1
|
Lan H, Tan XHM, Le MTT, Chien HY, Zheng R, Rowat AC, Teitell MA, Chiou PY. Optomagnetic Micromirror Arrays for Mapping Large Area Stiffness Distributions of Biomimetic Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406389. [PMID: 39614709 PMCID: PMC11710979 DOI: 10.1002/smll.202406389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/17/2024] [Indexed: 12/01/2024]
Abstract
A new device termed "Optomagnetic Micromirror Arrays" (OMA) is demonstrated capable of mapping the stiffness distribution of biomimetic materials across a 5.1 mm × 7.2 mm field of view with cellular resolution. The OMA device comprises an array of 50 000 magnetic micromirrors with optical grating structures embedded beneath an elastic PDMS film, with biomimetic materials affixed on top. Illumination of a broadband white light beam onto these micromirrors results in the reflection of microscale rainbow light rays on each micromirror. When a magnetic field is applied, it causes each micromirror to tilt differently depending on the local stiffness of the biomimetic materials. Through imaging these micromirrors with low N.A. optics, a specific narrow band of reflection light rays from each micromirror is captured. Changing a micromirror's tilt angle also alters the color spectrum it reflects back to the imaging system and the color of the micromirror image it represents. As a result, OMA can infer the local stiffness of the biomimetic materials through the color change detected on each micromirror. OMA offers the potential for high-throughput stiffness mapping at the tissue-level while maintaining spatial resolution at the cellular level.
Collapse
Affiliation(s)
- Hsin Lan
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Xing Haw Marvin Tan
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Singapore, 138632, Republic of Singapore
| | - Minh-Tam Tran Le
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Hao-Yu Chien
- Department of Electrical and Computer Enigeering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Ruoda Zheng
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Amy C Rowat
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Integrative Biology & Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Michael A Teitell
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Pei-Yu Chiou
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
2
|
Hota J, Pattnaik S, Sahoo G, Mohanty-Hejmadi P, Mahapatra PK. Homeotic transformation of tail to limbs: A novel morphogenesis in the framework of self-organization and reprogramming of cell fate during appendage regeneration. Cells Dev 2024:203987. [PMID: 39706569 DOI: 10.1016/j.cdev.2024.203987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Homeotic transformation of tail to hindlimbs in anuran tadpoles is a manifestation of the reprogramming of positional information in the event of tail regeneration. Such discovery of homeosis is of particular interest considering its occurrence in a vertebrate under the influence of a morphogen which represents a self-organizing system in the context of developmental and regenerative studies. This article reviews homeotic transformation of tail to hindlimbs including pelvic girdles induced by retinoic acid (RA) /vitamin A palmitate during tail regeneration under the scope of self-organization and the role of blastema as an organizer. Next, we present a timeline of various findings in this context.
Collapse
Affiliation(s)
- Jutshina Hota
- Department of Zoology, Rajdhani College, Bhubaneswar 751003, Odisha, India
| | - Swetamudra Pattnaik
- Department of Zoology, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India
| | - Gunanidhi Sahoo
- Department of Zoology, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India
| | | | | |
Collapse
|
3
|
Niizato T, Sakamoto K, Mototake YI, Murakami H, Tomaru T. Information structure of heterogeneous criticality in a fish school. Sci Rep 2024; 14:29758. [PMID: 39613773 DOI: 10.1038/s41598-024-79232-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/07/2024] [Indexed: 12/01/2024] Open
Abstract
Integrated information theory (IIT) assesses the degree of consciousness in living organisms from an information-theoretic perspective. This theory can be generalised to other systems, including those exhibiting criticality. In this study, we applied IIT to the collective behaviour of Plecoglossus altivelis and observed that the group integrity (Φ) was maximised at the critical state. Multiple levels of criticality were identified within the group, existing as distinct subgroups. Moreover, these fragmented critical subgroups coexisted alongside the overall criticality of the group. The distribution of high-criticality subgroups was heterogeneous across both time and space. Notably, core fish in the high-criticality subgroups were less affected by internal and external stimuli compared to those in low-criticality subgroups. These findings are consistent with previous interpretations of critical phenomena and offer a new perspective on the dynamics of an empirical critical state.
Collapse
Affiliation(s)
- Takayuki Niizato
- Department of Intelligent Interaction Technologies, Institute of Systems and Information Engineering, University of Tsukuba, Ibaraki, Japan.
| | - Kotaro Sakamoto
- School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Yoh-Ichi Mototake
- Graduate School of Social Data Science, Hitotsubashi University, Tokyo, Japan
| | - Hisashi Murakami
- Faculty of Information and Human Science, Kyoto Institute of Technology, Kyoto, Japan
| | - Takenori Tomaru
- Faculty of Information and Human Science, Kyoto Institute of Technology, Kyoto, Japan
| |
Collapse
|
4
|
El Hajj S, Ntaté MB, Breton C, Siadous R, Aid R, Dupuy M, Letourneur D, Amédée J, Duval H, David B. Bone Spheroid Development Under Flow Conditions with Mesenchymal Stem Cells and Human Umbilical Vein Endothelial Cells in a 3D Porous Hydrogel Supplemented with Hydroxyapatite. Gels 2024; 10:666. [PMID: 39451319 PMCID: PMC11506954 DOI: 10.3390/gels10100666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
Understanding the niche interactions between blood and bone through the in vitro co-culture of osteo-competent cells and endothelial cells is a key factor in unraveling therapeutic potentials in bone regeneration. This can be additionally supported by employing numerical simulation techniques to assess local physical factors, such as oxygen concentration, and mechanical stimuli, such as shear stress, that can mediate cellular communication. In this study, we developed a Mesenchymal Stem Cell line (MSC) and a Human Umbilical Vein Endothelial Cell line (HUVEC), which were co-cultured under flow conditions in a three-dimensional, porous, natural pullulan/dextran scaffold that was supplemented with hydroxyapatite crystals that allowed for the spontaneous formation of spheroids. After 2 weeks, their viability was higher under the dynamic conditions (>94%) than the static conditions (<75%), with dead cells central in the spheroids. Mineralization and collagen IV production increased under the dynamic conditions, correlating with osteogenesis and vasculogenesis. The endothelial cells clustered at the spheroidal core by day 7. Proliferation doubled in the dynamic conditions, especially at the scaffold peripheries. Lattice Boltzmann simulations showed negligible wall shear stress in the hydrogel pores but highlighted highly oxygenated zones coinciding with cell proliferation. A strong oxygen gradient likely influenced endothelial migration and cell distribution. Hypoxia was minimal, explaining high viability and spheroid maturation in the dynamic conditions.
Collapse
Affiliation(s)
- Soukaina El Hajj
- Laboratoire de Mécanique Paris-Saclay, CNRS, CentraleSupélec, ENS Paris-Saclay, Université Paris-Saclay, 91190 Gif-sur-Yvette, France;
| | - Martial Bankoué Ntaté
- Laboratoire de Génie des Procédés et Matériaux, CentraleSupélec, Université Paris-Saclay, 91190 Gif-sur-Yvette, France; (M.B.N.); (C.B.); (M.D.); (H.D.)
| | - Cyril Breton
- Laboratoire de Génie des Procédés et Matériaux, CentraleSupélec, Université Paris-Saclay, 91190 Gif-sur-Yvette, France; (M.B.N.); (C.B.); (M.D.); (H.D.)
| | - Robin Siadous
- Laboratoire de Bioingénierie Tissulaire (BioTis), INSERM U1026, Université de Bordeaux, 33076 Bordeaux, France; (R.S.); (J.A.)
| | - Rachida Aid
- Laboratoire de Recherche Vasculaire Translationnelle (LVTS), INSERM U1148, Université Paris Cité, 75018 Paris, France; (R.A.); (D.L.)
- Laboratoire de Recherche Vasculaire Translationnelle (LVTS), INSERM U1148, Université Sorbonne Paris Nord, 93430 Villetaneuse, France
| | - Magali Dupuy
- Laboratoire de Génie des Procédés et Matériaux, CentraleSupélec, Université Paris-Saclay, 91190 Gif-sur-Yvette, France; (M.B.N.); (C.B.); (M.D.); (H.D.)
| | - Didier Letourneur
- Laboratoire de Recherche Vasculaire Translationnelle (LVTS), INSERM U1148, Université Paris Cité, 75018 Paris, France; (R.A.); (D.L.)
- Laboratoire de Recherche Vasculaire Translationnelle (LVTS), INSERM U1148, Université Sorbonne Paris Nord, 93430 Villetaneuse, France
| | - Joëlle Amédée
- Laboratoire de Bioingénierie Tissulaire (BioTis), INSERM U1026, Université de Bordeaux, 33076 Bordeaux, France; (R.S.); (J.A.)
| | - Hervé Duval
- Laboratoire de Génie des Procédés et Matériaux, CentraleSupélec, Université Paris-Saclay, 91190 Gif-sur-Yvette, France; (M.B.N.); (C.B.); (M.D.); (H.D.)
| | - Bertrand David
- Laboratoire de Mécanique Paris-Saclay, CNRS, CentraleSupélec, ENS Paris-Saclay, Université Paris-Saclay, 91190 Gif-sur-Yvette, France;
| |
Collapse
|
5
|
Urciuolo F, Imparato G, Netti PA. Engineering Cell Instructive Microenvironments for In Vitro Replication of Functional Barrier Organs. Adv Healthc Mater 2024; 13:e2400357. [PMID: 38695274 DOI: 10.1002/adhm.202400357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/02/2024] [Indexed: 05/14/2024]
Abstract
Multicellular organisms exhibit synergistic effects among their components, giving rise to emergent properties crucial for their genesis and overall functionality and survival. Morphogenesis involves and relies upon intricate and biunivocal interactions among cells and their environment, that is, the extracellular matrix (ECM). Cells secrete their own ECM, which in turn, regulates their morphogenetic program by controlling time and space presentation of matricellular signals. The ECM, once considered passive, is now recognized as an informative space where both biochemical and biophysical signals are tightly orchestrated. Replicating this sophisticated and highly interconnected informative media in a synthetic scaffold for tissue engineering is unattainable with current technology and this limits the capability to engineer functional human organs in vitro and in vivo. This review explores current limitations to in vitro organ morphogenesis, emphasizing the interplay of gene regulatory networks, mechanical factors, and tissue microenvironment cues. In vitro efforts to replicate biological processes for barrier organs such as the lung and intestine, are examined. The importance of maintaining cells within their native microenvironmental context is highlighted to accurately replicate organ-specific properties. The review underscores the necessity for microphysiological systems that faithfully reproduce cell-native interactions, for advancing the understanding of developmental disorders and disease progression.
