1
|
Baruah G, Wittmann MJ. Reviving collapsed plant-pollinator networks from a single species. PLoS Biol 2024; 22:e3002826. [PMID: 39365839 PMCID: PMC11482677 DOI: 10.1371/journal.pbio.3002826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 10/16/2024] [Accepted: 08/30/2024] [Indexed: 10/06/2024] Open
Abstract
Mutualistic ecological networks can suddenly transition to undesirable states due to small changes in environmental conditions. Recovering from such a collapse can be difficult as restoring the original environmental conditions may be infeasible. Additionally, such networks can also exhibit a phenomenon known as hysteresis, whereby the system could exhibit multiple states under the same environmental conditions, implying that ecological networks may not recover. Here, we attempted to revive collapsed mutualistic networks to a high-functioning state from a single species, using concepts from signal propagation theory and an eco-evolutionary model based on network structures of 115 empirical plant-pollinator networks. We found that restoring the environmental conditions rarely aided in recovery of collapsed networks, but a positive relationship between recovering pollinator density and network nestedness emerged, which was qualitatively supported by empirical plant-pollinator restoration data. In contrast, network resurrection from a collapsed state in undesirable environmental conditions where restoration has minimal impacts could be readily achieved by perturbing a single species or a few species that control the response of the dynamical networks. Additionally, nestedness in networks and a moderate amount of trait variation could aid in the revival of networks even in undesirable environmental conditions. Our work suggests that focus should be applied to a few species whose dynamics could be steered to resurrect entire networks from a collapsed state and that network architecture could play a crucial role in reviving collapsed plant-pollinator networks.
Collapse
Affiliation(s)
- Gaurav Baruah
- Faculty of Biology, Theoretical Biology, University of Bielefeld, Bielefeld, Germany
| | - Meike J. Wittmann
- Faculty of Biology, Theoretical Biology, University of Bielefeld, Bielefeld, Germany
| |
Collapse
|
2
|
Llorente-Culebras S, Carmona CP, Carvalho WD, Menegotto A, Molina-Venegas R, Ladle RJ, Santos AMC. Island biodiversity in peril: Anticipating a loss of mammals' functional diversity with future species extinctions. GLOBAL CHANGE BIOLOGY 2024; 30:e17375. [PMID: 38895806 DOI: 10.1111/gcb.17375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024]
Abstract
Islands are biodiversity hotspots that host unique assemblages. However, a substantial proportion of island species are threatened and their long-term survival is uncertain. Identifying and preserving vulnerable species has become a priority, but it is also essential to combine this information with other facets of biodiversity like functional diversity, to understand how future extinctions might affect ecosystem stability and functioning. Focusing on mammals, we (i) assessed how much functional space would be lost if threatened species go extinct, (ii) determined the minimum number of extinctions that would cause a significant functional loss, (iii) identified the characteristics (e.g., biotic, climatic, geographic, or orographic) of the islands most vulnerable to future changes in the functional space, and (iv) quantified how much of that potential functional loss would be offset by introduced species. Using trait information for 1474 mammal species occurring in 318 islands worldwide, we built trait probability density functions to quantify changes in functional richness and functional redundancy in each island if the mammals categorized by IUCN as threatened disappeared. We found that the extinction of threatened mammals would reduce the functional space in 63% of the assessed islands, although these extinctions in general would cause a reduction of less than 15% of their overall functional space. Also, on most islands, the extinction of just a few species would be sufficient to cause a significant loss of functional diversity. The potential functional loss would be higher on small, isolated, and/or species-rich islands, and, in general, the functional space lost would not be offset by introduced species. Our results show that the preservation of native species and their ecological roles remains crucial for maintaining the current functioning of island ecosystems. Therefore, conservation measures considering functional diversity are imperative to safeguard the unique functional roles of threatened mammal species on islands.
Collapse
Affiliation(s)
- Sonia Llorente-Culebras
- Terrestrial Ecology Group (TEG-UAM), Departamento de Ecología, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Carlos P Carmona
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - William D Carvalho
- Terrestrial Ecology Group (TEG-UAM), Departamento de Ecología, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
- Programa de Pós-Graduação em Biodiversidade Tropical, Universidade Federal do Amapá, Macapá, Brazil
| | - André Menegotto
- Terrestrial Ecology Group (TEG-UAM), Departamento de Ecología, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Rafael Molina-Venegas
- Terrestrial Ecology Group (TEG-UAM), Departamento de Ecología, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Richard J Ladle
- Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil
| | - Ana M C Santos
- Terrestrial Ecology Group (TEG-UAM), Departamento de Ecología, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
3
|
van Velzen E. High importance of indirect evolutionary rescue in a small food web. Ecol Lett 2023; 26:2110-2121. [PMID: 37807971 DOI: 10.1111/ele.14321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023]
Abstract
Evolutionary rescue may allow species to survive environmental change, but how this mechanism operates in food webs is poorly understood. Here, the evolutionary rescue was investigated in a small model food web, systematically allowing the evolution of each single species in order to reveal how its adaptation affects the persistence of itself and others. The impact of evolution was highly species-specific and not necessarily positive: only one species, the specialist predator, consistently had a positive impact on overall persistence. Most strikingly, evolution overwhelmingly affected other species: rescue of others (indirect rescue) was far more frequent than self-rescue, and negative effects were nearly always indirect. This demonstrates that evolutionary rescue in food webs is inextricably bound up with species interactions, as the effects of evolution in one species ripple through the entire community. It is therefore critically important to consider the food web context in efforts to understand how species may survive global change.
Collapse
Affiliation(s)
- Ellen van Velzen
- Department of Ecology and Ecosystem Modelling, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
4
|
Doherty S, Saltré F, Llewelyn J, Strona G, Williams SE, Bradshaw CJA. Estimating co-extinction threats in terrestrial ecosystems. GLOBAL CHANGE BIOLOGY 2023; 29:5122-5138. [PMID: 37386726 DOI: 10.1111/gcb.16836] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 05/27/2023] [Indexed: 07/01/2023]
Abstract
The biosphere is changing rapidly due to human endeavour. Because ecological communities underlie networks of interacting species, changes that directly affect some species can have indirect effects on others. Accurate tools to predict these direct and indirect effects are therefore required to guide conservation strategies. However, most extinction-risk studies only consider the direct effects of global change-such as predicting which species will breach their thermal limits under different warming scenarios-with predictions of trophic cascades and co-extinction risks remaining mostly speculative. To predict the potential indirect effects of primary extinctions, data describing community interactions and network modelling can estimate how extinctions cascade through communities. While theoretical studies have demonstrated the usefulness of models in predicting how communities react to threats like climate change, few have applied such methods to real-world communities. This gap partly reflects challenges in constructing trophic network models of real-world food webs, highlighting the need to develop approaches for quantifying co-extinction risk more accurately. We propose a framework for constructing ecological network models representing real-world food webs in terrestrial ecosystems and subjecting these models to co-extinction scenarios triggered by probable future environmental perturbations. Adopting our framework will improve estimates of how environmental perturbations affect whole ecological communities. Identifying species at risk of co-extinction (or those that might trigger co-extinctions) will also guide conservation interventions aiming to reduce the probability of co-extinction cascades and additional species losses.
