)
- Ying Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science, Shandong Agricultural University, Taian, China
| | - Hongyan Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science, Shandong Agricultural University, Taian, China
| | - Shasha Dong
- Department of Cardiology, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Boyu Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science, Shandong Agricultural University, Taian, China
| | - Weiming Ma
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science, Shandong Agricultural University, Taian, China
| | - Lijiang Ge
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science, Shandong Agricultural University, Taian, China
| | - Zhiyong Hu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science, Shandong Agricultural University, Taian, China
- Zhiyong Hu
| | - Feng Su
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science, Shandong Agricultural University, Taian, China
- *Correspondence: Feng Su
| |
Collapse
|
8
|
Mazorra-Carrillo JL, Alcaraz-López OA, López-Rincón G, Villarreal-Ramos B, Gutiérrez-Pabello JA, Esquivel-Solís H. Host Serum Proteins as Potential Biomarkers of Bovine Tuberculosis Resistance Phenotype. Front Vet Sci 2021; 8:734087. [PMID: 34869715 PMCID: PMC8637331 DOI: 10.3389/fvets.2021.734087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/25/2021] [Indexed: 12/19/2022] Open
Abstract
Eradication of bovine tuberculosis (bTB) continues to be a worldwide challenge. The lack of reliable vaccines dampens the control and eradication programs of Mycobacterium bovis infection and spread. Selection and breeding of cattle resistant to M. bovis infection would greatly enhance the effectiveness of bTB eradication programs. Here, we have evaluated the potential of serum proteins as biomarkers of cattle resistance to bTB in Holstein-Friesian cows, 6-8-year-old, born and raised in similar conditions in herds with bTB prevalence >30%. Serum proteins obtained from uninfected cows (bTB-resistant; R) were compared to those from infected cows (bTB-susceptible; S), defined by a negative or positive bTB diagnosis, respectively. bTB diagnosis included: (i) single intradermal (caudal fold) tuberculin test, (ii) whole blood IFN-gamma test, (iii) gross visible lesions in lymph nodes and lungs by inspection at the abattoir, and (iv) a bacteriological culture for M. bovis. Using 2D-GE and LC-ESI-MS/MS, we found higher expression levels of primary amine oxidase (AO), complement component 5 (C5), and serotransferrin (TF) in R cattle than S cattle. In-house developed and standardized ELISAs for these novel biomarkers showed the best sensitivities of 72, 77, 77%, and specificities of 94, 94, 83%, for AO, C5, and TF, respectively. AUC-ROC (95% CI) values of 0.8935 (0.7906-0.9964), 0.9290 (0.8484-1.010), and 0.8580 (0.7291-0.9869) were obtained at cut-off points of 192.0, 176.5 ng/ml, and 2.1 mg/ml for AO, C5, and TF, respectively. These proteins are involved in inflammatory/immunomodulatory responses to infections and may provide a novel avenue of research to determine the mechanisms of protection against bTB. Overall, our results indicate that these proteins could be novel biomarkers to help identify cattle resistant to bTB, which in turn could be used to strengthen the effectiveness of existing eradication programs against bTB.
Collapse
Affiliation(s)
- Jorge Luis Mazorra-Carrillo
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Omar Antonio Alcaraz-López
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico.,Laboratorio de Investigación en Tuberculosis Bovina, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gonzalo López-Rincón
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Bernardo Villarreal-Ramos
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom.,Centre of Excellence for Bovine Tuberculosis, Institute for Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - José A Gutiérrez-Pabello
- Laboratorio de Investigación en Tuberculosis Bovina, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Hugo Esquivel-Solís
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| |
Collapse
|
9
|
Monzani PS, Adona PR, Long SA, Wheeler MB. Cows as Bioreactors for the Production of Nutritionally and Biomedically Significant Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:299-314. [PMID: 34807448 DOI: 10.1007/978-3-030-85686-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Dairy and beef cattle make a vital contribution to global nutrition, and since their domestication, they have been continuously exposed to natural and artificial selection to improve production characteristics. The technologies of transgenesis and gene editing used in cattle are responsible for generating news characteristics in bovine breeding, such as alteration of nutritional components of milk and meat enhancing human health benefits, disease resistance decreasing production costs and offering safe products for human food, as well as the recombinant protein production of biomedical significance. Different methodologies have been used to generate transgenic cattle as bioreactors. These methods include the microinjection of vectors in pronuclear, oocyte or zygote, sperm-mediate transgenesis, and somatic cell nuclear transfer. Gene editing has been applied to eliminate unwanted genes related to human and animal health, such as allergy, infection, or disease, and to insert transgenes into specific sites in the host genome. Methodologies for the generation of genetically modified cattle are laborious and not very efficient. However, in the last 30 years, transgenic animals were produced using many biotechnological tools. The result of these modifications includes (1) the change of nutritional components, including proteins, amino acids and lipids for human nutrition; (2) the removal allergic proteins milk; (3) the production of cows resistant to disease; or (4) the production of essential proteins used in biomedicine (biomedical proteins) in milk and blood plasma. The genetic modification of cattle is a powerful tool for biotechnology. It allows for the generation of new or modified products and functionality that are not currently available in this species.