Collapse
Affiliation(s)
- Francesco Urciuolo
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI) and Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Piazzale Tecchio 80, Napoli, 80125, Italy
| | - Giorgia Imparato
- Centre for Advanced Biomaterials for Health Care (IIT@CRIB), Istituto Italiano di Tecnologia, L.go Barsanti e Matteucci, Napoli, 80125, Italy
| | - Paolo Antonio Netti
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI) and Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Piazzale Tecchio 80, Napoli, 80125, Italy
- Centre for Advanced Biomaterials for Health Care (IIT@CRIB), Istituto Italiano di Tecnologia, L.go Barsanti e Matteucci, Napoli, 80125, Italy
| |
Collapse
|
6
|
Reed JM, Wolfe BE, Romero LM. Is resilience a unifying concept for the biological sciences? iScience 2024; 27:109478. [PMID: 38660410 PMCID: PMC11039332 DOI: 10.1016/j.isci.2024.109478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
There is increasing interest in applying resilience concepts at different scales of biological organization to address major interdisciplinary challenges from cancer to climate change. It is unclear, however, whether resilience can be a unifying concept consistently applied across the breadth of the biological sciences, or whether there is limited capacity for integration. In this review, we draw on literature from molecular biology to community ecology to ascertain commonalities and shortcomings in how resilience is measured and interpreted. Resilience is studied at all levels of biological organization, although the term is often not used. There is a suite of resilience mechanisms conserved across biological scales, and there are tradeoffs that affect resilience. Resilience is conceptually useful to help diverse researchers think about how biological systems respond to perturbations, but we need a richer lexicon to describe the diversity of perturbations, and we lack widely applicable metrics of resilience.
Collapse
Affiliation(s)
- J. Michael Reed
- Department of Biology, Tufts University, Medford 02155, MA, USA
| | | | | |
Collapse
|
7
|
Ramirez Flores RO, Schäfer PSL, Küchenhoff L, Saez-Rodriguez J. Complementing Cell Taxonomies with a Multicellular Analysis of Tissues. Physiology (Bethesda) 2024; 39:0. [PMID: 38319138 DOI: 10.1152/physiol.00001.2024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/31/2024] [Indexed: 02/07/2024] Open
Abstract
The application of single-cell molecular profiling coupled with spatial technologies has enabled charting of cellular heterogeneity in reference tissues and in disease. This new wave of molecular data has highlighted the expected diversity of single-cell dynamics upon shared external queues and spatial organizations. However, little is known about the relationship between single-cell heterogeneity and the emergence and maintenance of robust multicellular processes in developed tissues and its role in (patho)physiology. Here, we present emerging computational modeling strategies that use increasingly available large-scale cross-condition single-cell and spatial datasets to study multicellular organization in tissues and complement cell taxonomies. This perspective should enable us to better understand how cells within tissues collectively process information and adapt synchronized responses in disease contexts and to bridge the gap between structural changes and functions in tissues.
Collapse
Affiliation(s)
- Ricardo Omar Ramirez Flores
- Faculty of Medicine, Heidelberg University and Institute for Computational Biomedicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Philipp Sven Lars Schäfer
- Faculty of Medicine, Heidelberg University and Institute for Computational Biomedicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Leonie Küchenhoff
- Faculty of Medicine, Heidelberg University and Institute for Computational Biomedicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Julio Saez-Rodriguez
- Faculty of Medicine, Heidelberg University and Institute for Computational Biomedicine, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
8
|
Potdar H, Pagonabarraga I, Muhuri S. Effect of contact inhibition locomotion on confined cellular organization. Sci Rep 2023; 13:21391. [PMID: 38049532 PMCID: PMC10695941 DOI: 10.1038/s41598-023-47986-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023] Open
Abstract
Experiments performed using micro-patterned one dimensional collision assays have allowed a precise quantitative analysis of the collective manifestation of contact inhibition locomotion (CIL) wherein, individual migrating cells reorient their direction of motion when they come in contact with other cells. Inspired by these experiments, we present a discrete, minimal 1D Active spin model that mimics the CIL interaction between cells in one dimensional channels. We analyze the emergent collective behaviour of migrating cells in such confined geometries, as well as the sensitivity of the emergent patterns to driving forces that couple to cell motion. In the absence of vacancies, akin to dense cell packing, the translation dynamics is arrested and the model reduces to an equilibrium spin model which can be solved exactly. In the presence of vacancies, the interplay of activity-driven translation, cell polarity switching, and CIL results in an exponential steady cluster size distribution. We define a dimensionless Péclet number Q-the ratio of the translation rate and directional switching rate of particles in the absence of CIL. While the average cluster size increases monotonically as a function of Q, it exhibits a non-monotonic dependence on CIL strength, when the Q is sufficiently high. In the high Q limit, an analytical form of average cluster size can be obtained approximately by effectively mapping the system to an equivalent equilibrium process involving clusters of different sizes wherein the cluster size distribution is obtained by minimizing an effective Helmholtz free energy for the system. The resultant prediction of exponential dependence on CIL strength of the average cluster size and [Formula: see text] dependence of the average cluster size is borne out to reasonable accuracy as long as the CIL strength is not very large. The consequent prediction of a single scaling function of Q, particle density and CIL interaction strength, characterizing the distribution function of the cluster sizes and resultant data collapse is observed for a range of parameters.
Collapse
Affiliation(s)
- Harshal Potdar
- Department of Physics, Savitribai Phule Pune University, Pune, 411007, India
| | - Ignacio Pagonabarraga
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, E08028, Barcelona, Spain.
- UBICS University of Barcelona Institute of Complex Systems, Martí i Franquès 1, E08028, Barcelona, Spain.
| | - Sudipto Muhuri
- Department of Physics, Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
9
|
Wang W, Garg V, Varshney RK, Liu H. Single cell RNA-seq in phytohormone signaling: a promising future. TRENDS IN PLANT SCIENCE 2023; 28:1208-1210. [PMID: 37550122 DOI: 10.1016/j.tplants.2023.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 08/09/2023]
Abstract
Phytohormone signaling regulates plant growth and development. Single cell RNA sequencing (scRNA-seq) provides unprecedented opportunities to decipher hormone-mediated spatiotemporal gene regulatory networks. In a recent study, Nolan et al. used time-series scRNA-seq to identify the cortex as a key site for brassinosteroid (BR)-mediated gene expression and revealed a signaling network during cell phase transition.
Collapse
Affiliation(s)
- Wenyi Wang
- College of Agriculture, South China Agriculture University, Guangzhou, Guangdong 510642, China
| | - Vanika Garg
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Rajeev K Varshney
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia.
| | - Hao Liu
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China.
| |
Collapse
|
10
|
Arango-Restrepo A, Rubi JM. Predicting cancer stages from tissue energy dissipation. Sci Rep 2023; 13:15894. [PMID: 37741864 PMCID: PMC10517974 DOI: 10.1038/s41598-023-42780-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023] Open
Abstract
Understanding cancer staging in order to predict its progression is vital to determine its severity and to plan the most appropriate therapies. This task has attracted interest from different fields of science and engineering. We propose a computational model that predicts the evolution of cancer in terms of the intimate structure of the tissue, considering that this is a self-organised structure that undergoes transformations governed by non-equilibrium thermodynamics laws. Based on experimental data on the dependence of tissue configurations on their elasticity and porosity, we relate the cancerous tissue stages with the energy dissipated, showing quantitatively that tissues in more advanced stages dissipate more energy. The knowledge of this energy allows us to know the probability of observing the tissue in its different stages and the probability of transition from one stage to another. We validate our results with experimental data and statistics from the World Health Organisation. Our quantitative approach provides insights into the evolution of cancer through its different stages, important as a starting point for new and integrative research to defeat cancer.
Collapse
Affiliation(s)
- A Arango-Restrepo
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Avinguda Diagonal 647, Barcelona, 08028, Spain.
| | - J M Rubi
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Avinguda Diagonal 647, Barcelona, 08028, Spain
- Institut de Nanociencia i Nanotecnologia, Universitat de Barcelona, Carrer Marti i Franques, Barcelona, 08028, Spain
| |
Collapse
|
11
|
Asp ME, Thanh MTH, Dutta S, Comstock JA, Welch RD, Patteson AE. Mechanobiology as a tool for addressing the genotype-to-phenotype problem in microbiology. BIOPHYSICS REVIEWS 2023; 4:021304. [PMID: 38504926 PMCID: PMC10903382 DOI: 10.1063/5.0142121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/03/2023] [Indexed: 03/21/2024]
Abstract
The central hypothesis of the genotype-phenotype relationship is that the phenotype of a developing organism (i.e., its set of observable attributes) depends on its genome and the environment. However, as we learn more about the genetics and biochemistry of living systems, our understanding does not fully extend to the complex multiscale nature of how cells move, interact, and organize; this gap in understanding is referred to as the genotype-to-phenotype problem. The physics of soft matter sets the background on which living organisms evolved, and the cell environment is a strong determinant of cell phenotype. This inevitably leads to challenges as the full function of many genes, and the diversity of cellular behaviors cannot be assessed without wide screens of environmental conditions. Cellular mechanobiology is an emerging field that provides methodologies to understand how cells integrate chemical and physical environmental stress and signals, and how they are transduced to control cell function. Biofilm forming bacteria represent an attractive model because they are fast growing, genetically malleable and can display sophisticated self-organizing developmental behaviors similar to those found in higher organisms. Here, we propose mechanobiology as a new area of study in prokaryotic systems and describe its potential for unveiling new links between an organism's genome and phenome.
