1
|
Llerena Schiffmacher DA, Pai YJ, Pines A, Vermeulen W. Transcription-coupled repair: tangled up in convoluted repair. FEBS J 2025. [PMID: 40272095 DOI: 10.1111/febs.70104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/08/2025] [Accepted: 04/08/2025] [Indexed: 04/25/2025]
Abstract
Significant progress has been made in understanding the mechanism of transcription-coupled nucleotide excision repair (TC-NER); however, numerous aspects remain elusive, including TC-NER regulation, lesion-specific and cell type-specific complex composition, structural insights, and lesion removal dynamics in living cells. This review summarizes and discusses recent advancements in TC-NER, focusing on newly identified interactors, mechanistic insights from cryo-electron microscopy (Cryo-EM) studies and live cell imaging, and the contribution of post-translational modifications (PTMs), such as ubiquitin, in regulating TC-NER. Furthermore, we elaborate on the consequences of TC-NER deficiencies and address the role of accumulated damage and persistent lesion-stalled RNA polymerase II (Pol II) as major drivers of the disease phenotype of Cockayne syndrome (CS) and its related disorders. In this context, we also discuss the severe effects of transcription-blocking lesions (TBLs) on neurons, highlighting their susceptibility to damage. Lastly, we explore the potential of investigating three-dimensional (3D) chromatin structure and phase separation to uncover further insights into this essential DNA repair pathway.
Collapse
Affiliation(s)
- Diana A Llerena Schiffmacher
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Yun Jin Pai
- Master Scientific Illustrations, Department of Anatomy and Embryology, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands
| | - Alex Pines
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Wim Vermeulen
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Ramadhin AR, Lee SH, Zhou D, Salmazo A, Gonzalo-Hansen C, van Sluis M, Blom CMA, Janssens RC, Raams A, Dekkers D, Bezstarosti K, Slade D, Vermeulen W, Pines A, Demmers JAA, Bernecky C, Sixma TK, Marteijn JA. STK19 drives transcription-coupled repair by stimulating repair complex stability, RNA Pol II ubiquitylation, and TFIIH recruitment. Mol Cell 2024; 84:4740-4757.e12. [PMID: 39547223 DOI: 10.1016/j.molcel.2024.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/16/2024] [Accepted: 10/23/2024] [Indexed: 11/17/2024]
Abstract
Transcription-coupled nucleotide excision repair (TC-NER) efficiently eliminates DNA damage that impedes gene transcription by RNA polymerase II (RNA Pol II). TC-NER is initiated by the recognition of lesion-stalled RNA Pol II by CSB, which recruits the CRL4CSA ubiquitin ligase and UVSSA. RNA Pol II ubiquitylation at RPB1-K1268 by CRL4CSA serves as a critical TC-NER checkpoint, governing RNA Pol II stability and initiating DNA damage excision by TFIIH recruitment. However, the precise regulatory mechanisms of CRL4CSA activity and TFIIH recruitment remain elusive. Here, we reveal human serine/threonine-protein kinase 19 (STK19) as a TC-NER factor, which is essential for correct DNA damage removal and subsequent transcription restart. Cryogenic electron microscopy (cryo-EM) studies demonstrate that STK19 is an integral part of the RNA Pol II-TC-NER complex, bridging CSA, UVSSA, RNA Pol II, and downstream DNA. STK19 stimulates TC-NER complex stability and CRL4CSA activity, resulting in efficient RNA Pol II ubiquitylation and correct UVSSA and TFIIH binding. These findings underscore the crucial role of STK19 as a core TC-NER component.
Collapse
Affiliation(s)
- Anisha R Ramadhin
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Shun-Hsiao Lee
- Division of Biochemistry, Netherlands Cancer Institute and Oncode Institute, 1066 CX Amsterdam, the Netherlands
| | - Di Zhou
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Anita Salmazo
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Camila Gonzalo-Hansen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Marjolein van Sluis
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Cindy M A Blom
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Roel C Janssens
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Anja Raams
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Dick Dekkers
- Proteomics Center, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Karel Bezstarosti
- Proteomics Center, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Dea Slade
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, 1030 Vienna, Austria
| | - Wim Vermeulen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Alex Pines
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Jeroen A A Demmers
- Proteomics Center, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Carrie Bernecky
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Titia K Sixma
- Division of Biochemistry, Netherlands Cancer Institute and Oncode Institute, 1066 CX Amsterdam, the Netherlands.