Collapse
Affiliation(s)
- P S Monzani
- Instituto Chico Mendes de Conservação da Biodiversidade/Centro Nacional de Pesquisa e Conservação da Biodiversidade Aquática Continental, Pirassununga, SP, Brasil.
| | - P R Adona
- Saúde e Produção de Ruminantes, Universidade Norte do Paraná, Arapongas, PR, Brasil
| | - S A Long
- Departments of Animal Sciences and Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - M B Wheeler
- Departments of Animal Sciences and Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
10
|
Wu X, Zhao H, Lai J, Zhang N, Shi J, Zhou R, Su Q, Zheng E, Xu Z, Huang S, Hong L, Gu T, Yang J, Yang H, Cai G, Wu Z, Li Z. Interleukin 17D Enhances the Developmental Competence of Cloned Pig Embryos by Inhibiting Apoptosis and Promoting Embryonic Genome Activation. Animals (Basel) 2021; 11:ani11113062. [PMID: 34827794 PMCID: PMC8614321 DOI: 10.3390/ani11113062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The cloning technique is important for animal husbandry and biomedicine because it can be used to clone superior breeding livestock and produce multipurpose genetically modified animals. However, the success rate of cloning currently is very low due to the low developmental efficiency of cloned embryos, which limits the application of cloning. The low developmental competence is related to the excessive cell death in cloned embryos. Interleukin 17D (IL17D) is required for the normal development of mouse embryos by inhibiting cell death. This study aimed to investigate whether IL17D can improve cloned pig embryo development by inhibiting cell death. Addition of IL17D protein to culture medium decreased the cell death level and improved the developmental ability of cloned pig embryos. IL17D treatment enhanced cloned pig embryo development by regulating cell death-associated gene pathways and promoting genome-wide gene expression, which is probably via up-regulating the expression of a gene called GADD45B. This study provided a new approach to improve the pig cloning efficiency by adding IL17D protein to the culture medium of cloned pig embryos. Abstract Cloned animals generated by the somatic cell nuclear transfer (SCNT) approach are valuable for the farm animal industry and biomedical science. Nevertheless, the extremely low developmental efficiency of cloned embryos hinders the application of SCNT. Low developmental competence is related to the higher apoptosis level in cloned embryos than in fertilization-derived counterparts. Interleukin 17D (IL17D) expression is up-regulated during early mouse embryo development and is required for normal development of mouse embryos by inhibiting apoptosis. This study aimed to investigate whether IL17D plays roles in regulating pig SCNT embryo development. Supplementation of IL17D to culture medium improved the developmental competence and decreased the cell apoptosis level in cloned porcine embryos. The transcriptome data indicated that IL17D activated apoptosis-associated pathways and promoted global gene expression at embryonic genome activation (EGA) stage in treated pig SCNT embryos. Treating pig SCNT embryos with IL17D up-regulated expression of GADD45B, which is functional in inhibiting apoptosis and promoting EGA. Overexpression of GADD45B enhanced the developmental efficiency of cloned pig embryos. These results suggested that IL17D treatment enhanced the developmental ability of cloned pig embryos by suppressing apoptosis and promoting EGA, which was related to the up-regulation of GADD45B expression. This study demonstrated the roles of IL17D in early development of porcine SCNT embryos and provided a new approach to improve the developmental efficiency of cloned porcine embryos.
