1
|
Vickers SH, Meehan TD, Michel NL, Franco AMA, Gilroy JJ. North American avian species that migrate in flocks show greater long-term non-breeding range shift rates. MOVEMENT ECOLOGY 2025; 13:3. [PMID: 39806506 PMCID: PMC11730467 DOI: 10.1186/s40462-024-00527-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 12/21/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Many species are exhibiting range shifts associated with anthropogenic change. For migratory species, colonisation of new areas can require novel migratory programmes that facilitate navigation between independently-shifting seasonal ranges. Therefore, in some cases range-shifts may be limited by the capacity for novel migratory programmes to be transferred between generations, which can be genetically and socially mediated. METHODS Here we used 50 years of North American Breeding Bird Survey and Audubon Christmas Bird Count data to test the prediction that breeding and/or non-breeding range-shifts are more prevalent among flocking migrants, which possess a capacity for rapid social transmission of novel migration routes. RESULTS Across 122 North American bird species, social migration was a significant positive predictor for the magnitude of non-breeding centre of abundance (COA) shift within our study region (conterminous United States and Southern Canada). Across a subset of 81 species where age-structured flocking was determined, migrating in mixed-age flocks produced the greatest shifts and solo migrants the lowest. Flocking was not a significant predictor of breeding COA shifts, which were better explained by absolute population trends and migration distance. CONCLUSIONS Our results suggest that social grouping may play an important role in facilitating non-breeding distributional responses to climate change in migratory species. We highlight the need to gain a better understanding of migratory programme inheritance, and how this influences spatiotemporal population dynamics under environmental change.
Collapse
Affiliation(s)
- Stephen H Vickers
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.
| | - Timothy D Meehan
- National Audubon Society, 225 Varick Street, New York, NY, 10014, USA
| | - Nicole L Michel
- National Audubon Society, 225 Varick Street, New York, NY, 10014, USA
| | - Aldina M A Franco
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - James J Gilroy
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
2
|
da Silva CRB, Diamond SE. Local climate change velocities and evolutionary history explain multidirectional range shifts in a North American butterfly assemblage. J Anim Ecol 2024; 93:1160-1171. [PMID: 38922857 DOI: 10.1111/1365-2656.14132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024]
Abstract
Species are often expected to shift their distributions either poleward or upslope to evade warming climates and colonise new suitable climatic niches. However, from 18-years of fixed transect monitoring data on 88 species of butterfly in the midwestern United States, we show that butterflies are shifting their centroids in all directions, except towards regions that are warming the fastest (southeast). Butterflies shifted their centroids at a mean rate of 4.87 km year-1. The rate of centroid shift was significantly associated with local climate change velocity (temperature by precipitation interaction), but not with mean climate change velocity throughout the species' ranges. Species tended to shift their centroids at a faster rate towards regions that are warming at slower velocities but increasing in precipitation velocity. Surprisingly, species' thermal niche breadth (range of climates butterflies experience throughout their distribution) and wingspan (often used as metric for dispersal capability) were not correlated with the rate at which species shifted their ranges. We observed high phylogenetic signal in the direction species shifted their centroids. However, we found no phylogenetic signal in the rate species shifted their centroids, suggesting less conserved processes determine the rate of range shift than the direction species shift their ranges. This research shows important signatures of multidirectional range shifts (latitudinal and longitudinal) and uniquely shows that local climate change velocities are more important in driving range shifts than the mean climate change velocity throughout a species' entire range.
Collapse
Affiliation(s)
- Carmen R B da Silva
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, USA
- School of Natural Sciences, Macquarie University, North Ryde, New South Wales, Australia
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Sarah E Diamond
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
3
|
Liang J, Wang W, Cai Q, Li X, Zhu Z, Zhai Y, Li X, Gao X, Yi Y. Prioritizing conservation efforts based on future habitat availability and accessibility under climate change. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14204. [PMID: 37855159 DOI: 10.1111/cobi.14204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/17/2023] [Accepted: 10/09/2023] [Indexed: 10/20/2023]
Abstract
The potential for species to shift their ranges to avoid extinction is contingent on the future availability and accessibility of habitats with analogous climates. To develop conservation strategies, many previous researchers used a single method that considered individual factors; a few combined 2 factors. Primarily, these studies focused on identifying climate refugia or climatically connected and spatially fixed areas, ignoring the range shifting process of animals. We quantified future habitat availability (based on species occurrence, climate data, land cover, and elevation) and accessibility (based on climate velocity) under climate change (4 scenarios) of migratory birds across the Yangtze River basin (YRB). Then, we assessed species' range-shift potential and identified conservation priority areas for migratory birds in the 2050s with a network analysis. Our results suggested that medium (i.e., 5-10 km/year) and high (i.e., ≥ 10 km/year) climate velocity would threaten 18.65% and 8.37% of stable habitat, respectively. Even with low (i.e., 0-5 km/year) climate velocity, 50.15% of climate-velocity-identified destinations were less available than their source habitats. Based on our integration of habitat availability and accessibility, we identified a few areas of critical importance for conservation, mainly in Sichuan and the middle to lower reaches of the YRB. Overall, we identified the differences between habitat availability and accessibility in capturing biological responses to climate change. More importantly, we accounted for the dynamic process of species' range shifts, which must be considered to identify conservation priority areas. Our method informs forecasting of climate-driven distribution shifts and conservation priorities.
