1
|
Li H, Zhang H, Feng Z, Zhao J, Chen H, Guo X, Wang T, Liu Y. Climate change influences on vegetation photosynthesis in the Northern Hemisphere. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:124976. [PMID: 40101480 DOI: 10.1016/j.jenvman.2025.124976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/25/2025] [Accepted: 03/11/2025] [Indexed: 03/20/2025]
Abstract
Changes in ecosystem productivity affect terrestrial carbon sequestration. In previous research on the effects of climate change, it has been determined that prolonged growing season length (LOS) increases vegetation productivity in ecosystems. In addition to the duration of vegetation growth, the intensity of photosynthesis is another factor influencing the annual accumulated vegetation productivity. Nevertheless, the impact of climate change on productivity through photosynthetic intensity of vegetation remains uncertain. Here, we utilized the photosynthetic phenology extracted from solar-induced chlorophyll fluorescence (SIF) to investigate the influence of climate change on the annual peak value of vegetation photosynthesis (SIFmax), as well as the contribution of SIFmax to annual accumulated gross primary productivity (GPPann) in the Northern Hemisphere (>30° N). Furthermore, the influence of changes in LOS and SIFmax on GPPann were compared. The results showed that vegetation SIFmax increased in 73.0% of the areas, and that different climatic factors (radiation, precipitation and temperature), and the advanced start of the growing season (SOS) contributed to an increase in SIFmax. GPPann was more sensitive to the peak of photosynthesis than LOS, with SIFmax being the dominant factor affecting GPPann in 39.9% of the study area, compared to 13.7% of the area dominated by LOS. Our results demonstrated that climate change increases GPPann primarily by increasing SIFmax rather than by extending LOS. While temperature was the largest contributor to GPPann among all climate factors, precipitation and radiation can also have an obvious effect on GPPann through SIFmax. Our study highlights the important mediating role of peak photosynthesis in the influence of climatic factors on the annual accumulated productivity of vegetation. The results provide implications for understanding the characteristics of vegetation response to climate change, and for the development of ecosystem restoration and carbon management strategies.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, 130024, China; Urban Remote Sensing Application Innovation Center, School of Geographical Sciences, Northeast Normal University, Changchun, 130024, China; Institute of Geography, School of GeoSciences, University of Edinburgh, EH8 9XP, UK
| | - Hongyan Zhang
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, 130024, China; Urban Remote Sensing Application Innovation Center, School of Geographical Sciences, Northeast Normal University, Changchun, 130024, China.
| | - Zhiqiang Feng
- Institute of Geography, School of GeoSciences, University of Edinburgh, EH8 9XP, UK
| | - Jianjun Zhao
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, 130024, China; Urban Remote Sensing Application Innovation Center, School of Geographical Sciences, Northeast Normal University, Changchun, 130024, China
| | - Hongbing Chen
- Jilin Agricultural University, Changchun, 130024, China
| | - Xiaoyi Guo
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, 130024, China; Urban Remote Sensing Application Innovation Center, School of Geographical Sciences, Northeast Normal University, Changchun, 130024, China
| | - Tongxin Wang
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, 130024, China; Urban Remote Sensing Application Innovation Center, School of Geographical Sciences, Northeast Normal University, Changchun, 130024, China
| | - Yang Liu
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, 130024, China; Urban Remote Sensing Application Innovation Center, School of Geographical Sciences, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
2
|
Liu Y, Wang P, Elberling B, Westergaard-Nielsen A. Drivers of contemporary and future changes in Arctic seasonal transition dates for a tundra site in coastal Greenland. GLOBAL CHANGE BIOLOGY 2024; 30:e17118. [PMID: 38273573 DOI: 10.1111/gcb.17118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/06/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024]
Abstract
Climate change has had a significant impact on the seasonal transition dates of Arctic tundra ecosystems, causing diverse variations between distinct land surface classes. However, the combined effect of multiple controls as well as their individual effects on these dates remains unclear at various scales and across diverse land surface classes. Here we quantified spatiotemporal variations of three seasonal transition dates (start of spring, maximum normalized difference vegetation index (NDVImax ) day, end of fall) for five dominating land surface classes in the ice-free Greenland. Using a distributed snow model, structural equation modeling, and a random forest model, based on ground observations and remote sensing data, we assessed the indirect and direct effects of climate, snow, and terrain on seasonal transition dates. We then presented new projections of likely changes in seasonal transition dates under six future climate scenarios. The coupled climate, snow cover, and terrain conditions explained up to 61% of seasonal transition dates across different land surface classes. Snow ending day played a crucial role in the start of spring and timing of NDVImax . A warmer June and a decline in wind could advance the NDVImax day. Increased precipitation and temperature during July-August are the most important for delaying the end of fall. We projected that a 1-4.5°C increase in temperature and a 5%-20% increase in precipitation would lengthen the spring-to-fall period for all five land surface classes by 2050, thus the current order of spring-to-fall lengths for the five land surface classes could undergo notable changes. Tall shrubs and fens would have a longer spring-to-fall period under the warmest and wettest scenario, suggesting a competitive advantage for these vegetation communities. This study's results illustrate controls on seasonal transition dates and portend potential changes in vegetation composition in the Arctic under climate change.
Collapse
Affiliation(s)
- Yijing Liu
- Department for Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
- Center for Permafrost, CENPERM, University of Copenhagen, Copenhagen, Denmark
| | - Peiyan Wang
- Center for Permafrost, CENPERM, University of Copenhagen, Copenhagen, Denmark
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Bo Elberling
- Department for Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
- Center for Permafrost, CENPERM, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Westergaard-Nielsen
- Department for Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
- Center for Permafrost, CENPERM, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Xie J, Yin G, Ma D, Chen R, Zhao W, Xie Q, Wang C, Lin S, Yuan W. Climatic limitations on grassland photosynthesis over the Tibetan Plateau shifted from temperature to water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167663. [PMID: 37813264 DOI: 10.1016/j.scitotenv.2023.167663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/15/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
Plant photosynthesis plays an essential role in regulating the global carbon cycle. Therefore, it is essential to understand the limitations imposed by climate on plant photosynthesis to comprehend the impacts of climate change on land carbon dynamics. In this study, taking gross primary productivity as a direct representation of photosynthesis, we employed a light use efficiency model (i.e., the revised EC-LUE) and factorial analysis method to quantify the spatiotemporal variation of temperature- and water-limitations on plant photosynthesis over the Tibetan Plateau (TP) grasslands during growing season (May to October) in 1983-2018. Results revealed a clear spatiotemporal pattern of the temperature- and water-limitations: temperature is the primary climatic limiting factor in the eastern TP, while water is the primary climatic limiting factor in the western TP; the water- and temperature-limitations prevail in summer and spring/autumn, respectively. The water- and temperature-limitations intensified and alleviated, respectively, during 1983 through 2018. There also was a widespread shift from temperature-limitation to water-limitation in the TP, particularly in midsummer (August). Our findings demonstrated the shifting relative importance of climatic limitations on plant photosynthesis under changing climate, which is crucial for predicting future terrestrial carbon cycle dynamics.
Collapse
Affiliation(s)
- Jiangliu Xie
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Gaofei Yin
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Dujuan Ma
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Rui Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Wei Zhao
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Qiaoyun Xie
- School of Engineering, The University of Western Australia, Perth, WA 6009, Australia
| | - Cong Wang
- Key Laboratory for Geographical Process Analysis & Simulation of Hubei Province/School of Urban and Environmental Sciences, Central China Normal University, Wuhan 430079, China
| | - Shangrong Lin
- School of Atmospheric Sciences, Guangdong Province Data Center of Terrestrial and Marine Ecosystems Carbon Cycle, Sun Yat-sen University, Zhuhai 519000, China
| | - Wenping Yuan
- School of Atmospheric Sciences, Guangdong Province Data Center of Terrestrial and Marine Ecosystems Carbon Cycle, Sun Yat-sen University, Zhuhai 519000, China
| |
Collapse
|
4
|
Rina W, Bao Y, Guo E, Tong S, Huang X, Yin S. Lagged feedback of peak season photosynthetic activities on local surface temperature in Inner Mongolia, China. ENVIRONMENTAL RESEARCH 2023; 236:116643. [PMID: 37442253 DOI: 10.1016/j.envres.2023.116643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Increased vegetation peak growth and phenological shifts toward spring have been observed in response to climate warming in the temperate regions. Such changes have the potential to modify warming by perturbing land‒atmosphere energy exchanges; however, the signs and magnitudes of biophysical feedback on surface temperature in different biomes are largely unknown. Here, we synthesized information from vegetation growth proxies, land surface temperature (LST), and surface energy balance factors (surface evapotranspiration (ET), albedo, and broadband emissivity (BBE)) to investigate the variations in timing (PPT) and productivity (PPmax) of seasonal peak photosynthesis and their time-lagged biophysical feedbacks to the post-season LST in Inner Mongolia (IM) during 2001-2020. We found that increased PPmax, rather than advanced PPT, exhibited a significant impact on LST, with divergent signs and magnitudes across diurnal periods and among different biomes. In the grassland biome, increased PPmax cooled both LST during daytime (LSTday) and nighttime (LSTnight) throughout the post-season period, with a more pronounced response during daytime and diminishing gradually from July to September. This cooling effect on LST was primarily attributed to enhanced ET, as evidenced by the greater effect of ET cooling than that of albedo warming and BBE cooling based on a structural equation model (SEM). In the forest biome, increased PPmax led to a symmetrical warming effect on LSTday and LSTnight, and none of the surface energy balance factors were identified as significant intermediate explanatory factors for the observed warming effect. Moreover, the responses of average LST (LSTmean) and diurnal temperature range of LST (LSTDTR) to variations in PPmax were consistent with those of LSTday at two biomes. The observations above elucidate the divergent feedback mechanisms of vegetation peak growth on LST among different biomes and diurnal cycles, which could facilitate the improvement of the realistic parameterization of surface processes in global climate models.
