1
|
Ali S, Stavropoulos A, Jenkins B, Graves S, Ahmadi A, Marzbanrad V, Che G, Cheng J, Tan H, Wei X, Egan S, Ingalls B, Neufeld JD, Eckhard U, Charles TC, Doxey AC. Comparative proteomics of biofilm development in Pseudoalteromonas tunicata discovers a distinct family of Ca 2+-dependent adhesins. mBio 2025:e0106925. [PMID: 40396756 DOI: 10.1128/mbio.01069-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Accepted: 04/22/2025] [Indexed: 05/22/2025] Open
Abstract
The marine bacterium, Pseudoalteromonas tunicata, is a useful model for studying biofilm development due to its ability to colonize and form biofilms on a variety of marine and eukaryotic host-associated surfaces. However, the pathways responsible for P. tunicata biofilm formation are not fully understood, in part due to a lack of functional information for a large proportion of its proteome. We used comparative shotgun proteomics to explore P. tunicata biofilm development from the planktonic phase throughout early, middle, and late biofilm stages. A total of 248 biofilm-associated proteins were identified, including many hypothetical proteins, as well as previously known P. tunicata biofilm-related proteins, such as the autocidal enzyme AlpP, violacein proteins, S-layer protein SLR4, and various pili proteins. We further investigated the top identified biofilm-associated protein, a previously uncharacterized 1,600-amino acid protein (EAR30327), which we designate as "BapP." Based on AlphaFold modeling and genomic context analysis, we predicted BapP as a distinct Ca2+-dependent biofilm adhesin. Consistent with this prediction, a ΔbapP knockout mutant was defective in forming both pellicle- and surface-associated biofilms and rescued by re-insertion of bapP into the genome. Similar to the mechanisms of RTX Bap-like adhesins, BapP-mediated biofilm formation was influenced by Ca2+ levels, and BapP is potentially exported by a Type 1 secretion system. Ultimately, our work not only provides a useful proteomic data set for studying biofilm development in an ecologically relevant organism but also adds to our knowledge of bacterial adhesin diversity, emphasizing Bap-like proteins as widespread determinants of biofilm formation in bacteria. IMPORTANCE Understanding how bacteria form biofilms is essential because biofilms play a crucial role in bacterial survival and interaction with their environments. The marine bacterium Pseudoalteromonas tunicata is a valuable model for studying biofilm formation, as it colonizes diverse marine surfaces and host organisms. By identifying proteins involved in biofilm development, our study sheds light on the specific proteins that help P. tunicata transition from a free-swimming state to a stable biofilm. This work highlights the role of a large, calcium-dependent protein, BapP, which we found to be essential for biofilm stability and structure. This protein and hundreds of others identified provide new insights into bacterial adhesion mechanisms, expanding our understanding of biofilm formation in marine environments and potentially informing broader studies on biofilm-related processes in other bacteria.
Collapse
Affiliation(s)
- Sura Ali
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, Ontario, Canada
| | - Alexander Stavropoulos
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, Ontario, Canada
| | - Benjamin Jenkins
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, Ontario, Canada
| | - Sadie Graves
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, Ontario, Canada
| | - Atiyeh Ahmadi
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, Ontario, Canada
| | - Vania Marzbanrad
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, Ontario, Canada
| | - Geoffrey Che
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, Ontario, Canada
| | - Jiujun Cheng
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, Ontario, Canada
| | - Huagang Tan
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, Ontario, Canada
| | - Xin Wei
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, Ontario, Canada
| | - Suhelen Egan
- The University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Brian Ingalls
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, Ontario, Canada
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| | - Josh D Neufeld
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, Ontario, Canada
| | - Ulrich Eckhard
- Synthetic Structural Biology Group, Department of Molecular and Structural Biology, Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Catalonia, Spain
| | - Trevor C Charles
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, Ontario, Canada
| | - Andrew C Doxey
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
2
|
Ye Q, Eves R, Vance TDR, Hansen T, Sage AP, Petkovic A, Bradley B, Escobedo C, Graham LA, Allingham JS, Davies PL. Aeromonas hydrophila RTX adhesin has three ligand-binding domains that give the bacterium the potential to adhere to and aggregate a wide variety of cell types. mBio 2025; 16:e0315824. [PMID: 40243363 PMCID: PMC12077191 DOI: 10.1128/mbio.03158-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Bacteria often make initial contact with their hosts through the ligand-binding domains of large adhesin proteins. Recent analyses of repeats-in-toxin (RTX) adhesins in Gram-negative bacteria suggest that ligand-binding domains can be identified by the way they emerge from "split" domains within the adhesin. Here, using this criterion and an AlphaFold3 model of a 5047-residue RTX adhesin from Aeromonas hydrophila, we identified three different ligand-binding domains in this fibrillar protein. The crystal structures of the two novel domains were solved to 1.4 and 1.95 Å resolution, respectively, and demonstrate excellent agreement with their modeled structures. The other domain was recognized as a carbohydrate-binding module based on its beta-strand topology and confirmed by its micromolar affinity for fucosylated glycans, including the Lewis B and Y antigens. This lectin-like module, which was recombinantly produced with its companion split domain and nearby extender domain, bound to a wide variety of cells including yeasts, diatoms, erythrocytes, and human endothelial cells. In each case, 50 mM free fucose prevented this binding and may offer some protection from infection. The carbohydrate-binding module with its neighboring domains also caused aggregation of yeast and erythrocytes, which was again blocked by the addition of free fucose. The second putative ligand-binding domain has a beta-roll structure supported by a parallel alpha-helix, and the third is a homolog of a von Willebrand Factor A domain. These two domains bind to a more limited range of cell types, and their ligands have yet to be identified.IMPORTANCECharacterizing the ligand-binding domains of fibrillar adhesins is important for understanding how bacteria can colonize host surfaces and how this colonization might be blocked. Here, we show that the opportunistic pathogen, Aeromonas hydrophila, uses a carbohydrate-binding module (CBM) to attach to several different cell types. The CBM is one of three ligand-binding domains at the distal tip of the adhesin. Identifying the glycans bound by the CBM as Lewis B and Y antigens has helped explain the range of cell types that the bacterium will bind and colonize, and it has suggested sugars that might interfere with these processes. Indeed, fucose, which is a constituent of the Lewis B and Y antigens, is effective at 50 mM concentrations in blocking the attachment of the CBM to host cells. This will lead to the design of more effective inhibitors against bacterial infections.