Collapse
Affiliation(s)
- Jie Liang
- College of Environmental Science and Engineering, Hunan University, Changsha, P.R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, P.R. China
| | - Wanting Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, P.R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, P.R. China
| | - Qing Cai
- Hunan Research Academy of Environmental Sciences, Changsha, P.R. China
| | - Xin Li
- College of Environmental Science and Engineering, Hunan University, Changsha, P.R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, P.R. China
| | - Ziqian Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha, P.R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, P.R. China
| | - Yeqing Zhai
- College of Environmental Science and Engineering, Hunan University, Changsha, P.R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, P.R. China
| | - Xiaodong Li
- College of Environmental Science and Engineering, Hunan University, Changsha, P.R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, P.R. China
| | - Xiang Gao
- College of Environmental Science and Engineering, Hunan University, Changsha, P.R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, P.R. China
| | - Yuru Yi
- College of Environmental Science and Engineering, Hunan University, Changsha, P.R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, P.R. China
| |
Collapse
|
4
|
Martins PM, Anderson MJ, Sweatman WL, Punnett AJ. Significant shifts in latitudinal optima of North American birds. Proc Natl Acad Sci U S A 2024; 121:e2307525121. [PMID: 38557189 PMCID: PMC11009622 DOI: 10.1073/pnas.2307525121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 12/25/2023] [Indexed: 04/04/2024] Open
Abstract
Changes in climate can alter environmental conditions faster than most species can adapt. A prediction under a warming climate is that species will shift their distributions poleward through time. While many studies focus on range shifts, latitudinal shifts in species' optima can occur without detectable changes in their range. We quantified shifts in latitudinal optima for 209 North American bird species over the last 55 y. The latitudinal optimum (m) for each species in each year was estimated using a bespoke flexible non-linear zero-inflated model of abundance vs. latitude, and the annual shift in m through time was quantified. One-third (70) of the bird species showed a significant shift in their optimum. Overall, mean peak abundances of North American birds have shifted northward, on average, at a rate of 1.5 km per year (±0.58 SE), corresponding to a total distance moved of 82.5 km (±31.9 SE) over the last 55 y. Stronger poleward shifts at the continental scale were linked to key species' traits, including thermal optimum, habitat specialization, and territoriality. Shifts in the western region were larger and less variable than in the eastern region, and they were linked to species' thermal optimum, habitat density preference, and habitat specialization. Individual species' latitudinal shifts were most strongly linked to their estimated thermal optimum, clearly indicating a climate-driven response. Displacement of species from their historically optimal realized niches can have dramatic ecological consequences. Effective conservation must consider within-range abundance shifts. Areas currently deemed "optimal" are unlikely to remain so.
Collapse
Affiliation(s)
- Paulo Mateus Martins
- New Zealand Institute for Advanced Study, Massey University, Auckland0745, New Zealand
- PRIMER-e, Quest Research Limited, Auckland0793, New Zealand
| | - Marti J. Anderson
- New Zealand Institute for Advanced Study, Massey University, Auckland0745, New Zealand
- PRIMER-e, Quest Research Limited, Auckland0793, New Zealand
| | - Winston L. Sweatman
- School of Mathematical and Computational Sciences, Massey University, Auckland0745, New Zealand
| | | |
Collapse
|
5
|
Howard C, Marjakangas EL, Morán-Ordóñez A, Milanesi P, Abuladze A, Aghababyan K, Ajder V, Arkumarev V, Balmer DE, Bauer HG, Beale CM, Bino T, Boyla KA, Burfield IJ, Burke B, Caffrey B, Chodkiewicz T, Del Moral JC, Mazal VD, Fernández N, Fornasari L, Gerlach B, Godinho C, Herrando S, Ieronymidou C, Johnston A, Jovicevic M, Kalyakin M, Keller V, Knaus P, Kotrošan D, Kuzmenko T, Leitão D, Lindström Å, Maxhuni Q, Mihelič T, Mikuska T, Molina B, Nagy K, Noble D, Øien IJ, Paquet JY, Pladevall C, Portolou D, Radišić D, Rajkov S, Rajković DZ, Raudonikis L, Sattler T, Saveljić D, Shimmings P, Sjenicic J, Šťastný K, Stoychev S, Strus I, Sudfeldt C, Sultanov E, Szép T, Teufelbauer N, Uzunova D, van Turnhout CAM, Velevski M, Vikstrøm T, Vintchevski A, Voltzit O, Voříšek P, Wilk T, Zurell D, Brotons L, Lehikoinen A, Willis SG. Local colonisations and extinctions of European birds are poorly explained by changes in climate suitability. Nat Commun 2023; 14:4304. [PMID: 37474503 PMCID: PMC10359363 DOI: 10.1038/s41467-023-39093-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 05/23/2023] [Indexed: 07/22/2023] Open
Abstract
Climate change has been associated with both latitudinal and elevational shifts in species' ranges. The extent, however, to which climate change has driven recent range shifts alongside other putative drivers remains uncertain. Here, we use the changing distributions of 378 European breeding bird species over 30 years to explore the putative drivers of recent range dynamics, considering the effects of climate, land cover, other environmental variables, and species' traits on the probability of local colonisation and extinction. On average, species shifted their ranges by 2.4 km/year. These shifts, however, were significantly different from expectations due to changing climate and land cover. We found that local colonisation and extinction events were influenced primarily by initial climate conditions and by species' range traits. By contrast, changes in climate suitability over the period were less important. This highlights the limitations of using only climate and land cover when projecting future changes in species' ranges and emphasises the need for integrative, multi-predictor approaches for more robust forecasting.