Collapse
Affiliation(s)
- Wendu Rina
- College of Geographical Science, Inner Mongolia Normal University, Hohhot, 010022, China; Inner Mongolia Key Laboratory of Remote Sensing and Geographic Information Systems, Inner Mongolia Normal University, Hohhot, 010022, China
| | - Yuhai Bao
- College of Geographical Science, Inner Mongolia Normal University, Hohhot, 010022, China; Inner Mongolia Key Laboratory of Remote Sensing and Geographic Information Systems, Inner Mongolia Normal University, Hohhot, 010022, China.
| | - Enliang Guo
- College of Geographical Science, Inner Mongolia Normal University, Hohhot, 010022, China; Inner Mongolia Key Laboratory of Disaster and Ecological Security on the Mongolian Plateau, Inner Mongolia Normal University, Hohhot, 010022, China
| | - Siqin Tong
- College of Geographical Science, Inner Mongolia Normal University, Hohhot, 010022, China; Inner Mongolia Key Laboratory of Remote Sensing and Geographic Information Systems, Inner Mongolia Normal University, Hohhot, 010022, China
| | - Xiaojun Huang
- College of Geographical Science, Inner Mongolia Normal University, Hohhot, 010022, China; Inner Mongolia Key Laboratory of Remote Sensing and Geographic Information Systems, Inner Mongolia Normal University, Hohhot, 010022, China
| | - Shan Yin
- College of Geographical Science, Inner Mongolia Normal University, Hohhot, 010022, China; Inner Mongolia Key Laboratory of Remote Sensing and Geographic Information Systems, Inner Mongolia Normal University, Hohhot, 010022, China
| |
Collapse
|
5
|
Wang B, Chen W, Tian D, Li Z, Wang J, Fu Z, Luo Y, Piao S, Yu G, Niu S. Dryness limits vegetation pace to cope with temperature change in warm regions. GLOBAL CHANGE BIOLOGY 2023; 29:4750-4757. [PMID: 37381593 DOI: 10.1111/gcb.16842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 06/30/2023]
Abstract
Climate change leads to increasing temperature and more extreme hot and drought events. Ecosystem capability to cope with climate warming depends on vegetation's adjusting pace with temperature change. How environmental stresses impair such a vegetation pace has not been carefully investigated. Here we show that dryness substantially dampens vegetation pace in warm regions to adjust the optimal temperature of gross primary production (GPP) (T opt GPP ) in response to change in temperature over space and time.T opt GPP spatially converges to an increase of 1.01°C (95% CI: 0.97, 1.05) per 1°C increase in the yearly maximum temperature (Tmax ) across humid or cold sites worldwide (37o S-79o N) but only 0.59°C (95% CI: 0.46, 0.74) per 1°C increase in Tmax across dry and warm sites.T opt GPP temporally changes by 0.81°C (95% CI: 0.75, 0.87) per 1°C interannual variation in Tmax at humid or cold sites and 0.42°C (95% CI: 0.17, 0.66) at dry and warm sites. Regardless of the water limitation, the maximum GPP (GPPmax ) similarly increases by 0.23 g C m-2 day-1 per 1°C increase inT opt GPP in either humid or dry areas. Our results indicate that the future climate warming likely stimulates vegetation productivity more substantially in humid than water-limited regions.
Collapse
Affiliation(s)
- Bingxue Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Beijing, China
| | - Weinan Chen
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Dashuan Tian
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Beijing, China
| | - Zhaolei Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Beijing, China
| | - Jinsong Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Beijing, China
| | - Zheng Fu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Beijing, China
| | - Yiqi Luo
- School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Shilong Piao
- Key Laboratory for Earth Surface Processes, Ministry of Education, Peking University, Beijing, China
| | - Guirui Yu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Collar NM, Earles TA. Unique challenges posed by fire disturbance to water supply management and transfer agreements in a headwaters region. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117956. [PMID: 37080093 DOI: 10.1016/j.jenvman.2023.117956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
As a headwaters region, Colorado is a critical source of water for surrounding states and Mexico. But fuel densification and shifts in hydrometeorological processes, such as climate aridification and precipitation sharpening, are causing increasingly severe and erratic wildfire behavior and post-disturbance geomorphic hazards in and downstream of its forested source water areas. Human development patterns and inter and intra-state water rights agreements further complicate resource management. This is prompting land managers to consider progressive planning and management tools to mitigate fire-related degradation of water supply and irrigation systems. This narrative review examines aspects of Colorado's geography, demography, and hydrology that make its water supply systems and transfer agreements particularly vulnerable to landscape disturbance and then provides hazard mitigation recommendations. Readers are introduced to Colorado's water supply portfolio including how water is moved, stored, treated, and consumed; why those systems are vulnerable to wildfire disturbance; and how risk can be reduced before and after fires occur. Lessons learned are applicable to other source water areas facing similar challenges. By synthesizing our review findings, we identified numerous research and programmatic gaps including the need for more interdisciplinary studies; a lack of explicit research into how disturbance-driven hydromodification may hinder the ability of headwater regions to exercise their water rights and fulfill water transfer agreements (crucial for reducing potential future water conflict); an unresolved debate regarding the potential effects of forest treatments on water yield; and the need for additional funding to roll out tools and educational programs to communities experiencing severe wildfire activity for the first time.
Collapse
Affiliation(s)
- Natalie M Collar
- Wright Water Engineers, Inc., 2460 W 26th Ave. Ste 100A, Denver, CO, 80211, USA.
| | - T Andrew Earles
- Wright Water Engineers, Inc., 2460 W 26th Ave. Ste 100A, Denver, CO, 80211, USA
| |
Collapse
|
7
|
Chen L, Keski-Saari S, Kontunen-Soppela S, Zhu X, Zhou X, Hänninen H, Pumpanen J, Mola-Yudego B, Wu D, Berninger F. Immediate and carry-over effects of late-spring frost and growing season drought on forest gross primary productivity capacity in the Northern Hemisphere. GLOBAL CHANGE BIOLOGY 2023; 29:3924-3940. [PMID: 37165918 DOI: 10.1111/gcb.16751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/27/2023] [Indexed: 05/12/2023]
Abstract
Forests are increasingly exposed to extreme global warming-induced climatic events. However, the immediate and carry-over effects of extreme events on forests are still poorly understood. Gross primary productivity (GPP) capacity is regarded as a good proxy of the ecosystem's functional stability, reflecting its physiological response to its surroundings. Using eddy covariance data from 34 forest sites in the Northern Hemisphere, we analyzed the immediate and carry-over effects of late-spring frost (LSF) and growing season drought on needle-leaf and broadleaf forests. Path analysis was applied to reveal the plausible reasons behind the varied responses of forests to extreme events. The results show that LSF had clear immediate effects on the GPP capacity of both needle-leaf and broadleaf forests. However, GPP capacity in needle-leaf forests was more sensitive to drought than in broadleaf forests. There was no interaction between LSF and drought in either needle-leaf or broadleaf forests. Drought effects were still visible when LSF and drought coexisted in needle-leaf forests. Path analysis further showed that the response of GPP capacity to drought differed between needle-leaf and broadleaf forests, mainly due to the difference in the sensitivity of canopy conductance. Moreover, LSF had a more severe and long-lasting carry-over effect on forests than drought. These results enrich our understanding of the mechanisms of forest response to extreme events across forest types.
Collapse
Affiliation(s)
- Liang Chen
- Department of Environmental and Biological Sciences, Joensuu Campus, University of Eastern Finland, Joensuu, Finland
| | - Sarita Keski-Saari
- Department of Environmental and Biological Sciences, Joensuu Campus, University of Eastern Finland, Joensuu, Finland
- Department of Geographical and Historical Studies, Joensuu Campus, University of Eastern Finland, Joensuu, Finland
| | - Sari Kontunen-Soppela
- Department of Environmental and Biological Sciences, Joensuu Campus, University of Eastern Finland, Joensuu, Finland
| | - Xudan Zhu
- Department of Environmental and Biological Sciences, Joensuu Campus, University of Eastern Finland, Joensuu, Finland
| | - Xuan Zhou
- Department of Environmental and Biological Sciences, Joensuu Campus, University of Eastern Finland, Joensuu, Finland
| | - Heikki Hänninen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
| | - Jukka Pumpanen
- Department of Environmental and Biological Sciences, Kuopio Campus, University of Eastern Finland, Kuopio, Finland
| | - Blas Mola-Yudego
- School of Forest Sciences, Joensuu Campus, University of Eastern Finland, Joensuu, Finland
| | - Di Wu
- Department of Environmental and Biological Sciences, Kuopio Campus, University of Eastern Finland, Kuopio, Finland
| | - Frank Berninger
- Department of Environmental and Biological Sciences, Joensuu Campus, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
8
|
Brilli L, Martin R, Argenti G, Bassignana M, Bindi M, Bonet R, Choler P, Cremonese E, Della Vedova M, Dibari C, Filippa G, Galvagno M, Leolini L, Moriondo M, Piccot A, Stendardi L, Targetti S, Bellocchi G. Uncertainties in the adaptation of alpine pastures to climate change based on remote sensing products and modelling. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 336:117575. [PMID: 36893538 DOI: 10.1016/j.jenvman.2023.117575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/02/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Over the last century, the management of pastoral systems has undergone major changes to meet the livelihood needs of alpine communities. Faced with the changes induced by recent global warming, the ecological status of many pastoral systems has seriously deteriorated in the western alpine region. We assessed changes in pasture dynamics by integrating information from remote-sensing products and two process-based models, i.e. the grassland-specific, biogeochemical growth model PaSim and the generic crop-growth model DayCent. Meteorological observations and satellite-derived Normalised Difference Vegetation Index (NDVI) trajectories of three pasture macro-types (high, medium and low productivity classes) in two study areas - Parc National des Écrins (PNE) in France and Parco Nazionale Gran Paradiso (PNGP) in Italy - were used as a basis for the model calibration work. The performance of the models was satisfactory in reproducing pasture production dynamics (R2 = 0.52 to 0.83). Projected changes in alpine pastures due to climate-change impacts and adaptation strategies indicate that: i) the length of the growing season is expected to increase between 15 and 40 days, resulting in changes in the timing and amount of biomass production, ii) summer water stress could limit pasture productivity; iii) earlier onset of grazing could enhance pasture productivity; iv) higher livestock densities could increase the rate of biomass regrowth, but major uncertainties in modelling processes need to be considered; and v) the carbon sequestration potential of pastures could decrease under limited water availability and warming.