Collapse
Affiliation(s)
- Qilu Ye
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Robert Eves
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Tyler D. R. Vance
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Thomas Hansen
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Adam P. Sage
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Andrea Petkovic
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Brianna Bradley
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada
| | - Carlos Escobedo
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada
| | - Laurie A. Graham
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - John S. Allingham
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Peter L. Davies
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
3
|
Hunt BC, Brix V, Vath J, Guterman LB, Taddei SM, Deka N, Learman BS, Brauer AL, Shen S, Qu J, Armbruster CE. Metabolic interplay between Proteus mirabilis and Enterococcus faecalis facilitates polymicrobial biofilm formation and invasive disease. mBio 2024; 15:e0216424. [PMID: 39475232 PMCID: PMC11640290 DOI: 10.1128/mbio.02164-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/09/2024] [Indexed: 11/06/2024] Open
Abstract
Biofilms play an important role in the development and pathogenesis of catheter-associated urinary tract infection (CAUTI). Proteus mirabilis and Enterococcus faecalis are common CAUTI pathogens that persistently co-colonize the catheterized urinary tract and form biofilms with increased biomass and antibiotic resistance. In this study, we uncover the metabolic interplay that drives biofilm enhancement and examine the contribution to CAUTI severity. Through compositional and proteomic biofilm analyses, we determined that the increase in biofilm biomass stems from an increase in the protein fraction of the polymicrobial biofilm. We further observed an enrichment in proteins associated with ornithine and arginine metabolism in polymicrobial biofilms compared with single-species biofilms. We show that arginine/ornithine antiport by E. faecalis promotes arginine biosynthesis and metabolism in P. mirabilis, ultimately driving the increase in polymicrobial biofilm protein content without affecting viability of either species. We further show that disrupting E. faecalis ornithine antiport alters the metabolic profile of polymicrobial biofilms and prevents enhancement, and this defect was complemented by supplementation with exogenous ornithine. In a murine model of CAUTI, ornithine antiport did not contribute to E. faecalis colonization but was required for the increased incidence of urinary stone formation and bacteremia that occurs during polymicrobial CAUTI with P. mirabilis. Thus, disrupting metabolic interplay between common co-colonizing species may represent a viable strategy for reducing risk of bacteremia.IMPORTANCEChronic infections often involve the formation of antibiotic-resistant biofilm communities that include multiple different microbes, which pose a challenge for effective treatment. In the catheterized urinary tract, potential pathogens persistently co-colonize for long periods of time and the interactions between them can lead to more severe disease outcomes. In this study, we identified the metabolite L-ornithine as a key mediator of disease-enhancing interactions between two common and challenging pathogens, Enterococcus faecalis and Proteus mirabilis. Disrupting ornithine-mediated interactions may therefore represent a strategy to prevent polymicrobial biofilm formation and decrease risk of severe disease.
Collapse
Affiliation(s)
- Benjamin C. Hunt
- Department of
Microbiology and Immunology, Jacobs School of Medicine and Biomedical
Sciences, State University of New York at
Buffalo, Buffalo, New
York, USA
| | - Vitus Brix
- Department of
Microbiology and Immunology, Jacobs School of Medicine and Biomedical
Sciences, State University of New York at
Buffalo, Buffalo, New
York, USA
| | - Joseph Vath
- Department of
Microbiology and Immunology, Jacobs School of Medicine and Biomedical
Sciences, State University of New York at
Buffalo, Buffalo, New
York, USA
| | - Lauren Beryl Guterman
- Department of
Microbiology and Immunology, Jacobs School of Medicine and Biomedical
Sciences, State University of New York at
Buffalo, Buffalo, New
York, USA
| | - Steven M. Taddei
- Department of
Microbiology and Immunology, Jacobs School of Medicine and Biomedical
Sciences, State University of New York at
Buffalo, Buffalo, New
York, USA
| | - Namrata Deka
- Department of
Microbiology and Immunology, Jacobs School of Medicine and Biomedical
Sciences, State University of New York at
Buffalo, Buffalo, New
York, USA
| | - Brian S. Learman
- Department of
Microbiology and Immunology, Jacobs School of Medicine and Biomedical
Sciences, State University of New York at
Buffalo, Buffalo, New
York, USA
| | - Aimee L. Brauer
- Department of
Microbiology and Immunology, Jacobs School of Medicine and Biomedical
Sciences, State University of New York at
Buffalo, Buffalo, New
York, USA
| | - Shichen Shen
- Department of
Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences,
State University of New York at
Buffalo, Buffalo, New
York, USA
| | - Jun Qu
- Department of
Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences,
State University of New York at
Buffalo, Buffalo, New
York, USA
- NYS Center of
Excellence in Bioinformatics and Life
Sciences, Buffalo, New
York, USA
| | - Chelsie E. Armbruster
- Department of
Microbiology and Immunology, Jacobs School of Medicine and Biomedical
Sciences, State University of New York at
Buffalo, Buffalo, New
York, USA
| |
Collapse
|
4
|
Graham LA, Hansen T, Yang Y, Sherik M, Ye Q, Soares BP, Kinrade B, Guo S, Davies PL. Adhesin domains responsible for binding bacteria to surfaces they colonize project outwards from companion split domains. Proteins 2024; 92:933-945. [PMID: 38591850 DOI: 10.1002/prot.26689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/07/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024]
Abstract