Collapse
Affiliation(s)
- Christine Howard
- Conservation Ecology Group, Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK.
| | - Emma-Liina Marjakangas
- The Helsinki Lab of Ornithology, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Alejandra Morán-Ordóñez
- Ecological and Forestry Applications Research Centre (CREAF), 08193, Cerdanyola del Vallès, Spain
- Forest Science and Tecnology Centre (CTFC), Carretera vella de Sant Llorenç de Morunys km 2, 25280, Sant Llorenç de Morunys, Spain
| | - Pietro Milanesi
- Swiss Ornithological Institute, Seerose 1, 6204, Sempach, Switzerland
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Via F. Selmi 3, 40126, Bologna, Italy
| | - Aleksandre Abuladze
- Institute of Zoology, Ilia State University, Kakutsa Cholokashvili Ave 3 / 5, Tbilisi, 0162, Georgia
| | - Karen Aghababyan
- BirdLinks Armenia (former TSE-Towards Sustainable Ecosystems) NGO, 87b Dimitrov, apt 14, Yerevan, Armenia
| | - Vitalie Ajder
- Society for Birds and Nature Protection, Leova, Republic of Moldova
- Moldova State University, A.Mateevici str. 60, Chişinău, Republic of Moldova
| | - Volen Arkumarev
- Bulgarian Society for the Protection of Birds/BirdLife Bulgaria, Sofia 1111, Yavorov complex, bl. 71, en. 1, ap. 1, Sofia, Bulgaria
| | - Dawn E Balmer
- British Trust for Ornithology, The Nunnery, Thetford, Norfolk, IP24 2PU, UK
- Atlas Steering Committee, European Bird Census Council, Na Bělidle 34, CZ-150 00, Prague 5, Czech Republic
| | - Hans-Günther Bauer
- Atlas Steering Committee, European Bird Census Council, Na Bělidle 34, CZ-150 00, Prague 5, Czech Republic
- Max-Planck Institute of Animal Behaviour, Am Obstberg 1, 78315, Radolfzell, Germany
| | - Colin M Beale
- York Environmental Sustainability Institute, University of York, York, YO10 5NG, UK
- Department of Biology, University of York, YO10 5DD, York, UK
| | - Taulant Bino
- Albanian Ornithological Society, Rr. "Vaso Pasha", Nd. 4, Apt. 3, 1004, Tirana, Albania
| | - Kerem Ali Boyla
- WWF Turkey, Büyük Postane Caddesi No: 19 Kat: 5, 34420, Bahçekapı-Fatih, İstanbul, Turkey
| | - Ian J Burfield
- BirdLife International, David Attenborough Building, Pembroke Street, Cambridge, CB2 3QZ, UK
| | - Brian Burke
- BirdWatch Ireland, Unit 20, Block D, Bullford Business Campus, Kilcoole, Greystones, County Wicklow, Ireland
| | - Brian Caffrey
- BirdWatch Ireland, Unit 20, Block D, Bullford Business Campus, Kilcoole, Greystones, County Wicklow, Ireland
| | - Tomasz Chodkiewicz
- Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679, Warszawa, Poland
- Polish Society for the Protection of Birds, Odrowąża 24, 05-270, Marki, Poland
| | - Juan Carlos Del Moral
- Sociedad Española de Ornitología (SEO/BirdLife), Melquiades Biencinto, 34, 28053, Madrid, Spain
| | - Vlatka Dumbovic Mazal
- Institute for Environment and Nature, Ministry of Economy and Sustainable Development, Radnicka cesta 80, 10 000, Zagreb, Croatia
| | - Néstor Fernández
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Inst. of Biology, Martin Luther Univ. Halle-Wittenberg, Halle, Germany
| | | | - Bettina Gerlach
- DDA-Federation of German Avifaunists, An den Speichern 2, D-48157, Münster, Germany
| | - Carlos Godinho
- MED-Mediterranean Institute for Agriculture, Environment and Development; LabOr-Laboratório de Ornitologia Universidade de Évora Pólo da Mitra, Apartado 94, 7002-774, Évora, Portugal
| | - Sergi Herrando
- Ecological and Forestry Applications Research Centre (CREAF), 08193, Cerdanyola del Vallès, Spain
- Atlas Steering Committee, European Bird Census Council, Na Bělidle 34, CZ-150 00, Prague 5, Czech Republic
- Catalan Ornithological Institute, Natural History Museum of Barcelona, Plaça Leonardo da Vinci 4-5, 08019, Barcelona, Spain
| | | | - Alison Johnston
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, UK
| | | | - Mikhail Kalyakin
- Atlas Steering Committee, European Bird Census Council, Na Bělidle 34, CZ-150 00, Prague 5, Czech Republic
- Zoological Museum of Lomonosov Moscow State University, Bolshaya Nikitskaya Str., 2, Moscow, 125009, Russia
| | - Verena Keller
- Swiss Ornithological Institute, Seerose 1, 6204, Sempach, Switzerland
- Atlas Steering Committee, European Bird Census Council, Na Bělidle 34, CZ-150 00, Prague 5, Czech Republic
| | - Peter Knaus
- Swiss Ornithological Institute, Seerose 1, 6204, Sempach, Switzerland
| | - Dražen Kotrošan
- Ornithological society "Naše ptice", Semira Frašte 6, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Tatiana Kuzmenko
- Ukrainian Society for the Protection of Birds, P.O. Box 33, Kyiv, 01103, Ukraine
| | - Domingos Leitão