Collapse
Affiliation(s)
- L Brilli
- National Research Council - Institute of BioEconomy (IBE-CNR), 50145, Sesto Fiorentino, Italy; University of Florence, DAGRI, 50144, Florence, Italy.
| | - R Martin
- Université Clermont Auvergne, INRAE, VetAgro Sup, UREP, 63000, Clermont-Ferrand, France
| | - G Argenti
- University of Florence, DAGRI, 50144, Florence, Italy
| | | | - M Bindi
- University of Florence, DAGRI, 50144, Florence, Italy
| | - R Bonet
- Parc National des Ecrins, Domaine de Charance, 05000, Gap, France
| | - P Choler
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France
| | - E Cremonese
- Climate Change Unit, Environmental Protection Agency of Aosta Valley, Saint-Christophe, Italy
| | - M Della Vedova
- Parc National des Ecrins, Domaine de Charance, 05000, Gap, France
| | - C Dibari
- University of Florence, DAGRI, 50144, Florence, Italy
| | - G Filippa
- Climate Change Unit, Environmental Protection Agency of Aosta Valley, Saint-Christophe, Italy
| | - M Galvagno
- Climate Change Unit, Environmental Protection Agency of Aosta Valley, Saint-Christophe, Italy
| | - L Leolini
- University of Florence, DAGRI, 50144, Florence, Italy
| | - M Moriondo
- National Research Council - Institute of BioEconomy (IBE-CNR), 50145, Sesto Fiorentino, Italy; University of Florence, DAGRI, 50144, Florence, Italy
| | - A Piccot
- Institut Agricole Régional, 11100, Aosta, Italy
| | - L Stendardi
- University of Florence, DAGRI, 50144, Florence, Italy
| | - S Targetti
- University of Bologna, Department of Agricultural and Food Sciences, Viale Fanin, 50, 40127, Bologna, Italy
| | - G Bellocchi
- Université Clermont Auvergne, INRAE, VetAgro Sup, UREP, 63000, Clermont-Ferrand, France
| |
Collapse
|
9
|
Li G, Wu C, Chen Y, Huang C, Zhao Y, Wang Y, Ma M, Ding Z, Yu P, Tang X. Increasing temperature regulates the advance of peak photosynthesis timing in the boreal ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163587. [PMID: 37087004 DOI: 10.1016/j.scitotenv.2023.163587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
The shift in vegetation phenology is an essential indicator of global climate change. Numerous researches based on reflectance-based vegetation index data have explored the changes in the start (SOS) and end (EOS) of vegetation life events at long time scales, while a huge discrepancy existed between the phenological metrics of vegetation structure and function. The peak photosynthesis timing (PPT), which is crucial in regulating terrestrial ecosystem carbon balance, has not received much attention. Using two global reconstructed solar-induced chlorophyll fluorescence data (CSIF and GOSIF) directly associated with vegetation photosynthesis, the spatio-temporal dynamics in PPT as well as the key environmental controls across the boreal ecosystem during 2001-2019 were systematically explored. Multi-year mean pattern showed that PPT mainly appeared in the first half of July. Compared to the northern Eurasia, later PPT appeared in the northern North America continent for about 4-5 days. Meanwhile, spatial trend in PPT exhibited an advanced trend during the last two decades. Especially, shrubland and grassland were obvious among all biomes. Spatial partial correlation analysis revealed that preseason temperature was the dominant environmental driver of PPT trends, occupying 81.32% and 78.04% of the total pixels of PPTCSIF and PPTGOSIF, respectively. Attribution analysis by ridge regression again emphasized the largest contribution of temperature to PPT dynamics in the boreal ecosystem by 52.22% (PPTCSIF) and 46.59% (PPTGOSIF), followed by radiation (PPTCSIF: 24.44%; PPTGOSIF: 28.66%) and precipitation (PPTCSIF: 23.34%; PPTGOSIF: 24.75%). These results have significant implications for deepening our understanding between vegetation photosynthetic phenology and carbon cycling with respect to future climate change in the boreal ecosystem.
Collapse
Affiliation(s)
- Guo Li
- Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Remote Sensing Big Data Application, School of Geographical Sciences, Southwest University, Chongqing 400715, China
| | - Chaoyang Wu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanan Chen
- Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Remote Sensing Big Data Application, School of Geographical Sciences, Southwest University, Chongqing 400715, China
| | - Changping Huang
- National Engineering Laboratory for Satellite Remote Sensing Applications, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Yan Zhao
- Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Remote Sensing Big Data Application, School of Geographical Sciences, Southwest University, Chongqing 400715, China
| | - Yanan Wang
- Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Remote Sensing Big Data Application, School of Geographical Sciences, Southwest University, Chongqing 400715, China
| | - Mingguo Ma
- Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Remote Sensing Big Data Application, School of Geographical Sciences, Southwest University, Chongqing 400715, China
| | - Zhi Ding
- Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Remote Sensing Big Data Application, School of Geographical Sciences, Southwest University, Chongqing 400715, China
| | - Pujia Yu
- Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Remote Sensing Big Data Application, School of Geographical Sciences, Southwest University, Chongqing 400715, China
| | - Xuguang Tang
- Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Remote Sensing Big Data Application, School of Geographical Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
10
|
Hong S, Zhang Y, Yao Y, Meng F, Zhao Q, Zhang Y. Contrasting temperature effects on the velocity of early- versus late-stage vegetation green-up in the Northern Hemisphere. GLOBAL CHANGE BIOLOGY 2022; 28:6961-6972. [PMID: 36054628 DOI: 10.1111/gcb.16414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Global vegetation greening has been widely confirmed in previous studies, yet the changes in the velocity of green-up in each month of green-up period (GUP) remains unclear. Here, we defined the velocity of vegetation green-up as VNDVI (the monthly increase of Normalized Difference Vegetation Index [NDVI] during GUP) and further explored its response to climate change in middle-high-latitude Northern Hemisphere. We found that in early GUP, VNDVI generally showed positive trends from 1982 to 2015, whereas in late GUP, it showed negative trends in most areas. Such contrasting trends were mainly due to a positive temperature effect on VNDVI in early GUP, but this effect turned negative in late GUP. The increase of soil moisture also in part explained the accelerated vegetation green-up, especially in the arid and semi-arid ecosystems of inland areas. Our analyses also indicate that the first month of the GUP was the key stage impacting vegetation greenness in summer. Future warming may continuously speed up the early growth of vegetation, altering the seasonal trajectory of vegetation and its feedbacks to the Earth system.
Collapse
Affiliation(s)
- Songbai Hong
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yichen Zhang
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yitong Yao
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Fandong Meng
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Qian Zhao
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yao Zhang
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
11
|
Liu H, Xu C, Allen CD, Hartmann H, Wei X, Yakir D, Wu X, Yu P. Nature-based framework for sustainable afforestation in global drylands under changing climate. GLOBAL CHANGE BIOLOGY 2022; 28:2202-2220. [PMID: 34953175 DOI: 10.1111/gcb.16059] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Drylands cover more than 40% of Earth's land surface and occur at the margin of forest distributions due to the limited availability of water for tree growth. Recent elevated temperature and low precipitation have driven greater forest declines and pulses of tree mortality on dryland sites compared to humid sites, particularly in temperate Eurasia and North America. Afforestation of dryland areas has been widely implemented and is expected to increase in many drylands globally to enhance carbon sequestration and benefits to the human environment, but the interplay of sometimes conflicting afforestation outcomes has not been formally evaluated yet. Most previous studies point to conflicts between additional forest area and water consumption, in particular water yield and soil conservation/desalinization in drylands, but were generally confined to local and regional scales. Our global synthesis demonstrates that additional tree cover can amplify water consumption through a nonlinear increase in evapotranspiration-depending on tree species, age, and structure-which will be further intensified by future climate change. In this review we identify substantial knowledge gaps in addressing the dryland afforestation dilemma, where there are trade-offs with planted forests between increased availability of some resources and benefits to human habitats versus the depletion of other resources that are required for sustainable development of drylands. Here we propose a method of addressing comprehensive vegetation carrying capacity, based on regulating the distribution and structure of forest plantations to better deal with these trade-offs in forest multifunctionality. We also recommend new priority research topics for dryland afforestation, including: responses and feedbacks of dryland forests to climate change; shifts in the ratio of ecosystem ET to tree cover; assessing the role of scale of afforestation in influencing the trade-offs of dryland afforestation; and comprehensive modeling of the multifunctionality of dryland forests, including both ecophysiological and socioeconomic aspects, under a changing climate.
Collapse
Affiliation(s)
- Hongyan Liu
- College of Urban and Environmental Sciences, Sino-French Institute of Earth System Science, PKU-Saihanba Station, and MOE Laboratory for Earth Surface Processes, Peking University, Beijing, China
| | - Chongyang Xu
- College of Urban and Environmental Sciences, Sino-French Institute of Earth System Science, PKU-Saihanba Station, and MOE Laboratory for Earth Surface Processes, Peking University, Beijing, China
| | - Craig D Allen
- Department of Geography and Environmental Studies, University of New Mexico, Albuquerque, New Mexico, USA
| | - Henrik Hartmann
- Department of Biogeochemical Processes, Max-Planck Institute for Biogeochemistry, Jena, Germany
| | - Xiaohua Wei
- Department of Earth, Environmental and Geographic Sciences, University of British Columbia (Okanagan Campus), Kelowna, British Columbia, Canada
| | - Dan Yakir
- Department of Environmental Sciences and Energy Research, Weizmann Institute of Science, Rehovot, Israel
| | - Xiuchen Wu
- Faculty of Geographical Science, Beijing Normal University, Beijing, China
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China
| | - Pengtao Yu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Institute of Forest Ecology, Environment and Nature Conservation, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
12
|
Gao S, Liang E, Liu R, Babst F, Camarero JJ, Fu YH, Piao S, Rossi S, Shen M, Wang T, Peñuelas J. An earlier start of the thermal growing season enhances tree growth in cold humid areas but not in dry areas. Nat Ecol Evol 2022; 6:397-404. [PMID: 35228669 DOI: 10.1038/s41559-022-01668-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/13/2022] [Indexed: 11/09/2022]
Abstract
Climatic warming alters the onset, duration and cessation of the vegetative season. While previous studies have shown a tight link between thermal conditions and leaf phenology, less is known about the impacts of phenological changes on tree growth. Here, we assessed the relationships between the start of the thermal growing season and tree growth across the extratropical Northern Hemisphere using 3,451 tree-ring chronologies and daily climatic data for 1948-2014. An earlier start of the thermal growing season promoted growth in regions with high ratios of precipitation to temperature but limited growth in cold-dry regions. Path analyses indicated that an earlier start of the thermal growing season enhanced growth primarily by alleviating thermal limitations on wood formation in boreal forests and by lengthening the period of growth in temperate and Mediterranean forests. Semi-arid and dry subalpine forests, however, did not benefit from an earlier onset of growth and a longer growing season, presumably due to associated water loss and/or more frequent early spring frosts. These emergent patterns of how climatic impacts on wood phenology affect tree growth at regional to hemispheric scales hint at how future phenological changes may affect the carbon sequestration capacity of extratropical forest ecosystems.