Collapse
|
12
|
Nigg JT. Considerations toward an epigenetic and common pathways theory of mental disorder. JOURNAL OF PSYCHOPATHOLOGY AND CLINICAL SCIENCE 2023; 132:297-313. [PMID: 37126061 PMCID: PMC10153068 DOI: 10.1037/abn0000748] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Psychopathology emerges from the dynamic interplay of physiological and mental processes and ecological context. It can be seen as a failure of recursive, homeostatic processes to achieve adaptive re-equilibrium. This general statement can be actualized with consideration of polygenic liability, early exposures, and multiunit (multi-"level") analysis of the psychological action and the associated physiological and neural operations, all in the context of the developmental exposome. This article begins by identifying key principles and clarifying key terms necessary to mental disorder theory. It then ventures a sketch of a model that highlights epigenetic dynamics and proposes a common pathways hypothesis toward psychopathology. An epigenetic perspective elevates the importance of developmental context and adaptive systems, particularly in early life, while opening the door to new mechanistic discovery. The key proposal is that a finite number of homeostatic biological and psychological mechanisms are shared across most risky environments (and possibly many genetic liabilities) for psychopathology. Perturbation of these mediating mechanisms leads to development of psychopathology. A focus on dynamic changes in these homeostatic mechanisms across multiple units of analysis and time points can render the problem of explaining psychopathology tractable. Key questions include the mapping of recursive processes over time, at adequate density, as mental disorders unfold across development. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
- Joel T Nigg
- Department of Psychiatry, Oregon Health & Science University
| |
Collapse
|
13
|
Tanaka HY, Nakazawa T, Enomoto A, Masamune A, Kano MR. Therapeutic Strategies to Overcome Fibrotic Barriers to Nanomedicine in the Pancreatic Tumor Microenvironment. Cancers (Basel) 2023; 15:cancers15030724. [PMID: 36765684 PMCID: PMC9913712 DOI: 10.3390/cancers15030724] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Pancreatic cancer is notorious for its dismal prognosis. The enhanced permeability and retention (EPR) effect theory posits that nanomedicines (therapeutics in the size range of approximately 10-200 nm) selectively accumulate in tumors. Nanomedicine has thus been suggested to be the "magic bullet"-both effective and safe-to treat pancreatic cancer. However, the densely fibrotic tumor microenvironment of pancreatic cancer impedes nanomedicine delivery. The EPR effect is thus insufficient to achieve a significant therapeutic effect. Intratumoral fibrosis is chiefly driven by aberrantly activated fibroblasts and the extracellular matrix (ECM) components secreted. Fibroblast and ECM abnormalities offer various potential targets for therapeutic intervention. In this review, we detail the diverse strategies being tested to overcome the fibrotic barriers to nanomedicine in pancreatic cancer. Strategies that target the fibrotic tissue/process are discussed first, which are followed by strategies to optimize nanomedicine design. We provide an overview of how a deeper understanding, increasingly at single-cell resolution, of fibroblast biology is revealing the complex role of the fibrotic stroma in pancreatic cancer pathogenesis and consider the therapeutic implications. Finally, we discuss critical gaps in our understanding and how we might better formulate strategies to successfully overcome the fibrotic barriers in pancreatic cancer.
Collapse
Affiliation(s)
- Hiroyoshi Y. Tanaka
- Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
| | - Takuya Nakazawa
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
| | - Atsushi Enomoto
- Department of Pathology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya-shi 466-8550, Aichi, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai-shi 980-8574, Miyagi, Japan
| | - Mitsunobu R. Kano
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
- Correspondence:
| |
Collapse
|
14
|
Cable J, Lutolf MP, Fu J, Park SE, Apostolou A, Chen S, Song CJ, Spence JR, Liberali P, Lancaster M, Meier AB, Pek NMQ, Wells JM, Capeling MM, Uzquiano A, Musah S, Huch M, Gouti M, Hombrink P, Quadrato G, Urenda JP. Organoids as tools for fundamental discovery and translation-a Keystone Symposia report. Ann N Y Acad Sci 2022; 1518:196-208. [PMID: 36177906 PMCID: PMC11293861 DOI: 10.1111/nyas.14874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Complex three-dimensional in vitro organ-like models, or organoids, offer a unique biological tool with distinct advantages over two-dimensional cell culture systems, which can be too simplistic, and animal models, which can be too complex and may fail to recapitulate human physiology and pathology. Significant progress has been made in driving stem cells to differentiate into different organoid types, though several challenges remain. For example, many organoid models suffer from high heterogeneity, and it can be difficult to fully incorporate the complexity of in vivo tissue and organ development to faithfully reproduce human biology. Successfully addressing such limitations would increase the viability of organoids as models for drug development and preclinical testing. On April 3-6, 2022, experts in organoid development and biology convened at the Keystone Symposium "Organoids as Tools for Fundamental Discovery and Translation" to discuss recent advances and insights from this relatively new model system into human development and disease.
Collapse
Affiliation(s)
| | - Matthias P Lutolf
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences (SV) and School of Engineering (STI), Lausanne, Switzerland
- Institute of Chemical Sciences and Engineering, School of Basic Science (SB), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Roche Institute for Translational Bioengineering (ITB), Pharma Research and Early Development (pRED), F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sunghee Estelle Park
- Department of Bioengineering and NSF Science and Technology Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Athanasia Apostolou
- Emulate Inc, Boston, Massachusetts, USA
- Department of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medical College, New York City, New York, USA
| | - Cheng Jack Song
- Keck Medicine of University of Southern California, Los Angeles, California, USA
| | - Jason R Spence
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Prisca Liberali
- Friedrich Miescher Institute for Biomedical Research (FMI) and University of Basel, Basel, Switzerland
| | | | - Anna B Meier
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Nicole Min Qian Pek
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati, Ohio, USA
- Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - James M Wells
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati, Ohio, USA
- Division of Developmental Biology and Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Meghan M Capeling
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, Michigan, USA
| | - Ana Uzquiano
- Department of Stem Cell and Regenerative Biology, Harvard University
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Samira Musah
- Developmental and Stem Cell Biology Program and Division of Nephrology, Department of Medicine and Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
- Center for Biomolecular and Tissue Engineering, Durham, North Carolina, USA
- Department of Biomedical Engineering, Pratt School of Engineering, Durham, North Carolina, USA
- Duke Regeneration Center, Duke University, Durham, North Carolina, USA
| | - Meritxell Huch
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Mina Gouti
- Stem Cell Modelling of Development & Disease Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Pleun Hombrink
- University Medical Center Utrecht and HUB Organoids, Utrecht, Netherlands
| | - Giorgia Quadrato
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine and Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, California, USA
| | - Jean-Paul Urenda
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine and Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
15
|
Eya-controlled affinity between cell lineages drives tissue self-organization during Drosophila oogenesis. Nat Commun 2022; 13:6377. [PMID: 36289235 PMCID: PMC9605976 DOI: 10.1038/s41467-022-33845-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 10/05/2022] [Indexed: 12/25/2022] Open
Abstract
Cooperative morphogenesis of cell lineages underlies the development of functional units and organs. To study mechanisms driving the coordination of lineages, we investigated soma-germline interactions during oogenesis. From invertebrates to vertebrates, oocytes develop as part of a germline cyst that consists of the oocyte itself and so-called nurse cells, which feed the oocyte and are eventually removed. The enveloping somatic cells specialize to facilitate either oocyte maturation or nurse cell removal, which makes it essential to establish the right match between germline and somatic cells. We uncover that the transcriptional regulator Eya, expressed in the somatic lineage, controls bilateral cell-cell affinity between germline and somatic cells in Drosophila oogenesis. Employing functional studies and mathematical modelling, we show that differential affinity and the resulting forces drive somatic cell redistribution over the germline surface and control oocyte growth to match oocyte and nurse cells with their respective somatic cells. Thus, our data demonstrate that differential affinity between cell lineages is sufficient to drive the complex assembly of inter-lineage functional units and underlies tissue self-organization during Drosophila oogenesis.
Collapse
|
16
|
Faisal SM, Comba A, Varela ML, Argento AE, Brumley E, Abel C, Castro MG, Lowenstein PR. The complex interactions between the cellular and non-cellular components of the brain tumor microenvironmental landscape and their therapeutic implications. Front Oncol 2022; 12:1005069. [PMID: 36276147 PMCID: PMC9583158 DOI: 10.3389/fonc.2022.1005069] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022] Open
Abstract
Glioblastoma (GBM), an aggressive high-grade glial tumor, is resistant to therapy and has a poor prognosis due to its universal recurrence rate. GBM cells interact with the non-cellular components in the tumor microenvironment (TME), facilitating their rapid growth, evolution, and invasion into the normal brain. Herein we discuss the complexity of the interactions between the cellular and non-cellular components of the TME and advances in the field as a whole. While the stroma of non-central nervous system (CNS) tissues is abundant in fibrillary collagens, laminins, and fibronectin, the normal brain extracellular matrix (ECM) predominantly includes proteoglycans, glycoproteins, and glycosaminoglycans, with fibrillary components typically found only in association with the vasculature. However, recent studies have found that in GBMs, the microenvironment evolves into a more complex array of components, with upregulated collagen gene expression and aligned fibrillary ECM networks. The interactions of glioma cells with the ECM and the degradation of matrix barriers are crucial for both single-cell and collective invasion into neighboring brain tissue. ECM-regulated mechanisms also contribute to immune exclusion, resulting in a major challenge to immunotherapy delivery and efficacy. Glioma cells chemically and physically control the function of their environment, co-opting complex signaling networks for their own benefit, resulting in radio- and chemo-resistance, tumor recurrence, and cancer progression. Targeting these interactions is an attractive strategy for overcoming therapy resistance, and we will discuss recent advances in preclinical studies, current clinical trials, and potential future clinical applications. In this review, we also provide a comprehensive discussion of the complexities of the interconnected cellular and non-cellular components of the microenvironmental landscape of brain tumors to guide the development of safe and effective therapeutic strategies against brain cancer.