Collapse
Affiliation(s)
- Seamus Doherty
- Global Ecology | Partuyarta Ngadluku Wardli Kuu, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, New South Wales, Australia
| | - Frédérik Saltré
- Global Ecology | Partuyarta Ngadluku Wardli Kuu, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, New South Wales, Australia
| | - John Llewelyn
- Global Ecology | Partuyarta Ngadluku Wardli Kuu, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, New South Wales, Australia
| | - Giovanni Strona
- European Commission, Joint Research Centre, Ispra, Italy
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Stephen E Williams
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Corey J A Bradshaw
- Global Ecology | Partuyarta Ngadluku Wardli Kuu, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, New South Wales, Australia
| |
Collapse
|
5
|
Payne JL, Al Aswad JA, Deutsch C, Monarrez PM, Penn JL, Singh P. Selectivity of mass extinctions: Patterns, processes, and future directions. CAMBRIDGE PRISMS. EXTINCTION 2023; 1:e12. [PMID: 40078672 PMCID: PMC11895734 DOI: 10.1017/ext.2023.10] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/03/2023] [Accepted: 04/13/2023] [Indexed: 03/14/2025]
Abstract
A central question in the study of mass extinction is whether these events simply intensify background extinction processes and patterns versus change the driving mechanisms and associated patterns of selectivity. Over the past two decades, aided by the development of new fossil occurrence databases, selectivity patterns associated with mass extinction have become increasingly well quantified and their differences from background patterns established. In general, differences in geographic range matter less during mass extinction than during background intervals, while differences in respiratory and circulatory anatomy that may correlate with tolerance to rapid change in oxygen availability, temperature, and pH show greater evidence of selectivity during mass extinction. The recent expansion of physiological experiments on living representatives of diverse clades and the development of simple, quantitative theories linking temperature and oxygen availability to the extent of viable habitat in the oceans have enabled the use of Earth system models to link geochemical proxy constraints on environmental change with quantitative predictions of the amount and biogeography of habitat loss. Early indications are that the interaction between physiological traits and environmental change can explain substantial proportions of observed extinction selectivity for at least some mass extinction events. A remaining challenge is quantifying the effects of primary extinction resulting from the limits of physiological tolerance versus secondary extinction resulting from the loss of taxa on which a given species depended ecologically. The calibration of physiology-based models to past extinction events will enhance their value in prediction and mitigation efforts related to the current biodiversity crisis.
Collapse
Affiliation(s)
- Jonathan L. Payne
- Department of Earth and Planetary Sciences, Stanford University, Stanford, CA, USA
| | - Jood A. Al Aswad
- Department of Earth and Planetary Sciences, Stanford University, Stanford, CA, USA
| | - Curtis Deutsch
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - Pedro M. Monarrez
- Department of Earth and Planetary Sciences, Stanford University, Stanford, CA, USA
| | - Justin L. Penn
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - Pulkit Singh
- Department of Earth and Planetary Sciences, Stanford University, Stanford, CA, USA
| |
Collapse
|
6
|
Li F, Zhang Y, Altermatt F, Yang J, Zhang X. Destabilizing Effects of Environmental Stressors on Aquatic Communities and Interaction Networks across a Major River Basin. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7828-7839. [PMID: 37155929 DOI: 10.1021/acs.est.3c00456] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Human-driven environmental stressors are increasingly threatening species survival and diversity of river systems worldwide. However, it remains unclear how the stressors affect the stability changes across aquatic multiple communities. Here, we used environmental DNA (eDNA) data sets from a human-dominated river in China over 3 years and analyzed the stability changes in multiple communities under persistent anthropogenic stressors, including land use and pollutants. First, we found that persistent stressors significantly reduced multifaceted species diversity (e.g., species richness, Shannon's diversity, and Simpson's diversity) and species stability but increased species synchrony across multiple communities. Second, the structures of interaction networks inferred from an empirical meta-food web were significantly changed under persistent stressors, for example, resulting in decreased network modularity and negative/positive cohesion. Third, piecewise structural equation modeling proved that the persistent stress-induced decline in the stability of multiple communities mainly depended upon diversity-mediated pathways rather than the direct effects of stress per se; specifically, the increase of species synchrony and the decline of interaction network modularity were the main biotic drivers of stability variation. Overall, our study highlights the destabilizing effects of persistent stressors on multiple communities as well as the mechanistic dependencies, mainly through reducing species diversity, increasing species synchrony, and changing interaction networks.
Collapse
Affiliation(s)
- Feilong Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Yan Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Florian Altermatt
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | - Jianghua Yang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| |
Collapse
|
7
|
Valdovinos FS, Hale KRS, Dritz S, Glaum PR, McCann KS, Simon SM, Thébault E, Wetzel WC, Wootton KL, Yeakel JD. A bioenergetic framework for aboveground terrestrial food webs. Trends Ecol Evol 2023; 38:301-312. [PMID: 36437144 DOI: 10.1016/j.tree.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/10/2022] [Accepted: 11/04/2022] [Indexed: 11/26/2022]
Abstract
Bioenergetic approaches have been greatly influential for understanding community functioning and stability and predicting effects of environmental changes on biodiversity. These approaches use allometric relationships to establish species' trophic interactions and consumption rates and have been successfully applied to aquatic ecosystems. Terrestrial ecosystems, where body mass is less predictive of plant-consumer interactions, present inherent challenges that these models have yet to meet. Here, we discuss the processes governing terrestrial plant-consumer interactions and develop a bioenergetic framework integrating those processes. Our framework integrates bioenergetics specific to terrestrial plants and their consumers within a food web approach while also considering mutualistic interactions. Such a framework is poised to advance our understanding of terrestrial food webs and to predict their responses to environmental changes.
Collapse
Affiliation(s)
- Fernanda S Valdovinos
- Department of Environmental Science and Policy, University of California, Davis, Davis, CA, USA.
| | - Kayla R S Hale
- Department of Environmental Science and Policy, University of California, Davis, Davis, CA, USA; Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Sabine Dritz
- Department of Environmental Science and Policy, University of California, Davis, Davis, CA, USA
| | - Paul R Glaum
- Department of Environmental Science and Policy, University of California, Davis, Davis, CA, USA
| | - Kevin S McCann
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Sophia M Simon
- Department of Environmental Science and Policy, University of California, Davis, Davis, CA, USA
| | - Elisa Thébault
- Sorbonne Université, UPEC, Université Paris Cité, CNRS, IRD, INRAE, Institute of Ecology and Environmental Sciences of Paris, Paris, France
| | - William C Wetzel
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA; Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Kate L Wootton
- BioFrontiers Institute at the University of Colorado, Boulder, CO, USA
| | - Justin D Yeakel
- Department of Life & Environmental Sciences, University of California, Merced, CA, USA
| |
Collapse
|
8
|
Banker RMW, Dineen AA, Sorman MG, Tyler CL, Roopnarine PD. Beyond functional diversity: The importance of trophic position to understanding functional processes in community evolution. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.983374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ecosystem structure—that is the species present, the functions they represent, and how those functions interact—is an important determinant of community stability. This in turn affects how ecosystems respond to natural and anthropogenic crises, and whether species or the ecological functions that they represent are able to persist. Here we use fossil data from museum collections, literature, and the Paleobiology Database to reconstruct trophic networks of Tethyan paleocommunities from the Anisian and Carnian (Triassic), Bathonian (Jurassic), and Aptian (Cretaceous) stages, and compare these to a previously reconstructed trophic network from a modern Jamaican reef community. We generated model food webs consistent with functional structure and taxon richnesses of communities, and compared distributions of guild level parameters among communities, to assess the effect of the Mesozoic Marine Revolution on ecosystem dynamics. We found that the trophic space of communities expanded from the Anisian to the Aptian, but this pattern was not monotonic. We also found that trophic position for a given guild was subject to variation depending on what other guilds were present in that stage. The Bathonian showed the lowest degree of trophic omnivory by top consumers among all Mesozoic networks, and was dominated by longer food chains. In contrast, the Aptian network displayed a greater degree of short food chains and trophic omnivory that we attribute to the presence of large predatory guilds, such as sharks and bony fish. Interestingly, the modern Jamaican community appeared to have a higher proportion of long chains, as was the case in the Bathonian. Overall, results indicate that trophic structure is highly dependent on the taxa and ecological functions present, primary production experienced by the community, and activity of top consumers. Results from this study point to a need to better understand trophic position when planning restoration activities because a community may be so altered by human activity that restoring a species or its interactions may no longer be possible, and alternatives must be considered to restore an important function. Further work may also focus on elucidating the precise roles of top consumers in moderating network structure and community stability.