Collapse
Affiliation(s)
- Shan Gao
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Eryuan Liang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China.
| | - Ruishun Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Flurin Babst
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA.,Laboratory of Tree-Ring Research, University of Arizona, Tucson, AZ, USA
| | | | - Yongshuo H Fu
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Shilong Piao
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China.,Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Sergio Rossi
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Quebec, Canada.,Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Miaogen Shen
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Tao Wang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Josep Peñuelas
- CREAF, Cerdanyola del Valles, Barcelona, Spain.,CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
| |
Collapse
|
13
|
Ma XQ, Leng P, Liao QY, Geng YJ, Zhang X, Shang GF, Song X, Song Q, Li ZL. Prediction of vegetation phenology with atmospheric reanalysis over semiarid grasslands in Inner Mongolia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152462. [PMID: 34953826 DOI: 10.1016/j.scitotenv.2021.152462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/24/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Vegetation phenology is a sensitive indicator of climate change and vegetation growth. In the present study, two phenological phases with respect to vegetation growth at the initial and mature stages, namely, the start of the season (SOS) and the peak of the season (POS), were estimated from a satellite-derived normalized difference vegetation index (NDVI) dataset over a long-term period of 32 years (1983 to 2014) and used to explore their responses to atmospheric variables, including air temperature, precipitation, solar radiation, wind speed and soil moisture. First, the forward feature selection method was used to determine whether each independent variable was linear or nonlinear to the SOS and POS. In addition, a generalized additive model (GAM) was used to analyze the correlation between the phenological phases and each independent variable at different temporal scales. The results show that soil moisture and precipitation are linearly correlated with the SOS, whereas the other variables are nonlinearly correlated. Meanwhile, soil moisture, wind speed and solar radiation are found to be nonlinearly correlated with the POS. However, air temperature and precipitation reveal a significant negative correlation with the POS. Furthermore, it was concluded that the aforementioned independent variables from the previous year could contribute to approximately 63%-85% of the SOS variations in the present year, whereas the atmospheric variables from April to June could contribute to approximately 70%-85% of the POS variations in the same year. Finally, the SOS and POS predicted by the GAM exhibit significant agreement with those derived from the satellite NDVI dataset, with the root mean square error of approximately 3 to 5 days.
Collapse
Affiliation(s)
- Xue-Qing Ma
- School of Land Science and Spatial Planning, Hebei GEO University, Shijiazhuang 050031, China
| | - Pei Leng
- Key Laboratory of Agricultural Remote Sensing, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Qian-Yu Liao
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yun-Jing Geng
- Key Laboratory of Agricultural Remote Sensing, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xia Zhang
- School of Land Science and Spatial Planning, Hebei GEO University, Shijiazhuang 050031, China
| | - Guo-Fei Shang
- School of Land Science and Spatial Planning, Hebei GEO University, Shijiazhuang 050031, China
| | - Xiaoning Song
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Song
- Key Laboratory of Agricultural Remote Sensing, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhao-Liang Li
- School of Land Science and Spatial Planning, Hebei GEO University, Shijiazhuang 050031, China; Key Laboratory of Agricultural Remote Sensing, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
14
|
Zhang F, Biederman JA, Pierce NA, Potts DL, Devine CJ, Hao Y, Smith WK. Precipitation temporal repackaging into fewer, larger storms delayed seasonal timing of peak photosynthesis in a semi‐arid grassland. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fangyue Zhang
- School of Natural Resources and the Environment University of Arizona Tucson AZ USA
- USDA Agricultural Research Service Southwest Watershed Research Center Tucson AZ USA
| | - Joel A. Biederman
- USDA Agricultural Research Service Southwest Watershed Research Center Tucson AZ USA
| | - Nathan A. Pierce
- School of Natural Resources and the Environment University of Arizona Tucson AZ USA
- USDA Agricultural Research Service Southwest Watershed Research Center Tucson AZ USA
| | | | - Charles John Devine
- School of Natural Resources and the Environment University of Arizona Tucson AZ USA
| | - Yanbin Hao
- College of Life Sciences University of Chinese Academy of Sciences Beijing China
| | - William K. Smith
- School of Natural Resources and the Environment University of Arizona Tucson AZ USA
| |
Collapse
|
15
|
Chen A, Mao J, Ricciuto D, Lu D, Xiao J, Li X, Thornton PE, Knapp AK. Seasonal changes in GPP/SIF ratios and their climatic determinants across the Northern Hemisphere. GLOBAL CHANGE BIOLOGY 2021; 27:5186-5197. [PMID: 34185345 DOI: 10.1111/gcb.15775] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/24/2021] [Indexed: 06/13/2023]
Abstract
Satellite-derived sun-induced chlorophyll fluorescence (SIF) has been increasingly used for estimating gross primary production (GPP). However, the relationship between SIF and GPP has not been well defined, impeding the translation of satellite observed SIF to GPP. Previous studies have generally assumed a linear relationship between SIF and GPP at daily and longer time scales, but support for this assumption is lacking. Here, we used the GPP/SIF ratio to investigate seasonal variations in the relationship between SIF and GPP over the Northern Hemisphere (NH). Based on multiple SIF products and MODIS and FLUXCOM GPP data, we found strong seasonal hump-shaped patterns for the GPP/SIF ratio over northern latitudes, with higher values in the summer than in the spring or autumn. This hump-shaped GPP/SIF seasonal variation was confirmed by examining different SIF products and was evident for most vegetation types except evergreen broadleaf forests. The seasonal amplitude of the GPP/SIF ratio decreased from the boreal/arctic region to drylands and the tropics. For most of the NH, the lowest GPP/SIF values occurred in October or September, while the maximum GPP/SIF values were evident in June and July. The most pronounced seasonal amplitude of GPP/SIF occurred in intermediate temperature and precipitation ranges. GPP/SIF was positively related to temperature in the early and late parts of the growing season, but not during the peak growing months. These shifting relationships between temperature and GPP/SIF across different months appeared to play a key role in the seasonal dynamics of GPP/SIF. Several mechanisms may explain the patterns we observed, and future research encompassing a broad range of climate and vegetation settings is needed to improve our understanding of the spatial and temporal relationships between SIF and GPP. Nonetheless, the strong seasonal variation in GPP/SIF we identified highlights the importance of incorporating this behavior into SIF-based GPP estimations.
Collapse
Affiliation(s)
- Anping Chen
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| | - Jiafu Mao
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Daniel Ricciuto
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Dan Lu
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jingfeng Xiao
- Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH, USA
| | - Xing Li
- Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH, USA
| | - Peter E Thornton
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Alan K Knapp
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
16
|
Wang H, Liu H, Huang N, Bi J, Ma X, Ma Z, Shangguan Z, Zhao H, Feng Q, Liang T, Cao G, Schmid B, He JS. Satellite-derived NDVI underestimates the advancement of alpine vegetation growth over the past three decades. Ecology 2021; 102:e03518. [PMID: 34432893 DOI: 10.1002/ecy.3518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 11/09/2022]
Abstract
Satellite-derived normalized difference vegetation index (NDVI) data are increasingly relied on to reveal the growth responses of vegetation to climate change, yet the vegetation growth tracking accuracy of these data remains unclear due to a lack of long-term field data. Here, we adopted a unique field-measured seasonal aboveground biomass dataset from 1982-2014 to assess the potential of using satellite-derived NDVI data to match field data in regard to the interannual variability in seasonal vegetation growth in a Tibetan alpine grassland. We revealed that Global Inventory Monitoring and Modeling System (GIMMS) NDVI data captured the advancement of field-measured vegetation growth throughout the entire study period but not from 2000-2014, while MODIS NDVI data still observed this advancing trend after 2000 to a limited extent. However, satellite-derived NDVI data consistently underestimated the advancement degree of field-measured vegetation growth, regardless of whether GIMMS or MODIS NDVI data were considered. We tentatively attribute this underestimation to an increased ratio of grass biomass to forb biomass, which could delay the advancement of NDVI development but not affect that of field-measured biomass development. Our results suggest that satellite-derived NDVI data may miss critical responses of vegetation growth to global climate change, potentially due to long-term shifts in plant community composition.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovation Ecology, and College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Huiying Liu
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Ni Huang
- State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing Normal University, Beijing, 100094, China
| | - Jian Bi
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xuanlong Ma
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhiyuan Ma
- College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China
| | - Zijian Shangguan
- College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China
| | - Hongfang Zhao
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Qisheng Feng
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovation Ecology, and College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Tiangang Liang
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovation Ecology, and College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Guangmin Cao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Bernhard Schmid
- Remote Sensing Laboratories, Department of Geography, University of Zurich, Zurich, CH-8057, Switzerland
| | - Jin-Sheng He
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovation Ecology, and College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China.,College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China
| |
Collapse
|
17
|
Kelsey KC, Pedersen SH, Leffler AJ, Sexton JO, Feng M, Welker JM. Winter snow and spring temperature have differential effects on vegetation phenology and productivity across Arctic plant communities. GLOBAL CHANGE BIOLOGY 2021; 27:1572-1586. [PMID: 33372357 DOI: 10.1111/gcb.15505] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/21/2020] [Accepted: 12/17/2020] [Indexed: 05/22/2023]
Abstract
Tundra dominates two-thirds of the unglaciated, terrestrial Arctic. Although this region has experienced rapid and widespread changes in vegetation phenology and productivity over the last several decades, the specific climatic drivers responsible for this change remain poorly understood. Here we quantified the effect of winter snowpack and early spring temperature conditions on growing season vegetation phenology (timing of the start, peak, and end of the growing season) and productivity of the dominant tundra vegetation communities of Arctic Alaska. We used daily remotely sensed normalized difference vegetation index (NDVI), and daily snowpack and temperature variables produced by SnowModel and MicroMet, coupled physically based snow and meteorological modeling tools, to (1) determine the most important snowpack and thermal controls on tundra vegetation phenology and productivity and (2) describe the direction of these relationships within each vegetation community. Our results show that soil temperature under the snowpack, snowmelt timing, and air temperature following snowmelt are the most important drivers of growing season timing and productivity among Arctic vegetation communities. Air temperature after snowmelt was the most important control on timing of season start and end, with warmer conditions contributing to earlier phenology in all vegetation communities. In contrast, the controls on the timing of peak season and productivity also included snowmelt timing and soil temperature under the snowpack, dictated in part by the snow insulating capacity. The results of this novel analysis suggest that while future warming effects on phenology may be consistent across communities of the tundra biome, warming may result in divergent, community-specific productivity responses if coupled with reduced snow insulating capacity lowers winter soil temperature and potential nutrient cycling in the soil.