Bacterial adhesins attach their hosts to surfaces that the bacteria will colonize. This surface adhesion occurs through specific ligand-binding domains located towards the distal end of the long adhesin molecules. However, recognizing which of the many adhesin domains are structural and which are ligand binding has been difficult up to now. Here we have used the protein structure modeling program AlphaFold2 to predict structures for these giant 0.2- to 1.5-megadalton proteins. Crystal structures previously solved for several adhesin regions are in good agreement with the models. Whereas most adhesin domains are linked in a linear fashion through their N- and C-terminal ends, ligand-binding domains can be recognized by budding out from a companion core domain so that their ligand-binding sites are projected away from the axis of the adhesin for maximal exposure to their targets. These companion domains are "split" in their continuity by projecting the ligand-binding domain outwards. The "split domains" are mostly β-sandwich extender modules, but other domains like a β-solenoid can serve the same function. Bioinformatic analyses of Gram-negative bacterial sequences revealed wide variety ligand-binding domains are used in their Repeats-in-Toxin adhesins. The ligands for many of these domains have yet to be identified but known ligands include various cell-surface glycans, proteins, and even ice. Recognizing the ligands to which the adhesins bind could lead to ways of blocking colonization by bacterial pathogens. Engineering different ligand-binding domains into an adhesin has the potential to change the surfaces to which bacteria bind.
Collapse
Affiliation(s)
- Laurie A Graham
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Thomas Hansen
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Yanzhi Yang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Mustafa Sherik
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Qilu Ye
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Blake P Soares
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Brett Kinrade
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Shuaiqi Guo
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Peter L Davies
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
5
|
Hunt BC, Brix V, Vath J, Guterman BL, Taddei SM, Learman BS, Brauer AL, Shen S, Qu J, Armbruster CE. Metabolic interplay between Proteus mirabilis and Enterococcus faecalis facilitates polymicrobial biofilm formation and invasive disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.17.533237. [PMID: 36993593 PMCID: PMC10055233 DOI: 10.1101/2023.03.17.533237] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Polymicrobial biofilms play an important role in the development and pathogenesis of CAUTI. Proteus mirabilis and Enterococcus faecalis are common CAUTI pathogens that persistently co-colonize the catheterized urinary tract and form biofilms with increased biomass and antibiotic resistance. In this study, we uncover the metabolic interplay that drives biofilm enhancement and examine the contribution to CAUTI severity. Through compositional and proteomic biofilm analyses, we determined that the increase in biofilm biomass stems from an increase in the protein fraction of the polymicrobial biofilm matrix. We further observed an enrichment in proteins associated with ornithine and arginine metabolism in polymicrobial biofilms compared to single-species biofilms. We show that L-ornithine secretion by E. faecalis promotes arginine biosynthesis in P. mirabilis, and that disruption of this metabolic interplay abrogates the biofilm enhancement we see in vitro and leads to significant decreases in infection severity and dissemination in a murine CAUTI model.
Collapse
Affiliation(s)
- Benjamin C. Hunt
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, United States of America
| | - Vitus Brix
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, United States of America
| | - Joseph Vath
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, United States of America
| | - Beryl L. Guterman
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, United States of America
| | - Steven M. Taddei
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, United States of America
| | - Brian S. Learman
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, United States of America
| | - Aimee L. Brauer
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, United States of America
| | - Shichen Shen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, United States of America
| | - Jun Qu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, United States of America
- NYS Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, 14203, United States of America
| | - Chelsie E. Armbruster
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, United States of America
| |
Collapse
|
6
|
Sherik M, Eves R, Guo S, Lloyd CJ, Klose KE, Davies PL. Sugar-binding and split domain combinations in repeats-in-toxin adhesins from Vibrio cholerae and Aeromonas veronii mediate cell-surface recognition and hemolytic activities. mBio 2024; 15:e0229123. [PMID: 38171003 PMCID: PMC10865825 DOI: 10.1128/mbio.02291-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Many pathogenic Gram-negative bacteria use repeats-in-toxin adhesins for colonization and biofilm formation. In the cholera agent Vibrio cholerae, flagellar-regulated hemagglutinin A (FrhA) enables these functions. Using bioinformatic analysis, a sugar-binding domain was identified in FrhA adjacent to a domain of unknown function. AlphaFold2 indicated the boundaries of both domains to be slightly shorter than previously predicted and assisted in the recognition of the unknown domain as a split immunoglobulin-like fold that can assist in projecting the sugar-binding domain toward its target. The AlphaFold2-predicted structure is in excellent agreement with the molecular envelope obtained from small-angle X-ray scattering analysis of a recombinant construct spanning the sugar-binding and unknown domains. This two-domain construct was probed by glycan micro-array screening and showed binding to mammalian fucosylated glycans, some of which are characteristic erythrocyte markers and intestinal cell epitopes. Isothermal titration calorimetry further showed the construct-bound l-fucose with a Kd of 21 µM. Strikingly, this recombinant protein construct bound and lysed erythrocytes in a concentration-dependent manner, and its hemolytic activity was blocked by the addition of l-fucose. A protein ortholog construct from Aeromonas veronii was also produced and showed a similar glycan-binding pattern, binding affinity, erythrocyte-binding, and hemolytic activities. As demonstrated here with Hep-2 cells, fucose-based inhibitors of this sugar-binding domain can potentially be developed to block colonization by V. cholerae and other pathogenic bacteria that share this adhesin domain.IMPORTANCEThe bacterium, Vibrio cholerae, which causes cholera, uses an adhesion protein to stick to human cells and begin the infection process. One part of this adhesin protein binds to a particular sugar, fucose, on the surface of the target cells. This binding can lead to colonization and killing of the cells by the bacteria. Adding l-fucose to the bacteria before they bind to the human cells can prevent attachment and has promise as a preventative drug to protect against cholera.