Collapse
Affiliation(s)
- Syed M. Faisal
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Andrea Comba
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria L. Varela
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Anna E. Argento
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Emily Brumley
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Clifford Abel
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria G. Castro
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Pedro R. Lowenstein
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Pedro R. Lowenstein,
| |
Collapse
|
17
|
Giger S, Hofer M, Miljkovic-Licina M, Hoehnel S, Brandenberg N, Guiet R, Ehrbar M, Kleiner E, Gegenschatz-Schmid K, Matthes T, Lutolf MP. Microarrayed human bone marrow organoids for modeling blood stem cell dynamics. APL Bioeng 2022; 6:036101. [PMID: 35818479 PMCID: PMC9270995 DOI: 10.1063/5.0092860] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/13/2022] [Indexed: 01/23/2023] Open
Abstract
In many leukemia patients, a poor prognosis is attributed either to the development of chemotherapy resistance by leukemic stem cells (LSCs) or to the inefficient engraftment of transplanted hematopoietic stem/progenitor cells (HSPCs) into the bone marrow (BM). Here, we build a 3D in vitro model system of bone marrow organoids (BMOs) that recapitulate several structural and cellular components of native BM. These organoids are formed in a high-throughput manner from the aggregation of endothelial and mesenchymal cells within hydrogel microwells. Accordingly, the mesenchymal compartment shows partial maintenance of its self-renewal and multilineage potential, while endothelial cells self-organize into an interconnected vessel-like network. Intriguingly, such an endothelial compartment enhances the recruitment of HSPCs in a chemokine ligand/receptor-dependent manner, reminiscent of HSPC homing behavior in vivo. Additionally, we also model LSC migration and nesting in BMOs, thus highlighting the potential of this system as a well accessible and scalable preclinical model for candidate drug screening and patient-specific assays.
Collapse
Affiliation(s)
- Sonja Giger
- Laboratory of Stem Cell Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Moritz Hofer
- Laboratory of Stem Cell Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Sylke Hoehnel
- SUN Bioscience, EPFL Innovation Park, Lausanne, Switzerland
| | | | - Romain Guiet
- Laboratory of Stem Cell Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Martin Ehrbar
- Ehrbar Lab, University Hospital Zurich, Zurich, Switzerland
| | - Esther Kleiner
- Ehrbar Lab, University Hospital Zurich, Zurich, Switzerland
| | | | | | - Matthias P Lutolf
- Laboratory of Stem Cell Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
18
|
de Medeiros G, Ortiz R, Strnad P, Boni A, Moos F, Repina N, Challet Meylan L, Maurer F, Liberali P. Multiscale light-sheet organoid imaging framework. Nat Commun 2022; 13:4864. [PMID: 35982061 PMCID: PMC9388485 DOI: 10.1038/s41467-022-32465-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/02/2022] [Indexed: 12/03/2022] Open
Abstract
Organoids provide an accessible in vitro system to mimic the dynamics of tissue regeneration and development. However, long-term live-imaging of organoids remains challenging. Here we present an experimental and image-processing framework capable of turning long-term light-sheet imaging of intestinal organoids into digital organoids. The framework combines specific imaging optimization combined with data processing via deep learning techniques to segment single organoids, their lumen, cells and nuclei in 3D over long periods of time. By linking lineage trees with corresponding 3D segmentation meshes for each organoid, the extracted information is visualized using a web-based "Digital Organoid Viewer" tool allowing combined understanding of the multivariate and multiscale data. We also show backtracking of cells of interest, providing detailed information about their history within entire organoid contexts. Furthermore, we show cytokinesis failure of regenerative cells and that these cells never reside in the intestinal crypt, hinting at a tissue scale control on cellular fidelity.
Collapse
Affiliation(s)
- Gustavo de Medeiros
- Friedrich Miescher Institute for Biomedical Research (FMI) Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Raphael Ortiz
- Friedrich Miescher Institute for Biomedical Research (FMI) Maulbeerstrasse 66, 4058, Basel, Switzerland
- Disney Research Studios, Stampfenbachstrasse 48, 8006, Zürich, Switzerland
| | - Petr Strnad
- Friedrich Miescher Institute for Biomedical Research (FMI) Maulbeerstrasse 66, 4058, Basel, Switzerland.
- Viventis Microscopy Sàrl, EPFL Innovation Park, Building C, 1015, Lausanne, Switzerland.
| | - Andrea Boni
- Friedrich Miescher Institute for Biomedical Research (FMI) Maulbeerstrasse 66, 4058, Basel, Switzerland
- Viventis Microscopy Sàrl, EPFL Innovation Park, Building C, 1015, Lausanne, Switzerland
| | - Franziska Moos
- Friedrich Miescher Institute for Biomedical Research (FMI) Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Nicole Repina
- Friedrich Miescher Institute for Biomedical Research (FMI) Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Ludivine Challet Meylan
- Friedrich Miescher Institute for Biomedical Research (FMI) Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Francisca Maurer
- Friedrich Miescher Institute for Biomedical Research (FMI) Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Prisca Liberali
- Friedrich Miescher Institute for Biomedical Research (FMI) Maulbeerstrasse 66, 4058, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
19
|
Dyer L, Parker A, Paphiti K, Sanderson J. Lightsheet Microscopy. Curr Protoc 2022; 2:e448. [PMID: 35838628 DOI: 10.1002/cpz1.448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this paper, we review lightsheet (selective plane illumination) microscopy for mouse developmental biologists. There are different means of forming the illumination sheet, and we discuss these. We explain how we introduced the lightsheet microscope economically into our core facility and present our results on fixed and living samples. We also describe methods of clearing fixed samples for three-dimensional imaging and discuss the various means of preparing samples with particular reference to mouse cilia, adipose spheroids, and cochleae. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Laura Dyer
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| | - Andrew Parker
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| | - Keanu Paphiti
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| | - Jeremy Sanderson
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| |
Collapse
|
20
|
Heinz MC, Peters NA, Oost KC, Lindeboom RG, van Voorthuijsen L, Fumagalli A, van der Net MC, de Medeiros G, Hageman JH, Verlaan-Klink I, Borel Rinkes IH, Liberali P, Gloerich M, van Rheenen J, Vermeulen M, Kranenburg O, Snippert HJ. Liver Colonization by Colorectal Cancer Metastases Requires YAP-Controlled Plasticity at the Micrometastatic Stage. Cancer Res 2022; 82:1953-1968. [PMID: 35570706 PMCID: PMC9381095 DOI: 10.1158/0008-5472.can-21-0933] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 12/02/2021] [Accepted: 02/18/2022] [Indexed: 01/07/2023]
Abstract
Micrometastases of colorectal cancer can remain dormant for years prior to the formation of actively growing, clinically detectable lesions (i.e., colonization). A better understanding of this step in the metastatic cascade could help improve metastasis prevention and treatment. Here we analyzed liver specimens of patients with colorectal cancer and monitored real-time metastasis formation in mouse livers using intravital microscopy to reveal that micrometastatic lesions are devoid of cancer stem cells (CSC). However, lesions that grow into overt metastases demonstrated appearance of de novo CSCs through cellular plasticity at a multicellular stage. Clonal outgrowth of patient-derived colorectal cancer organoids phenocopied the cellular and transcriptomic changes observed during in vivo metastasis formation. First, formation of mature CSCs occurred at a multicellular stage and promoted growth. Conversely, failure of immature CSCs to generate more differentiated cells arrested growth, implying that cellular heterogeneity is required for continuous growth. Second, early-stage YAP activity was required for the survival of organoid-forming cells. However, subsequent attenuation of early-stage YAP activity was essential to allow for the formation of cell type heterogeneity, while persistent YAP signaling locked micro-organoids in a cellularly homogenous and growth-stalled state. Analysis of metastasis formation in mouse livers using single-cell RNA sequencing confirmed the transient presence of early-stage YAP activity, followed by emergence of CSC and non-CSC phenotypes, irrespective of the initial phenotype of the metastatic cell of origin. Thus, establishment of cellular heterogeneity after an initial YAP-controlled outgrowth phase marks the transition to continuously growing macrometastases. SIGNIFICANCE Characterization of the cell type dynamics, composition, and transcriptome of early colorectal cancer liver metastases reveals that failure to establish cellular heterogeneity through YAP-controlled epithelial self-organization prohibits the outgrowth of micrometastases. See related commentary by LeBleu, p. 1870.
Collapse
Affiliation(s)
- Maria C. Heinz
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands.,Oncode Institute, the Netherlands
| | - Niek A. Peters
- Division of Imaging and Cancer, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Koen C. Oost
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands.,Oncode Institute, the Netherlands
| | - Rik G.H. Lindeboom
- Oncode Institute, the Netherlands.,Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Lisa van Voorthuijsen
- Oncode Institute, the Netherlands.,Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Arianna Fumagalli
- Oncode Institute, the Netherlands.,Department of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Mirjam C. van der Net
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Gustavo de Medeiros
- Quantitative Biology, Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | - Joris H. Hageman
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands.,Oncode Institute, the Netherlands
| | - Ingrid Verlaan-Klink
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands.,Oncode Institute, the Netherlands
| | | | - Prisca Liberali
- Quantitative Biology, Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Martijn Gloerich
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jacco van Rheenen
- Oncode Institute, the Netherlands.,Department of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Michiel Vermeulen
- Oncode Institute, the Netherlands.,Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Onno Kranenburg
- Division of Imaging and Cancer, University Medical Center Utrecht, Utrecht, the Netherlands.,Corresponding Authors: Onno Kranenburg, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands. Phone: 318-8755-9632; E-mail: ; and Hugo J.G. Snippert, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands. Phone: 318-8756-8959; E-mail:
| | - Hugo J.G. Snippert
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands.,Oncode Institute, the Netherlands.,Corresponding Authors: Onno Kranenburg, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands. Phone: 318-8755-9632; E-mail: ; and Hugo J.G. Snippert, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands. Phone: 318-8756-8959; E-mail:
| |
Collapse
|
21
|
Hiraiwa T. Dynamic self-organization of migrating cells under constraints by spatial confinement and epithelial integrity. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2022; 45:16. [PMID: 35212814 PMCID: PMC8881282 DOI: 10.1140/epje/s10189-022-00161-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Understanding how migrating cells can establish both dynamic structures and coherent dynamics may provide mechanistic insights to study how living systems acquire complex structures and functions. Recent studies revealed that intercellular contact communication plays a crucial role for establishing cellular dynamic self-organization (DSO) and provided a theoretical model of DSO for migrating solitary cells in a free space. However, to apply those understanding to situations in living organisms, we need to know the role of cell-cell communication for tissue dynamics under spatial confinements and epithelial integrity. Here, we expand the previous numerical studies on DSO to migrating cells subjected spatial confinement and/or epithelial integrity. An epithelial monolayer is simulated by combining the model of cellular DSO and the cellular vertex model in two dimensions for apical integrity. Under confinement to a small space, theoretical models of both solitary and epithelial cells exhibit characteristic coherent dynamics, including apparent swirling. We also find that such coherent dynamics can allow the cells to overcome the strong constraint due to spatial confinement and epithelial integrity. Furthermore, we demonstrate how epithelial cell clusters behave without spatial confinement and find various cluster dynamics, including spinning, migration and elongation.