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands.
| |
Collapse
|
3
|
Costanzo F, Paccosi E, Proietti-De-Santis L, Egly JM. CS proteins and ubiquitination: orchestrating DNA repair with transcription and cell division. Trends Cell Biol 2024; 34:882-895. [PMID: 38910038 DOI: 10.1016/j.tcb.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/25/2024]
Abstract
To face genotoxic stress, eukaryotic cells evolved extremely refined mechanisms. Defects in counteracting the threat imposed by DNA damage underlie the rare disease Cockayne syndrome (CS), which arises from mutations in the CSA and CSB genes. Although initially defined as DNA repair proteins, recent work shows that CSA and CSB act instead as master regulators of the integrated response to genomic stress by coordinating DNA repair with transcription and cell division. CSA and CSB exert this function through the ubiquitination of target proteins, which are effectors/regulators of these processes. This review describes how the ubiquitination of target substrates is a common denominator by which CSA and CSB participate in different aspects of cellular life and how their mutation gives rise to the complex disease CS.
Collapse
Affiliation(s)
- Federico Costanzo
- Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona 6500, Switzerland; Department of Functional Genomics and Cancer, IGBMC, CNRS/INSERM/University of Strasbourg, Illkirch-Graffenstaden 67400, Strasbourg, France.
| | - Elena Paccosi
- Unit of Molecular Genetics of Aging, Department of Ecology and Biology, University of Tuscia, Viterbo 01100, Italy
| | - Luca Proietti-De-Santis
- Unit of Molecular Genetics of Aging, Department of Ecology and Biology, University of Tuscia, Viterbo 01100, Italy
| | - Jean Marc Egly
- Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona 6500, Switzerland; Department of Functional Genomics and Cancer, IGBMC, CNRS/INSERM/University of Strasbourg, Illkirch-Graffenstaden 67400, Strasbourg, France; College of Medicine, Centre for Genomics and Precision Medicine, National Taiwan University, Taipei City, Taiwan
| |
Collapse
|
4
|
Zhu Y, Zhang X, Gao M, Huang Y, Tan Y, Parnas A, Wu S, Zhan D, Adar S, Hu J. Coordination of transcription-coupled repair and repair-independent release of lesion-stalled RNA polymerase II. Nat Commun 2024; 15:7089. [PMID: 39154022 PMCID: PMC11330480 DOI: 10.1038/s41467-024-51463-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024] Open
Abstract
Transcription-blocking lesions (TBLs) stall elongating RNA polymerase II (Pol II), which then initiates transcription-coupled repair (TCR) to remove TBLs and allow transcription recovery. In the absence of TCR, eviction of lesion-stalled Pol II is required for alternative pathways to address the damage, but the mechanism is unclear. Using Protein-Associated DNA Damage Sequencing (PADD-seq), this study reveals that the p97-proteasome pathway can evict lesion-stalled Pol II independently of repair. Both TCR and repair-independent eviction require CSA and ubiquitination. However, p97 is dispensable for TCR and Pol II eviction in TCR-proficient cells, highlighting repair's prioritization over repair-independent eviction. Moreover, ubiquitination of RPB1-K1268 is important for both pathways, with USP7's deubiquitinase activity promoting TCR without abolishing repair-independent Pol II release. In summary, this study elucidates the fate of lesion-stalled Pol II, and may shed light on the molecular basis of genetic diseases caused by the defects of TCR genes.
Collapse
Affiliation(s)
- Yongchang Zhu
- Shanghai Fifth People's Hospital of Fudan University, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiping Zhang
- Shanghai Fifth People's Hospital of Fudan University, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Meng Gao
- Shanghai Fifth People's Hospital of Fudan University, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yanchao Huang
- Shanghai Fifth People's Hospital of Fudan University, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yuanqing Tan
- Shanghai Fifth People's Hospital of Fudan University, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Avital Parnas
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem, Israel
| | - Sizhong Wu
- Shanghai Fifth People's Hospital of Fudan University, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Delin Zhan
- Shanghai Fifth People's Hospital of Fudan University, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Sheera Adar
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem, Israel
| | - Jinchuan Hu
- Shanghai Fifth People's Hospital of Fudan University, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Llerena Schiffmacher DA, Lee SH, Kliza KW, Theil AF, Akita M, Helfricht A, Bezstarosti K, Gonzalo-Hansen C, van Attikum H, Verlaan-de Vries M, Vertegaal ACO, Hoeijmakers JHJ, Marteijn JA, Lans H, Demmers JAA, Vermeulen M, Sixma TK, Ogi T, Vermeulen W, Pines A. The small CRL4 CSA ubiquitin ligase component DDA1 regulates transcription-coupled repair dynamics. Nat Commun 2024; 15:6374. [PMID: 39075067 PMCID: PMC11286758 DOI: 10.1038/s41467-024-50584-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
Transcription-blocking DNA lesions are specifically targeted by transcription-coupled nucleotide excision repair (TC-NER), which removes a broad spectrum of DNA lesions to preserve transcriptional output and thereby cellular homeostasis to counteract aging. TC-NER is initiated by the stalling of RNA polymerase II at DNA lesions, which triggers the assembly of the TC-NER-specific proteins CSA, CSB and UVSSA. CSA, a WD40-repeat containing protein, is the substrate receptor subunit of a cullin-RING ubiquitin ligase complex composed of DDB1, CUL4A/B and RBX1 (CRL4CSA). Although ubiquitination of several TC-NER proteins by CRL4CSA has been reported, it is still unknown how this complex is regulated. To unravel the dynamic molecular interactions and the regulation of this complex, we apply a single-step protein-complex isolation coupled to mass spectrometry analysis and identified DDA1 as a CSA interacting protein. Cryo-EM analysis shows that DDA1 is an integral component of the CRL4CSA complex. Functional analysis reveals that DDA1 coordinates ubiquitination dynamics during TC-NER and is required for efficient turnover and progression of this process.