Collapse
Affiliation(s)
- Mustafa Sherik
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Robert Eves
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Shuaiqi Guo
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Cameron J. Lloyd
- South Texas Center for Emerging Infectious Diseases and Department of Molecular Microbiology and Immunology, University of Texas San Antonio, San Antonio, Texas, USA
| | - Karl E. Klose
- South Texas Center for Emerging Infectious Diseases and Department of Molecular Microbiology and Immunology, University of Texas San Antonio, San Antonio, Texas, USA
| | - Peter L. Davies
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| |
Collapse
|
7
|
Lloyd CJ, Guo S, Kinrade B, Zahiri H, Eves R, Ali SK, Yildiz F, Voets IK, Davies PL, Klose KE. A peptide-binding domain shared with an Antarctic bacterium facilitates Vibrio cholerae human cell binding and intestinal colonization. Proc Natl Acad Sci U S A 2023; 120:e2308238120. [PMID: 37729203 PMCID: PMC10523503 DOI: 10.1073/pnas.2308238120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/31/2023] [Indexed: 09/22/2023] Open
Abstract
Vibrio cholerae, the causative agent of the disease cholera, is responsible for multiple pandemics. V. cholerae binds to and colonizes the gastrointestinal tract within the human host, as well as various surfaces in the marine environment (e.g., zooplankton) during interepidemic periods. A large adhesin, the Flagellar Regulated Hemagglutinin A (FrhA), enhances binding to erythrocytes and epithelial cells and enhances intestinal colonization. We identified a peptide-binding domain (PBD) within FrhA that mediates hemagglutination, binding to epithelial cells, intestinal colonization, and facilitates biofilm formation. Intriguingly, this domain is also found in the ice-binding protein of the Antarctic bacterium Marinomonas primoryensis, where it mediates binding to diatoms. Peptide inhibitors of the M. primoryensis PBD inhibit V. cholerae binding to human cells as well as to diatoms and inhibit biofilm formation. Moreover, the M. primoryensis PBD inserted into FrhA allows V. cholerae to bind human cells and colonize the intestine and also enhances biofilm formation, demonstrating the interchangeability of the PBD from these bacteria. Importantly, peptide inhibitors of PBD reduce V. cholerae intestinal colonization in infant mice. These studies demonstrate how V. cholerae uses a PBD shared with a diatom-binding Antarctic bacterium to facilitate intestinal colonization in humans and biofilm formation in the environment.
Collapse
Affiliation(s)
- Cameron J. Lloyd
- South Texas Center for Emerging Infectious Diseases, University of Texas, San Antonio, TX78249
- Department of Molecular Microbiology and Immunology, University of Texas, San Antonio, TX78249
| | - Shuaiqi Guo
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ONK7L 3N6, Canada
| | - Brett Kinrade
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ONK7L 3N6, Canada
| | - Hossein Zahiri
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ONK7L 3N6, Canada
| | - Robert Eves
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ONK7L 3N6, Canada
| | - Syed Khalid Ali
- South Texas Center for Emerging Infectious Diseases, University of Texas, San Antonio, TX78249
- Department of Molecular Microbiology and Immunology, University of Texas, San Antonio, TX78249
| | - Fitnat Yildiz
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA95064
| | - Ilja K. Voets
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven5612, the Netherlands
| | - Peter L. Davies
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ONK7L 3N6, Canada
| | - Karl E. Klose
- South Texas Center for Emerging Infectious Diseases, University of Texas, San Antonio, TX78249
- Department of Molecular Microbiology and Immunology, University of Texas, San Antonio, TX78249
| |
Collapse
|
8
|
Hodges FJ, Torres VVL, Cunningham AF, Henderson IR, Icke C. Redefining the bacterial Type I protein secretion system. Adv Microb Physiol 2023; 82:155-204. [PMID: 36948654 DOI: 10.1016/bs.ampbs.2022.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Type I secretion systems (T1SS) are versatile molecular machines for protein transport across the Gram-negative cell envelope. The archetypal Type I system mediates secretion of the Escherichia coli hemolysin, HlyA. This system has remained the pre-eminent model of T1SS research since its discovery. The classic description of a T1SS is composed of three proteins: an inner membrane ABC transporter, a periplasmic adaptor protein and an outer membrane factor. According to this model, these components assemble to form a continuous channel across the cell envelope, an unfolded substrate molecule is then transported in a one-step mechanism, directly from the cytosol to the extracellular milieu. However, this model does not encapsulate the diversity of T1SS that have been characterized to date. In this review, we provide an updated definition of a T1SS, and propose the subdivision of this system into five subgroups. These subgroups are categorized as T1SSa for RTX proteins, T1SSb for non-RTX Ca2+-binding proteins, T1SSc for non-RTX proteins, T1SSd for class II microcins, and T1SSe for lipoprotein secretion. Although often overlooked in the literature, these alternative mechanisms of Type I protein secretion offer many avenues for biotechnological discovery and application.