Collapse
Affiliation(s)
- Xiao Wu
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (X.W.); (H.Z.); (J.L.); (N.Z.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Huaxing Zhao
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (X.W.); (H.Z.); (J.L.); (N.Z.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Junkun Lai
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (X.W.); (H.Z.); (J.L.); (N.Z.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Ning Zhang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (X.W.); (H.Z.); (J.L.); (N.Z.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Junsong Shi
- Guangdong Wens Pig Breeding Technology Co., Ltd., Yunfu 527499, China; (J.S.); (R.Z.); (Q.S.)
| | - Rong Zhou
- Guangdong Wens Pig Breeding Technology Co., Ltd., Yunfu 527499, China; (J.S.); (R.Z.); (Q.S.)
| | - Qiaoyun Su
- Guangdong Wens Pig Breeding Technology Co., Ltd., Yunfu 527499, China; (J.S.); (R.Z.); (Q.S.)
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (X.W.); (H.Z.); (J.L.); (N.Z.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zheng Xu
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (X.W.); (H.Z.); (J.L.); (N.Z.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Sixiu Huang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (X.W.); (H.Z.); (J.L.); (N.Z.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (X.W.); (H.Z.); (J.L.); (N.Z.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Ting Gu
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (X.W.); (H.Z.); (J.L.); (N.Z.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Jie Yang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (X.W.); (H.Z.); (J.L.); (N.Z.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Huaqiang Yang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (X.W.); (H.Z.); (J.L.); (N.Z.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (X.W.); (H.Z.); (J.L.); (N.Z.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (X.W.); (H.Z.); (J.L.); (N.Z.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (Z.W.); (Z.L.)
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (X.W.); (H.Z.); (J.L.); (N.Z.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (Z.W.); (Z.L.)
| |
Collapse
|
11
|
Marin-Luevano SP, Rodriguez-Carlos A, Jacobo-Delgado Y, Valdez-Miramontes C, Enciso-Moreno JA, Rivas-Santiago B. Steroid hormone modulates the production of cathelicidin and human β-defensins in lung epithelial cells and macrophages promoting Mycobacterium tuberculosis killing. Tuberculosis (Edinb) 2021; 128:102080. [PMID: 33799143 DOI: 10.1016/j.tube.2021.102080] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 11/18/2022]
Abstract
Several studies have documented the interaction between the immune and endocrine systems as an effective defense strategy against tuberculosis, involving the production of several molecules and immunological processes. In this study, we determined the effect of cortisol and dehydroepiandrosterone (DHEA) on the production of antimicrobial peptides such as cathelicidin and human β-defensin (HBD) -2, and HBD-3 and their effect on intracellular growth of Mycobacterium tuberculosis (Mtb) in lung epithelial cells and macrophages. Our results showed that DHEA promotes the production of these antimicrobial peptides in infected cells, correlating with the decrease of Mtb bacilli loads. These results suggest the use of exogenous DHEA as an adjuvant for tuberculosis therapy.
Collapse
Affiliation(s)
- Sara P Marin-Luevano
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico; Center for Research in Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, Mexico
| | - Adrian Rodriguez-Carlos
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| | - Yolanda Jacobo-Delgado
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| | | | - Jose A Enciso-Moreno
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| | - Bruno Rivas-Santiago
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico.