Collapse
Affiliation(s)
- Tetsuya Hiraiwa
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore, 117411.
- Universal Biology Institute, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan.
| |
Collapse
|
22
|
|
23
|
Narita T, Kondo M, Oishi Y. Macroscopic Banding Pattern of Collagen Gel Formed by a Diffusion-Reaction Process. ACS OMEGA 2022; 7:1014-1020. [PMID: 35036765 PMCID: PMC8756805 DOI: 10.1021/acsomega.1c05601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Shapes and patterns observed in internal organs and tissues are reproducibly and robustly produced over a long distance (up to millimeters in length). The most fundamental remaining question is how these long geometries of shape and pattern form arise from the genetic message. Recent studies have demonstrated that extracellular matrix (ECM) critically participates as a structural foundation on which cells can organize and communicate. ECMs may be a key to understanding the underlying mechanisms of long-distance patterning and morphogenesis. However, previous studies in this field mainly focused on the complexes and interaction of cells and ECM. This paper pays particular attention to ECM and demonstrates that collagen, a major ECM component, natively possesses the reproducible and definite patterning ability reaching centimeter-scale length. The macroscopic pattern consists of striped transparent layers. The observation under crossed Nicols demonstrates that the layers consist of alternately arranged polarized and unpolarized parts. Confocal fluorescence microscopy studies revealed that the polarized and unpolarized segments include collagen-rich and -poor regions, respectively. The patterning process was proposed based on the Liesegang banding formation, which are mineral precipitation bands formed in hydrogel matrixes. These findings will give hints to the questions about long-distance cell alignment and provide new clues to artificially control cell placement over micron size in the field of regenerative medicine.
Collapse
|
24
|
Gao X, Ma S, Xing X, Yang J, Xu X, Liang C, Yu Y, Liu L, Liao L, Tian W. Microvessels derived from hiPSCs are a novel source for angiogenesis and tissue regeneration. J Tissue Eng 2022; 13:20417314221143240. [PMID: 36600998 PMCID: PMC9806436 DOI: 10.1177/20417314221143240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/18/2022] [Indexed: 12/28/2022] Open
Abstract
The establishment of effective vascularization represents a key challenge in regenerative medicine. Adequate sources of vascular cells and intact vessel fragments have not yet been explored. We herein examined the potential application of microvessels induced from hiPSCs for rapid angiogenesis and tissue regeneration. Microvessels were generated from human pluripotent stem cells (iMVs) under a defined induction protocol and compared with human adipose tissue-derived microvessels (ad-MVs) to illustrate the similarity and differences of the alternative source. Then, the therapeutic effect of iMVs was detected by transplantation in vivo. The renal ischemia-reperfusion model and skin damage model were applied to explore the potential effect of vascular cells derived from iMVs (iMVs-VCs). Besides, the subcutaneous transplantation model and muscle injury model were established to explore the ability of iMVs for angiogenesis and tissue regeneration. The results revealed that iMVs had remarkable similarities to natural blood vessels in structure and cellular composition, and were potent for vascular formation and self-organization. The infusion of iMVs-VCs promoted tissue repair in the renal and skin damage model through direct contribution to the reconstruction of blood vessels and modulation of the immune microenvironment. Moreover, the transplantation of intact iMVs could form a massive perfused blood vessel and promote muscle regeneration at the early stage. The infusion of iMVs-VCs could facilitate the reconstruction and regeneration of blood vessels and modulation of the immune microenvironment to restore structures and functions of damaged tissues. Meanwhile, the intact iMVs could rapidly form perfused vessels and promote muscle regeneration. With the advantages of abundant sources and high angiogenesis potency, iMVs could be a candidate source for vascularization units for regenerative medicine.
Collapse
Affiliation(s)
| | | | | | - Jian Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xun Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Cheng Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yejia Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Linh NM, Scarpella E. Confocal Imaging of Developing Leaves. Curr Protoc 2022; 2:e349. [PMID: 35072973 DOI: 10.1002/cpz1.349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Questions in developmental biology are most frequently addressed by using fluorescent markers of otherwise invisible cell states. In plants, such questions can be addressed most conveniently in leaves. Indeed, from the formation of stomata and trichomes within the leaf epidermis to that of vein networks deep into the leaf inner tissue, leaf cells and tissues differentiate anew during the development of each leaf. Moreover, leaves are produced in abundance and are easily accessible to visualization and perturbation. Yet a detailed procedure for the perturbation, dissection, mounting, and imaging of developing leaves has not been described. Here we address this limitation (1) by providing robust, step-by-step protocols for the local application of the plant hormone auxin to developing leaves and for the routine dissection and mounting of leaves and leaf primordia, and (2) by offering practical guidelines for the optimization of imaging parameters for confocal microscopy. We describe the procedure for the first leaves of Arabidopsis, but the same approach can be easily applied to other leaves of Arabidopsis or to leaves of other plants. © 2022 Wiley Periodicals LLC. Support Protocol 1: Preparation of plant growth medium Support Protocol 2: Preparation of growth medium plates Basic Protocol 1: Seed sterilization, sowing, and germination, and seedling growth Support Protocol 3: Preparation of IAA-lanolin paste Basic Protocol 2: Application of IAA-lanolin paste to 3.5-DAG first leaves Basic Protocol 3: Dissection of 3- to 6-DAG first leaves and leaf primordia Basic Protocol 4: Dissection of 1- and 2-DAG first-leaf primordia Basic Protocol 5: Mounting of dissected leaves and leaf primordia Support Protocol 4: Quality check of mounted leaves and leaf primordia by fluorescence microscopy Basic Protocol 6: Imaging of mounted leaves and leaf primordia by confocal microscopy.
Collapse
Affiliation(s)
- Nguyen Manh Linh
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Enrico Scarpella
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
26
|
Grünwald BT, Devisme A, Andrieux G, Vyas F, Aliar K, McCloskey CW, Macklin A, Jang GH, Denroche R, Romero JM, Bavi P, Bronsert P, Notta F, O'Kane G, Wilson J, Knox J, Tamblyn L, Udaskin M, Radulovich N, Fischer SE, Boerries M, Gallinger S, Kislinger T, Khokha R. Spatially confined sub-tumor microenvironments in pancreatic cancer. Cell 2021; 184:5577-5592.e18. [PMID: 34644529 DOI: 10.1016/j.cell.2021.09.022] [Citation(s) in RCA: 225] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/06/2021] [Accepted: 09/14/2021] [Indexed: 01/29/2023]
Abstract
Intratumoral heterogeneity is a critical frontier in understanding how the tumor microenvironment (TME) propels malignant progression. Here, we deconvolute the human pancreatic TME through large-scale integration of histology-guided regional multiOMICs with clinical data and patient-derived preclinical models. We discover "subTMEs," histologically definable tissue states anchored in fibroblast plasticity, with regional relationships to tumor immunity, subtypes, differentiation, and treatment response. "Reactive" subTMEs rich in complex but functionally coordinated fibroblast communities were immune hot and inhabited by aggressive tumor cell phenotypes. The matrix-rich "deserted" subTMEs harbored fewer activated fibroblasts and tumor-suppressive features yet were markedly chemoprotective and enriched upon chemotherapy. SubTMEs originated in fibroblast differentiation trajectories, and transitory states were notable both in single-cell transcriptomics and in situ. The intratumoral co-occurrence of subTMEs produced patient-specific phenotypic and computationally predictable heterogeneity tightly linked to malignant biology. Therefore, heterogeneity within the plentiful, notorious pancreatic TME is not random but marks fundamental tissue organizational units.
Collapse
Affiliation(s)
- Barbara T Grünwald
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Antoine Devisme
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79110 Freiburg, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, 79110 Freiburg, Germany
| | - Foram Vyas
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Kazeera Aliar
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Curtis W McCloskey
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Andrew Macklin
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Gun Ho Jang
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Robert Denroche
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Joan Miguel Romero
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Prashant Bavi
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Peter Bronsert
- Core Facility for Histopathology and Digital Pathology, Medical Center-University of Freiburg, 79106 Freiburg, Germany
| | - Faiyaz Notta
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Grainne O'Kane
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Julie Wilson
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Jennifer Knox
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Laura Tamblyn
- Princess Margaret Living Biobank Core, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Molly Udaskin
- Princess Margaret Living Biobank Core, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Nikolina Radulovich
- Princess Margaret Living Biobank Core, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Sandra E Fischer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, University Health Network, Toronto, ON M5G 2M9, Canada; Division of Anatomic Pathology, Laboratory Medicine Program, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, 79110 Freiburg, Germany.
| | - Steven Gallinger
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada; Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Hepatobiliary/Pancreatic Surgical Oncology Program, University Health Network, Toronto, ON M5G 2M9, Canada.
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
| | - Rama Khokha
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
27
|
Physics of liquid crystals in cell biology. Trends Cell Biol 2021; 32:140-150. [PMID: 34756501 DOI: 10.1016/j.tcb.2021.09.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 11/21/2022]
Abstract
The past decade has witnessed a rapid growth in understanding of the pivotal roles of mechanical stresses and physical forces in cell biology. As a result, an integrated view of cell biology is evolving, where genetic and molecular features are scrutinised hand in hand with physical and mechanical characteristics of cells. Physics of liquid crystals has emerged as a burgeoning new frontier in cell biology over the past few years, fuelled by an increasing identification of orientational order and topological defects in cell biology, spanning scales from subcellular filaments to individual cells and multicellular tissues. Here, we provide an account of the most recent findings and developments, together with future promises and challenges in this rapidly evolving interdisciplinary research direction.