- Sociedade Portuguesa para o Estudo das Aves, Av. Almirante Gago Coutinho, 46A, 1700-031, Lisboa, Portugal
| | - Åke Lindström
- Department of Biology, Lund University, Lund, Sweden
| | - Qenan Maxhuni
- Kosovo Ornithological Society, Str. Hysni Gashi no. 28, Kalabri, 10 000, Prishtinë, Republic of Kosovo
| | - Tomaž Mihelič
- DOPPS-BirdLife Slovenia, Tržaška c. 2, SI, 1000, Ljubljana, Slovenia
| | - Tibor Mikuska
- Croatian Society for Birds and Nature Protection, Gundulićeva 19a, HR-31000, Osijek, Croatia
| | - Blas Molina
- Sociedad Española de Ornitología (SEO/BirdLife), Melquiades Biencinto, 34, 28053, Madrid, Spain
| | - Károly Nagy
- MME BirdLife Hungary, 1121 Költő u. 21, Budapest, Hungary
| | - David Noble
- British Trust for Ornithology, The Nunnery, Thetford, Norfolk, IP24 2PU, UK
- Atlas Steering Committee, European Bird Census Council, Na Bělidle 34, CZ-150 00, Prague 5, Czech Republic
| | | | | | - Clara Pladevall
- Andorra Research + Innovation, Av. Rocafort 21-23, AD600, Sant Julià de Lòria, Andorra
| | - Danae Portolou
- Hellenic Ornithological Society / BirdLife Greece, Agiou Konstantinou 52, Athens, 10437, Greece
| | - Dimitrije Radišić
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 3, Novi Sad, 21000, Serbia
| | - Saša Rajkov
- Center for Biodiversity Research, Maksima Gorkog 40/3, 21000, Novi Sad, Serbia
| | - Draženko Z Rajković
- Center for Biodiversity Research, Maksima Gorkog 40/3, 21000, Novi Sad, Serbia
| | - Liutauras Raudonikis
- Lithuanian Ornithological Society, Naugarduko st. 47-3, LT-03208, Vilnius, Lithuania
| | - Thomas Sattler
- Swiss Ornithological Institute, Seerose 1, 6204, Sempach, Switzerland
| | - Darko Saveljić
- Environmental Protection Agency of Montenegro, IV proleterske 19, 81000, Podgorica, Montenegro
| | - Paul Shimmings
- BirdLife Norway. Sandgata 30b, NO-7012, Trondheim, Norway
| | - Jovica Sjenicic
- Ornithological society "Naše ptice", Semira Frašte 6, 71 000, Sarajevo, Bosnia and Herzegovina
- Society for Research and Protection of Biodiversity, Mladena Stojanovica 2, 78 000, Banja Luka, Bosnia and Herzegovina
| | - Karel Šťastný
- Czech University of Life Sciences, Faculty of Environmental Sciences, Dept. of Ecology, Kamýcká 129, 165 21 Prague 6-Suchdol, Prague, Czech Republic
| | - Stoycho Stoychev
- Bulgarian Society for the Protection of Birds/BirdLife Bulgaria, Sofia 1111, Yavorov complex, bl. 71, en. 1, ap. 1, Sofia, Bulgaria
| | - Iurii Strus
- Nature reserve "Roztochya", Sichovyh Striltsiv 7, 81070, Ivano-Frankove, Ukraine
| | - Christoph Sudfeldt
- DDA-Federation of German Avifaunists, An den Speichern 2, D-48157, Münster, Germany
| | - Elchin Sultanov
- Azerbaijan Ornithological Society, M. Mushfiq 4B, ap.60, Baku, AZ1004, Azerbaijan Republic
| | - Tibor Szép
- MME BirdLife Hungary, 1121 Költő u. 21, Budapest, Hungary
- University of Nyíregyháza, 4400 Sóstói út 31/b, Nyíregyháza, Hungary
| | | | - Danka Uzunova
- Macedonian Ecological Society, Blvd. Boris Trajkovski Str. 7, 9a, Skopje, N, Macedonia
| | - Chris A M van Turnhout
- Sovon-Dutch Centre for Field Ornithology, Nijmegen, The Netherlands
- Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Metodija Velevski
- Macedonian Ecological Society, Blvd. Boris Trajkovski Str. 7, 9a, Skopje, N, Macedonia
| | - Thomas Vikstrøm
- Dansk Ornitologisk Forening (DOF-BirdLife DK), Copenhagen, Denmark
| | | | - Olga Voltzit
- Zoological Museum of Lomonosov Moscow State University, Bolshaya Nikitskaya Str., 2, Moscow, 125009, Russia
| | - Petr Voříšek
- Atlas Steering Committee, European Bird Census Council, Na Bělidle 34, CZ-150 00, Prague 5, Czech Republic
- Czech Society for Ornithology, Na Bělidle 34, 15000, Prague 5, Czechia
| | - Tomasz Wilk
- Polish Society for the Protection of Birds, Odrowąża 24, 05-270, Marki, Poland
| | - Damaris Zurell
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Lluís Brotons
- Ecological and Forestry Applications Research Centre (CREAF), 08193, Cerdanyola del Vallès, Spain
- Forest Science and Tecnology Centre (CTFC), Carretera vella de Sant Llorenç de Morunys km 2, 25280, Sant Llorenç de Morunys, Spain
- Atlas Steering Committee, European Bird Census Council, Na Bělidle 34, CZ-150 00, Prague 5, Czech Republic
- CSIC, Cerdanyola del Vallès, 08193, Spain
| | - Aleksi Lehikoinen
- The Helsinki Lab of Ornithology, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
- Atlas Steering Committee, European Bird Census Council, Na Bělidle 34, CZ-150 00, Prague 5, Czech Republic
| | - Stephen G Willis
- Conservation Ecology Group, Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK.