| |
Collapse
|
12
|
Huang J, Yang X, Wang A, Huang C, Tang H, Zhang Q, Fang Q, Yu Z, Liu X, Huang Q, Zhou R, Li L. Pigs Overexpressing Porcine β-Defensin 2 Display Increased Resilience to Glaesserella parasuis Infection. Antibiotics (Basel) 2020; 9:antibiotics9120903. [PMID: 33327385 PMCID: PMC7764891 DOI: 10.3390/antibiotics9120903] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
As the causative agent of Glässer’s disease, Glaesserella (Haemophilus) parasuis has led to serious economic losses to the swine industry worldwide. Due to the low cross-protection of vaccines and increasing antimicrobial resistance of G. parasuis, it is important to develop alternative approaches to prevent G. parasuis infection. Defensins are host defense peptides that have been suggested to be promising substitutes for antibiotics in animal production, while porcine β-defensin 2 (PBD-2) is a potent antimicrobial peptide discovered in pigs. Our previous study generated transgenic (TG) pigs overexpressing PBD-2, which displayed enhanced resistance to Actinobacillus pleuropneumoniae. In this study, the antibacterial activities of PBD-2 against G. parasuis are determined in vitro and in the TG pig model. The concentration-dependent bactericidal activity of synthetic PBD-2 against G. parasuis was measured by bacterial counting. Moreover, after being infected with G. parasuis via a cohabitation challenge model, TG pigs overexpressing PBD-2 displayed significantly milder clinical signs and less severe gross pathological changes than their wild-type (WT) littermates. The TG pigs also exhibited alleviated lung and brain lesions, while bacterial loads in the lung and brain tissues of the TG pigs were significantly lower than those of the WT pigs. Additionally, lung and brain homogenates from TG pigs possessed enhanced antibacterial activity against G. parasuis when compared with those from the WT pigs. Altogether, these proved that overexpression of PBD-2 could also endow pigs with increased resilience to G. parasuis infection, which further confirmed the potential of using the PBD-2 coding gene to develop disease-resistant pigs and provided a novel strategy to combat G. parasuis as well.
Collapse
Affiliation(s)
- Jing Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.H.); (X.Y.); (A.W.); (C.H.); (H.T.); (Q.Z.); (Q.F.); (Z.Y.); (X.L.); (Q.H.)
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoyu Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.H.); (X.Y.); (A.W.); (C.H.); (H.T.); (Q.Z.); (Q.F.); (Z.Y.); (X.L.); (Q.H.)
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Antian Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.H.); (X.Y.); (A.W.); (C.H.); (H.T.); (Q.Z.); (Q.F.); (Z.Y.); (X.L.); (Q.H.)
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.H.); (X.Y.); (A.W.); (C.H.); (H.T.); (Q.Z.); (Q.F.); (Z.Y.); (X.L.); (Q.H.)
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Tang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.H.); (X.Y.); (A.W.); (C.H.); (H.T.); (Q.Z.); (Q.F.); (Z.Y.); (X.L.); (Q.H.)
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiuhong Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.H.); (X.Y.); (A.W.); (C.H.); (H.T.); (Q.Z.); (Q.F.); (Z.Y.); (X.L.); (Q.H.)
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.H.); (X.Y.); (A.W.); (C.H.); (H.T.); (Q.Z.); (Q.F.); (Z.Y.); (X.L.); (Q.H.)
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zuming Yu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.H.); (X.Y.); (A.W.); (C.H.); (H.T.); (Q.Z.); (Q.F.); (Z.Y.); (X.L.); (Q.H.)
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.H.); (X.Y.); (A.W.); (C.H.); (H.T.); (Q.Z.); (Q.F.); (Z.Y.); (X.L.); (Q.H.)
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.H.); (X.Y.); (A.W.); (C.H.); (H.T.); (Q.Z.); (Q.F.); (Z.Y.); (X.L.); (Q.H.)
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.H.); (X.Y.); (A.W.); (C.H.); (H.T.); (Q.Z.); (Q.F.); (Z.Y.); (X.L.); (Q.H.)
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of China, Wuhan 430070, China
- Correspondence: (R.Z.); (L.L.)
| | - Lu Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.H.); (X.Y.); (A.W.); (C.H.); (H.T.); (Q.Z.); (Q.F.); (Z.Y.); (X.L.); (Q.H.)