Collapse
|
28
|
Celikkin N, Presutti D, Maiullari F, Fornetti E, Agarwal T, Paradiso A, Volpi M, Święszkowski W, Bearzi C, Barbetta A, Zhang YS, Gargioli C, Rizzi R, Costantini M. Tackling Current Biomedical Challenges With Frontier Biofabrication and Organ-On-A-Chip Technologies. Front Bioeng Biotechnol 2021; 9:732130. [PMID: 34604190 PMCID: PMC8481890 DOI: 10.3389/fbioe.2021.732130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
In the last decades, biomedical research has significantly boomed in the academia and industrial sectors, and it is expected to continue to grow at a rapid pace in the future. An in-depth analysis of such growth is not trivial, given the intrinsic multidisciplinary nature of biomedical research. Nevertheless, technological advances are among the main factors which have enabled such progress. In this review, we discuss the contribution of two state-of-the-art technologies-namely biofabrication and organ-on-a-chip-in a selection of biomedical research areas. We start by providing an overview of these technologies and their capacities in fabricating advanced in vitro tissue/organ models. We then analyze their impact on addressing a range of current biomedical challenges. Ultimately, we speculate about their future developments by integrating these technologies with other cutting-edge research fields such as artificial intelligence and big data analysis.
Collapse
Affiliation(s)
- Nehar Celikkin
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Dario Presutti
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Fabio Maiullari
- Istituto Nazionale Genetica Molecolare INGM “Romeo Ed Enrica Invernizzi”, Milan, Italy
| | | | - Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Alessia Paradiso
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Marina Volpi
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Wojciech Święszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Claudia Bearzi
- Istituto Nazionale Genetica Molecolare INGM “Romeo Ed Enrica Invernizzi”, Milan, Italy
- Institute of Genetic and Biomedical Research, National Research Council of Italy (IRGB-CNR), Milan, Italy
| | - Andrea Barbetta
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Cambridge, MA, United States
| | - Cesare Gargioli
- Department of Biology, Rome University Tor Vergata, Rome, Italy
| | - Roberto Rizzi
- Istituto Nazionale Genetica Molecolare INGM “Romeo Ed Enrica Invernizzi”, Milan, Italy
- Institute of Genetic and Biomedical Research, National Research Council of Italy (IRGB-CNR), Milan, Italy
- Institute of Biomedical Technologies, National Research Council of Italy (ITB-CNR), Milan, Italy
| | - Marco Costantini
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
29
|
Valli J, Sanderson J. Super-Resolution Fluorescence Microscopy Methods for Assessing Mouse Biology. Curr Protoc 2021; 1:e224. [PMID: 34436832 DOI: 10.1002/cpz1.224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Super-resolution (diffraction unlimited) microscopy was developed 15 years ago; the developers were awarded the Nobel Prize in Chemistry in recognition of their work in 2014. Super-resolution microscopy is increasingly being applied to diverse scientific fields, from single molecules to cell organelles, viruses, bacteria, plants, and animals, especially the mammalian model organism Mus musculus. In this review, we explain how super-resolution microscopy, along with fluorescence microscopy from which it grew, has aided the renaissance of the light microscope. We cover experiment planning and specimen preparation and explain structured illumination microscopy, super-resolution radial fluctuations, stimulated emission depletion microscopy, single-molecule localization microscopy, and super-resolution imaging by pixel reassignment. The final section of this review discusses the strengths and weaknesses of each super-resolution technique and how to choose the best approach for your research. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Jessica Valli
- Edinburgh Super Resolution Imaging Consortium (ESRIC), Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, United Kingdom
| | - Jeremy Sanderson
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, United Kingdom
| |
Collapse
|
30
|
Comba A, Faisal SM, Varela ML, Hollon T, Al-Holou WN, Umemura Y, Nunez FJ, Motsch S, Castro MG, Lowenstein PR. Uncovering Spatiotemporal Heterogeneity of High-Grade Gliomas: From Disease Biology to Therapeutic Implications. Front Oncol 2021; 11:703764. [PMID: 34422657 PMCID: PMC8377724 DOI: 10.3389/fonc.2021.703764] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastomas (GBM) are the most common and aggressive tumors of the central nervous system. Rapid tumor growth and diffuse infiltration into healthy brain tissue, along with high intratumoral heterogeneity, challenge therapeutic efficacy and prognosis. A better understanding of spatiotemporal tumor heterogeneity at the histological, cellular, molecular, and dynamic levels would accelerate the development of novel treatments for this devastating brain cancer. Histologically, GBM is characterized by nuclear atypia, cellular pleomorphism, necrosis, microvascular proliferation, and pseudopalisades. At the cellular level, the glioma microenvironment comprises a heterogeneous landscape of cell populations, including tumor cells, non-transformed/reactive glial and neural cells, immune cells, mesenchymal cells, and stem cells, which support tumor growth and invasion through complex network crosstalk. Genomic and transcriptomic analyses of gliomas have revealed significant inter and intratumoral heterogeneity and insights into their molecular pathogenesis. Moreover, recent evidence suggests that diverse dynamics of collective motion patterns exist in glioma tumors, which correlate with histological features. We hypothesize that glioma heterogeneity is not stochastic, but rather arises from organized and dynamic attributes, which favor glioma malignancy and influences treatment regimens. This review highlights the importance of an integrative approach of glioma histopathological features, single-cell and spatially resolved transcriptomic and cellular dynamics to understand tumor heterogeneity and maximize therapeutic effects.
Collapse
Affiliation(s)
- Andrea Comba
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Syed M Faisal
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria Luisa Varela
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Todd Hollon
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Wajd N Al-Holou
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Yoshie Umemura
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Felipe J Nunez
- Laboratory of Molecular and Cellular Therapy, Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Sebastien Motsch
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, United States
| | - Maria G Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Pedro R Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
31
|
Reassembling gastrulation. Dev Biol 2021; 474:71-81. [DOI: 10.1016/j.ydbio.2020.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 12/18/2022]
|
32
|
Abstract
Pathologists use histological features to classify tumors and assign site of origin for metastasis. How and why tumors organize the way they do and recreate their histological organization during metastasis is unknown. Here, I discuss the concept of "histostasis" conferring tumors a histological memory and hypothesize its implications for metastasis.
Collapse
Affiliation(s)
- Senthil K Muthuswamy
- Cancer Research Institute, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
33
|
Hof L, Moreth T, Koch M, Liebisch T, Kurtz M, Tarnick J, Lissek SM, Verstegen MMA, van der Laan LJW, Huch M, Matthäus F, Stelzer EHK, Pampaloni F. Long-term live imaging and multiscale analysis identify heterogeneity and core principles of epithelial organoid morphogenesis. BMC Biol 2021; 19:37. [PMID: 33627108 PMCID: PMC7903752 DOI: 10.1186/s12915-021-00958-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/12/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Organoids are morphologically heterogeneous three-dimensional cell culture systems and serve as an ideal model for understanding the principles of collective cell behaviour in mammalian organs during development, homeostasis, regeneration, and pathogenesis. To investigate the underlying cell organisation principles of organoids, we imaged hundreds of pancreas and cholangiocarcinoma organoids in parallel using light sheet and bright-field microscopy for up to 7 days. RESULTS We quantified organoid behaviour at single-cell (microscale), individual-organoid (mesoscale), and entire-culture (macroscale) levels. At single-cell resolution, we monitored formation, monolayer polarisation, and degeneration and identified diverse behaviours, including lumen expansion and decline (size oscillation), migration, rotation, and multi-organoid fusion. Detailed individual organoid quantifications lead to a mechanical 3D agent-based model. A derived scaling law and simulations support the hypotheses that size oscillations depend on organoid properties and cell division dynamics, which is confirmed by bright-field microscopy analysis of entire cultures. CONCLUSION Our multiscale analysis provides a systematic picture of the diversity of cell organisation in organoids by identifying and quantifying the core regulatory principles of organoid morphogenesis.
Collapse
Affiliation(s)
- Lotta Hof
- Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Till Moreth
- Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Michael Koch
- Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Tim Liebisch
- Frankfurt Institute for Advanced Studies and Faculty of Biological Sciences, Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Marina Kurtz
- Department of Physics, Goethe Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Julia Tarnick
- Deanery of Biomedical Science, University of Edinburgh, Edinburgh, UK
| | - Susanna M Lissek
- Experimental Medicine and Therapy Research, University of Regensburg, Regensburg, Germany
| | - Monique M A Verstegen
- Department of Surgery, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | - Meritxell Huch
- The Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
- Present address: Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Franziska Matthäus
- Frankfurt Institute for Advanced Studies and Faculty of Biological Sciences, Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Ernst H K Stelzer
- Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Francesco Pampaloni
- Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany.
| |
Collapse
|
34
|
Wrenn ED, Yamamoto A, Moore BM, Huang Y, McBirney M, Thomas AJ, Greenwood E, Rabena YF, Rahbar H, Partridge SC, Cheung KJ. Regulation of Collective Metastasis by Nanolumenal Signaling. Cell 2020; 183:395-410.e19. [PMID: 33007268 PMCID: PMC7772852 DOI: 10.1016/j.cell.2020.08.045] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 05/18/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022]
Abstract
Collective metastasis is defined as the cohesive migration and metastasis of multicellular tumor cell clusters. Disrupting various cell adhesion genes markedly reduces cluster formation and colonization efficiency, yet the downstream signals transmitted by clustering remain largely unknown. Here, we use mouse and human breast cancer models to identify a collective signal generated by tumor cell clusters supporting metastatic colonization. We show that tumor cell clusters produce the growth factor epigen and concentrate it within nanolumina-intercellular compartments sealed by cell-cell junctions and lined with microvilli-like protrusions. Epigen knockdown profoundly reduces metastatic outgrowth and switches clusters from a proliferative to a collective migratory state. Tumor cell clusters from basal-like 2, but not mesenchymal-like, triple-negative breast cancer cell lines have increased epigen expression, sealed nanolumina, and impaired outgrowth upon nanolumenal junction disruption. We propose that nanolumenal signaling could offer a therapeutic target for aggressive metastatic breast cancers.