| |
Collapse
|
6
|
Huang Q, Bateman BL, Michel NL, Pidgeon AM, Radeloff VC, Heglund P, Allstadt AJ, Nowakowski AJ, Wong J, Sauer JR. Modeled distribution shifts of North American birds over four decades based on suitable climate alone do not predict observed shifts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159603. [PMID: 36272474 DOI: 10.1016/j.scitotenv.2022.159603] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
As climate change alters the global environment, it is critical to understand the relationship between shifting climate suitability and species distributions. Key questions include whether observed changes in population abundance are aligned with the velocity and direction of shifts predicted by climate suitability models and if the responses are consistent among species with similar ecological traits. We examined the direction and velocity of the observed abundance-based distribution centroids compared with the model-predicted bioclimatic distribution centroids of 250 bird species across the United States from 1969 to 2011. We hypothesized that there is a significant positive correlation in both direction and velocity between the observed and the modeled shifts. We then tested five additional hypotheses that predicted differential shifting velocity based on ecological adaptability and climate change exposure. Contrary to our hypotheses, we found large differences between the observed and modeled shifts among all studied bird species and within specific ecological guilds. However, temperate migrants and habitat generalist species tended to have higher velocity of observed shifts than other species. Neotropical migratory and wetland birds also had significantly different observed velocities than their counterparts, which may be due to their climate change exposure. The velocity based on modeled bioclimatic suitability did not exhibit significant differences among most guilds. Boreal forest birds were the only guild with significantly faster modeled-shifts than the other groups, suggesting an elevated conservation risk for high latitude and altitude species. The highly idiosyncratic species responses to climate and the mismatch between shifts in modeled and observed distribution centroids highlight the challenge of predicting species distribution change based solely on climate suitability and the importance of non-climatic factors traits in shaping species distributions.
Collapse
Affiliation(s)
- Qiongyu Huang
- Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA 22630, USA.
| | - Brooke L Bateman
- Science Division, National Audubon Society, 225 Varick St, New York, NY 10014, USA
| | - Nicole L Michel
- Science Division, National Audubon Society, 225 Varick St, New York, NY 10014, USA
| | - Anna M Pidgeon
- Forest and Wildlife Ecology Department, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA
| | - Volker C Radeloff
- Forest and Wildlife Ecology Department, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA
| | - Patricia Heglund
- US Fish and Wildlife Service, NWRS, Region 3, 2630 Fanta Reed Road, La Crosse, WI 54603, USA
| | - Andrew J Allstadt
- US Fish and Wildlife Service, 5600 West American Boulevard, Bloomington, MN 55437, USA
| | - A Justin Nowakowski
- Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA 22630, USA; Moore Center for Science, Conservation International, 2011 Crystal Dr #600, Arlington, VA 22202, USA
| | - Jesse Wong
- Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA 22630, USA
| | - John R Sauer
- USGS Patuxent Wildlife Research Center, 12100 Beech Forest Road, Laurel, MD 20708, USA
| |
Collapse
|
7
|
Sonnleitner J, LaZerte SE, McKellar AE, Flood NJ, Reudink MW. Rapid shifts in migration routes and breeding latitude in North American bluebirds. Ecosphere 2022. [DOI: 10.1002/ecs2.4316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Jared Sonnleitner
- Department of Biological Sciences Thompson Rivers University Kamloops British Columbia Canada
| | | | - Ann E. McKellar
- Wildlife Research Division Environment and Climate Change Canada Saskatoon Saskatchewan Canada
| | - Nancy J. Flood
- Department of Biological Sciences Thompson Rivers University Kamloops British Columbia Canada
| | - Matthew W. Reudink
- Department of Biological Sciences Thompson Rivers University Kamloops British Columbia Canada
| |
Collapse
|
8
|
Ericson PGP, Irestedt M, Qu Y. Demographic history, local adaptation and vulnerability to climate change in a tropical mountain bird in New Guinea. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Per G. P. Ericson
- Department of Bioinformatics and Genetics Swedish Museum of Natural History Stockholm Sweden
| | - Martin Irestedt
- Department of Bioinformatics and Genetics Swedish Museum of Natural History Stockholm Sweden
| | - Yanhua Qu
- Department of Bioinformatics and Genetics Swedish Museum of Natural History Stockholm Sweden
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology, Chinese Academy of Sciences Beijing China
| |
Collapse
|
9
|
Doxa A, Kamarianakis Y, Mazaris AD. Spatial heterogeneity and temporal stability characterize future climatic refugia in Mediterranean Europe. GLOBAL CHANGE BIOLOGY 2022; 28:2413-2424. [PMID: 34981617 DOI: 10.1111/gcb.16072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/24/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Climate plays a major role in shaping biodiversity patterns over time and space, with ongoing changes leading to the reorganization of ecosystems, which challenges conservation initiatives. Identifying areas that could serve as possible climate change refugia for future biodiversity is, thus, critical for both conservation and management. Here, we identify potential future climatic refugia within the Euro-Mediterranean biome, which is a global biodiversity hotspot, while accounting for multiple emission climate change projections over the next 50 years. We developed two metrics of climatic variability: temporal stability and spatial heterogeneity. We then used a systematic conservation planning approach to identify climate-based priority areas. While we used a climate-based, species-neutral methodology, we deliberately implemented low climatic velocity thresholds, so that the identified climatic refugia would even be compatible with the needs of species with low dispersal capacity, such as plants. Our projections showed that future climatic refugia would be more frequently observed in mid-altitudes, for gradients with steep elevations, and mainly in the eastern part of the Euro-Mediterranean biome, with possible conflicts with existing land uses and future conservation implications. Climatic, land use, and topography results indicated that only a limited number of refugia would be hosted by high elevation habitats (>1500 m), raising possible concerns about the biodiversity of Mediterranean mountain regions. Our analyses show that the current network of protected areas captures future climatic refugia disproportionally, despite their importance for safeguarding present and future biodiversity in the Mediterranean. Key climatic refugia could limit the impacts of future climate change on biodiversity in mid-altitude and mountainous regions, and should be included in management guidelines for a climate-ready conservation design in the Mediterranean biome.