Collapse
Affiliation(s)
- Freya J Hodges
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Von Vergel L Torres
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Adam F Cunningham
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Ian R Henderson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| | - Christopher Icke
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
9
|
Guo S, Zahiri H, Stevens C, Spaanderman DC, Milroy LG, Ottmann C, Brunsveld L, Voets IK, Davies PL. Molecular basis for inhibition of adhesin-mediated bacterial-host interactions through a peptide-binding domain. Cell Rep 2021; 37:110002. [PMID: 34788627 DOI: 10.1016/j.celrep.2021.110002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/26/2021] [Accepted: 10/25/2021] [Indexed: 12/17/2022] Open
Abstract
Infections typically begin with pathogens adhering to host cells. For bacteria, this adhesion can occur through specific ligand-binding domains. We identify a 20-kDa peptide-binding domain (PBD) in a 1.5-MDa RTX adhesin of a Gram-negative marine bacterium that colonizes diatoms. The crystal structure of this Ca2+-dependent PBD suggests that it may bind the C termini of host cell-surface proteins. A systematic peptide library analysis reveals an optimal tripeptide sequence with 30-nM affinity for the PBD, and X-ray crystallography details its peptide-protein interactions. Binding of the PBD to the diatom partner of the bacteria can be inhibited or competed away by the peptide, providing a molecular basis for inhibiting bacterium-host interactions. We further show that this PBD is found in other bacteria, including human pathogens such as Vibrio cholerae and Aeromonas veronii. Here, we produce the PBD ortholog from A. veronii and demonstrate, using the same peptide inhibitor, how pathogens may be prevented from adhering to their hosts.
Collapse
Affiliation(s)
- Shuaiqi Guo
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada; Laboratory of Self-Organizing Soft Matter, Eindhoven University of Technology PO Box 513, 5600 MB Eindhoven, the Netherlands; Laboratory of Chemical Biology, Eindhoven University of Technology PO Box 513, 5600 MB Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology PO Box 513, 5600 MB Eindhoven, the Netherlands
| | - Hossein Zahiri
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Corey Stevens
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Daniel C Spaanderman
- Laboratory of Chemical Biology, Eindhoven University of Technology PO Box 513, 5600 MB Eindhoven, the Netherlands; Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology PO Box 513, 5600 MB Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology PO Box 513, 5600 MB Eindhoven, the Netherlands
| | - Lech-Gustav Milroy
- Laboratory of Chemical Biology, Eindhoven University of Technology PO Box 513, 5600 MB Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology PO Box 513, 5600 MB Eindhoven, the Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology, Eindhoven University of Technology PO Box 513, 5600 MB Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology PO Box 513, 5600 MB Eindhoven, the Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Eindhoven University of Technology PO Box 513, 5600 MB Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology PO Box 513, 5600 MB Eindhoven, the Netherlands
| | - Ilja K Voets
- Laboratory of Self-Organizing Soft Matter, Eindhoven University of Technology PO Box 513, 5600 MB Eindhoven, the Netherlands; Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology PO Box 513, 5600 MB Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology PO Box 513, 5600 MB Eindhoven, the Netherlands
| | - Peter L Davies
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
10
|
Monzon V, Lafita A, Bateman A. Discovery of fibrillar adhesins across bacterial species. BMC Genomics 2021; 22:550. [PMID: 34275445 PMCID: PMC8286594 DOI: 10.1186/s12864-021-07586-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Fibrillar adhesins are long multidomain proteins that form filamentous structures at the cell surface of bacteria. They are an important yet understudied class of proteins composed of adhesive and stalk domains that mediate interactions of bacteria with their environment. This study aims to characterize fibrillar adhesins in a wide range of bacterial phyla and to identify new fibrillar adhesin-like proteins to improve our understanding of host-bacteria interactions. RESULTS Through careful literature and computational searches, we identified 82 stalk and 27 adhesive domain families in fibrillar adhesins. Based on the presence of these domains in the UniProt Reference Proteomes database, we identified and analysed 3,542 fibrillar adhesin-like proteins across species of the most common bacterial phyla. We further enumerate the adhesive and stalk domain combinations found in nature and demonstrate that fibrillar adhesins have complex and variable domain architectures, which differ across species. By analysing the domain architecture of fibrillar adhesins, we show that in Gram positive bacteria, adhesive domains are mostly positioned at the N-terminus and cell surface anchors at the C-terminus of the protein, while their positions are more variable in Gram negative bacteria. We provide an open repository of fibrillar adhesin-like proteins and domains to enable further studies of this class of bacterial surface proteins. CONCLUSION This study provides a domain-based characterization of fibrillar adhesins and demonstrates that they are widely found in species across the main bacterial phyla. We have discovered numerous novel fibrillar adhesins and improved our understanding of pathogenic adhesion and invasion mechanisms.