Collapse
Affiliation(s)
- Diana A Llerena Schiffmacher
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Shun-Hsiao Lee
- Division of Biochemistry and Oncode institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Katarzyna W Kliza
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, 6525 GA, Nijmegen, the Netherlands
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Arjan F Theil
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Masaki Akita
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore
| | - Angela Helfricht
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Karel Bezstarosti
- Proteomics Center, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Camila Gonzalo-Hansen
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Oncode Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Matty Verlaan-de Vries
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Alfred C O Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Jan H J Hoeijmakers
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
- University Hospital of Cologne, CECAD Forschungszentrum, Institute for Genome Stability in Aging and Disease, Joseph Stelzmann Strasse 26, 50931, Köln, Germany
- Princess Maxima Center for Pediatric Oncology, Oncode Institute, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Oncode Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Hannes Lans
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Jeroen A A Demmers
- Proteomics Center, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, 6525 GA, Nijmegen, the Netherlands
- Division of Molecular Genetics and Oncode institute, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, the Netherlands
| | - Titia K Sixma
- Division of Biochemistry and Oncode institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan
- Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Wim Vermeulen
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands.
| | - Alex Pines
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands.
| |
Collapse
|
6
|
Mistry H, Kumari S, Aswal VK, Gupta GD. Structural characterization of transcription-coupled repair protein UVSSA and its interaction with TFIIH protein. Int J Biol Macromol 2023; 247:125792. [PMID: 37442507 DOI: 10.1016/j.ijbiomac.2023.125792] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/29/2023] [Accepted: 07/09/2023] [Indexed: 07/15/2023]
Abstract
UV-stimulated scaffold protein A (UVSSA) is a key protein in the Transcription-Coupled Nucleotide Excision Repair (TC-NER) pathway. UVSSA, an intrinsically disordered protein, interacts with multiple members of the pathway, tethering them into the complex. Several studies have reported that UVSSA recruits Transcription Factor IIH (TFIIH) via direct interaction, following which CSB is degraded and the lesion recognition TC-NER complex dissociates from the damage site to facilitate the DNA repair. Structural insights into these events remain largely unknown. Herein, we have investigated the interaction of human UVSSA with the Pleckstrin-Homology-domain of p62 subunit of TFIIH (p62-PHD) using biophysical techniques. We observed that UVSSA forms a stable complex with the p62-PHD in vitro. Small-angle scattering measurements using X-rays and neutrons revealed a significant change in pair-distance distribution function for UVSSA662/p62-PHD complex compared to UVSSA alone. Additionally, a significant decrease was observed in the radius of gyration of the complex. Our findings suggest that TFIIH binding to UVSSA causes significant conformational changes in UVSSA. We hypothesize that these conformational changes play an important role in the dissociation of the lesion recognition TC-NER complex.
Collapse
Affiliation(s)
- Hiral Mistry
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Shweta Kumari
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Vinod K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Gagan D Gupta
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, India.
| |
Collapse
|
7
|
Mistry H, Gupta GD. Transcription coupled DNA repair protein UVSSA binds to DNA and RNA: Mapping of nucleic acid interaction sites on human UVSSA. Arch Biochem Biophys 2023; 735:109515. [PMID: 36623745 DOI: 10.1016/j.abb.2023.109515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/09/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Transcription-coupled repair (TCR) is a dedicated pathway for the preferential repair of bulky transcription-blocking DNA lesions. These lesions stall the elongating RNA-polymerase II (RNAPII) triggering the recruitment of TCR proteins at the damaged site. UV-stimulated scaffold protein A (UVSSA) is a recently identified cofactor which is involved in stabilization of the TCR complex, recruitment of DNA-repair machinery and removal/restoration of RNAPII from the lesion site. Mutations in UVSSA render the cells TCR-deficient and have been linked to UV-sensitive syndrome. Human UVSSA is a 709-residue long protein with two short conserved domains; an N-terminal (residues 1-150) and a C-terminal (residues 495-605) domain, while the rest of the protein is predicted to be intrinsically disordered. The protein is well conserved in eukaryotes, however; none of its homologs have been characterized yet. Here, we have purified the recombinant human UVSSA and have characterized it using bioinformatics, biophysical and biochemical techniques. Using EMSA, SPR and fluorescence-based methods, we have shown that human UVSSA interacts with DNA and RNA. Furthermore, we have mapped the nucleic acid binding regions using several recombinant protein fragments containing either the N-terminal or the C-terminal domains. Our data indicate that UVSSA possesses at least two nucleic acid binding regions; the N-terminal domain and a C-terminal tail region (residues 606-662). These regions, far apart in sequence space, are predicted to be in close proximity in structure-space suggesting a coherent interaction with target DNA/RNA. The study may provide functional clues about the novel family of UVSSA proteins.