Collapse
Affiliation(s)
- Aggeliki Doxa
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete, Greece
- Department of Ecology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Yiannis Kamarianakis
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete, Greece
| | - Antonios D Mazaris
- Department of Ecology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
10
|
Ankori‐Karlinsky R, Kalyuzhny M, Barnes KF, Wilson AM, Flather C, Renfrew R, Walsh J, Guk E, Kadmon R. North American Breeding Bird Survey underestimates regional bird richness compared to Breeding Bird Atlases. Ecosphere 2022. [DOI: 10.1002/ecs2.3925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Roi Ankori‐Karlinsky
- Department of Ecology, Evolution, and Environmental Biology Columbia University New York New York USA
| | - Michael Kalyuzhny
- Department of Ecology, Evolution & Behavior Institute of Life Sciences, The Hebrew University of Jerusalem, Campus Edmond J. Safra, Givat Ram Jerusalem Israel
| | | | - Andrew M. Wilson
- Environmental Studies, Science Center Gettysburg College Gettysburg Pennsylvania USA
| | - Curtis Flather
- USDA Forest Service, Rocky Mountain Research Station Fort Collins Colorado USA
| | - Rosalind Renfrew
- Rubenstein School of Environment and Natural Resources, The University of Vermont Burlington Vermont USA
| | - Joan Walsh
- Massachusetts Audubon Headquarters Lincoln Massachusetts USA
| | - Edna Guk
- Department of Geography, Faculty of Social Sciences The Hebrew University of Jerusalem, Mt. Scopus Jerusalem Israel
| | - Ronen Kadmon
- Department of Ecology, Evolution & Behavior Institute of Life Sciences, The Hebrew University of Jerusalem, Campus Edmond J. Safra, Givat Ram Jerusalem Israel
| |
Collapse
|
11
|
Soultan A, Pavón-Jordán D, Bradter U, Sandercock BK, Hochachka WM, Johnston A, Brommer J, Gaget E, Keller V, Knaus P, Aghababyan K, Maxhuni Q, Vintchevski A, Nagy K, Raudonikis L, Balmer D, Noble D, Leitão D, Øien IJ, Shimmings P, Sultanov E, Caffrey B, Boyla K, Radišić D, Lindström Å, Velevski M, Pladevall C, Brotons L, Karel Š, Rajković DZ, Chodkiewicz T, Wilk T, Szép T, van Turnhout C, Foppen R, Burfield I, Vikstrøm T, Mazal VD, Eaton M, Vorisek P, Lehikoinen A, Herrando S, Kuzmenko T, Bauer HG, Kalyakin MV, Voltzit OV, Sjeničić J, Pärt T. The future distribution of wetland birds breeding in Europe validated against observed changes in distribution. ENVIRONMENTAL RESEARCH LETTERS 2022; 17:024025. [DOI: 10.1088/1748-9326/ac4ebe] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Abstract
Wetland bird species have been declining in population size worldwide as climate warming and land-use change affect their suitable habitats. We used species distribution models (SDMs) to predict changes in range dynamics for 64 non-passerine wetland birds breeding in Europe, including range size, position of centroid, and margins. We fitted the SDMs with data collected for the first European Breeding Bird Atlas and climate and land-use data to predict distributional changes over a century (the 1970s–2070s). The predicted annual changes were then compared to observed annual changes in range size and range centroid over a time period of 30 years using data from the second European Breeding Bird Atlas. Our models successfully predicted ca. 75% of the 64 bird species to contract their breeding range in the future, while the remaining species (mostly southerly breeding species) were predicted to expand their breeding ranges northward. The northern margins of southerly species and southern margins of northerly species, both, predicted to shift northward. Predicted changes in range size and shifts in range centroids were broadly positively associated with the observed changes, although some species deviated markedly from the predictions. The predicted average shift in core distributions was ca. 5 km yr−1 towards the north (5% northeast, 45% north, and 40% northwest), compared to a slower observed average shift of ca. 3.9 km yr−1. Predicted changes in range centroids were generally larger than observed changes, which suggests that bird distribution changes may lag behind environmental changes leading to ‘climate debt’. We suggest that predictions of SDMs should be viewed as qualitative rather than quantitative outcomes, indicating that care should be taken concerning single species. Still, our results highlight the urgent need for management actions such as wetland creation and restoration to improve wetland birds’ resilience to the expected environmental changes in the future.