Collapse
|
9
|
Saint‐Béat B, Darnis G, Leclerc M, Babin M, Maps F. Same mesozooplankton functional groups, different functions in three Arctic marine ecosystems. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- B. Saint‐Béat
- IFREMER, Dyneco Pelagos BP Plouzané France
- Takuvik Joint International Laboratory Université Laval (Canada) – CNRS (France), Département de biologie et Québec‐Océan, Université Laval, Quebec CA France
| | - G. Darnis
- Québec‐Océan, Département de biologie Université Laval Québec Canada
| | - M. Leclerc
- Takuvik Joint International Laboratory Université Laval (Canada) – CNRS (France), Département de biologie et Québec‐Océan, Université Laval, Quebec CA France
| | - M. Babin
- Takuvik Joint International Laboratory Université Laval (Canada) – CNRS (France), Département de biologie et Québec‐Océan, Université Laval, Quebec CA France
| | - F. Maps
- Takuvik Joint International Laboratory Université Laval (Canada) – CNRS (France), Département de biologie et Québec‐Océan, Université Laval, Quebec CA France
| |
Collapse
|
10
|
Cox DTC, Gardner AS, Gaston KJ. Global and regional erosion of mammalian functional diversity across the diel cycle. SCIENCE ADVANCES 2022; 8:eabn6008. [PMID: 35960803 PMCID: PMC9374345 DOI: 10.1126/sciadv.abn6008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/28/2022] [Indexed: 06/08/2023]
Abstract
Biodiversity is declining worldwide. When species are physically active (i.e., their diel niche) may influence their risk of becoming functionally extinct. It may also affect how species losses affect ecosystems. For 5033 terrestrial mammals, we predict future changes to diel global and local functional diversity through a gradient of progressive functional extinction scenarios of threatened species. Across scenarios, diurnal species were at greater risk of becoming functionally extinct than nocturnal, crepuscular, and cathemeral species, resulting in deep functional losses in global diurnal trait space. Redundancy (species with similar roles) will buffer global nocturnal functional diversity; however, across the land surface, losses will mostly occur among functionally dispersed species (species with distinct roles). Functional extinctions will constrict boundaries of cathemeral trait space as megaherbivores, and arboreal foragers are lost. Variation in the erosion of functional diversity across the daily cycle will likely profoundly affect the partitioning of ecosystem functioning between night and day.
Collapse
|
11
|
Langraf V, Petrovičová K, Schlarmannová J, Cenke P, Brygadyrenko V. Influence of ecological farming on the community structure of epigeic arthropods in crops Triticum aestivum and T. spelta. BIOSYSTEMS DIVERSITY 2022. [DOI: 10.15421/012228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Soil is an irreplaceable natural resource that enables the production of food and raw materials, forms agricultural and forest landscapes, filters and maintains water, ensures the cycle of substances in the ecosystem and contributes to maintaining biodiversity. Agricultural intensification is one of the most important factors for biodiversity loss. Spatial dispersion of epigeic arthropods reflects the ecological status of habitats and points to its quality. The aim of our research was to point out the differences in epigeic arthropod diversity in the examined crops Triticum aestivum, T. spelta and the influence of their ecotones on epigeic arthropods. Between the years 2019 to 2021 an investigation using the pitfall trap method recorded 5,232 individuals belonging to 13 taxonomic groups. The crop T. aestivum was represented by 2493 individuals and 13 taxa while in T. spelta we recorded 2739 individuals and 11 taxa. We observed significantly more taxa in the crop T. aestivum than in the crop T. spelta. We also confirmed the ecotone rule only for the T. aestivum crop. We confirmed the significant influence of crops and environmental variables (pH, potassium, phosphorus, nitrogen) on the spatial dispersion of individuals around pitfall traps. On the basis of our results, both ecological farming and their ecotone systems are important for epigeic arthropods and with topical and trophic conditions, which is important for the production of biomass and also affects crop. In any anthropogenic activity, it is important to give priority to less invasive procedures with non-toxic effects on organisms and to use effective technologies in land management.
Collapse
|
12
|
Penjor U, Cushman SA, Kaszta ŻM, Sherub S, Macdonald DW. Effects of land use and climate change on functional and phylogenetic diversity of terrestrial vertebrates in a Himalayan biodiversity hotspot. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Ugyen Penjor
- Wildlife Conservation Research Unit, The Recanati‐Kaplan Centre Abingdon UK
- Department of Forests and Park Services Nature Conservation Division Thimphu Bhutan
| | - Samuel A. Cushman
- Wildlife Conservation Research Unit, The Recanati‐Kaplan Centre Abingdon UK
- USDA, Rocky Mountain Research Station Flagstaff Arizona USA
| | - Żaneta M. Kaszta
- Wildlife Conservation Research Unit, The Recanati‐Kaplan Centre Abingdon UK
| | - Sherub Sherub
- Department of Forests and Park Services Ugyen Wangchuck Institute for Conservation and Environmental Research Bumthang Bhutan
| | - David W. Macdonald
- Wildlife Conservation Research Unit, The Recanati‐Kaplan Centre Abingdon UK
| |
Collapse
|
13
|
Rahman T, Candolin U. Linking animal behavior to ecosystem change in disturbed environments. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.893453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Environmental disturbances often cause individuals to change their behavior. The behavioral responses can induce a chain of reactions through the network of species interactions, via consumptive and trait mediated connections. Given that species interactions define ecosystem structure and functioning, changes to these interactions often have ecological repercussions. Here, we explore the transmission of behavioral responses through the network of species interactions, and how the responses influence ecological conditions. We describe the underlying mechanisms and the ultimate impact that the behavioral responses can have on ecosystem structure and functioning, including biodiversity and ecosystems stability and services. We explain why behavioral responses of some species have a larger impact than that of others on ecosystems, and why research should focus on these species and their interactions. With the work, we synthesize existing theory and empirical evidence to provide a conceptual framework that links behavior responses to altered species interactions, community dynamics, and ecosystem processes. Considering that species interactions link biodiversity to ecosystem functioning, a deeper understanding of behavioral responses and their causes and consequences can improve our knowledge of the mechanisms and pathways through which human activities alter ecosystems. This knowledge can improve our ability to predict the effects of ongoing disturbances on communities and ecosystems and decide on the interventions needed to mitigate negative effects.