Collapse
Affiliation(s)
- Vivian Monzon
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD, UK.
| | - Aleix Lafita
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| |
Collapse
|
11
|
Structural Basis of Ligand Selectivity by a Bacterial Adhesin Lectin Involved in Multispecies Biofilm Formation. mBio 2021; 12:mBio.00130-21. [PMID: 33824212 PMCID: PMC8092209 DOI: 10.1128/mbio.00130-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Bacterial adhesins are key virulence factors that are essential for the pathogen-host interaction and biofilm formation that cause most infections. Many of the adhesin-driven cell-cell interactions are mediated by lectins. Carbohydrate recognition by lectins governs critical host-microbe interactions. MpPA14 (Marinomonas primoryensis PA14 domain) lectin is a domain of a 1.5-MDa adhesin responsible for a symbiotic bacterium-diatom interaction in Antarctica. Here, we show that MpPA14 binds various monosaccharides, with l-fucose and N-acetylglucosamine being the strongest ligands (dissociation constant [Kd], ∼150 μM). High-resolution structures of MpPA14 with 15 different sugars bound elucidated the molecular basis for the lectin’s apparent binding promiscuity but underlying selectivity. MpPA14 mediates strong Ca2+-dependent interactions with the 3,4-diols of l-fucopyranose and glucopyranoses, and it binds other sugars via their specific minor isomers. Thus, MpPA14 only binds polysaccharides like branched glucans and fucoidans with these free end groups. Consistent with our findings, adhesion of MpPA14 to diatom cells was selectively blocked by l-fucose, but not by N-acetyl galactosamine. The MpPA14 lectin homolog present in a Vibrio cholerae adhesin was produced and was shown to have the same sugar binding preferences as MpPA14. The pathogen’s lectin was unable to effectively bind the diatom in the presence of fucose, thus demonstrating the antiadhesion strategy of blocking infection via ligand-based antagonists.
Collapse
|
12
|
Ice-Binding Proteins Associated with an Antarctic Cyanobacterium, Nostoc sp. HG1. Appl Environ Microbiol 2021; 87:AEM.02499-20. [PMID: 33158891 PMCID: PMC7783341 DOI: 10.1128/aem.02499-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Ice-binding proteins (IBPs) have been identified in numerous polar algae and bacteria, but so far not in any cyanobacteria, despite the abundance of cyanobacteria in polar regions. We previously reported strong IBP activity associated with an Antarctic Nostoc species. In this study, to identify the proteins responsible, as well as elucidate their origin, we sequenced the DNA of an environmental sample of this species, designated Nostoc sp. HG1, and its bacterial community and attempted to identify IBPs by looking for known IBPs in the metagenome and by looking for novel IBPs by tandem mass spectrometry (MS/MS) proteomics analyses of ice affinity-purified proteins. The metagenome contained over 116 DUF3494-type IBP genes, the most common type of IBP identified so far. One of the IBPs could be confidently assigned to Nostoc, while the others could be attributed to diverse bacteria, which, surprisingly, accounted for the great majority of the metagenome. Recombinant Nostoc IBPs (nIBPs) had strong ice-structuring activities, and their circular dichroism spectra were consistent with the secondary structure of a DUF3494-type IBP. nIBP is unusual in that it is the only IBP identified so far to have a PEP (amino acid motif) C-terminal signal, a signal that has been associated with anchoring to the outer cell membrane. These results suggest that the observed IBP activity of Nostoc sp. HG1 was due to a combination of endogenous and exogenous IBPs. Amino acid and nucleotide sequence analyses of nIBP raise the possibility that it was acquired from a planctomycete.IMPORTANCE The horizontal transfer of genes encoding ice-binding proteins (IBPs), proteins that confer freeze-thaw tolerance, has allowed many microorganisms to expand their ranges into polar regions. One group of microorganisms for which nothing is known about its IBPs is cyanobacteria. In this study, we identified a cyanobacterial IBP and showed that it was likely acquired from another bacterium, probably a planctomycete. We also showed that a consortium of IBP-producing bacteria living with the Nostoc contribute to its IBP activity.
Collapse
|
13
|
Felestrino ÉB, Sanchez AB, Caneschi WL, Lemes CGDC, Assis RDAB, Cordeiro IF, Fonseca NP, Villa MM, Vieira IT, Kamino LHY, do Carmo FF, da Silva AM, Thomas AM, Patané JSL, Ferreira FC, de Freitas LG, Varani ADM, Ferro JA, Silva RS, Almeida NF, Garcia CCM, Setubal JC, Moreira LM. Complete genome sequence and analysis of Alcaligenes faecalis strain Mc250, a new potential plant bioinoculant. PLoS One 2020; 15:e0241546. [PMID: 33151992 PMCID: PMC7643998 DOI: 10.1371/journal.pone.0241546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/16/2020] [Indexed: 11/19/2022] Open
Abstract
Here we present and analyze the complete genome of Alcaligenes faecalis strain Mc250 (Mc250), a bacterium isolated from the roots of Mimosa calodendron, an endemic plant growing in ferruginous rupestrian grasslands in Minas Gerais State, Brazil. The genome has 4,159,911 bp and 3,719 predicted protein-coding genes, in a single chromosome. Comparison of the Mc250 genome with 36 other Alcaligenes faecalis genomes revealed that there is considerable gene content variation among these strains, with the core genome representing only 39% of the protein-coding gene repertoire of Mc250. Mc250 encodes a complete denitrification pathway, a network of pathways associated with phenolic compounds degradation, and genes associated with HCN and siderophores synthesis; we also found a repertoire of genes associated with metal internalization and metabolism, sulfate/sulfonate and cysteine metabolism, oxidative stress and DNA repair. These findings reveal the genomic basis for the adaptation of this bacterium to the harsh environmental conditions from where it was isolated. Gene clusters associated with ectoine, terpene, resorcinol, and emulsan biosynthesis that can confer some competitive advantage were also found. Experimental results showed that Mc250 was able to reduce (~60%) the virulence phenotype of the plant pathogen Xanthomonas citri subsp. citri when co-inoculated in Citrus sinensis, and was able to eradicate 98% of juveniles and stabilize the hatching rate of eggs to 4% in two species of agricultural nematodes. These results reveal biotechnological potential for the Mc250 strain and warrant its further investigation as a biocontrol and plant growth-promoting bacterium.