Collapse
|
12
|
Sinnott EA, Papeş M, O’Connell TJ. Variable precipitation leads to dynamic range limits of forest songbirds at a forest-grassland ecotone. Ecol Evol 2021; 11:11123-11133. [PMID: 34429907 PMCID: PMC8366877 DOI: 10.1002/ece3.7899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 11/10/2022] Open
Abstract
Boundaries between vegetation types, known as ecotones, can be dynamic in response to climatic changes. The North American Great Plains includes a forest-grassland ecotone in the southcentral United States that has expanded and contracted in recent decades in response to historical periods of drought and pluvial conditions. This dynamic region also marks a western distributional limit for many passerine birds that typically breed in forests of the eastern United States. To better understand the influence that variability can exert on broad-scale biodiversity, we explored historical longitudinal shifts in the western extent of breeding ranges of eastern forest songbirds in response to the variable climate of the southern Great Plains. We used climatic niche modeling to estimate current distributional limits of nine species of forest-breeding passerines from 30-year average climate conditions from 1980 to 2010. During this time, the southern Great Plains experienced an unprecedented wet period without periodic multi-year droughts that characterized the region's long-term climate from the early 1900s. Species' climatic niche models were then projected onto two historical drought periods: 1952-1958 and 1966-1972. Threshold models for each of the three time periods revealed dramatic breeding range contraction and expansion along the forest-grassland ecotone. Precipitation was the most important climate variable defining breeding ranges of these nine eastern forest songbirds. Range limits extended farther west into southern Great Plains during the more recent pluvial conditions of 1980-2010 and contracted during historical drought periods. An independent dataset from BBS was used to validate 1966-1972 range limit projections. Periods of lower precipitation in the forest-grassland ecotone are likely responsible for limiting the western extent of eastern forest songbird breeding distributions. Projected increases in temperature and drought conditions in the southern Great Plains associated with climate change may reverse range expansions observed in the past 30 years.
Collapse
Affiliation(s)
- Emily A. Sinnott
- School of Natural ResourcesUniversity of MissouriColumbiaMissouriUSA
| | - Monica Papeş
- Department of Ecology and Evolutionary BiologyUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Timothy J. O’Connell
- Department of Natural Resource Ecology and ManagementOklahoma State UniversityStillwaterOklahomaUSA
| |
Collapse
|
13
|
Chaudhary A, Gutzwiller KJ. Forest bird abundance can vary with cross-scale interactions involving climate, exurban cover and forest patch size. WILDLIFE RESEARCH 2021. [DOI: 10.1071/wr21054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Species better track climate warming in the oceans than on land. Nat Ecol Evol 2020; 4:1044-1059. [PMID: 32451428 DOI: 10.1038/s41559-020-1198-2] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 04/03/2020] [Indexed: 12/30/2022]
Abstract
There is mounting evidence of species redistribution as climate warms. Yet, our knowledge of the coupling between species range shifts and isotherm shifts remains limited. Here, we introduce BioShifts-a global geo-database of 30,534 range shifts. Despite a spatial imbalance towards the most developed regions of the Northern Hemisphere and a taxonomic bias towards the most charismatic animals and plants of the planet, data show that marine species are better at tracking isotherm shifts, and move towards the pole six times faster than terrestrial species. More specifically, we find that marine species closely track shifting isotherms in warm and relatively undisturbed waters (for example, the Central Pacific Basin) or in cold waters subject to high human pressures (for example, the North Sea). On land, human activities impede the capacity of terrestrial species to track isotherm shifts in latitude, with some species shifting in the opposite direction to isotherms. Along elevational gradients, species follow the direction of isotherm shifts but at a pace that is much slower than expected, especially in areas with warm climates. Our results suggest that terrestrial species are lagging behind shifting isotherms more than marine species, which is probably related to the interplay between the wider thermal safety margin of terrestrial versus marine species and the more constrained physical environment for dispersal in terrestrial versus marine habitats.
Collapse
|
15
|
Curley SR, Manne LL, Veit RR. Differential winter and breeding range shifts: Implications for avian migration distances. DIVERS DISTRIB 2020. [DOI: 10.1111/ddi.13036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Shannon R. Curley
- Biology Department College of Staten Island City University of New York Staten Island New York
- Biology Doctoral Program (EEB) CUNY Graduate Center New York New York
| | - Lisa L. Manne
- Biology Department College of Staten Island City University of New York Staten Island New York
- Biology Doctoral Program (EEB) CUNY Graduate Center New York New York
| | - Richard R. Veit
- Biology Department College of Staten Island City University of New York Staten Island New York
- Biology Doctoral Program (EEB) CUNY Graduate Center New York New York
| |
Collapse
|
16
|
Meehan TD, Michel NL, Rue H. Spatial modeling of Audubon Christmas Bird Counts reveals fine‐scale patterns and drivers of relative abundance trends. Ecosphere 2019. [DOI: 10.1002/ecs2.2707] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
| | | | - Håvard Rue
- King Abdulla University of Science and Technology Thuwal Saudi Arabia
| |
Collapse
|
17
|
Roberts LJ, Burnett R, Tietz J, Veloz S. Recent drought and tree mortality effects on the avian community in southern Sierra Nevada: a glimpse of the future? ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2019; 29:e01848. [PMID: 30786092 DOI: 10.1002/eap.1848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 10/31/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
Birds respond rapidly to changes in both habitat and climate conditions and thus are good indicators of the ecological effects of a changing climate, which may include warmer temperatures, changing habitat conditions, and increased frequency and magnitude of extreme events like drought. We investigated how a widespread tree mortality event concurrent with a severe drought influenced the avian community of the Sierra Nevada mountain range in California. We assessed and compared the separate effects of climate stresses and altered habitat conditions on the avian community and used this information to evaluate the changes that are likely to occur in the near future. We built tree mortality maps from freely available Landsat imagery with Google Earth Engine. We analyzed avian point counts from 2010 to 2016 in the southern Sierra Nevada, to model temperature, water deficit, and tree mortality effects on the abundances of 45 bird species, and then used these models to project abundances into the future based on three climate projections. A large portion of the avian community, 47%, had a positive relationship with temperature increase, compared to 20% that responded negatively. More species (36%) declined with drier conditions than increased (29%). More species declined in response to high tree mortality (36%) than increased (9%). A preponderance of species adapted to colder temperatures (higher elevation) had negative responses to high tree mortality and water deficit, but positive responses to increasing temperature. We projected the highest total bird abundances in the future under the warmest climate scenario that we considered, but habitat modification (e.g., tree mortality) and water deficit could offset the positive influence of temperature for many species. As other studies have shown, climate warming may lead to substantial but idiosyncratic effects on wildlife species that could result in community composition shifts. We conclude that future climate conditions may not have a universally negative effect on biodiversity in the Sierra Nevada, but probable vegetation changes and increased likelihood of extreme events such as drought should be incorporated into climate-smart forest and wildlife management decisions.