Collapse
Affiliation(s)
- Hiral Mistry
- Radiation Biology & Health Science Division, Bhabha Atomic Research Centre, Mumbai, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Gagan Deep Gupta
- Radiation Biology & Health Science Division, Bhabha Atomic Research Centre, Mumbai, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, India.
| |
Collapse
|
8
|
Zhang XW, Feng N, Liu YC, Guo Q, Wang JK, Bai YZ, Ye XM, Yang Z, Yang H, Liu Y, Yang MM, Wang YH, Shi XM, Liu D, Tu PF, Zeng KW. Neuroinflammation inhibition by small-molecule targeting USP7 noncatalytic domain for neurodegenerative disease therapy. SCIENCE ADVANCES 2022; 8:eabo0789. [PMID: 35947662 PMCID: PMC9365288 DOI: 10.1126/sciadv.abo0789] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Neuroinflammation is a fundamental contributor to progressive neuronal damage, which arouses a heightened interest in neurodegenerative disease therapy. Ubiquitin-specific protease 7 (USP7) has a crucial role in regulating protein stability in multiple biological processes; however, the potential role of USP7 in neurodegenerative progression is poorly understood. Here, we discover the natural small molecule eupalinolide B (EB), which targets USP7 to inhibit microglia activation. Cocrystal structure reveals a previously undisclosed covalent allosteric site, Cys576, in a unique noncatalytic HUBL domain. By selectively modifying Cys576, EB allosterically inhibits USP7 to cause a ubiquitination-dependent degradation of Keap1. Keap1 function loss further results in an Nrf2-dependent transcription activation of anti-neuroinflammation genes in microglia. In vivo, pharmacological USP7 inhibition attenuates microglia activation and resultant neuron injury, thereby notably improving behavioral deficits in dementia and Parkinson's disease mouse models. Collectively, our findings provide an attractive future direction for neurodegenerative disease therapy by inhibiting microglia-mediated neuroinflammation by targeting USP7.
Collapse
Affiliation(s)
- Xiao-Wen Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Na Feng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yan-Chen Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qiang Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jing-Kang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yi-Zhen Bai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiao-Ming Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhuo Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Heng Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yang Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Mi-Mi Yang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China
| | - Yan-Hang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiao-Meng Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Dan Liu
- Proteomics Laboratory, Medical and Healthy Analytical Center, Peking University Health Science Center, Beijing 100191, China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Corresponding author. (P.-F.T.); (K.-W.Z.)
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Corresponding author. (P.-F.T.); (K.-W.Z.)
| |
Collapse
|
9
|
Mannarino L, Craparotta I, Ballabio S, Frapolli R, Meroni M, Bello E, Panini N, Callari M, Sanfilippo R, Casali PG, Barisella M, Fabbroni C, Marchini S, D'Incalci M. Mechanisms of responsiveness to and resistance against trabectedin in murine models of human myxoid liposarcoma. Genomics 2021; 113:3439-3448. [PMID: 34339817 DOI: 10.1016/j.ygeno.2021.07.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/18/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
Myxoid liposarcoma (MLPS) is a rare soft-tissue sarcoma characterised by the expression of FUS-DDIT3 chimera. Trabectedin has shown significant clinical anti-tumour activity against MLPS. To characterise the molecular mechanism of trabectedin sensitivity and of resistance against it, we integrated genomic and transcriptomic data from treated mice bearing ML017 or ML017/ET, two patient-derived MLPS xenograft models, sensitive to and resistant against trabectedin, respectively. Longitudinal RNA-Seq analysis of ML017 showed that trabectedin acts mainly as a transcriptional regulator: 15 days after the third dose trabectedin modulates the transcription of 4883 genes involved in processes that sustain adipocyte differentiation. No such differences were observed in ML017/ET. Genomic analysis showed that prolonged treatment causes losses in 4p15.2, 4p16.3 and 17q21.3 cytobands leading to acquired-resistance against the drug. The results dissect the complex mechanism of action of trabectedin and provide the basis for novel combinatorial approaches for the treatment of MLPS that could overcome drug-resistance.