Collapse
|
14
|
Food web rewiring drives long-term compositional differences and late-disturbance interactions at the community level. Proc Natl Acad Sci U S A 2022; 119:e2117364119. [PMID: 35439049 PMCID: PMC9173581 DOI: 10.1073/pnas.2117364119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Multiple anthropogenic disturbances affect the structure and functioning of communities. Recent evidence highlighted that, after pulse disturbance, the functioning a community performs may be recovered fast due to functional redundancy, whereas community multivariate composition needs a longer time. Yet, the mechanisms that drive the different community recovery times have not been quantified empirically. We use quantitative food-web analysis to assess the influence of species interactions on community recovery. We found species-interactions strength to be the main mechanism driving differences between structural and functional recovery. Additionally, we show that interactions between multiple disturbances appear in the long term only when both species-interaction strength and food-web architecture change significantly. Ecological communities are constantly exposed to multiple natural and anthropogenic disturbances. Multivariate composition (if recovered) has been found to need significantly more time to be regained after pulsed disturbance compared to univariate diversity metrics and functional endpoints. However, the mechanisms driving the different recovery times of communities to single and multiple disturbances remain unexplored. Here, we apply quantitative ecological network analyses to try to elucidate the mechanisms driving long-term community-composition dissimilarity and late-stage disturbance interactions at the community level. For this, we evaluate the effects of two pesticides, nutrient enrichment, and their interactions in outdoor mesocosms containing a complex freshwater community. We found changes in interactions strength to be strongly related to compositional changes and identified postdisturbance interaction-strength rewiring to be responsible for most of the observed compositional changes. Additionally, we found pesticide interactions to be significant in the long term only when both interaction strength and food-web architecture are reshaped by the disturbances. We suggest that quantitative network analysis has the potential to unveil ecological processes that prevent long-term community recovery.
Collapse
|
15
|
Liu Z, Wang J, Meng D, Li L, Liu X, Gu Y, Yan Q, Jiang C, Yin H. The Self-Organization of Marine Microbial Networks under Evolutionary and Ecological Processes: Observations and Modeling. BIOLOGY 2022; 11:biology11040592. [PMID: 35453791 PMCID: PMC9031791 DOI: 10.3390/biology11040592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary The properties and structure of ecological networks in marine microbial communities determine ecosystem functions and stability; however, the principles of microbial network assemblages are poorly understood. In this study, we revealed the influences of species phylogeny and niches on the self-organization of marine microbial co-occurrence networks and provided a mathematical framework to simulate microbial network assemblages. Our results provide deep insights into network stability from the perspective of network assembly principles and not just network properties, such as complexity and modularity. Abstract Evolutionary and ecological processes are primary drivers of ecological network constrictions. However, the ways that these processes underpin self-organization and modularity in networks are poorly understood. Here, we performed network analyses to explore the evolutionary and ecological effects on global marine microbial co-occurrence networks across multiple network levels, including those of nodes, motifs, modules and whole networks. We found that both direct and indirect species interactions were evolutionarily and ecologically constrained across at least four network levels. Compared to ecological processes, evolutionary processes generally showed stronger long-lasting effects on indirect interactions and dominated the network assembly of particle-associated communities in spatially homogeneous environments. Regarding the large network path distance, the contributions of either processes to species interactions generally decrease and almost disappear when network path distance is larger than six. Accordingly, we developed a novel mathematical model based on scale-free networks by considering the joint effects of evolutionary and ecological processes. We simulated the self-organization of microbial co-occurrence networks and found that long-lasting effects increased network stability via decreasing link gain or loss. Overall, these results revealed that evolutionary and ecological processes played key roles in the self-organization and modularization of microbial co-occurrence networks.
Collapse
Affiliation(s)
- Zhenghua Liu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China; (Z.L.); (D.M.); (L.L.); (X.L.); (Y.G.)
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China;
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China;
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China; (Z.L.); (D.M.); (L.L.); (X.L.); (Y.G.)
| | - Liangzhi Li
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China; (Z.L.); (D.M.); (L.L.); (X.L.); (Y.G.)
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China; (Z.L.); (D.M.); (L.L.); (X.L.); (Y.G.)
| | - Yabing Gu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China; (Z.L.); (D.M.); (L.L.); (X.L.); (Y.G.)
| | - Qingyun Yan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China;
| | - Chengying Jiang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China; (Z.L.); (D.M.); (L.L.); (X.L.); (Y.G.)
- Correspondence:
| |
Collapse
|
16
|
Kuile AM, Apigo A, Bui A, DiFiore B, Forbes ES, Lee M, Orr D, Preston DL, Behm R, Bogar T, Childress J, Dirzo R, Klope M, Lafferty KD, McLaughlin J, Morse M, Motta C, Park K, Plummer K, Weber D, Young R, Young H. Predator–prey interactions of terrestrial invertebrates are determined by predator body size and species identity. Ecology 2022; 103:e3634. [DOI: 10.1002/ecy.3634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/15/2021] [Accepted: 10/18/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Ana Miller‐ter Kuile
- Department of Ecology, Evolution, and Marine Biology University of California, Santa Barbara Santa Barbara California United States
| | - Austen Apigo
- Department of Ecology, Evolution, and Marine Biology University of California, Santa Barbara Santa Barbara California United States
| | - An Bui
- Department of Ecology, Evolution, and Marine Biology University of California, Santa Barbara Santa Barbara California United States
| | - Bartholomew DiFiore
- Department of Ecology, Evolution, and Marine Biology University of California, Santa Barbara Santa Barbara California United States
| | - Elizabeth S. Forbes
- Department of Ecology, Evolution, and Marine Biology University of California, Santa Barbara Santa Barbara California United States
| | - Michelle Lee
- Department of Ecology, Evolution, and Marine Biology University of California, Santa Barbara Santa Barbara California United States
| | - Devyn Orr
- Department of Ecology, Evolution, and Marine Biology University of California, Santa Barbara Santa Barbara California United States
| | - Daniel L. Preston
- Department of Fish, Wildlife, and Conservation Biology Colorado State University Fort Collins Colorado United States
| | - Rachel Behm
- Department of Ecology, Evolution, and Marine Biology University of California, Santa Barbara Santa Barbara California United States
| | - Taylor Bogar
- School of Biological Sciences University of Hong Kong Hong Kong HK
| | - Jasmine Childress
- Department of Ecology, Evolution, and Marine Biology University of California, Santa Barbara Santa Barbara California United States
| | - Rodolfo Dirzo
- Department of Biology Stanford University, Gilbert Biology Building, 371 Jane Stanford Way Stanford California United States
| | - Maggie Klope
- Department of Ecology, Evolution, and Marine Biology University of California, Santa Barbara Santa Barbara California United States
| | - Kevin D. Lafferty
- Western Ecological Research Center U.S. Geological Survey, at Marine Science Institute, University of California Santa Barbara United States
| | - John McLaughlin
- Department of Ecology, Evolution, and Marine Biology University of California, Santa Barbara Santa Barbara California United States
| | - Marisa Morse
- Department of Ecology, Evolution, and Marine Biology University of California, Santa Barbara Santa Barbara California United States
| | - Carina Motta
- Department of Ecology, Evolution, and Marine Biology University of California, Santa Barbara Santa Barbara California United States
| | - Kevin Park
- Department of Ecology, Evolution, and Marine Biology University of California, Santa Barbara Santa Barbara California United States
| | - Katherine Plummer
- Department of Biology Stanford University, Gilbert Biology Building, 371 Jane Stanford Way Stanford California United States
| | - David Weber
- Warnell School of Forestry and Natural Resources University of Georgia Athens Georgia United States
| | - Ronny Young
- Department of Ecology, Evolution, and Marine Biology University of California, Santa Barbara Santa Barbara California United States
| | - Hillary Young
- Department of Ecology, Evolution, and Marine Biology University of California, Santa Barbara Santa Barbara California United States
| |
Collapse
|
17
|
Ross SRPJ, García Molinos J, Okuda A, Johnstone J, Atsumi K, Futamura R, Williams MA, Matsuoka Y, Uchida J, Kumikawa S, Sugiyama H, Kishida O, Donohue I. Predators mitigate the destabilising effects of heatwaves on multitrophic stream communities. GLOBAL CHANGE BIOLOGY 2022; 28:403-416. [PMID: 34689388 DOI: 10.1111/gcb.15956] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/25/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Amidst the global extinction crisis, climate change will expose ecosystems to more frequent and intense extreme climatic events, such as heatwaves. Yet, whether predator species loss-a prevailing characteristic of the extinction crisis-will exacerbate the ecological consequences of extreme climatic events remains largely unknown. Here, we show that the loss of predator species can interact with heatwaves to moderate the compositional stability of ecosystems. We exposed multitrophic stream communities, with and without a dominant predator species, to realistic current and future heatwaves and found that heatwaves destabilised algal communities by homogenising them in space. However, this happened only when the predator was absent. Additional heatwave impacts on multiple aspects of stream communities, including changes to the structure of algal and macroinvertebrate communities, as well as total algal biomass and its temporal variability, were not apparent during heatwaves and emerged only after the heatwaves had passed. Taken together, our results suggest that the ecological consequences of heatwaves can amplify over time as their impacts propagate through biological interaction networks, but the presence of predators can help to buffer such impacts. These findings underscore the importance of conserving trophic structure, and highlight the potential for species extinctions to amplify the effects of climate change and extreme events.