Collapse
Affiliation(s)
- Érica Barbosa Felestrino
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Angélica Bianchini Sanchez
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Washington Luiz Caneschi
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | | | | | - Isabella Ferreira Cordeiro
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Natasha Peixoto Fonseca
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Morghana Marina Villa
- Departamento de Ciências Biológicas (DECBI), Instituto de Ciências Exatas e Biológicas (ICEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - Izadora Tabuso Vieira
- Departamento de Ciências Biológicas (DECBI), Instituto de Ciências Exatas e Biológicas (ICEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | | | | | - Aline Maria da Silva
- Departamento de Bioquímica (DBQ), Instituto de Química (IQ), Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Andrew Maltez Thomas
- Departamento de Bioquímica (DBQ), Instituto de Química (IQ), Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | | | - Fernanda Carla Ferreira
- Instituto de Biotecnologia Aplicada a Agropecuária (BIOAGRO), Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil
| | - Leandro Grassi de Freitas
- Instituto de Biotecnologia Aplicada a Agropecuária (BIOAGRO), Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil
| | - Alessandro de Mello Varani
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal (FCAV), Universidade Estadual Paulista (UNESP), São Paulo, SP, Brazil
| | - Jesus Aparecido Ferro
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal (FCAV), Universidade Estadual Paulista (UNESP), São Paulo, SP, Brazil
| | - Robson Soares Silva
- Faculdade de Computação (FACOM), Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Nalvo Franco Almeida
- Faculdade de Computação (FACOM), Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Camila Carrião Machado Garcia
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
- Departamento de Ciências Biológicas (DECBI), Instituto de Ciências Exatas e Biológicas (ICEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - João Carlos Setubal
- Departamento de Bioquímica (DBQ), Instituto de Química (IQ), Universidade de São Paulo (USP), São Paulo, SP, Brazil
- * E-mail: (JCS); (LMM)
| | - Leandro Marcio Moreira
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
- Departamento de Ciências Biológicas (DECBI), Instituto de Ciências Exatas e Biológicas (ICEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil
- * E-mail: (JCS); (LMM)
| |
Collapse
|
14
|
Collins AJ, Smith TJ, Sondermann H, O'Toole GA. From Input to Output: The Lap/c-di-GMP Biofilm Regulatory Circuit. Annu Rev Microbiol 2020; 74:607-631. [PMID: 32689917 DOI: 10.1146/annurev-micro-011520-094214] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biofilms are the dominant bacterial lifestyle. The regulation of the formation and dispersal of bacterial biofilms has been the subject of study in many organisms. Over the last two decades, the mechanisms of Pseudomonas fluorescens biofilm formation and regulation have emerged as among the best understood of any bacterial biofilm system. Biofilm formation by P. fluorescens occurs through the localization of an adhesin, LapA, to the outer membrane via a variant of the classical type I secretion system. The decision between biofilm formation and dispersal is mediated by LapD, a c-di-GMP receptor, and LapG, a periplasmic protease, which together control whether LapA is retained or released from the cell surface. LapA localization is also controlled by a complex network of c-di-GMP-metabolizing enzymes. This review describes the current understanding of LapA-mediated biofilm formation by P. fluorescens and discusses several emerging models for the regulation and function of this adhesin.
Collapse
Affiliation(s)
- Alan J Collins
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.,Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, USA;
| | - T Jarrod Smith
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, USA; .,Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
| | | | - George A O'Toole
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, USA;
| |
Collapse
|
15
|
Guo S, Dubuc E, Rave Y, Verhagen M, Twisk SAE, van der Hek T, Oerlemans GJM, van den Oetelaar MCM, van Hazendonk LS, Brüls M, Eijkens BV, Joostens PL, Keij SR, Xing W, Nijs M, Stalpers J, Sharma M, Gerth M, Boonen RJEA, Verduin K, Merkx M, Voets IK, de Greef TFA. Engineered Living Materials Based on Adhesin-Mediated Trapping of Programmable Cells. ACS Synth Biol 2020; 9:475-485. [PMID: 32105449 PMCID: PMC7091533 DOI: 10.1021/acssynbio.9b00404] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Engineered living materials have the potential for wide-ranging applications such as biosensing and treatment of diseases. Programmable cells provide the functional basis for living materials; however, their release into the environment raises numerous biosafety concerns. Current designs that limit the release of genetically engineered cells typically involve the fabrication of multilayer hybrid materials with submicrometer porous matrices. Nevertheless the stringent physical barriers limit the diffusion of macromolecules and therefore the repertoire of molecules available for actuation in response to communication signals between cells and their environment. Here, we engineer a novel living material entitled "Platform for Adhesin-mediated Trapping of Cells in Hydrogels" (PATCH). This technology is based on engineered E. coli that displays an adhesion protein derived from an Antarctic bacterium with a high affinity for glucose. The adhesin stably anchors E. coli in dextran-based hydrogels with large pore diameters (10-100 μm) and reduces the leakage of bacteria into the environment by up to 100-fold. As an application of PATCH, we engineered E. coli to secrete the bacteriocin lysostaphin which specifically kills Staphyloccocus aureus with low probability of raising antibiotic resistance. We demonstrated that living materials containing this lysostaphin-secreting E. coli inhibit the growth of S. aureus, including the strain resistant to methicillin (MRSA). Our tunable platform allows stable integration of programmable cells in dextran-based hydrogels without compromising free diffusion of macromolecules and could have potential applications in biotechnology and biomedicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Martijn Nijs