Collapse
Affiliation(s)
- Katharine C Kelsey
- Department of Geography and Environmental Science, University of Colorado Denver, Denver, CO, USA
| | - Stine Højlund Pedersen
- Cooperative Institute for Research in the Atmosphere, Colorado State University, Ft. Collins, CO, USA
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK, USA
| | - A Joshua Leffler
- Department of Natural Resource Management, South Dakota State University, Brookings, SD, USA
| | | | - Min Feng
- terraPulse, Inc, Gaithersburg, MD, USA
| | - Jeffrey M Welker
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK, USA
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
- University of the Arctic-UArctic, Rovaniemi, Finland
| |
Collapse
|
18
|
Tumajer J, Kašpar J, Kuželová H, Shishov VV, Tychkov II, Popkova MI, Vaganov EA, Treml V. Forward Modeling Reveals Multidecadal Trends in Cambial Kinetics and Phenology at Treeline. FRONTIERS IN PLANT SCIENCE 2021; 12:613643. [PMID: 33584770 PMCID: PMC7875878 DOI: 10.3389/fpls.2021.613643] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/06/2021] [Indexed: 05/02/2023]
Abstract
Significant alterations of cambial activity might be expected due to climate warming, leading to growing season extension and higher growth rates especially in cold-limited forests. However, assessment of climate-change-driven trends in intra-annual wood formation suffers from the lack of direct observations with a timespan exceeding a few years. We used the Vaganov-Shashkin process-based model to: (i) simulate daily resolved numbers of cambial and differentiating cells; and (ii) develop chronologies of the onset and termination of specific phases of cambial phenology during 1961-2017. We also determined the dominant climatic factor limiting cambial activity for each day. To asses intra-annual model validity, we used 8 years of direct xylogenesis monitoring from the treeline region of the Krkonoše Mts. (Czechia). The model exhibits high validity in case of spring phenological phases and a seasonal dynamics of tracheid production, but its precision declines for estimates of autumn phenological phases and growing season duration. The simulations reveal an increasing trend in the number of tracheids produced by cambium each year by 0.42 cells/year. Spring phenological phases (onset of cambial cell growth and tracheid enlargement) show significant shifts toward earlier occurrence in the year (for 0.28-0.34 days/year). In addition, there is a significant increase in simulated growth rates during entire growing season associated with the intra-annual redistribution of the dominant climatic controls over cambial activity. Results suggest that higher growth rates at treeline are driven by (i) temperature-stimulated intensification of spring cambial kinetics, and (ii) decoupling of summer growth rates from the limiting effect of low summer temperature due to higher frequency of climatically optimal days. Our results highlight that the cambial kinetics stimulation by increasing spring and summer temperatures and shifting spring phenology determine the recent growth trends of treeline ecosystems. Redistribution of individual climatic factors controlling cambial activity during the growing season questions the temporal stability of climatic signal of cold forest chronologies under ongoing climate change.
Collapse
Affiliation(s)
- Jan Tumajer
- Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Prague, Czechia
- Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
- *Correspondence: Jan Tumajer,
| | - Jakub Kašpar
- Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Prague, Czechia
| | - Hana Kuželová
- Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Prague, Czechia
| | - Vladimir V. Shishov
- Laboratory for Integral Studies of Forest Dynamics of Eurasia, Siberian Federal University, Krasnoyarsk, Russia
- Sukachev Institute of Forest SB RAS, Krasnoyarsk, Russia
| | - Ivan I. Tychkov
- Laboratory for Integral Studies of Forest Dynamics of Eurasia, Siberian Federal University, Krasnoyarsk, Russia
| | - Margarita I. Popkova
- Laboratory for Integral Studies of Forest Dynamics of Eurasia, Siberian Federal University, Krasnoyarsk, Russia
| | - Eugene A. Vaganov
- Sukachev Institute of Forest SB RAS, Krasnoyarsk, Russia
- Rectorate, Siberian Federal University, Krasnoyarsk, Russia
- Center for Forest Ecology and Productivity of the Russian Academy of Sciences, Moscow, Russia
| | - Václav Treml
- Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
19
|
Mapping Spatiotemporal Changes in Vegetation Growth Peak and the Response to Climate and Spring Phenology over Northeast China. REMOTE SENSING 2020. [DOI: 10.3390/rs12233977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Global climate change has led to significant changes in seasonal rhythm events of vegetation growth, such as spring onset and autumn senescence. Spatiotemporal shifts in these vegetation phenological metrics have been widely reported over the globe. Vegetation growth peak represents plant photosynthesis capacity and responds to climate change. At present, spatiotemporal changes in vegetation growth peak characteristics (timing and maximum growth magnitude) and their underlying governing mechanisms remain unclear at regional scales. In this study, the spatiotemporal dynamics of vegetation growth peak in northeast China (NEC) was investigated using long-term NDVI time series. Then, the effects of climatic factors and spring phenology on vegetation growth peak were examined. Finally, the contribution of growth peak to vegetation production variability was estimated. The results of the phenological analysis indicate that the date of vegetation green up in spring and growth peak in summer generally present a delayed trend, while the amplitude of growth peak shows an increasing trend. There is an underlying cycle of 11 years in the vegetation growth peak of the entire study area. Air temperature and precipitation before the growing season have a small impact on vegetation growth peak amplitude both in its spatial extent and magnitude (mainly over grasslands) but have a significant influence on the date of the growth peak in the forests of the northern area. Spring green-up onset has a more significant impact on growth peak than air temperature and precipitation. Although green-up date plays a more pronounced role in controlling the amplitude of the growth peak in forests and grasslands, it also affects the date of growth peak in croplands. The amplitude of the growth peak has a significant effect on the inter-annual variability of vegetation production. The discrepant patterns of growth peak response to climate and phenology reflect the distinct adaptability of the vegetation growth peak to climate change, and result in different carbon sink patterns over the study area. The study of growth peak could improve our understanding of vegetation photosynthesis activity over various land covers and its contribution to carbon uptake.
Collapse
|
20
|
Park H, Jeong S, Peñuelas J. Accelerated rate of vegetation green-up related to warming at northern high latitudes. GLOBAL CHANGE BIOLOGY 2020; 26:6190-6202. [PMID: 32869929 DOI: 10.1111/gcb.15322] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Mid- to high-latitude vegetation are experiencing changes in their seasonal cycles as a result of climate change. Although the rates of seasonal growth from winter dormancy to summer maturity have accelerated because of changes in environmental conditions, less attention has been paid to the rate of vegetation green-up (RVG) and its dynamics, which could advance vegetation maturity. We analyzed the long-term changes in RVG and the drivers at high northern latitudes for 35 years (1982-2016) using satellite-retrieved leaf area index data based on partial correlation analyses and multivariable linear regression. The rates tended to increase significantly with time, particularly at high latitudes above 60°N in North America (1.8% mon-1 decade-1 , p < .01) and Eurasia (1.0% mon-1 decade-1 , p < .01). The increasing trend in North America was mostly because of increased heat accumulation in spring (1.2% mon-1 decade-1 ), that is, more rapid green-up owing to warming, with an increased carbon dioxide concentration (0.6 mon-1 decade-1 ). The trend in Eurasia, however, was induced by warming, increased carbon dioxide concentration, and stronger radiation, 1.0%, 0.7%, and 0.5% mon-1 decade-1 , respectively, but was partly counteracted by earlier pregreen-up dates of -1.2% mon-1 decade-1 , that is, earlier initiation of growth which counteracted green-up rate acceleration. The results suggested that warming was the predominant factor influencing the accelerated RVG at high latitudes; however, Eurasian vegetation exhibited different green-up dynamics, mitigating the influence of warming with the earlier pregreen-up. Our findings imply that high-latitude warming will drive vegetation seasonality toward rapid green-up and early maturity, leading to the reinforcement of climate-vegetation interactions; however, the consequences will be more distinct in North America owing to the absence of alleviation by earlier pregreen-up.