Collapse
Affiliation(s)
- Laura Mannarino
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20072 Pieve Emanuele - Milan, Italy.; Laboratory of Cancer Pharmacology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano - Milan, Italy
| | - Ilaria Craparotta
- Department of Oncology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, via Mario Negri 2, 20156 Milan, Italy
| | - Sara Ballabio
- Department of Oncology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, via Mario Negri 2, 20156 Milan, Italy
| | - Roberta Frapolli
- Department of Oncology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, via Mario Negri 2, 20156 Milan, Italy
| | - Marina Meroni
- Department of Oncology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, via Mario Negri 2, 20156 Milan, Italy
| | - Ezia Bello
- Department of Oncology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, via Mario Negri 2, 20156 Milan, Italy
| | - Nicolò Panini
- Department of Oncology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, via Mario Negri 2, 20156 Milan, Italy
| | - Maurizio Callari
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Roberta Sanfilippo
- Adult Mesenchymal Tumour Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Paolo G Casali
- Adult Mesenchymal Tumour Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Marta Barisella
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Chiara Fabbroni
- Adult Mesenchymal Tumour Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Sergio Marchini
- Laboratory of Cancer Pharmacology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano - Milan, Italy
| | - Maurizio D'Incalci
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20072 Pieve Emanuele - Milan, Italy.; Laboratory of Cancer Pharmacology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano - Milan, Italy..
| |
Collapse
|
10
|
Jia N, Guo C, Nakazawa Y, van den Heuvel D, Luijsterburg MS, Ogi T. Dealing with transcription-blocking DNA damage: Repair mechanisms, RNA polymerase II processing and human disorders. DNA Repair (Amst) 2021; 106:103192. [PMID: 34358806 DOI: 10.1016/j.dnarep.2021.103192] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 12/15/2022]
Abstract
Transcription-blocking DNA lesions (TBLs) in genomic DNA are triggered by a wide variety of DNA-damaging agents. Such lesions cause stalling of elongating RNA polymerase II (RNA Pol II) enzymes and fully block transcription when unresolved. The toxic impact of DNA damage on transcription progression is commonly referred to as transcription stress. In response to RNA Pol II stalling, cells activate and employ transcription-coupled repair (TCR) machineries to repair cytotoxic TBLs and resume transcription. Increasing evidence indicates that the modification and processing of stalled RNA Pol II is an integral component of the cellular response to and the repair of TBLs. If TCR pathways fail, the prolonged stalling of RNA Pol II will impede global replication and transcription as well as block the access of other DNA repair pathways that may act upon the TBL. Consequently, such prolonged stalling will trigger profound genome instability and devastating clinical features. In this review, we will discuss the mechanisms by which various types of TBLs are repaired by distinct TCR pathways and how RNA Pol II processing is regulated during these processes. We will also discuss the clinical consequences of transcription stress and genotype-phenotype correlations of related TCR-deficiency disorders.
Collapse
Affiliation(s)
- Nan Jia
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Chaowan Guo
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Yuka Nakazawa
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Diana van den Heuvel
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Martijn S Luijsterburg
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands.
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan.
| |
Collapse
|
11
|
Chauhan AK, Sun Y, Zhu Q, Wani AA. Timely upstream events regulating nucleotide excision repair by ubiquitin-proteasome system: ubiquitin guides the way. DNA Repair (Amst) 2021; 103:103128. [PMID: 33991872 DOI: 10.1016/j.dnarep.2021.103128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/15/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022]
Abstract
The ubiquitin-proteasome system (UPS) plays crucial roles in regulation of multiple DNA repair pathways, including nucleotide excision repair (NER), which eliminates a broad variety of helix-distorting DNA lesions that can otherwise cause deleterious mutations and genomic instability. In mammalian NER, DNA damage sensors, DDB and XPC acting in global genomic NER (GG-NER), and, CSB and RNAPII acting in transcription-coupled NER (TC-NER) sub-pathways, undergo an array of post-translational ubiquitination at the DNA lesion sites. Accumulating evidence indicates that ubiquitination orchestrates the productive assembly of NER preincision complex by driving well-timed compositional changes in DNA damage-assembled sensor complexes. Conversely, the deubiquitination is also intimately involved in regulating the damage sensing aftermath, via removal of degradative ubiquitin modification on XPC and CSB to prevent their proteolysis for the factor recycling. This review summaries the relevant research efforts and latest findings in our understanding of ubiquitin-mediated regulation of NER and active participation by new regulators of NER, e.g., Cullin-Ring ubiquitin ligases (CRLs), ubiquitin-specific proteases (USPs) and ubiquitin-dependent segregase, valosin-containing protein (VCP)/p97. We project hypothetical step-by-step models in which VCP/p97-mediated timely extraction of damage sensors is integral to overall productive NER. The USPs and proteasome subtly counteract in fine-tuning the vital stability and function of NER damage sensors.