Collapse
Affiliation(s)
- Samuel R P-J Ross
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Jorge García Molinos
- Arctic Research Center, Hokkaido University, Sapporo, Japan
- Global Station for Arctic Research, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Atsushi Okuda
- Tomakomai Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido University, Takaoka, Tomakomai, Hokkaido, Japan
| | - Jackson Johnstone
- Graduate School of Environmental Science, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Keisuke Atsumi
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ryo Futamura
- Tomakomai Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido University, Takaoka, Tomakomai, Hokkaido, Japan
- Graduate School of Environmental Science, Hokkaido University, Takaoka, Hokkaido, Japan
| | - Maureen A Williams
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA
- Biology Department, McDaniel College, Westminster, Maryland, USA
| | - Yuichi Matsuoka
- Tomakomai Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido University, Takaoka, Tomakomai, Hokkaido, Japan
| | - Jiro Uchida
- Tomakomai Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido University, Takaoka, Tomakomai, Hokkaido, Japan
| | - Shoji Kumikawa
- Tomakomai Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido University, Takaoka, Tomakomai, Hokkaido, Japan
| | - Hiroshi Sugiyama
- Tomakomai Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido University, Takaoka, Tomakomai, Hokkaido, Japan
| | - Osamu Kishida
- Tomakomai Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido University, Takaoka, Tomakomai, Hokkaido, Japan
| | - Ian Donohue
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
18
|
Rezende F, Antiqueira PAP, Petchey OL, Velho LFM, Rodrigues LC, Romero GQ. Trophic downgrading decreases species asynchrony and community stability regardless of climate warming. Ecol Lett 2021; 24:2660-2673. [PMID: 34537987 DOI: 10.1111/ele.13885] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 01/11/2023]
Abstract
Theory and some evidence suggest that biodiversity promotes stability. However, evidence of how trophic interactions and environmental changes modulate this relationship in multitrophic communities is lacking. Given the current scenario of biodiversity loss and climate changes, where top predators are disproportionately more affected, filling these knowledge gaps is crucial. We simulated climate warming and top predator loss in natural microcosms to investigate their direct and indirect effects on temporal stability of microbial communities and the role of underlying stabilising mechanisms. Community stability was insensitive to warming, but indirectly decreased due to top predator loss via increased mesopredator abundance and consequent reduction of species asynchrony and species stability. The magnitude of destabilising effects differed among trophic levels, being disproportionally higher at lower trophic levels (e.g. producers). Our study unravels major patterns and causal mechanisms by which trophic downgrading destabilises large food webs, regardless of climate warming scenarios.
Collapse
Affiliation(s)
- Felipe Rezende
- Programa de Pós-Graduação em Ecologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas-SP, Brazil.,Laboratório de Interações Multitróficas e Biodiversidade, Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas-SP, Brazil
| | - Pablo A P Antiqueira
- Laboratório de Interações Multitróficas e Biodiversidade, Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas-SP, Brazil
| | - Owen L Petchey
- Institute for Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Luiz Felipe M Velho
- Universidade Estadual de Maringá (UEM), DBI/PEA/NUPÉLIA, Av. Colombo, Maringá-PR, Brazil
| | - Luzia C Rodrigues
- Universidade Estadual de Maringá (UEM), DBI/PEA/NUPÉLIA, Av. Colombo, Maringá-PR, Brazil
| | - Gustavo Q Romero
- Laboratório de Interações Multitróficas e Biodiversidade, Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas-SP, Brazil
| |
Collapse
|
19
|
Carpentier C, Barabás G, Spaak JW, De Laender F. Reinterpreting the relationship between number of species and number of links connects community structure and stability. Nat Ecol Evol 2021; 5:1102-1109. [PMID: 34059819 DOI: 10.1038/s41559-021-01468-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 04/16/2021] [Indexed: 02/04/2023]
Abstract
For 50 years, ecologists have examined how the number of interactions (links) scales with the number of species in ecological networks. Here, we show that the way the number of links varies when species are sequentially removed from a community is fully defined by a single parameter identifiable from empirical data. We mathematically demonstrate that this parameter is network-specific and connects local stability and robustness, establishing a formal connection between community structure and two prime stability concepts. Importantly, this connection highlights a local stability-robustness trade-off, which is stronger in mutualistic than in trophic networks. Analysis of 435 empirical networks confirmed these results. We finally show how our network-specific approach relates to the classical across-network approach found in literature. Taken together, our results elucidate one of the intricate relationships between network structure and stability in community networks.
Collapse
Affiliation(s)
- Camille Carpentier
- Research Unit in Environmental and Evolutionary Biology, Institute of Life, Earth and the Environment, Namur Institute of Complex Systems, University of Namur, Namur, Belgium.
| | - György Barabás
- Department of Physics, Chemistry and Biology, Division of Theoretical Biology, Linköping University, Linköping, Sweden.,MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Budapest, Hungary
| | - Jürg Werner Spaak
- Research Unit in Environmental and Evolutionary Biology, Institute of Life, Earth and the Environment, Namur Institute of Complex Systems, University of Namur, Namur, Belgium.,Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Frederik De Laender
- Research Unit in Environmental and Evolutionary Biology, Institute of Life, Earth and the Environment, Namur Institute of Complex Systems, University of Namur, Namur, Belgium
| |
Collapse
|
20
|
Bertocci I, De Oliveira Martins MI, Meyer HS, Gómez OB, Maggi E, Arenas F. Resurvey of sea urchins and mussels at protected and harvested shores a decade after: A beyond-BACI approach. MARINE ENVIRONMENTAL RESEARCH 2021; 169:105347. [PMID: 33965722 DOI: 10.1016/j.marenvres.2021.105347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/15/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
Comparing temporal patterns of distribution and abundance of target organisms between protected and harvested shores is essential to assess the extant effectiveness of marine protected areas (MPAs) and whether it is maintained through time. By means of an adapted Beyond-BACI approach, we compared the short- and long-term patterns of variation in the abundance of the sea urchin Paracentrotus lividus and the mussel Mytilus galloprovincialis at a protected shore (within the Parque Litoral Norte MPA, Portugal) and at three adjacent shores subject to intense harvesting over a decadal interval. Despite the existence of the MPA for more than 30 years, we did not obtain clear evidence of its persistent or recent effectiveness on intertidal species of commercial interest. We suggest the need for refining management options along the northern Portuguese coast, possibly by better enforcing current regulations and reconsidering the present design of protection schemes. Moreover, the adopted analytical approach may represent a methodological reference for similar investigations in systems where the perturbation of interest (protection or disturbance) would not occur at a given time during the course of the study, but has been operating since before the first sampling occasion and maintained until subsequent surveys.