Collapse
Affiliation(s)
- Hoonyoung Park
- Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National University, Seoul, Republic of Korea
- Institute for Sustainable Development (ISD), Seoul National University, Seoul, Republic of Korea
| | - Sujong Jeong
- Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National University, Seoul, Republic of Korea
- Institute for Sustainable Development (ISD), Seoul National University, Seoul, Republic of Korea
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Spain
- CREAF, Cerdanyola del Vallès, Bellaterra, Spain
| |
Collapse
|
21
|
Effects of temperature variability and extremes on spring phenology across the contiguous United States from 1982 to 2016. Sci Rep 2020; 10:17952. [PMID: 33087789 PMCID: PMC7578661 DOI: 10.1038/s41598-020-74804-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 09/25/2020] [Indexed: 11/23/2022] Open
Abstract
Warming climate and its impact on vegetation phenological trends have been widely investigated. However, interannual variability in temperature is considerably large in recent decades, which is expected to trigger an increasing trend of variation in vegetation phenology. To explore the interannual phenological variation across the contiguous United States (CONUS), we first detected the onset of vegetation greenup using the time series of the daily two-band Enhanced Vegetation Index (EVI2) observed from the AVHRR Long-Term Data Record (1982–1999) and the MODIS Climate Modeling Grid (2000–2016). We then calculated the interannual variation in greenup onset during four decadal periods: 1982–1989, 1990–1999, 2000–2009 and 2010–2016. Further, the trend of interannual variation in greenup onset from 1982 to 2016 was analyzed at pixel and state levels. Extreme phenological events were also determined using a greenup onset anomaly for each pixel. Similar approaches were applied to spring temperatures to detect extreme years and to the temporal trend of interannual variation to explain the phenological variation. The results revealed that 62% of pixels show an increasing interannual variation in greenup onset, and in 44% of pixels, this variation could be explained by the temperature. Although extreme phenology occurred locally in different years, three nationwide extreme phenological years were distinguished. The extreme warm spring that occurred in 2012 resulted in the occurrence of greenup onset as much as 20 days earlier than normal in large parts of the CONUS. In contrast, greenup onset was much later (up to 30 days) in 1983 and 1996 due to cool spring temperatures. These findings suggest that interannual variation in spring phenology could be much stronger in the future in response to climate variation, which could have more significant impacts on terrestrial ecosystems than the regular long-term phenological trend.
Collapse
|
22
|
Divergent Sensitivities of Spaceborne Solar-Induced Chlorophyll Fluorescence to Drought among Different Seasons and Regions. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION 2020. [DOI: 10.3390/ijgi9090542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As a newly emerging satellite form of data, solar-induced chlorophyll fluorescence (SIF) provides a direct measurement of photosynthetic activity. The potential of SIF for drought assessment in different grassland ecosystems is not yet clear. In this study, the correlations between spaceborne SIF and nine drought indices were evaluated. Standardized precipitation evapotranspiration index (SPEI) at a 1, 3, 6, 9, 12 month scale, Palmer drought severity index (PDSI), soil moisture, temperature condition index (TCI), and vapor pressure deficit (VPD) were evaluated. The relationships between different grassland types and different seasons were compared, and the driving forces affecting the sensitivity of SIF to drought were explored. We found that the correlations between SIF and drought indices were different for temperate grasslands and alpine grasslands. The correlation coefficients between SIF and soil moisture were the highest (the mean value was 0.72 for temperate grasslands and 0.69 for alpine grasslands), followed by SPEI and PDSI at a three month scale, and the correlation coefficient between SIF and TCI was the lowest (the mean value was 0.38 for both temperate and alpine grasslands). Spaceborne SIF is more effective for drought monitoring during the peak period of the growing season (July and August). Temperature and radiation are important factors affecting the sensitivity of SIF to drought. The results from this study demonstrated the importance of SIF in drought monitoring especially for temperate grasslands in the peak growing season.
Collapse
|
23
|
Wang H, Liu H, Cao G, Ma Z, Li Y, Zhang F, Zhao X, Zhao X, Jiang L, Sanders NJ, Classen AT, He JS. Alpine grassland plants grow earlier and faster but biomass remains unchanged over 35 years of climate change. Ecol Lett 2020; 23:701-710. [PMID: 32052555 PMCID: PMC7154776 DOI: 10.1111/ele.13474] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/02/2020] [Accepted: 01/19/2020] [Indexed: 01/05/2023]
Abstract
Satellite data indicate significant advancement in alpine spring phenology over decades of climate warming, but corresponding field evidence is scarce. It is also unknown whether this advancement results from an earlier shift of phenological events, or enhancement of plant growth under unchanged phenological pattern. By analyzing a 35‐year dataset of seasonal biomass dynamics of a Tibetan alpine grassland, we show that climate change promoted both earlier phenology and faster growth, without changing annual biomass production. Biomass production increased in spring due to a warming‐induced earlier onset of plant growth, but decreased in autumn due mainly to increased water stress. Plants grew faster but the fast‐growing period shortened during the mid‐growing season. These findings provide the first in situ evidence of long‐term changes in growth patterns in alpine grassland plant communities, and suggest that earlier phenology and faster growth will jointly contribute to plant growth in a warming climate.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Institute of Innovation Ecology, Lanzhou University, Lanzhou, 730000, China.,Institute of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China
| | - Huiying Liu
- Institute of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China
| | - Guangmin Cao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Zhiyuan Ma
- Institute of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China
| | - Yikang Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Fawei Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Xia Zhao
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xinquan Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Lin Jiang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Nathan J Sanders
- Environmental Program, Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, VT, 05405, USA
| | - Aimée T Classen
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, VT, 05405, USA.,Gund Institute for Environment, University of Vermont, Burlington, VT, 05405, USA
| | - Jin-Sheng He
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Institute of Innovation Ecology, Lanzhou University, Lanzhou, 730000, China.,Institute of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China
| |
Collapse
|
24
|
Does Earlier and Increased Spring Plant Growth Lead to Reduced Summer Soil Moisture and Plant Growth on Landscapes Typical of Tundra-Taiga Interface? REMOTE SENSING 2019. [DOI: 10.3390/rs11171989] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Over the past four decades, satellite observations have shown intensified global greening. At the same time, widespread browning and reversal of or stalled greening have been reported at high latitudes. One of the main reasons for this browning/lack of greening is thought to be warming-induced water stress, i.e., soil moisture depletion caused by earlier spring growth and increased summer evapotranspiration. To investigate these phenomena, we use MODIS collection 6, Global Inventory Modeling and Mapping Studies third-generation (GIMMS) normalized difference vegetation index (NDVI3g), and Global Land Evaporation Amsterdam Model (GLEAM) satellite-based root-zone soil moisture data. The study area was the Far North of Ontario (FNO), 453,788 km2 of heterogeneous landscape typical of the tundra-taiga interface, consisting of unmanaged boreal forests growing on mineral and peat soils, wetlands, and the most southerly area of tundra. The results indicate that the increased plant growth in spring leads to decreased summer growth. Lower summer soil moisture is related to increased spring plant growth in areas with lower soil moisture content. We also found that earlier start of growing season leads to decreased summer and peak season maximum plant growth. In conclusion, increased spring plant growth and earlier start of growing season deplete summer soil moisture and decrease the overall summer plant growth even in temperature-limited high latitude ecosystems. Our findings contribute to evolving understanding of changes in vegetation dynamics in relation to climate in northern high latitude terrestrial ecosystems.
Collapse
|
25
|
Delgado-Fernandez I, O'Keeffe N, Davidson-Arnott RGD. Natural and human controls on dune vegetation cover and disturbance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 672:643-656. [PMID: 30974356 DOI: 10.1016/j.scitotenv.2019.03.494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 03/05/2019] [Accepted: 03/31/2019] [Indexed: 06/09/2023]
Abstract
Beaches and dunes are one of the most heavily used environments on Earth, with tourism and residential uses leading to ecosystem loss and dune degradation. Many coastal dune fields also host a range of economic activities such as farming, mining, and animal grazing, which can affect their evolution. The second half of the 20th century has seen an increase of dune vegetation cover in many dunes around the world, with climatic forcing often cited as a driver for this. However, identification of the relative contributions to landscape change due to climate vs. natural and/or artificial disturbances remains unclear. This poses a problem for managers seeking to maintain some 'desirable' landscape characteristics, because understanding the reasons for dune field change is essential prior to implementing interventions, as is differentiating what is natural from what is not. This study proposes a systematic approach to identifying dune disturbances and isolating them from the effect of climate. The approach assumes that it is possible to measure dune disturbances by comparing observed vegetation cover with that expected due to climate. A semi-quantitative procedure is proposed to explore the existence of disturbance, its significance, and the causes for it. The procedure can also be used in reverse to explore the effect of variables driving disturbance and the likely landscape trajectory if the driver is removed. The approach is tested with a case study of the Sefton dunes in NW England, a large dune field subject to multiple interventions and degrees of human impact. The discussion focuses on the importance of disturbance location and the range of variables involved in changes to vegetation cover at this and other locations. In natural dune fields, it is recommended as best practice to managers that artificial stressors and human-led disturbances are minimized to allow coastal dune systems to evolve naturally.
Collapse
Affiliation(s)
| | - Nicholas O'Keeffe
- Geography Department, Edge Hill University, Ormskirk, Lancashire, UK
| | | |
Collapse
|
26
|
Wang S, Ju W, Peñuelas J, Cescatti A, Zhou Y, Fu Y, Huete A, Liu M, Zhang Y. Urban-rural gradients reveal joint control of elevated CO 2 and temperature on extended photosynthetic seasons. Nat Ecol Evol 2019; 3:1076-1085. [PMID: 31235928 DOI: 10.1038/s41559-019-0931-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/21/2019] [Indexed: 11/10/2022]
Abstract
Photosynthetic phenology has large effects on the land-atmosphere carbon exchange. Due to limited experimental assessments, a comprehensive understanding of the variations of photosynthetic phenology under future climate and its associated controlling factors is still missing, despite its high sensitivities to climate. Here, we develop an approach that uses cities as natural laboratories, since plants in urban areas are often exposed to higher temperatures and carbon dioxide (CO2) concentrations, which reflect expected future environmental conditions. Using more than 880 urban-rural gradients across the Northern Hemisphere (≥30° N), combined with concurrent satellite retrievals of Sun-induced chlorophyll fluorescence (SIF) and atmospheric CO2, we investigated the combined impacts of elevated CO2 and temperature on photosynthetic phenology at the large scale. The results showed that, under urban conditions of elevated CO2 and temperature, vegetation photosynthetic activity began earlier (-5.6 ± 0.7 d), peaked earlier (-4.9 ± 0.9 d) and ended later (4.6 ± 0.8 d) than in neighbouring rural areas, with a striking two- to fourfold higher climate sensitivity than greenness phenology. The earlier start and peak of season were sensitive to both the enhancements of CO2 and temperature, whereas the delayed end of season was mainly attributed to CO2 enrichments. We used these sensitivities to project phenology shifts under four Representative Concentration Pathway climate scenarios, predicting that vegetation will have prolonged photosynthetic seasons in the coming two decades. This observation-driven study indicates that realistic urban environments, together with SIF observations, provide a promising method for studying vegetation physiology under future climate change.