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of China, Wuhan 430070, China
- Correspondence: (R.Z.); (L.L.)
| |
Collapse
|
13
|
Immunoregulatory and Antimicrobial Activity of Bovine Neutrophil β-Defensin-5-Loaded PLGA Nanoparticles against Mycobacterium bovis. Pharmaceutics 2020; 12:pharmaceutics12121172. [PMID: 33271900 PMCID: PMC7760669 DOI: 10.3390/pharmaceutics12121172] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 01/28/2023] Open
Abstract
Mycobacterium bovis (M. bovis) is a member of the Mycobacterium tuberculosis complex imposing a high zoonotic threat to human health. The limited efficacy of BCG (Bacillus Calmette-Guérin) and upsurges of drug-resistant tuberculosis require new effective vaccination approaches and anti-TB drugs. Poly (lactic-co-glycolic acid) (PLGA) is a preferential drug delivery system candidate. In this study, we formulated PLGA nanoparticles (NPs) encapsulating the recombinant protein bovine neutrophil β-defensin-5 (B5), and investigated its role in immunomodulation and antimicrobial activity against M. bovis challenge. Using the classical water-oil-water solvent-evaporation method, B5-NPs were prepared, with encapsulation efficiency of 85.5% ± 2.5%. These spherical NPs were 206.6 ± 26.6 nm in diameter, with a negatively charged surface (ζ-potential -27.1 ± 1.5 mV). The encapsulated B5 protein from B5-NPs was released slowly under physiological conditions. B5 or B5-NPs efficiently enhanced the secretion of tumor necrosis factor α (TNF-α), interleukin (IL)-1β and IL-10 in J774A.1 macrophages. B5-NPs-immunized mice showed significant increases in the production of TNF-α and immunoglobulin A (IgA) in serum, and the proportion of CD4+ T cells in spleen compared with B5 alone. In immunoprotection studies, B5-NPs-immunized mice displayed significant reductions in pulmonary inflammatory area, bacterial burden in the lungs and spleen at 4-week after M. bovis challenge. In treatment studies, B5, but not B5-NPs, assisted rifampicin (RIF) with inhibition of bacterial replication in the lungs and spleen. Moreover, B5 alone also significantly reduced the bacterial load in the lungs and spleen. Altogether, our findings highlight the significance of the B5-PLGA NPs in terms of promoting the immune effect of BCG and the B5 in enhancing the therapeutic effect of RIF against M. bovis.
Collapse
|
14
|
MicroRNA-31/184 is involved in transforming growth factor-β-induced apoptosis in A549 human alveolar adenocarcinoma cells. Life Sci 2019; 242:117205. [PMID: 31874165 DOI: 10.1016/j.lfs.2019.117205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/04/2019] [Accepted: 12/17/2019] [Indexed: 12/25/2022]
Abstract
AIMS TGF-β-induced alveolar epithelial cells apoptosis were involved in idiopathic pulmonary fibrosis (IPF). This study aimed to explore potential targets and mechanisms of IPF. MAIN METHODS mRNA and microRNA arrays were used to analyze differentially expressed genes and miRNAs. Several essential targets of TGF-β-SMADs and TGF-β-PI3K-AKT pathways were detected. KEY FINDINGS miR-31 and miR-184 expression levels were positively correlated with smad6 and smad2/akt expression levels in IPF patients. TGF-β could induce miR-31 and suppress miR-184 levels in A549 cells. miR-31 was confirmed to bind to the smad6-3'UTR and functionally suppress its expression. Down-regulated SMAD6 enhanced SMAD2/SMAD4 dimer formation and translocation due to its failure to prevent SMAD2 phosphorylation. In contrast, anti-fibrotic functions of miR-184 were abolished due to TGF-β directly suppressing miR-184 levels in A549 cells. When A549 was stimulated by TGF-β combined with or without miR-31 inhibitor/miR-184 mimic, it was showed that depleted miR-31 and/or increased miR-184 significantly ameliorated TGF-β-induced viability of A549 cells, as well as inhibited the expression of profibrotic factors, MMP7 and RUNX2. SIGNIFICANCE Inhibiting miR-31 and/or promoting miR-184 protect against TGF-β-induced fibrogenesis by respectively repressing the TGF-β-SMAD2 and TGF-β-PI3K-AKT signaling pathways, implying that miR-31/184 are potential targets and suggesting a new management strategy for IPF.