Collapse
Affiliation(s)
- Iacopo Bertocci
- Department of Biology, University of Pisa, CoNISMa, Via Derna 1, 56126, Pisa, Italy; Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Marta Isabel De Oliveira Martins
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Novo Terminal de Cruzeiros, Avenida General Norton de Matos Sn, P-4450-208, Matosinhos, Portugal
| | - Hugo Sainz Meyer
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Novo Terminal de Cruzeiros, Avenida General Norton de Matos Sn, P-4450-208, Matosinhos, Portugal
| | - Oscar Babé Gómez
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Novo Terminal de Cruzeiros, Avenida General Norton de Matos Sn, P-4450-208, Matosinhos, Portugal
| | - Elena Maggi
- Department of Biology, University of Pisa, CoNISMa, Via Derna 1, 56126, Pisa, Italy
| | - Francisco Arenas
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Novo Terminal de Cruzeiros, Avenida General Norton de Matos Sn, P-4450-208, Matosinhos, Portugal
| |
Collapse
|
21
|
Carmona CP, Tamme R, Pärtel M, de Bello F, Brosse S, Capdevila P, González-M R, González-Suárez M, Salguero-Gómez R, Vásquez-Valderrama M, Toussaint A. Erosion of global functional diversity across the tree of life. SCIENCE ADVANCES 2021; 7:7/13/eabf2675. [PMID: 33771870 PMCID: PMC7997514 DOI: 10.1126/sciadv.abf2675] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/09/2021] [Indexed: 05/08/2023]
Abstract
Although one-quarter of plant and vertebrate species are threatened with extinction, little is known about the potential effect of extinctions on the global diversity of ecological strategies. Using trait and phylogenetic information for more than 75,000 species of vascular plants, mammals, birds, reptiles, amphibians, and freshwater fish, we characterized the global functional spectra of each of these groups. Mapping extinction risk within these spectra showed that larger species with slower pace of life are universally threatened. Simulated extinction scenarios exposed extensive internal reorganizations in the global functional spectra, which were larger than expected by chance for all groups, and particularly severe for mammals and amphibians. Considering the disproportionate importance of the largest species for ecological processes, our results emphasize the importance of actions to prevent the extinction of the megabiota.
Collapse
Affiliation(s)
- Carlos P Carmona
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, 51005 Tartu, Estonia.
| | - Riin Tamme
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, 51005 Tartu, Estonia
| | - Meelis Pärtel
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, 51005 Tartu, Estonia
| | - Francesco de Bello
- Centro de Investigaciones Sobre Desertificación, CSIC-UV, Carretera Moncada-Náquera, Km. 4.5 Apartado Oficial, 46113 Moncada (Valencia), Spain
- Department of Botany, Faculty of Sciences, University of South Bohemia, Na Zlaté stoce 1, 370 05 České Budějovice, Czech Republic
| | - Sébastien Brosse
- Laboratoire Évolution and Diversité Biologique (EDB UMR5174), Université Paul Sabatier-Toulouse 3, CNRS, IRD, UPS, 118 route de Narbonne, 31062 Toulouse Cedex, France
| | - Pol Capdevila
- Department of Zoology, University of Oxford, 11a Mansfield Rd., Oxford OX1 3SZ, UK
- School of Biological Sciences, University of Bristol, 24 Tyndall Ave., BS8 1TQ Bristol, UK
| | - Roy González-M
- Programa Ciencias de la Biodiversidad, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Carrera 1 #16-20, Bogotá, Colombia
| | - Manuela González-Suárez
- Ecology and Evolutionary Biology, School of Biological Sciences, University of Reading, Reading, UK
| | | | - Maribel Vásquez-Valderrama
- Laboratorio de Invasiones Biologicas, Facultad de Ciencias Forestales, Universidad de Concepción, Victoria 631, Concepción, Chile
| | - Aurèle Toussaint
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, 51005 Tartu, Estonia
| |
Collapse
|
22
|
O'Gorman EJ. Multitrophic diversity sustains ecological complexity by dampening top-down control of a shallow marine benthic food web. Ecology 2021; 102:e03274. [PMID: 33368225 DOI: 10.1002/ecy.3274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/21/2020] [Accepted: 11/13/2020] [Indexed: 11/08/2022]
Abstract
Biodiversity is typically considered as a one-dimensional metric (e.g., species richness), yet the consequences of species loss may be different depending on where extinctions occur in the food web. Here, I used a manipulative field experiment in a temperate subtidal marine system to explore the implications of diversity loss at multiple trophic levels for ecosystem functioning and food web structure. The four manipulated predators included the small painted goby and common prawn, which are also fed on by the larger black goby and shore crab. Antagonistic interactions between the manipulated predators (e.g., intraguild predation, intimidation, interference competition) limited their negative effects on the rest of the food web. Top-down control was so suppressed at the highest level of multitrophic diversity that the resulting food webs were as complex and productive as those containing no manipulated predators. Negative interactions between the predators weakened as multitrophic diversity decreased, however, resulting in stronger consumption of lower trophic levels and a simpler food web with lower rates of two key ecosystem processes: primary production and decomposition. These results show how indirect interactions between predators on multiple trophic levels help to promote the complexity and functioning of natural systems.
Collapse
Affiliation(s)
- Eoin J O'Gorman
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, United Kingdom
| |
Collapse
|
23
|
Individual species provide multifaceted contributions to the stability of ecosystems. Nat Ecol Evol 2020; 4:1594-1601. [PMID: 33046872 DOI: 10.1038/s41559-020-01315-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 08/27/2020] [Indexed: 11/08/2022]
Abstract
Exploration of the relationship between species diversity and ecological stability has occupied a prominent place in ecological research for decades. Yet, a key component of this puzzle-the contributions of individual species to the overall stability of ecosystems-remains largely unknown. Here, we show that individual species simultaneously stabilize and destabilize ecosystems along different dimensions of stability, and also that their contributions to functional (biomass) and compositional stability are largely independent. By simulating experimentally the extinction of three consumer species (the limpet Patella, the periwinkle Littorina and the topshell Gibbula) from a coastal rocky shore, we found that the capacity to predict the combined contribution of species to stability from the sum of their individual contributions varied among stability dimensions. This implies that the nature of the diversity-stability relationship depends upon the dimension of stability under consideration, and may be additive, synergistic or antagonistic. We conclude that, although the profoundly multifaceted and context-dependent consequences of species loss pose a significant challenge, the predictability of cumulative species contributions to some dimensions of stability provide a way forward for ecologists trying to conserve ecosystems and manage their stability under global change.