Collapse
Affiliation(s)
- Anil K Chauhan
- Department of Radiology, The Ohio State University, Columbus, OH, 43210, United States
| | - Yingming Sun
- Department of Radiology, The Ohio State University, Columbus, OH, 43210, United States
| | - Qianzheng Zhu
- Department of Radiology, The Ohio State University, Columbus, OH, 43210, United States.
| | - Altaf A Wani
- Department of Radiology, The Ohio State University, Columbus, OH, 43210, United States; Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH, 43210, United States; James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, 43210, United States.
| |
Collapse
|
12
|
van den Heuvel D, van der Weegen Y, Boer DEC, Ogi T, Luijsterburg MS. Transcription-Coupled DNA Repair: From Mechanism to Human Disorder. Trends Cell Biol 2021; 31:359-371. [PMID: 33685798 DOI: 10.1016/j.tcb.2021.02.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/13/2022]
Abstract
DNA lesions pose a major obstacle during gene transcription by RNA polymerase II (RNAPII) enzymes. The transcription-coupled DNA repair (TCR) pathway eliminates such DNA lesions. Inherited defects in TCR cause severe clinical syndromes, including Cockayne syndrome (CS). The molecular mechanism of TCR and the molecular origin of CS have long remained enigmatic. Here we explore new advances in our understanding of how TCR complexes assemble through cooperative interactions between repair factors stimulated by RNAPII ubiquitylation. Mounting evidence suggests that RNAPII ubiquitylation activates TCR complex assembly during repair and, in parallel, promotes processing and degradation of RNAPII to prevent prolonged stalling. The fate of stalled RNAPII is therefore emerging as a crucial link between TCR and associated human diseases.
Collapse
Affiliation(s)
- Diana van den Heuvel
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Yana van der Weegen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Daphne E C Boer
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Martijn S Luijsterburg
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
13
|
Liu Y, Shen H, Greenbaum J, Liu A, Su KJ, Zhang LS, Zhang L, Tian Q, Hu HG, He JS, Deng HW. Gene Expression and RNA Splicing Imputation Identifies Novel Candidate Genes Associated with Osteoporosis. J Clin Endocrinol Metab 2020; 105:e4742-e4757. [PMID: 32827035 PMCID: PMC7736639 DOI: 10.1210/clinem/dgaa572] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/18/2020] [Indexed: 12/24/2022]
Abstract
CONTEXT Though genome-wide association studies (GWASs) have identified hundreds of genetic variants associated with osteoporosis related traits, such as bone mineral density (BMD) and fracture, it remains a challenge to interpret their biological functions and underlying biological mechanisms. OBJECTIVE Integrate diverse expression quantitative trait loci and splicing quantitative trait loci data with several powerful GWAS datasets to identify novel candidate genes associated with osteoporosis. DESIGN, SETTING, AND PARTICIPANTS Here, we conducted a transcriptome-wide association study (TWAS) for total body BMD (TB-BMD) (n = 66 628 for discovery and 7697 for validation) and fracture (53 184 fracture cases and 373 611 controls for discovery and 37 857 cases and 227 116 controls for validation), respectively. We also conducted multi-SNP-based summarized mendelian randomization analysis to further validate our findings. RESULTS In total, we detected 88 genes significantly associated with TB-BMD or fracture through expression or ribonucleic acid splicing. Summarized mendelian randomization analysis revealed that 78 of the significant genes may have potential causal effects on TB-BMD or fracture in at least 1 specific tissue. Among them, 64 genes have been reported in previous GWASs or TWASs for osteoporosis, such as ING3, CPED1, and WNT16, as well as 14 novel genes, such as DBF4B, GRN, TMUB2, and UNC93B1. CONCLUSIONS Overall, our findings provide novel insights into the pathogenesis mechanisms of osteoporosis and highlight the power of a TWAS to identify and prioritize potential causal genes.
Collapse
Affiliation(s)
- Yong Liu
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, Louisiana
| | - Hui Shen
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, Louisiana
| | - Jonathan Greenbaum
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, Louisiana
| | - Anqi Liu
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, Louisiana
| | - Kuan-Jui Su
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, Louisiana
| | - Li-Shu Zhang
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Lei Zhang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Jiangsu, China
| | - Qing Tian
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, Louisiana
| | - Hong-Gang Hu
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Jin-Sheng He
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Hong-Wen Deng
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, Louisiana
| |
Collapse
|
14
|
Borsos BN, Majoros H, Pankotai T. Emerging Roles of Post-Translational Modifications in Nucleotide Excision Repair. Cells 2020; 9:cells9061466. [PMID: 32549338 PMCID: PMC7349741 DOI: 10.3390/cells9061466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022] Open
Abstract
Nucleotide excision repair (NER) is a versatile DNA repair pathway which can be activated in response to a broad spectrum of UV-induced DNA damage, such as bulky adducts, including cyclobutane-pyrimidine dimers (CPDs) and 6–4 photoproducts (6–4PPs). Based on the genomic position of the lesion, two sub-pathways can be defined: (I) global genomic NER (GG-NER), involved in the ablation of damage throughout the whole genome regardless of the transcription activity of the damaged DNA locus, and (II) transcription-coupled NER (TC-NER), activated at DNA regions where RNAPII-mediated transcription takes place. These processes are tightly regulated by coordinated mechanisms, including post-translational modifications (PTMs). The fine-tuning modulation of the balance between the proteins, responsible for PTMs, is essential to maintain genome integrity and to prevent tumorigenesis. In this review, apart from the other substantial PTMs (SUMOylation, PARylation) related to NER, we principally focus on reversible ubiquitylation, which involves E3 ubiquitin ligase and deubiquitylase (DUB) enzymes responsible for the spatiotemporally precise regulation of NER.