Collapse
Affiliation(s)
- L Jay Roberts
- Point Blue Conservation Science, 3820 Cypress Drive, #11, Petaluma, California, 94954, USA
| | - Ryan Burnett
- Point Blue Conservation Science, 3820 Cypress Drive, #11, Petaluma, California, 94954, USA
| | - James Tietz
- Point Blue Conservation Science, 3820 Cypress Drive, #11, Petaluma, California, 94954, USA
| | - Sam Veloz
- Point Blue Conservation Science, 3820 Cypress Drive, #11, Petaluma, California, 94954, USA
| |
Collapse
|
18
|
Walsh ES, Vierling KT, Strand E, Bartowitz K, Hudiburg TW. Climate change, woodpeckers, and forests: Current trends and future modeling needs. Ecol Evol 2019; 9:2305-2319. [PMID: 30847111 PMCID: PMC6392386 DOI: 10.1002/ece3.4876] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/24/2018] [Accepted: 11/27/2018] [Indexed: 01/20/2023] Open
Abstract
The structure and composition of forest ecosystems are expected to shift with climate-induced changes in precipitation, temperature, fire, carbon mitigation strategies, and biological disturbance. These factors are likely to have biodiversity implications. However, climate-driven forest ecosystem models used to predict changes to forest structure and composition are not coupled to models used to predict changes to biodiversity. We proposed integrating woodpecker response (biodiversity indicator) with forest ecosystem models. Woodpeckers are a good indicator species of forest ecosystem dynamics, because they are ecologically constrained by landscape-scale forest components, such as composition, structure, disturbance regimes, and management activities. In addition, they are correlated with forest avifauna community diversity. In this study, we explore integrating woodpecker and forest ecosystem climate models. We review climate-woodpecker models and compare the predicted responses to observed climate-induced changes. We identify inconsistencies between observed and predicted responses, explore the modeling causes, and identify the models pertinent to integration that address the inconsistencies. We found that predictions in the short term are not in agreement with observed trends for 7 of 15 evaluated species. Because niche constraints associated with woodpeckers are a result of complex interactions between climate, vegetation, and disturbance, we hypothesize that the lack of adequate representation of these processes in the current broad-scale climate-woodpecker models results in model-data mismatch. As a first step toward improvement, we suggest a conceptual model of climate-woodpecker-forest modeling for integration. The integration model provides climate-driven forest ecosystem modeling with a measure of biodiversity while retaining the feedback between climate and vegetation in woodpecker climate change modeling.
Collapse
Affiliation(s)
- Eric S. Walsh
- Forest, Rangeland, and Fire Sciences DepartmentUniversity of IdahoMoscowIdaho
| | - Kerri T. Vierling
- Department of Fish and Wildlife SciencesUniversity of IdahoMoscowIdaho
| | - Eva Strand
- Forest, Rangeland, and Fire Sciences DepartmentUniversity of IdahoMoscowIdaho
| | - Kristina Bartowitz
- Forest, Rangeland, and Fire Sciences DepartmentUniversity of IdahoMoscowIdaho
| | - Tara W. Hudiburg
- Forest, Rangeland, and Fire Sciences DepartmentUniversity of IdahoMoscowIdaho
| |
Collapse
|
19
|
Abstract
Deserts, already defined by climatic extremes, have warmed and dried more than other regions in the contiguous United States due to climate change. Our resurveys of sites originally visited in the early 20th century found Mojave Desert birds strongly declined in occupancy and sites lost nearly half of their species. Declines were associated with climate change, particularly decreased precipitation. The magnitude of the decline in the avian community and the absence of species that were local climatological “winners” are exceptional. Our results provide evidence that bird communities in the Mojave Desert have collapsed to a new, lower baseline. Declines could accelerate with future climate change, as this region is predicted to become drier and hotter by the end of the century. Climate change has caused deserts, already defined by climatic extremes, to warm and dry more rapidly than other ecoregions in the contiguous United States over the last 50 years. Desert birds persist near the edge of their physiological limits, and climate change could cause lethal dehydration and hyperthermia, leading to decline or extirpation of some species. We evaluated how desert birds have responded to climate and habitat change by resurveying historic sites throughout the Mojave Desert that were originally surveyed for avian diversity during the early 20th century by Joseph Grinnell and colleagues. We found strong evidence of an avian community in collapse. Sites lost on average 43% of their species, and occupancy probability declined significantly for 39 of 135 breeding birds. The common raven was the only native species to substantially increase across survey sites. Climate change, particularly decline in precipitation, was the most important driver of site-level persistence, while habitat change had a secondary influence. Habitat preference and diet were the two most important species traits associated with occupancy change. The presence of surface water reduced the loss of site-level richness, creating refugia. The collapse of the avian community over the past century may indicate a larger imbalance in the Mojave and provide an early warning of future ecosystem disintegration, given climate models unanimously predict an increasingly dry and hot future.
Collapse
|