Collapse
Affiliation(s)
- Emma D Wrenn
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA
| | - Ami Yamamoto
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA
| | - Breanna M Moore
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Yin Huang
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Margaux McBirney
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Aaron J Thomas
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Erin Greenwood
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Yuri F Rabena
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Breast Specimen Repository, Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Habib Rahbar
- Department of Radiology, University of Washington School of Medicine, Seattle Cancer Care Alliance, Seattle, WA 98109, USA
| | - Savannah C Partridge
- Department of Radiology, University of Washington School of Medicine, Seattle Cancer Care Alliance, Seattle, WA 98109, USA
| | - Kevin J Cheung
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
35
|
Tambalo M, Lodato S. Brain organoids: Human 3D models to investigate neuronal circuits assembly, function and dysfunction. Brain Res 2020; 1746:147028. [PMID: 32717276 DOI: 10.1016/j.brainres.2020.147028] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/12/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
The human brain is characterized by an extraordinary complexity of neuronal and nonneuronal cell types, wired together into patterned neuronal circuits, which represent the anatomical substrates for the execution of high-order cognitive functions. Brain circuits' development and function is metabolically supported by an intricate network of selectively permeable blood vessels and finely tuned by short-range interactions with immune factors and immune cells. The coordinated cellular and molecular events governing the assembly of this unique and complex structure are at the core of intense investigation and pose legitimate questions about the best modeling strategies. Unceasing advancements in stem cell technologies coupled with recent demonstration of cell self-assembly capacity have enabled the exponential growth of brain organoid protocols in the past decade. This provides a compelling solution to investigate human brain development, a quest often halted by the inaccessibility of brain tissues and the lack of suitable models. We review the current state-of-the-art on the generation of brain organoids, describing the latest progresses in unguided, guided, and assembloids protocols, as well as organoid-on-a-chip strategies and xenograft approaches. High resolution genome wide sequencing technologies, both at the transcriptional and epigenomic level, enable the molecular comparative analysis of multiple brain organoid protocols, as well as to benchmark them against the human fetal brain. Coupling the molecular profiling with increasingly detailed analyses of the electrophysiological properties of several of these systems now allows a more accurate estimation of the protocol of choice for a given biological question. Thus, we summarize strengths and weaknesses of several brain organoid protocols and further speculate on some potential future endeavors to model human brain development, evolution and neurodevelopmental and neuropsychiatric diseases.
Collapse
Affiliation(s)
- M Tambalo
- Humanitas Clinical and Research Center-IRCCS, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - S Lodato
- Humanitas Clinical and Research Center-IRCCS, Via Manzoni 56, 20089 Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy.
| |
Collapse
|
36
|
Guenat OT, Geiser T, Berthiaume F. Clinically Relevant Tissue Scale Responses as New Readouts from Organs-on-a-Chip for Precision Medicine. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2020; 13:111-133. [PMID: 31961712 DOI: 10.1146/annurev-anchem-061318-114919] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Organs-on-chips (OOC) are widely seen as being the next generation in vitro models able to accurately recreate the biochemical-physical cues of the cellular microenvironment found in vivo. In addition, they make it possible to examine tissue-scale functional properties of multicellular systems dynamically and in a highly controlled manner. Here we summarize some of the most remarkable examples of OOC technology's ability to extract clinically relevant tissue-level information. The review is organized around the types of OOC outputs that can be measured from the cultured tissues and transferred to clinically meaningful information. First, the creation of functional tissues-on-chip is discussed, followed by the presentation of tissue-level readouts specific to OOC, such as morphological changes, vessel formation and function, tissue properties, and metabolic functions. In each case, the clinical relevance of the extracted information is highlighted.
Collapse
Affiliation(s)
- Olivier T Guenat
- ARTORG Center for Biomedical Engineering Research, Medical Faculty, University of Bern, CH-3008 Bern, Switzerland;
- Department of Pulmonary Medicine, University Hospital and University of Bern, CH-3008 Bern, Switzerland
- Thoracic Surgery Department, University Hospital of Bern, Switzerland
| | - Thomas Geiser
- Department of Pulmonary Medicine, University Hospital and University of Bern, CH-3008 Bern, Switzerland
| | - François Berthiaume
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
37
|
Gao H, Liu C, Wu B, Cui H, Zhao Y, Duan Y, Gao F, Gu Q, Wang H, Li W. Effects of Different Biomaterials and Cellular Status on Testicular Cell Self-Organization. ACTA ACUST UNITED AC 2020; 4:e1900292. [PMID: 32453509 DOI: 10.1002/adbi.201900292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/03/2020] [Indexed: 01/12/2023]
Abstract
A multicellular organism's development is coupled with cellular self-organization, which is regulated by cell-cell interactions and cell-extracellular matrix (ECM) crosstalk. Testicular cells from different species such as mouse, rat, and porcine can self-organize into seminiferous tubules both in vitro and in vivo, but the understanding of the functional role of the ECM during this process is limited. Here, it is shown that mouse testicular cells encapsulated with the biomaterial Matrigel can self-organize into seminiferous tubules with blood-testis barrier (BTB) formation and Leydig cell differentiation. By varying the encapsulation method, a combination of sodium alginate and collagen is used to promote reorganization of seminiferous tubules, which resemble those in vivo. In addition, the self-organization ability of testicular cells declines with advanced cell age, and those germ cells play a pivotal role in this process. These findings will be helpful to understand the self-organization process of testicular cells and provide insights for the reconstruction of testes.
Collapse
Affiliation(s)
- Hui Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Bingbing Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,Colleague of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hang Cui
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Yan Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,Colleague of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yongchao Duan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,Colleague of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qi Gu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,Stem cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,Colleague of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,Colleague of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
38
|
Prina E, Amer MH, Sidney L, Tromayer M, Moore J, Liska R, Bertolin M, Ferrari S, Hopkinson A, Dua H, Yang J, Wildman R, Rose FRAJ. Bioinspired Precision Engineering of Three-Dimensional Epithelial Stem Cell Microniches. ACTA ACUST UNITED AC 2020; 4:e2000016. [PMID: 32329968 DOI: 10.1002/adbi.202000016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/22/2020] [Accepted: 03/31/2020] [Indexed: 12/16/2022]
Abstract
Maintenance of the epithelium relies on stem cells residing within specialized microenvironments, known as epithelial crypts. Two-photon polymerization (2PP) is a valuable tool for fabricating 3D micro/nanostructures for stem cell niche engineering applications. Herein, biomimetic gelatin methacrylate-based constructs, replicating the precise geometry of the limbal epithelial crypt structures (limbal stem cell "microniches") as an exemplar epithelial niche, are fabricated using 2PP. Human limbal epithelial stem cells (hLESCs) are seeded within the microniches in xeno-free conditions to investigate their ability to repopulate the crypts and the expression of various differentiation markers. Cell proliferation and a zonation in cell phenotype along the z-axis are observed without the use of exogenous signaling molecules. Significant differences in cell phenotype between cells located at the base of the microniche and those situated towards the rim are observed, demonstrating that stem cell fate is strongly influenced by its location within a niche and the geometrical details of where it resides. This study provides insight into the influence of the niche's spatial geometry on hLESCs and demonstrates a flexible approach for the fabrication of biomimetic crypt-like structures in epithelial tissues. This has significant implications for regenerative medicine applications and can ultimately lead to implantable synthetic "niche-based" treatments.
Collapse
Affiliation(s)
- Elisabetta Prina
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Mahetab H Amer
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Laura Sidney
- Academic Ophthalmology, Division of Clinical Neuroscience, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Maximilian Tromayer
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, Vienna, 1060, Austria
| | - Jonathan Moore
- School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Robert Liska
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, Vienna, 1060, Austria
| | - Marina Bertolin
- Fondazione Banca degli Occhi del Veneto Onlus, Padiglione Rama, Via Paccagnella 11, Zelarino-Venezia, 30174, Italy
| | - Stefano Ferrari
- Fondazione Banca degli Occhi del Veneto Onlus, Padiglione Rama, Via Paccagnella 11, Zelarino-Venezia, 30174, Italy
| | - Andrew Hopkinson
- Academic Ophthalmology, Division of Clinical Neuroscience, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Harminder Dua
- Academic Ophthalmology, Division of Clinical Neuroscience, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Jing Yang
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Ricky Wildman
- Institute of Advanced Manufacturing, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Felicity R A J Rose
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
39
|
Schauer A, Pinheiro D, Hauschild R, Heisenberg CP. Zebrafish embryonic explants undergo genetically encoded self-assembly. eLife 2020; 9:55190. [PMID: 32250246 PMCID: PMC7190352 DOI: 10.7554/elife.55190] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/05/2020] [Indexed: 12/20/2022] Open
Abstract
Embryonic stem cell cultures are thought to self-organize into embryoid bodies, able to undergo symmetry-breaking, germ layer specification and even morphogenesis. Yet, it is unclear how to reconcile this remarkable self-organization capacity with classical experiments demonstrating key roles for extrinsic biases by maternal factors and/or extraembryonic tissues in embryogenesis. Here, we show that zebrafish embryonic tissue explants, prepared prior to germ layer induction and lacking extraembryonic tissues, can specify all germ layers and form a seemingly complete mesendoderm anlage. Importantly, explant organization requires polarized inheritance of maternal factors from dorsal-marginal regions of the blastoderm. Moreover, induction of endoderm and head-mesoderm, which require peak Nodal-signaling levels, is highly variable in explants, reminiscent of embryos with reduced Nodal signals from the extraembryonic tissues. Together, these data suggest that zebrafish explants do not undergo bona fide self-organization, but rather display features of genetically encoded self-assembly, where intrinsic genetic programs control the emergence of order.