Collapse
|
24
|
Williams MA, Holland CV, Donohue I. Warming can alter host behavior in a similar manner to infection with behavior-manipulating parasites. Oecologia 2020; 194:65-74. [PMID: 32876762 DOI: 10.1007/s00442-020-04745-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 08/26/2020] [Indexed: 11/29/2022]
Abstract
Parasites are ecologically ubiquitous and, by modifying the physiology and behavior of their host organisms, act as key regulators of the dynamics and stability of ecosystems. It is, however, as yet unclear how parasitic relationships will act to moderate or accelerate the ecological impacts of global climate change. Here, we explore experimentally how the effects of parasites on both the physiology and behavior of their hosts can be moderated by warming, utilising a well-established aquatic host-parasite model system-the ecologically important amphipod Gammarus duebeni and its acanthocephalan parasite Polymorphus minutus. We show that, while only warming affected measured components of host physiology, parasite infection and warming both supressed predator-avoidance behavior of the host independently, yet in a similar manner. Six degrees of warming altered geotactic behaviors to the same extent as infection with behavior-manipulating parasites. These results indicate a novel mechanism by which parasites impact their ecosystems that could be critical to predicting the ecological impacts of warming. Our findings highlight the need for holistic knowledge of interaction networks, incorporating multiple interaction types and behaviors, to predict the effects of both warming and parasitism on the dynamics and stability of ecosystems.
Collapse
Affiliation(s)
- Maureen A Williams
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Dublin 2, Ireland. .,School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA.
| | - Celia V Holland
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Dublin 2, Ireland
| | - Ian Donohue
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Dublin 2, Ireland
| |
Collapse
|
25
|
Towards a Comparative Framework of Demographic Resilience. Trends Ecol Evol 2020; 35:776-786. [PMID: 32482368 DOI: 10.1016/j.tree.2020.05.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/28/2020] [Accepted: 05/01/2020] [Indexed: 11/23/2022]
Abstract
In the current global biodiversity crisis, the development of tools to define, quantify, compare, and predict resilience is essential for understanding the responses of species to global change. However, disparate interpretations of resilience have hampered the development of a common currency to quantify and compare resilience across natural systems. Most resilience frameworks focus on upper levels of biological organization, especially ecosystems or communities, which complicates measurements of resilience using empirical data. Surprisingly, there is no quantifiable definition of resilience at the demographic level. We introduce a framework of demographic resilience that draws on existing concepts from community and population ecology, as well as an accompanying set of metrics that are comparable across species.
Collapse
|
26
|
Robinson JM, Jorgensen A. Rekindling old friendships in new landscapes: The environment–microbiome–health axis in the realms of landscape research. PEOPLE AND NATURE 2020. [DOI: 10.1002/pan3.10082] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Jake M. Robinson
- Department of Landscape University of Sheffield Sheffield UK
- inVIVO Planetary Health Worldwide Universities Network (WUN) West New York NJ USA
- Healthy Urban Microbiome Initiative (HUMI) Adelaide SA Australia
| | - Anna Jorgensen
- Department of Landscape University of Sheffield Sheffield UK
| |
Collapse
|
27
|
McClean D, Friman V, Finn A, Salzberg LI, Donohue I. Coping with multiple enemies: pairwise interactions do not predict evolutionary change in complex multitrophic communities. OIKOS 2019. [DOI: 10.1111/oik.06586] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Deirdre McClean
- Centre for Immunity, Infection and Evolution, Univ. of Edinburgh Edinburgh UK
- Centre for Synthetic and Systems Biology, School of Biological Sciences Univ. of Edinburgh Edinburgh UK
| | | | - Alain Finn
- Dept of Zoology, School of Natural Sciences, Trinity College Dublin Ireland
| | - Letal I. Salzberg
- Smurfit Inst. of Genetics, School of Genetics and Microbiology, Trinity College Dublin Ireland
| | - Ian Donohue
- Dept of Zoology, School of Natural Sciences, Trinity College Dublin Ireland
| |
Collapse
|
28
|
Terry JCD, Morris RJ, Bonsall MB. Interaction modifications lead to greater robustness than pairwise non-trophic effects in food webs. J Anim Ecol 2019; 88:1732-1742. [PMID: 31287921 PMCID: PMC6900167 DOI: 10.1111/1365-2656.13057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 06/10/2019] [Indexed: 11/27/2022]
Abstract
Considerable emphasis has been placed recently on the importance of incorporating non-trophic effects into our understanding of ecological networks. Interaction modifications are well-established as generating strong non-trophic impacts by modulating the strength of interspecific interactions. For simplicity and comparison with direct interactions within a network context, the consequences of interaction modifications have often been described as direct pairwise interactions. The consequences of this assumption have not been examined in non-equilibrium settings where unexpected consequences of interaction modifications are most likely. To test the distinct dynamic nature of these "higher-order" effects, we directly compare, using dynamic simulations, the robustness to extinctions under perturbation of systems where interaction modifications are either explicitly modelled or represented by corresponding equivalent pairwise non-trophic interactions. Full, multi-species representations of interaction modifications resulted in a greater robustness to extinctions compared to equivalent pairwise effects. Explanations for this increased stability despite apparent greater dynamic complexity can be found in additional routes for dynamic feedbacks. Furthermore, interaction modifications changed the relative vulnerability of species to extinction from those trophically connected close to the perturbed species towards those receiving a large number of modifications. Future empirical and theoretical research into non-trophic effects should distinguish interaction modifications from direct pairwise effects in order to maximize information about the system dynamics. Interaction modifications have the potential to shift expectations of species vulnerability based exclusively on trophic networks.
Collapse
Affiliation(s)
| | - Rebecca J Morris
- Department of Zoology, University of Oxford, Oxford, UK.,School of Biological Sciences, University of Southampton, Southampton, UK
| | - Michael B Bonsall
- Department of Zoology, University of Oxford, Oxford, UK.,St. Peter's College, Oxford, UK
| |
Collapse
|
29
|
Kéfi S, Domínguez‐García V, Donohue I, Fontaine C, Thébault E, Dakos V. Advancing our understanding of ecological stability. Ecol Lett 2019; 22:1349-1356. [DOI: 10.1111/ele.13340] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 05/26/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Sonia Kéfi
- ISEM, CNRS, Univ. Montpellier, EPHE, IRD Montpellier France
| | | | - Ian Donohue
- Department of Zoology, School of Natural Sciences Trinity College Dublin Dublin 2 Ireland
| | | | - Elisa Thébault
- CNRS, Sorbonne Université, Institute of Ecology and Environmental Sciences of Paris Paris 75005 France
| | - Vasilis Dakos
- ISEM, CNRS, Univ. Montpellier, EPHE, IRD Montpellier France
| |
Collapse
|
30
|
Hunter WR, Ogle N, O’Connor N. Warming affects predatory faunal impacts upon microbial carbon cycling. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- William Ross Hunter
- Queen’s University Marine Laboratory, School of Biological Sciences Queen's University of Belfast Portaferry UK
| | - Neil Ogle
- Queen’s University Stable Isotope Facility, School of Natural and Built Environment Queen's University of Belfast Belfast UK
| | - Nessa O’Connor
- Queen’s University Marine Laboratory, School of Biological Sciences Queen's University of Belfast Portaferry UK
| |
Collapse
|
31
|
Yang Q, Fowler MS, Jackson AL, Donohue I. The predictability of ecological stability in a noisy world. Nat Ecol Evol 2019; 3:251-259. [DOI: 10.1038/s41559-018-0794-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 12/20/2018] [Indexed: 02/01/2023]
|
32
|
White L, Donohue I, Emmerson MC, O'Connor NE. Combined effects of warming and nutrients on marine communities are moderated by predators and vary across functional groups. GLOBAL CHANGE BIOLOGY 2018; 24:5853-5866. [PMID: 30246490 DOI: 10.1111/gcb.14456] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/08/2018] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Abstract
Warming, nutrient enrichment and biodiversity modification are among the most pervasive components of human-induced global environmental change. We know little about their cumulative effects on ecosystems; however, even though this knowledge is fundamental to predicting and managing their consequences in a changing world. Here, we show that shifts in predator species composition can moderate both the individual and combined effects of warming and nutrient enrichment in marine systems. However, all three aspects of global change also acted independently to alter different functional groups in our flow-through marine rock-pool mesocosms. Specifically, warming reduced macroalgal biomass and assemblage productivity, whereas enrichment led to increased abundance of meso-invertebrate consumers, and loss of predator species led to increased gastropod grazer biomass. This disparity in responses, both across trophic levels (macroalgae and intermediate consumers), and between detecting additive effects on aggregate measures of ecosystem functioning, yet interactive effects on community composition, illustrates that our forecasting ability depends strongly on the level of ecological complexity incorporated within global change experiments. We conclude that biodiversity change-and loss of predator species in particular-plays a critical and overarching role in determining how ecological communities respond to stressors.