Collapse
|
15
|
Bongiovanni B, Marín-Luevano S, D'Attilio L, Díaz A, Fernández RDV, Santucci N, Bértola D, Bay ML, Rivas-Santiago B, Bottasso O. Evidence that changes in antimicrobial peptides during tuberculosis are related to disease severity, clinical presentation, specific therapy and levels of immune-endocrine mediators. Cytokine 2019; 126:154913. [PMID: 31731048 DOI: 10.1016/j.cyto.2019.154913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 09/03/2019] [Accepted: 10/30/2019] [Indexed: 01/19/2023]
Abstract
Given the role of host defense peptides (HDPs) in the defensive response against mycobacteria, we analyzed the circulating levels of LL-37, β-defensin-2 and -3 in newly diagnosed patients with pulmonary (PTB) or pleural tuberculosis (PLTB) in whom measurements of pleural fluids were also performed. Severe PTB patients displayed higher circulating amounts of β-defensin-3, statistically different from controls, further decreasing upon antimycobacterial treatment. LL-37 concentrations appeared within the normal range at diagnosis, but tended to increase during treatment, becoming statistically upon its completion in moderate cases. PLTB patients revealed decreased levels of β-defensin-2 in presence of increased amounts of β-defensin-3 and LL-37; in their plasma or pleural fluids. Considering the immune-endocrine dysregulation of tuberculosis, we also performed correlation analysis detecting positive associations between levels of cortisol, IL-6 and β-defensin-3 in plasma from untreated severe patients as did their dehydroepiandrosterone and LL-37 values. Increased presence of β-defensins, may represent an attempt to improve defensive mechanisms; which also take part in the inflammatory reaction accompanying TB, reinforced by the association with immune-endocrine mediators. The divergent profile of PLTB patients, decreased β-defensin-2 but increased β-defensin-3 and LL-37 levels, suggests a differential role of these HDPs in a situation characterized for its better protective response.
Collapse
Affiliation(s)
- Bettina Bongiovanni
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER CONICET-UNR), Suipacha 590 (S2002LRL), Rosario, Argentina; Facultad de Cs. Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Suipacha 570 (S2002LRL), Rosario, Argentina.
| | - Sara Marín-Luevano
- Unidad Médica del Instituto Mexicano del Seguro Social (IMSS), Zacatecas Centro, 98053 Zacatecas, Mexico.
| | - Luciano D'Attilio
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER CONICET-UNR), Suipacha 590 (S2002LRL), Rosario, Argentina; Facultad de Cs. Médicas, UNR, Santa Fe 3100 (S2002KTR) Rosario, Argentina.
| | - Ariana Díaz
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER CONICET-UNR), Suipacha 590 (S2002LRL), Rosario, Argentina; Facultad de Cs. Médicas, UNR, Santa Fe 3100 (S2002KTR) Rosario, Argentina.
| | - Rocío Del Valle Fernández
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER CONICET-UNR), Suipacha 590 (S2002LRL), Rosario, Argentina; Facultad de Cs. Médicas, UNR, Santa Fe 3100 (S2002KTR) Rosario, Argentina.
| | - Natalia Santucci
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER CONICET-UNR), Suipacha 590 (S2002LRL), Rosario, Argentina; Facultad de Cs. Médicas, UNR, Santa Fe 3100 (S2002KTR) Rosario, Argentina.
| | - Diego Bértola
- Hospital Provincial del Centenario, Urquiza 3101 (S2002KDT), Rosario, Argentina.
| | - María Luisa Bay
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER CONICET-UNR), Suipacha 590 (S2002LRL), Rosario, Argentina; Facultad de Cs. Médicas, UNR, Santa Fe 3100 (S2002KTR) Rosario, Argentina.
| | - Bruno Rivas-Santiago
- Unidad Médica del Instituto Mexicano del Seguro Social (IMSS), Zacatecas Centro, 98053 Zacatecas, Mexico.
| | - Oscar Bottasso
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER CONICET-UNR), Suipacha 590 (S2002LRL), Rosario, Argentina; Facultad de Cs. Médicas, UNR, Santa Fe 3100 (S2002KTR) Rosario, Argentina.