Collapse
|
15
|
Nakazawa Y, Hara Y, Oka Y, Komine O, van den Heuvel D, Guo C, Daigaku Y, Isono M, He Y, Shimada M, Kato K, Jia N, Hashimoto S, Kotani Y, Miyoshi Y, Tanaka M, Sobue A, Mitsutake N, Suganami T, Masuda A, Ohno K, Nakada S, Mashimo T, Yamanaka K, Luijsterburg MS, Ogi T. Ubiquitination of DNA Damage-Stalled RNAPII Promotes Transcription-Coupled Repair. Cell 2020; 180:1228-1244.e24. [PMID: 32142649 DOI: 10.1016/j.cell.2020.02.010] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/16/2019] [Accepted: 02/04/2020] [Indexed: 02/06/2023]
Abstract
Transcription-coupled nucleotide excision repair (TC-NER) is initiated by the stalling of elongating RNA polymerase II (RNAPIIo) at DNA lesions. The ubiquitination of RNAPIIo in response to DNA damage is an evolutionarily conserved event, but its function in mammals is unknown. Here, we identified a single DNA damage-induced ubiquitination site in RNAPII at RPB1-K1268, which regulates transcription recovery and DNA damage resistance. Mechanistically, RPB1-K1268 ubiquitination stimulates the association of the core-TFIIH complex with stalled RNAPIIo through a transfer mechanism that also involves UVSSA-K414 ubiquitination. We developed a strand-specific ChIP-seq method, which revealed RPB1-K1268 ubiquitination is important for repair and the resolution of transcriptional bottlenecks at DNA lesions. Finally, RPB1-K1268R knockin mice displayed a short life-span, premature aging, and neurodegeneration. Our results reveal RNAPII ubiquitination provides a two-tier protection mechanism by activating TC-NER and, in parallel, the processing of DNA damage-stalled RNAPIIo, which together prevent prolonged transcription arrest and protect against neurodegeneration.
Collapse
Affiliation(s)
- Yuka Nakazawa
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuichiro Hara
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuyoshi Oka
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Okiru Komine
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Diana van den Heuvel
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Chaowan Guo
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasukazu Daigaku
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan; Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Mayu Isono
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuxi He
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mayuko Shimada
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kana Kato
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nan Jia
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoru Hashimoto
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuko Kotani
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan; Genome Editing Research and Development (R&D) Center, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuka Miyoshi
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Miyako Tanaka
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akira Sobue
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norisato Mitsutake
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Takayoshi Suganami
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinichiro Nakada
- Department of Bioregulation and Cellular Response, Graduate School of Medicine, Osaka University, Osaka, Japan; Institute for Advanced Co-Creation Studies, Osaka University, Osaka, Japan
| | - Tomoji Mashimo
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan; Genome Editing Research and Development (R&D) Center, Graduate School of Medicine, Osaka University, Osaka, Japan; Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Martijn S Luijsterburg
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
16
|
Zhu Q, Ding N, Wei S, Li P, Wani G, He J, Wani AA. USP7-mediated deubiquitination differentially regulates CSB but not UVSSA upon UV radiation-induced DNA damage. Cell Cycle 2019; 19:124-141. [PMID: 31775559 DOI: 10.1080/15384101.2019.1695996] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cockayne syndrome group B (CSB) protein participates in transcription-coupled nucleotide excision repair. The stability of CSB is known to be regulated by ubiquitin-specific protease 7 (USP7). Yet, whether USP7 acts as a deubiquitinating enzyme for CSB is not clear. Here, we demonstrate that USP7 deubiquitinates CSB to maintain its levels after ultraviolet (UV)-induced DNA damage. While both CSB and UV-stimulated scaffold protein A (UVSSA) exhibit a biphasic decrease and recovery upon UV irradiation, only CSB recovery depends on USP7, which physically interacts with and deubiquitinates CSB. Meanwhile, CSB overexpression stabilizes UVSSA, but decrease UVSSA's presence in nuclease-releasable/soluble chromatin, and increase the presence of ubiquitinated UVSSA in insoluble chromatin alongside CSB-ubiquitin conjugates. Remarkably, CSB overexpression also decreases CSB association with USP7 and UVSSA in soluble chromatin. UVSSA exists in several ubiquitinated forms, of which mono-ubiquitinated form and other ubiquitinated UVSSA forms are detectable upon 6xHistidine tag-based purification. The ubiquitinated UVSSA forms, however, are not cleavable by USP7 in vitro. Furthermore, USP7 disruption does not affect RNA synthesis but decreases the recovery of RNA synthesis following UV exposure. These results reveal a role of USP7 as a CSB deubiquitinating enzyme for fine-tuning the process of TC-NER in human cells.