Collapse
Affiliation(s)
- Songhan Wang
- International Institute for Earth System Science, Nanjing University, Nanjing, China.,Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China.,Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing, China
| | - Weimin Ju
- International Institute for Earth System Science, Nanjing University, Nanjing, China.,Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain.,CREAF, Barcelona, Spain
| | - Alessandro Cescatti
- Directorate for Sustainable Resources, Joint Research Centre, European Commission, Ispra, Italy
| | - Yuyu Zhou
- Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA, USA
| | - Yongshuo Fu
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Alfredo Huete
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Min Liu
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China.,Institute of Eco-Chongming, Shanghai, China
| | - Yongguang Zhang
- International Institute for Earth System Science, Nanjing University, Nanjing, China. .,Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China. .,Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing, China.
| |
Collapse
|
27
|
Recent NDVI Trends in Mainland Spain: Land-Cover and Phytoclimatic-Type Implications. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION 2019. [DOI: 10.3390/ijgi8010043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The temporal evolution of vegetation is one of the best indicators of climate change, and many earth system models are dependent on an accurate understanding of this process. However, the effect of climate change is expected to vary from one land-cover type to another, due to the change in vegetation and environmental conditions. Therefore, it is pertinent to understand the effect of climate change by land-cover type to understand the regions that are most vulnerable to climate change. Hence, in this study we analyzed the temporal statistical trends (2001–2016) of the MODIS13Q1 normalized difference vegetation index (NDVI) to explore whether there are differences, by land-cover class and phytoclimatic type, in mainland Spain and the Balearic Islands. We found 7.6% significant negative NDVI trends and 11.8% significant positive NDVI trends. Spatial patterns showed a non-random distribution. The Atlantic biogeographical region showed an unexpected 21% significant negative NDVI trends, and the Alpine region showed only 3.1% significant negative NDVI trends. We also found statistical differences between NDVI trends by land cover and phytoclimatic type. Variance explained by these variables was up to 35%. Positive trends were explained, above all, by land occupations, and negative trends were explained by phytoclimates. Warmer phytoclimatic classes of every general type and forest, as well as some agriculture land covers, showed negative trends.
Collapse
|
28
|
Warming shortens flowering seasons of tundra plant communities. Nat Ecol Evol 2018; 3:45-52. [PMID: 30532048 DOI: 10.1038/s41559-018-0745-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 11/06/2018] [Indexed: 11/08/2022]
Abstract
Advancing phenology is one of the most visible effects of climate change on plant communities, and has been especially pronounced in temperature-limited tundra ecosystems. However, phenological responses have been shown to differ greatly between species, with some species shifting phenology more than others. We analysed a database of 42,689 tundra plant phenological observations to show that warmer temperatures are leading to a contraction of community-level flowering seasons in tundra ecosystems due to a greater advancement in the flowering times of late-flowering species than early-flowering species. Shorter flowering seasons with a changing climate have the potential to alter trophic interactions in tundra ecosystems. Interestingly, these findings differ from those of warmer ecosystems, where early-flowering species have been found to be more sensitive to temperature change, suggesting that community-level phenological responses to warming can vary greatly between biomes.
Collapse
|
29
|
Blankinship JC, McCorkle EP, Meadows MW, Hart SC. Quantifying the legacy of snowmelt timing on soil greenhouse gas emissions in a seasonally dry montane forest. GLOBAL CHANGE BIOLOGY 2018; 24:5933-5947. [PMID: 30295387 DOI: 10.1111/gcb.14471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 09/14/2018] [Accepted: 09/25/2018] [Indexed: 06/08/2023]
Abstract
The release of water during snowmelt orchestrates a variety of important belowground biogeochemical processes in seasonally snow-covered ecosystems, including the production and consumption of greenhouse gases (GHGs) by soil microorganisms. Snowmelt timing is advancing rapidly in these ecosystems, but there is still a need to isolate the effects of earlier snowmelt on soil GHG fluxes. For an improved mechanistic understanding of the biogeochemical effects of snowmelt timing during the snow-free period, we manipulated a high-elevation forest that typically receives over two meters of snowfall but little summer precipitation to influence legacy effects of snowmelt timing. We altered snowmelt rates for two years using black sand to accelerate snowmelt and white fabric to postpone snowmelt, thus creating a two- to three-week disparity in snowmelt timing. Soil microclimate and fluxes of carbon dioxide (CO2 ), methane (CH4 ), and nitrous oxide (N2 O) were monitored weekly to monthly during the snow-free period. Microbial abundances were estimated by potential assays near the end of each snow-free period. Although earlier snowmelt caused soil drying, we found no statistically significant effects (p < 0.05) of altered snowmelt timing on fluxes of CO2 or N2 O, or soil microbial abundances. Soil CH4 fluxes, however, did respond to snowmelt timing, with 18% lower rates of CH4 uptake in the earlier snowmelt treatment, but only after a dry winter. Cumulative CO2 emission and CH4 uptake were 43% and 88% greater, respectively, after the dry winter. We conclude that soil GHG fluxes can be surprisingly resistant to hydrological changes associated with earlier snowmelt, likely because of persistent moisture and microbial activities in deeper mineral soils. As a result, a drier California in the future may cause seasonally snow-covered soils in the Sierra Nevada to emit more GHGs, not less.
Collapse
Affiliation(s)
- Joseph C Blankinship
- Life & Environmental Sciences and Sierra Nevada Research Institute, University of California at Merced, Merced, California
| | - Emma P McCorkle
- Life & Environmental Sciences and Sierra Nevada Research Institute, University of California at Merced, Merced, California
| | - Matthew W Meadows
- Sierra Nevada Research Institute, University of California at Merced, Merced, California
| | - Stephen C Hart
- Life & Environmental Sciences and Sierra Nevada Research Institute, University of California at Merced, Merced, California
| |
Collapse
|
30
|
Monitoring NDVI Inter-Annual Behavior in Mountain Areas of Mainland Spain (2001–2016). SUSTAINABILITY 2018. [DOI: 10.3390/su10124363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Currently, there exists growing evidence that warming is amplified with elevation resulting in rapid changes in temperature, humidity and water in mountainous areas. The latter might result in considerable damage to forest and agricultural land cover, affecting all the ecosystem services and the socio-economic development that these mountain areas provide. The Mediterranean mountains, moreover, which host a high diversity of natural species, are more vulnerable to global change than other European ecosystems. The protected areas of the mountain ranges of peninsular Spain could help preserve natural resources and landscapes, as well as promote scientific research and the sustainable development of local populations. The temporal statistical trends (2001–2016) of the MODIS13Q1 Normalized Difference Vegetation Index (NDVI) interannual dynamics are analyzed to explore whether the NDVI trends are found uniformly within the mountain ranges of mainland Spain (altitude > 1000 m), as well as in the protected or non-protected mountain areas. Second, to determine if there exists a statistical association between finding an NDVI trend and the specific mountain ranges, protected or unprotected areas are studied. Third, a possible association between cover types in pure pixels using CORINE (Co-ordination of Information on the Environment) land cover cartography is studied and land cover changes between 2000 and 2006 and between 2006 and 2012 are calculated for each mountainous area. Higher areas are observed to have more positive NDVI trends than negative in mountain areas located in mainland Spain during the 2001–2016 period. The growing of vegetation, therefore, was greater than its decrease in the study area. Moreover, differences in the size of the area between growth and depletion of vegetation patterns along the different mountains are found. Notably, more negatives than expected are found, and fewer positives are found than anticipated in the mountains, such as the Cordillera Cantábrica (C.Cant.) or Montes de Murcia y Alicante (M.M.A). Quite the reverse happened in Pirineos (Pir.) and Montes de Cádiz y Málaga (M.C.M.), among others. The statistical association between the trends found and the land cover types is also observed. The differences observed can be explained since the mountain ranges in this study are defined by climate, land cover, human usage and, to a small degree, by land cover changes, but further detailed research is needed to get in-depth detailed conclusions. Conversely, it is found that, in protected mountain areas, a lower NDVI pixels trend than expected (>20%) occurs, whereas it is less than anticipated in unprotected mountain areas. This could be caused by management and the land cover type.
Collapse
|
31
|
Wang L, Tian F, Wang Y, Wu Z, Schurgers G, Fensholt R. Acceleration of global vegetation greenup from combined effects of climate change and human land management. GLOBAL CHANGE BIOLOGY 2018; 24:5484-5499. [PMID: 29963745 DOI: 10.1111/gcb.14369] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/16/2018] [Accepted: 06/07/2018] [Indexed: 06/08/2023]
Abstract
Global warming and human land management have greatly influenced vegetation growth through both changes in spring phenology and photosynthetic primary production. This will presumably impact the velocity of vegetation greenup (Vgreenup, the daily rate of changes in vegetation productivity during greenup period), yet little is currently known about the spatio-temporal patterns of Vgreenup of global vegetation. Here, we define Vgreenup as the ratio of the amplitude of greenup (Agreenup) to the duration of greenup (Dgreenup) and derive global Vgreenup from 34-year satellite leaf area index (LAI) observations to study spatio-temporal dynamics of Vgreenup at the global, hemispheric, and ecosystem scales. We find that 19.9% of the pixels analyzed (n = 1,175,453) experienced significant trends toward higher greenup rates by an average of 0.018 m2 m-2 day-1 for 1982-2015 as compared to 8.6% of pixels with significant negative trends (p < 0.05). Global distribution and dynamics of Vgreenup show high spatial heterogeneity and ecosystem-specific patterns, which is primarily determined by the high spatial variation in Agreenup, while the temporal dynamics of Vgreenup are directly controlled by both changes in Dgreenup and Agreenup. Areas with the largest Vgreenup and largest positive trends are both observed in deciduous and mixed forests as compared to nonforest ecosystems showing both lower Vgreenup and trends. For nonforest ecosystems, human-managed ecosystems (e.g., rangelands and rainfed croplands) exhibited higher Vgreenup and positive trends than those of natural counterparts, suggesting strong imprints of human land management on terrestrial ecosystem functioning. Globally, warming has accelerated Vgreenup in temperature-constrained high latitude forest ecosystems and arctic regions, but decelerated Vgreenup in temperate and arid/semiarid areas. These results suggest that the combined effects of climate change and human land management have greatly accelerated global vegetation greenup, with important implications for changes in terrestrial ecosystem functioning and global carbon cycling.