| |
Collapse
|
16
|
|
17
|
Overexpressing ovotransferrin and avian β-defensin-3 improves antimicrobial capacity of chickens and poultry products. Transgenic Res 2018; 28:51-76. [PMID: 30374651 DOI: 10.1007/s11248-018-0101-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/22/2018] [Indexed: 02/08/2023]
Abstract
Zoonotic and foodborne diseases pose a significant burden, decreasing both human and animal health. Modifying chickens to overexpress antimicrobials has the potential to decrease bacterial growth on poultry products and boost chicken innate immunity. Chickens overexpressing either ovotransferrin or avian β-defensin-3 (AvβD3) were generated using Tol-2 transposons. Transgene expression at the RNA and protein level was seen in egg white, breast muscle, and serum. There were significant differences in the immune cell populations in the blood, bursa, and spleen associated with transgene expression including an increased proportion of CD8+ cells in the blood of ovotransferrin and AvβD3 transgenic birds. Expression of the antimicrobials inhibited the in vitro growth of human and chicken bacterial pathogens and spoilage bacteria. For example, transgene expression significantly reduced growth of aerobic and coliform bacteria in breast muscle and decreased the growth of Salmonella enterica in egg white. Overall these results indicate that overexpression of antimicrobials in the chicken can impact the immune system and increase the antimicrobial capacity of poultry products.
Collapse
|
18
|
Lu F, Luo C, Li N, Liu Q, Wei Y, Deng H, Wang X, Li X, Jiang J, Deng Y, Shi D. Efficient Generation of Transgenic Buffalos (Bubalus bubalis) by Nuclear Transfer of Fetal Fibroblasts Expressing Enhanced Green Fluorescent Protein. Sci Rep 2018; 8:6967. [PMID: 29725050 PMCID: PMC5934360 DOI: 10.1038/s41598-018-25120-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/11/2018] [Indexed: 01/01/2023] Open
Abstract
The possibility of producing transgenic cloned buffalos by nuclear transfer of fetal fibroblasts expressing enhanced green fluorescent protein (EGFP) was explored in this study. When buffalo fetal fibroblasts (BFFs) isolated from a male buffalo fetus were transfected with pEGFP-N1 (EGFP is driven by CMV and Neo is driven by SV-40) by means of electroporation, Lipofectamine-LTX and X-tremeGENE, the transfection efficiency of electroporation (35.5%) was higher than Lipofectamine-LTX (11.7%) and X-tremeGENE (25.4%, P < 0.05). When BFFs were transfected by means of electroporation, more embryos from BFFs transfected with pEGFP-IRES-Neo (EGFP and Neo are driven by promoter of human elongation factor) cleaved and developed to blastocysts (21.6%) compared to BFFs transfected with pEGFP-N1 (16.4%, P < 0.05). A total of 72 blastocysts were transferred into 36 recipients and six recipients became pregnant. In the end of gestation, the pregnant recipients delivered six healthy calves and one stillborn calf. These calves were confirmed to be derived from the transgenic cells by Southern blot and microsatellite analysis. These results indicate that electroporation is more efficient than lipofection in transfecting exogenous DNA into BFFs and transgenic buffalos can be produced effectively by nuclear transfer of BFFs transfected with pEGFP-IRES-Neo.
Collapse
Affiliation(s)
- Fenghua Lu
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Chan Luo
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Nan Li
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China.,Reproductive Center of Liuzhou Municipal Maternity and Child Healthcare Hospital, Liuzhou, 545001, China
| | - Qingyou Liu
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Yingming Wei
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Haiying Deng
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Xiaoli Wang
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Xiangping Li
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Jianrong Jiang
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Yanfei Deng
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Deshun Shi
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
19
|
Expression of recombinant HBD3 protein that reduces Mycobacterial infection capacity. AMB Express 2018; 8:42. [PMID: 29556853 PMCID: PMC5861256 DOI: 10.1186/s13568-018-0573-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/12/2018] [Indexed: 01/21/2023] Open
Abstract
Bovine tuberculosis is a disease caused by Mycobacterium bovis (M. bovis) that leads to great economic losses in cattle production. The discovery of a reasonable bioagent to reduce M. bovis infection risk and environment contamination becomes significant and urgent. Previous study reported that human β-defensin-3 (HBD3) participated in Mycobacterial immunity and was recognized as a suitable candidate reagent. However, its minimal inhibitory concentration to M. bovis is not yet reported. In this study, we first purified HBD3 protein by recombinant-DNA technology and prokaryotic expression system. Subsequently, anti-bacterial tests were used to evaluate the basic bioactivity of the protein. Results revealed that recombinant HBD3 (rHBD3) protein inhibits Staphylococcus multiplication but not the host Escherichia coli. The growth curve of M. bovis showed that rHBD3 protein controls the proliferation of M. bovis in 20 μg/ml concentration. In addition, rHBD3 protein-incubated M. bovis exhibited reduced infectivity to alveolar epithelial cells and macrophages. In conclusion, the expression of rHBD3 protein is a potential ideal bio-regent for reducing M. bovis infection.