- Stichting PAMM, Laboratory for Pathology and Medical Microbiology, De Run 6250, Veldhoven, 5504 DL, The Netherlands
| | - Jitske Stalpers
- Stichting PAMM, Laboratory for Pathology and Medical Microbiology, De Run 6250, Veldhoven, 5504 DL, The Netherlands
| | | | | | | | - Kees Verduin
- Stichting PAMM, Laboratory for Pathology and Medical Microbiology, De Run 6250, Veldhoven, 5504 DL, The Netherlands
| | | | | | - Tom F. A. de Greef
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| |
Collapse
|
16
|
Vance TDR, Guo S, Assaie-Ardakany S, Conroy B, Davies PL. Structure and functional analysis of a bacterial adhesin sugar-binding domain. PLoS One 2019; 14:e0220045. [PMID: 31335890 PMCID: PMC6650083 DOI: 10.1371/journal.pone.0220045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 07/08/2019] [Indexed: 01/17/2023] Open
Abstract
Bacterial adhesins attach their hosts to surfaces through one or more ligand-binding domains. In RTX adhesins, which are localized to the outer membrane of many Gram-negative bacteria via the type I secretion system, we see several examples of a putative sugar-binding domain. Here we have recombinantly expressed one such ~20-kDa domain from the ~340-kDa adhesin found in Marinobacter hydrocarbonoclasticus, an oil-degrading bacterium. The sugar-binding domain was purified from E. coli with a yield of 100 mg/L of culture. Circular dichroism analysis showed that the protein was rich in beta-structure, was moderately heat resistant, and required Ca2+ for proper folding. A crystal structure was obtained in Ca2+ at 1.2-Å resolution, which showed the presence of three Ca2+ ions, two of which were needed for structural integrity and one for binding sugars. Glucose was soaked into the crystal, where it bound to the sugar's two vicinal hydroxyl groups attached to the first and second (C1 and C2) carbons in the pyranose ring. This attraction to glucose caused the protein to bind certain polysaccharide-based column matrices and was used in a simple competitive binding assay to assess the relative affinity of sugars for the protein's ligand-binding site. Fucose, glucose and N-acetylglucosamine bound most tightly, and N-acetylgalactosamine hardly bound at all. Isothermal titration calorimetry was used to determine specific binding affinities, which lie in the 100-μM range. Glycan arrays were tested to expand the range of ligand sugars assayed, and showed that MhPA14 bound preferentially to branched polymers containing terminal sugars highlighted as strong binders in the competitive binding assay. Some of these binders have vicinal hydroxyl groups attached to the C3 and C4 carbons that are sterically equivalent to those presented by the C1 and C2 carbons of glucose.
Collapse
Affiliation(s)
- Tyler D. R. Vance
- Department of Biomedical and Molecular Science, Queen’s University, Kingston, Ontario, Canada
| | - Shuaiqi Guo
- Department of Biomedical and Molecular Science, Queen’s University, Kingston, Ontario, Canada
| | - Shayan Assaie-Ardakany
- Department of Biomedical and Molecular Science, Queen’s University, Kingston, Ontario, Canada
| | - Brigid Conroy
- Department of Biomedical and Molecular Science, Queen’s University, Kingston, Ontario, Canada
| | - Peter L. Davies
- Department of Biomedical and Molecular Science, Queen’s University, Kingston, Ontario, Canada
- * E-mail:
| |
Collapse
|
17
|
Guo S, Vance TD, Stevens CA, Voets I, Davies PL. RTX Adhesins are Key Bacterial Surface Megaproteins in the Formation of Biofilms. Trends Microbiol 2019; 27:453-467. [DOI: 10.1016/j.tim.2018.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/13/2018] [Accepted: 12/12/2018] [Indexed: 12/20/2022]
|
18
|
Type 1 Does the Two-Step: Type 1 Secretion Substrates with a Functional Periplasmic Intermediate. J Bacteriol 2018; 200:JB.00168-18. [PMID: 29866808 DOI: 10.1128/jb.00168-18] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bacteria have evolved several secretion strategies for polling and responding to environmental flux and insult. Of these, the type 1 secretion system (T1SS) is known to secrete an array of biologically diverse proteins-from small, <10-kDa bacteriocins to gigantic adhesins with a mass >1 MDa. For the last several decades, T1SSs have been characterized as a one-step translocation strategy whereby the secreted substrate is transported directly into the extracellular environment from the cytoplasm with no periplasmic intermediate. Recent phylogenetic, biochemical, and genetic evidences point to a distinct subgroup of T1SS machinery linked with a bacterial transglutaminase-like cysteine proteinase (BTLCP), which uses a two-step secretion mechanism. BTLCP-linked T1SSs transport a class of repeats-in-toxin (RTX) adhesins that are critical for biofilm formation. The prototype of this RTX adhesin group, LapA of Pseudomonas fluorescens Pf0-1, uses a novel N-terminal retention module to anchor the adhesin at the cell surface as a secretion intermediate threaded through the outer membrane-localized TolC-like protein LapE. This secretion intermediate is posttranslationally cleaved by the BTLCP family LapG protein to release LapA from its cognate T1SS pore. Thus, the secretion of LapA and related RTX adhesins into the extracellular environment appears to be a T1SS-mediated two-step process that involves a periplasmic intermediate. In this review, we contrast the T1SS machinery and substrates of the BLTCP-linked two-step secretion process with those of the classical one-step T1SS to better understand the newly recognized and expanded role of this secretion machinery.
Collapse
|