Collapse
Affiliation(s)
- Lanhui Wang
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Feng Tian
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
| | - Yuhang Wang
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Zhendong Wu
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
| | - Guy Schurgers
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Fensholt
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
32
|
Gonsamo A, Chen JM, Ooi YW. Peak season plant activity shift towards spring is reflected by increasing carbon uptake by extratropical ecosystems. GLOBAL CHANGE BIOLOGY 2018; 24:2117-2128. [PMID: 29271095 DOI: 10.1111/gcb.14001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/10/2017] [Accepted: 11/21/2017] [Indexed: 05/27/2023]
Abstract
Climate change is lengthening the growing season of the Northern Hemisphere extratropical terrestrial ecosystems, but little is known regarding the timing and dynamics of the peak season of plant activity. Here, we use 34-year satellite normalized difference vegetation index (NDVI) observations and atmospheric CO2 concentration and δ13 C isotope measurements at Point Barrow (Alaska, USA, 71°N) to study the dynamics of the peak of season (POS) of plant activity. Averaged across extratropical (>23°N) non-evergreen-dominated pixels, NDVI data show that the POS has advanced by 1.2 ± 0.6 days per decade in response to the spring-ward shifts of the start (1.0 ± 0.8 days per decade) and end (1.5 ± 1.0 days per decade) of peak activity, and the earlier onset of the start of growing season (1.4 ± 0.8 days per decade), while POS maximum NDVI value increased by 7.8 ± 1.8% for 1982-2015. Similarly, the peak day of carbon uptake, based on calculations from atmospheric CO2 concentration and δ13 C data, is advancing by 2.5 ± 2.6 and 4.3 ± 2.9 days per decade, respectively. POS maximum NDVI value shows strong negative relationships (p < .01) with the earlier onset of the start of growing season and POS days. Given that the maximum solar irradiance and day length occur before the average POS day, the earlier occurrence of peak plant activity results in increased plant productivity. Both the advancing POS day and increasing POS vegetation greenness are consistent with the shifting peak productivity towards spring and the increasing annual maximum values of gross and net ecosystem productivity simulated by coupled Earth system models. Our results further indicate that the decline in autumn NDVI is contributing the most to the overall browning of the northern high latitudes (>50°N) since 2011. The spring-ward shift of peak season plant activity is expected to disrupt the synchrony of biotic interaction and exert strong biophysical feedbacks on climate by modifying the surface albedo and energy budget.
Collapse
Affiliation(s)
- Alemu Gonsamo
- Department of Geography and Planning, University of Toronto, Toronto, ON, Canada
| | - Jing M Chen
- Department of Geography and Planning, University of Toronto, Toronto, ON, Canada
| | - Ying W Ooi
- Department of Geography and Planning, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
33
|
Wang X, Wang T, Guo H, Liu D, Zhao Y, Zhang T, Liu Q, Piao S. Disentangling the mechanisms behind winter snow impact on vegetation activity in northern ecosystems. GLOBAL CHANGE BIOLOGY 2018; 24:1651-1662. [PMID: 28994227 DOI: 10.1111/gcb.13930] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/04/2017] [Accepted: 09/29/2017] [Indexed: 06/07/2023]
Abstract
Although seasonal snow is recognized as an important component in the global climate system, the ability of snow to affect plant production remains an important unknown for assessing climate change impacts on vegetation dynamics at high-latitude ecosystems. Here, we compile data on satellite observation of vegetation greenness and spring onset date, satellite-based soil moisture, passive microwave snow water equivalent (SWE) and climate data to show that winter SWE can significantly influence vegetation greenness during the early growing season (the period between spring onset date and peak photosynthesis timing) over nearly one-fifth of the land surface in the region north of 30 degrees, but the magnitude and sign of correlation exhibits large spatial heterogeneity. We then apply an assembled path model to disentangle the two main processes (via changing early growing-season soil moisture, and via changing the growth period) in controlling the impact of winter SWE on vegetation greenness, and suggest that the "moisture" and "growth period" effect, to a larger extent, result in positive and negative snow-productivity associations, respectively. The magnitude and sign of snow-productivity association is then dependent upon the relative dominance of these two processes, with the "moisture" effect and positive association predominating in Central, western North America and Greater Himalaya, and the "growth period" effect and negative association in Central Europe. We also indicate that current state-of-the-art models in general reproduce satellite-based snow-productivity relationship in the region north of 30 degrees, and do a relatively better job of capturing the "moisture" effect than the "growth period" effect. Our results therefore work towards an improved understanding of winter snow impact on vegetation greenness in northern ecosystems, and provide a mechanistic basis for more realistic terrestrial carbon cycle models that consider the impacts of winter snow processes.
Collapse
Affiliation(s)
- Xiaoyi Wang
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Tao Wang
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, China
| | - Hui Guo
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Dan Liu
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Yutong Zhao
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Taotao Zhang
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Qiang Liu
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Shilong Piao
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, China
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
34
|
Eller F, Jensen K, Reisdorff C. Nighttime stomatal conductance differs with nutrient availability in two temperate floodplain tree species. TREE PHYSIOLOGY 2017; 37:428-440. [PMID: 27974652 DOI: 10.1093/treephys/tpw113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
Nighttime water flow varies between plant species and is a phenomenon for which the magnitude, purpose and consequences are widely discussed. A potential benefit of nighttime stomata opening may be increased nutrient availability during the night since transpiration affects the mass flow of soil water towards plant roots. We investigated how nitrogen (N) and phosphorus (P) fertilization, and short-term drought affected stomatal conductance of Fraxinus excelsior L. and Ulmus laevis Pallas during the day (gs) and night (gn), and how these factors affected growth for a period of 18 weeks. Both species were found to open their stomata during the night, and gn responded to nutrients and water in a different manner than gs. Under N-deficiency, F. excelsior had higher gn, especially when P was sufficient, and lower pre-dawn leaf water potential (Ψpd), supporting our assumption that nutrient limitation leads to increases in nighttime water uptake. Under P-deficiency, F. excelsior had higher relative root production and, thus, adjusted its biomass allocation under P shortage, while sufficient N but not P contributed to overall higher biomasses. In contrast, U. laevis had higher gn and lower root:shoot ratio under high nutrient (especially N) availability, whereas both sufficient N and P produced higher biomasses. Compared with well-watered trees, the drought treatment did not affect any growth parameter but it resulted in lower gn, minimum stomatal conductance and Ψpd of F. excelsior. For U. laevis, only gs during July was lower when drought-treated. In summary, the responses of gs and gn to nutrients and drought depended on the species and its nutrient uptake strategy, and also the timing of measurement during the growing season. Eutrophication of floodplain forests dominated by F. excelsior and U. laevis may, therefore, considerably change nighttime transpiration rates, leading to ecosystem-level changes in plant-water dynamics. Such changes may have more severe consequences in the future as a higher frequency of drought events is predicted under climate change.
Collapse
Affiliation(s)
- Franziska Eller
- Hamburg University, Biocenter Klein Flottbek, Ohnhorststr. 18, 22609 Hamburg, Germany
- Aarhus University, Department of Bioscience, Ole Worms Alle 1, 8000 Aarhus C, Denmark
| | - Kai Jensen
- Hamburg University, Biocenter Klein Flottbek, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Christoph Reisdorff
- Hamburg University, Biocenter Klein Flottbek, Ohnhorststr. 18, 22609 Hamburg, Germany
| |
Collapse
|
35
|
Evaluation of the Quality of NDVI3g Dataset against Collection 6 MODIS NDVI in Central Europe between 2000 and 2013. REMOTE SENSING 2016. [DOI: 10.3390/rs8110955] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Ghandchi FP, Caetano-Anolles G, Clough SJ, Ort DR. Investigating the Control of Chlorophyll Degradation by Genomic Correlation Mining. PLoS One 2016; 11:e0162327. [PMID: 27618630 PMCID: PMC5019398 DOI: 10.1371/journal.pone.0162327] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 08/19/2016] [Indexed: 11/18/2022] Open
Abstract
Chlorophyll degradation is an intricate process that is critical in a variety of plant tissues at different times during the plant life cycle. Many of the photoactive chlorophyll degradation intermediates are exceptionally cytotoxic necessitating that the pathway be carefully coordinated and regulated. The primary regulatory step in the chlorophyll degradation pathway involves the enzyme pheophorbide a oxygenase (PAO), which oxidizes the chlorophyll intermediate pheophorbide a, that is eventually converted to non-fluorescent chlorophyll catabolites. There is evidence that PAO is differentially regulated across different environmental and developmental conditions with both transcriptional and post-transcriptional components, but the involved regulatory elements are uncertain or unknown. We hypothesized that transcription factors modulate PAO expression across different environmental conditions, such as cold and drought, as well as during developmental transitions to leaf senescence and maturation of green seeds. To test these hypotheses, several sets of Arabidopsis genomic and bioinformatic experiments were investigated and re-analyzed using computational approaches. PAO expression was compared across varied environmental conditions in the three separate datasets using regression modeling and correlation mining to identify gene elements co-expressed with PAO. Their functions were investigated as candidate upstream transcription factors or other regulatory elements that may regulate PAO expression. PAO transcript expression was found to be significantly up-regulated in warm conditions, during leaf senescence, and in drought conditions, and in all three conditions significantly positively correlated with expression of transcription factor Arabidopsis thaliana activating factor 1 (ATAF1), suggesting that ATAF1 is triggered in the plant response to these processes or abiotic stresses and in result up-regulates PAO expression. The proposed regulatory network includes the freezing, senescence, and drought stresses modulating factor ATAF1 and various other transcription factors and pathways, which in turn act to regulate chlorophyll degradation by up-regulating PAO expression.
Collapse
Affiliation(s)
- Frederick P. Ghandchi
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Gustavo Caetano-Anolles
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Steven J. Clough
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Soybean/maize Germplasm, Pathology, and Genetics Research Unit, USDA/ARS, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Donald R. Ort
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Global Change and Photosynthesis Research Unit, USDA/ARS, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- * E-mail:
| |
Collapse
|