Collapse
Affiliation(s)
- Qianzheng Zhu
- Department of Radiology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Nan Ding
- Department of Radiology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Shengcai Wei
- Department of Radiology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Ping Li
- Department of Radiology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Gulzar Wani
- Department of Radiology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Jinshan He
- Department of Radiology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Altaf A Wani
- Department of Radiology, The Ohio State University College of Medicine, Columbus, OH, USA.,Department of Molecular and Cellular Biochemistry, The Ohio State University College of Medicine, Columbus, OH, USA.,James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
17
|
Lans H, Hoeijmakers JHJ, Vermeulen W, Marteijn JA. The DNA damage response to transcription stress. Nat Rev Mol Cell Biol 2019; 20:766-784. [DOI: 10.1038/s41580-019-0169-4] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2019] [Indexed: 12/30/2022]
|
18
|
Al Khateeb WM, Sher AA, Marcus JM, Schroeder DF. UVSSA, UBP12, and RDO2/TFIIS Contribute to Arabidopsis UV Tolerance. FRONTIERS IN PLANT SCIENCE 2019; 10:516. [PMID: 31105721 PMCID: PMC6492544 DOI: 10.3389/fpls.2019.00516] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/03/2019] [Indexed: 05/03/2023]
Abstract
Plant DNA is damaged by exposure to solar radiation, which includes ultraviolet (UV) rays. UV damaged DNA is repaired either by photolyases, using visible light energy, or by nucleotide excision repair (NER), also known as dark repair. NER consists of two subpathways: global genomic repair (GGR), which repairs untranscribed DNA throughout the genome, and transcription-coupled repair (TCR), which repairs transcribed DNA. In mammals, CSA, CSB, UVSSA, USP7, and TFIIS have been implicated in TCR. Arabidopsis homologs of CSA (AtCSA-1/2) and CSB (CHR8) have previously been shown to contribute to UV tolerance. Here we examine the role of Arabidopsis homologs of UVSSA, USP7 (UBP12/13), and TFIIS (RDO2) in UV tolerance. We find that loss of function alleles of UVSSA, UBP12, and RDO2 exhibit increased UV sensitivity in both seedlings and adults. UV sensitivity in atcsa-1, uvssa, and ubp12 mutants is specific to dark conditions, consistent with a role in NER. Interestingly, chr8 mutants exhibit UV sensitivity in both light and dark conditions, suggesting that the Arabidopsis CSB homolog may play a role in both NER and light repair. Overall our results indicate a conserved role for UVSSA, USP7 (UBP12), and TFIIS (RDO2) in TCR.
Collapse
Affiliation(s)
| | - Annan A Sher
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jeffery M Marcus
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Dana F Schroeder
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
19
|
What happens at the lesion does not stay at the lesion: Transcription-coupled nucleotide excision repair and the effects of DNA damage on transcription in cis and trans. DNA Repair (Amst) 2018; 71:56-68. [PMID: 30195642 DOI: 10.1016/j.dnarep.2018.08.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Unperturbed transcription of eukaryotic genes by RNA polymerase II (Pol II) is crucial for proper cell function and tissue homeostasis. However, the DNA template of Pol II is continuously challenged by damaging agents that can result in transcription impediment. Stalling of Pol II on transcription-blocking lesions triggers a highly orchestrated cellular response to cope with these cytotoxic lesions. One of the first lines of defense is the transcription-coupled nucleotide excision repair (TC-NER) pathway that specifically removes transcription-blocking lesions thereby safeguarding unperturbed gene expression. In this perspective, we outline recent data on how lesion-stalled Pol II initiates TC-NER and we discuss new mechanistic insights in the TC-NER reaction, which have resulted in a better understanding of the causative-linked Cockayne syndrome and UV-sensitive syndrome. In addition to these direct effects on lesion-stalled Pol II (effects in cis), accumulating evidence shows that transcription, and particularly Pol II, is also affected in a genome-wide manner (effects in trans). We will summarize the diverse consequences of DNA damage on transcription, including transcription inhibition, induction of specific transcriptional programs and regulation of alternative splicing. Finally, we will discuss the function of these diverse cellular responses to transcription-blocking lesions and their consequences on the process of transcription restart. This resumption of transcription, which takes place either directly at the lesion or is reinitiated from the transcription start site, is crucial to maintain proper gene expression following removal of the DNA damage.
Collapse
|