Collapse
|
20
|
Divergent macrophage responses to Mycobacterium bovis among naturally exposed uninfected and infected cattle. Immunol Cell Biol 2016; 95:436-442. [PMID: 27833091 DOI: 10.1038/icb.2016.114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/07/2016] [Accepted: 11/07/2016] [Indexed: 01/04/2023]
Abstract
Mycobacterium bovis, the causative agent of bovine tuberculosis (TB), is a successful pathogen that remains an important global threat to livestock. Cattle naturally exposed to M. bovis normally become reactive to the M. bovis-purified protein derivative (tuberculin) skin test; however, some individuals remain negative, suggesting that they may be resistant to infection. To better understand host innate resistance to infection, 26 cattle from herds with a long history of high TB prevalence were included in this study. We investigated the bactericidal activity, the production of reactive oxygen and nitrogen species and the TB-related gene expression profile after in vitro M. bovis challenge of monocyte-derived macrophages from cattle with TB (n=17) and from non-infected, exposed cattle (in-contacts, n=9). The disease status was established based on the tuberculin skin test and blood interferon-gamma test responses, the presence of visible lesions at inspection on abattoirs and the histopathology and culture of M. bovis. Although macrophages from TB-infected cattle enabled M. bovis replication, macrophages from healthy, exposed cattle had twofold lower bacterial loads, overproduced nitric oxide and had lower interleukin (IL)-10 gene expression (P⩽0.05). Higher mRNA expression levels of inducible nitric oxide synthase, C-C motif chemokine ligand 2 and IL-12 were observed in macrophages from all in-contact cattle than in macrophages from their TB-infected counterparts, which expressed more tumour necrosis factor-α; however, the differences were not statistically significant owing to individual variation. These results confirm that macrophage bactericidal responses have a crucial role in innate resistance to M. bovis infection in cattle.
Collapse
|
21
|
Abstract
Genome editing in large animals has tremendous practical applications, from more accurate models for medical research through improved animal welfare and production efficiency. Although genetic modification in large animals has a 30 year history, until recently technical issues limited its utility. The original methods - pronuclear injection and integrating viruses - were plagued with problems associated with low efficiency, silencing, poor regulation of gene expression, and variability associated with random integration. With the advent of site specific nucleases such as TALEN and CRISPR/Cas9, precision editing became possible. When used on their own, these can be used to truncate or knockout genes through non-homologous end joining (NHEJ) with relatively high efficiency. When used with a template containing desired gene edits, these can be used to allow insertion of any desired changes to the genome through homologous recombination (HR) with substantially lower efficiency. Consideration must be given to the issues of marker sets and off-target effects. Somatic cell nuclear transfer is most commonly used to create animals from gene edited cells, but direct zygote injection and use of spermatogonial stem cells are alternatives under development. In developing gene editing projects, priority must be given to understanding the potential for off-target or unexpected effects of planned edits, which have been common in the past. Because of the increasing technical sophistication with which it can be accomplished, genome editing is poised to revolutionize large animal genetics, but attention must be paid to the underlying biology in order to maximize benefit.
Collapse
Affiliation(s)
- James West
- AgGenetics, Nashville, TN; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - W Warren Gill
- AgGenetics, Nashville, TN; School of Agribusiness and Agriscience, Middle Tennessee State University, Murfreesboro, TN
| |
Collapse
|