Collapse
|
40
|
Saad JM, Prochaska JO. A philosophy of health: life as reality, health as a universal value. PALGRAVE COMMUNICATIONS 2020; 6:45. [PMID: 32226633 PMCID: PMC7097380 DOI: 10.1057/s41599-020-0420-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
Emphases on biomarkers (e.g. when making diagnoses) and pharmaceutical/drug methods (e.g. when researching/disseminating population level interventions) in primary care evidence philosophies of health (and healthcare) that reduce health to the biological level. However, with chronic diseases being responsible for the majority of all cause deaths and being strongly linked to health behavior and lifestyle; predominantly biological views are becoming increasingly insufficient when discussing this health crisis. A philosophy that integrates biological, behavioral, and social determinants of health could benefit multidisciplinary discussions of healthy publics. This manuscript introduces a Philosophy of Health by presenting its first five principles of health. The philosophy creates parallels among biological immunity, health behavior change, social change by proposing that two general functions-precision and variation-impact population health at biological, behavioral, and social levels. This higher-level of abstraction is used to conclude that integrating functions, rather than separated (biological) structures drive healthy publics. A Philosophy of Health provides a framework that can integrate existing theories, models, concepts, and constructs.
Collapse
Affiliation(s)
- Julian M. Saad
- Cancer Prevention Research Center, The University of Rhode Island, 130 Flagg Rd, Kingston, RI 02881 USA
| | - James O. Prochaska
- Cancer Prevention Research Center, The University of Rhode Island, 130 Flagg Rd, Kingston, RI 02881 USA
| |
Collapse
|
41
|
Mattiazzi Usaj M, Sahin N, Friesen H, Pons C, Usaj M, Masinas MPD, Shuteriqi E, Shkurin A, Aloy P, Morris Q, Boone C, Andrews BJ. Systematic genetics and single-cell imaging reveal widespread morphological pleiotropy and cell-to-cell variability. Mol Syst Biol 2020; 16:e9243. [PMID: 32064787 PMCID: PMC7025093 DOI: 10.15252/msb.20199243] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/16/2019] [Accepted: 01/15/2020] [Indexed: 12/13/2022] Open
Abstract
Our ability to understand the genotype-to-phenotype relationship is hindered by the lack of detailed understanding of phenotypes at a single-cell level. To systematically assess cell-to-cell phenotypic variability, we combined automated yeast genetics, high-content screening and neural network-based image analysis of single cells, focussing on genes that influence the architecture of four subcellular compartments of the endocytic pathway as a model system. Our unbiased assessment of the morphology of these compartments-endocytic patch, actin patch, late endosome and vacuole-identified 17 distinct mutant phenotypes associated with ~1,600 genes (~30% of all yeast genes). Approximately half of these mutants exhibited multiple phenotypes, highlighting the extent of morphological pleiotropy. Quantitative analysis also revealed that incomplete penetrance was prevalent, with the majority of mutants exhibiting substantial variability in phenotype at the single-cell level. Our single-cell analysis enabled exploration of factors that contribute to incomplete penetrance and cellular heterogeneity, including replicative age, organelle inheritance and response to stress.
Collapse
Affiliation(s)
| | - Nil Sahin
- The Donnelly CentreUniversity of TorontoTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | | | - Carles Pons
- Institute for Research in Biomedicine (IRB Barcelona)The Barcelona Institute for Science and TechnologyBarcelona, CataloniaSpain
| | - Matej Usaj
- The Donnelly CentreUniversity of TorontoTorontoONCanada
| | | | | | - Aleksei Shkurin
- The Donnelly CentreUniversity of TorontoTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - Patrick Aloy
- Institute for Research in Biomedicine (IRB Barcelona)The Barcelona Institute for Science and TechnologyBarcelona, CataloniaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)Barcelona, CataloniaSpain
| | - Quaid Morris
- The Donnelly CentreUniversity of TorontoTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
- Computational and Systems Biology ProgramMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Charles Boone
- The Donnelly CentreUniversity of TorontoTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
- RIKEN Centre for Sustainable Resource ScienceWakoSaitamaJapan
| | - Brenda J Andrews
- The Donnelly CentreUniversity of TorontoTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| |
Collapse
|
42
|
Krueger D, Izquierdo E, Viswanathan R, Hartmann J, Pallares Cartes C, De Renzis S. Principles and applications of optogenetics in developmental biology. Development 2019; 146:146/20/dev175067. [PMID: 31641044 PMCID: PMC6914371 DOI: 10.1242/dev.175067] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The development of multicellular organisms is controlled by highly dynamic molecular and cellular processes organized in spatially restricted patterns. Recent advances in optogenetics are allowing protein function to be controlled with the precision of a pulse of laser light in vivo, providing a powerful new tool to perturb developmental processes at a wide range of spatiotemporal scales. In this Primer, we describe the most commonly used optogenetic tools, their application in developmental biology and in the nascent field of synthetic morphogenesis.
Collapse
Affiliation(s)
- Daniel Krueger
- European Molecular Biology Laboratory (EMBL), Developmental Biology Unit Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Emiliano Izquierdo
- European Molecular Biology Laboratory (EMBL), Developmental Biology Unit Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Ranjith Viswanathan
- European Molecular Biology Laboratory (EMBL), Developmental Biology Unit Meyerhofstrasse 1, 69117 Heidelberg, Germany.,Heidelberg University, Faculty of Biosciences, Heidelberg, 69117, Germany
| | - Jonas Hartmann
- European Molecular Biology Laboratory (EMBL), Developmental Biology Unit Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Cristina Pallares Cartes
- European Molecular Biology Laboratory (EMBL), Developmental Biology Unit Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Stefano De Renzis
- European Molecular Biology Laboratory (EMBL), Developmental Biology Unit Meyerhofstrasse 1, 69117 Heidelberg, Germany
| |
Collapse
|
43
|
Sthijns MMJPE, LaPointe VLS, van Blitterswijk CA. Building Complex Life Through Self-Organization. Tissue Eng Part A 2019; 25:1341-1346. [PMID: 31411111 DOI: 10.1089/ten.tea.2019.0208] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cells are inherently conferred with the ability to self-organize into the tissues and organs comprising the human body. Self-organization can be recapitulated in vitro and recent advances in the organoid field are just one example of how we can generate small functioning elements of organs. Tissue engineers can benefit from the power of self-organization and should consider how they can harness and enhance the process with their constructs. For example, aggregates of stem cells and tissue-specific cells benefit from the input of carefully selected biomolecules to guide their differentiation toward a mature phenotype. This can be further enhanced by the use of technologies to provide a physiological microenvironment for self-organization, enhance the size of the constructs, and enable the long-term culture of self-organized structures. Of importance, conducting self-organization should be limited to fine-tuning and should avoid over-engineering that could counteract the power of inherent cellular self-organization. Impact Statement Self-organization is a powerful innate feature of cells that can be fine-tuned but not over-engineered to create new tissues and organs.
Collapse
Affiliation(s)
- Mireille M J P E Sthijns
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht, The Netherlands
| | - Vanessa L S LaPointe
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht, The Netherlands
| | - Clemens A van Blitterswijk
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht, The Netherlands
| |
Collapse
|
44
|
Mayr U, Serra D, Liberali P. Exploring single cells in space and time during tissue development, homeostasis and regeneration. Development 2019; 146:146/12/dev176727. [DOI: 10.1242/dev.176727] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
ABSTRACT
Complex 3D tissues arise during development following tightly organized events in space and time. In particular, gene regulatory networks and local interactions between single cells lead to emergent properties at the tissue and organism levels. To understand the design principles of tissue organization, we need to characterize individual cells at given times, but we also need to consider the collective behavior of multiple cells across different spatial and temporal scales. In recent years, powerful single cell methods have been developed to characterize cells in tissues and to address the challenging questions of how different tissues are formed throughout development, maintained in homeostasis, and repaired after injury and disease. These approaches have led to a massive increase in data pertaining to both mRNA and protein abundances in single cells. As we review here, these new technologies, in combination with in toto live imaging, now allow us to bridge spatial and temporal information quantitatively at the single cell level and generate a mechanistic understanding of tissue development.
Collapse
Affiliation(s)
- Urs Mayr
- Department of Quantitative Biology, Friedrich Miescher Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Denise Serra
- Department of Quantitative Biology, Friedrich Miescher Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Prisca Liberali
- Department of Quantitative Biology, Friedrich Miescher Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| |
Collapse
|
45
|
Yamazaki T, Kishimoto T, Leszczyński P, Sadakane K, Kenmotsu T, Watanabe H, Kazama T, Matsumoto T, Yoshikawa K, Taniguchi H. Construction of 3D Cellular Composites with Stem Cells Derived from Adipose Tissue and Endothelial Cells by Use of Optical Tweezers in a Natural Polymer Solution. MATERIALS 2019; 12:ma12111759. [PMID: 31151204 PMCID: PMC6601048 DOI: 10.3390/ma12111759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/17/2019] [Accepted: 05/22/2019] [Indexed: 02/06/2023]
Abstract
To better understand the regulation and function of cellular interactions, three-dimensional (3D) assemblies of single cells and subsequent functional analysis are gaining popularity in many research fields. While we have developed strategies to build stable cellular structures using optical tweezers in a minimally invasive state, methods for manipulating a wide range of cell types have yet to be established. To mimic organ-like structures, the construction of 3D cellular assemblies with variety of cell types is essential. Our recent studies have shown that the presence of nonspecific soluble polymers in aqueous solution is the key to creating stable 3D cellular assemblies efficiently. The present study further expands on the construction of 3D single cell assemblies using two different cell types. We have successfully generated 3D cellular assemblies, using GFP-labeled adipose tissue-derived stem cells and endothelial cells by using optical tweezers. Our findings will support the development of future applications to further characterize cellular interactions in tissue regeneration.
Collapse
Affiliation(s)
- Takehiro Yamazaki
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan.
| | - Toshifumi Kishimoto
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan.
| | - Paweł Leszczyński
- Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland.
| | - Koichiro Sadakane
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan.
| | - Takahiro Kenmotsu
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan.
| | - Hirofumi Watanabe
- Department of Functional Morphology, Division of Cell Regeneration and Transplantation, Nihon University School of Medicine, Tokyo 173-8610, Japan.
| | - Tomohiko Kazama
- Department of Functional Morphology, Division of Cell Regeneration and Transplantation, Nihon University School of Medicine, Tokyo 173-8610, Japan.
| | - Taro Matsumoto
- Department of Functional Morphology, Division of Cell Regeneration and Transplantation, Nihon University School of Medicine, Tokyo 173-8610, Japan.
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan.
| | - Hiroaki Taniguchi
- Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland.
| |
Collapse
|