Collapse
Affiliation(s)
- Lydia White
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Ian Donohue
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Mark C Emmerson
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Nessa E O'Connor
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
33
|
Cordone G, Marina TI, Salinas V, Doyle SR, Saravia LA, Momo FR. Effects of macroalgae loss in an Antarctic marine food web: applying extinction thresholds to food web studies. PeerJ 2018; 6:e5531. [PMID: 30225167 PMCID: PMC6139014 DOI: 10.7717/peerj.5531] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 08/07/2018] [Indexed: 11/20/2022] Open
Abstract
Antarctica is seriously affected by climate change, particularly at the Western Antarctic Peninsula (WAP) where a rapid regional warming is observed. Potter Cove is a WAP fjord at Shetland Islands that constitutes a biodiversity hotspot where over the last years, Potter Cove annual air temperatures averages increased by 0.66 °C, coastal glaciers declined, and suspended particulate matter increased due to ice melting. Macroalgae are the main energy source for all consumers and detritivores of Potter Cove. Some effects of climate change favor pioneer macroalgae species that exploit new ice-free areas and can also decline rates of photosynthesis and intensify competition between species due to the increase of suspended particulate matter. In this study, we evaluated possible consequences of climate change at Potter Cove food web by simulating the extinction of macroalgae and detritus using a topological approach with thresholds of extinction. Thresholds represent the minimum number of incoming links necessary for species' survival. When we simulated the extinctions of macroalgae species at random, a threshold of extinction beyond 50% was necessary to obtain a significant number of secondary extinctions, while with a 75% threshold a real collapse of the food web occurred. Our results indicate that Potter Cove food web is relative robust to macroalgae extinction. This is dramatically different from what has been found in other food webs, where the reduction of 10% in prey intake caused a disproportionate increase of secondary extinctions. Robustness of the Potter Cove food web was mediated by omnivory and redundancy, which had an important relevance in this food web. When we eliminated larger-biomass species more secondary extinctions occurred, a similar response was observed when more connected species were deleted, yet there was no correlation between species of larger-biomass and high-degree. This similarity could be explained because both criteria involved key species that produced an emerging effect on the food web. In this way, large-biomass and high-degree species could be acting as source for species with few trophic interactions or low redundancy. Based on this work, we expect the Potter Cove food web to be robust to changes in macroalgae species caused by climate change until a high threshold of stress is reached, and then negative effects are expected to spread through the entire food web leading to its collapse.
Collapse
Affiliation(s)
- Georgina Cordone
- Centro Nacional Patagónico (CCT CONICET-CENPAT), Centro Para el Estudio de Sistemas Marinos (CESIMAR), Puerto Madryn, Chubut, Argentina
| | - Tomás I. Marina
- Universidad Nacional de General Sarmiento, Instituto de Ciencias (ICI), Los Polvorines, Buenos Aires, Argentina
- Universidad Nacional de Luján, Instituto de Ecología y Desarrollo Sustentable (INEDES), Luján, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Austral de Investigaciones Científicas (CADIC), Ushuaia, Tierra del Fuego, Argentina
| | - Vanesa Salinas
- Universidad Nacional de General Sarmiento, Instituto de Ciencias (ICI), Los Polvorines, Buenos Aires, Argentina
| | - Santiago R. Doyle
- Universidad Nacional de General Sarmiento, Instituto de Ciencias (ICI), Los Polvorines, Buenos Aires, Argentina
- Universidad Nacional de Luján, Instituto de Ecología y Desarrollo Sustentable (INEDES), Luján, Buenos Aires, Argentina
| | - Leonardo A. Saravia
- Universidad Nacional de General Sarmiento, Instituto de Ciencias (ICI), Los Polvorines, Buenos Aires, Argentina
- Universidad Nacional de Luján, Instituto de Ecología y Desarrollo Sustentable (INEDES), Luján, Buenos Aires, Argentina
| | - Fernando R. Momo
- Universidad Nacional de General Sarmiento, Instituto de Ciencias (ICI), Los Polvorines, Buenos Aires, Argentina
- Universidad Nacional de Luján, Instituto de Ecología y Desarrollo Sustentable (INEDES), Luján, Buenos Aires, Argentina
| |
Collapse
|
34
|
Atwood TB, Hammill E. The Importance of Marine Predators in the Provisioning of Ecosystem Services by Coastal Plant Communities. FRONTIERS IN PLANT SCIENCE 2018; 9:1289. [PMID: 30233626 PMCID: PMC6129962 DOI: 10.3389/fpls.2018.01289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 08/16/2018] [Indexed: 06/08/2023]
Abstract
Food web theory predicts that current global declines in marine predators could generate unwanted consequences for many marine ecosystems. In coastal plant communities (kelp, seagrass, mangroves, and salt marsh), several studies have documented the far-reaching effects of changing predator populations. Across coastal ecosystems, the loss of marine predators appears to negatively affect coastal plant communities and the ecosystem services they provide. Here, we discuss some of the documented and suspected effects of predators on coastal protection, carbon sequestration, and the stability and resilience of coastal plant communities. In addition, we present a meta-analysis to assess the strength and direction of trophic cascades in kelp forests, seagrasses, salt marshes, and mangroves. We demonstrate that the strength and direction of trophic cascades varied across ecosystem types, with predators having a large positive effect on plants in salt marshes, a moderate positive effect on plants in kelp and mangroves, and no effect on plants in seagrasses. Our analysis also identified that there is a paucity of literature on trophic cascades for all four coastal plant systems, but especially seagrass and mangroves. Our results demonstrate the crucial role of predators in maintaining coastal ecosystem services, but also highlights the need for further research before large-scale generalizations about the prevalence, direction, and strength of trophic cascade in coastal plant communities can be made.
Collapse
|
35
|
Kehoe RC, Cruse D, Sanders D, Gaston KJ, van Veen FJF. Shifting daylength regimes associated with range shifts alter aphid-parasitoid community dynamics. Ecol Evol 2018; 8:8761-8769. [PMID: 30271543 PMCID: PMC6157684 DOI: 10.1002/ece3.4401] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/23/2018] [Accepted: 06/27/2018] [Indexed: 11/12/2022] Open
Abstract
With climate change leading to poleward range expansion of species, populations are exposed to new daylength regimes along latitudinal gradients. Daylength is a major factor affecting insect life cycles and activity patterns, so a range shift leading to new daylength regimes is likely to affect population dynamics and species interactions; however, the impact of daylength in isolation on ecological communities has not been studied so far. Here, we tested for the direct and indirect effects of two different daylengths on the dynamics of experimental multitrophic insect communities. We compared the community dynamics under "southern" summer conditions of 14.5-hr daylight to "northern" summer conditions of 22-hr daylight. We show that food web dynamics indeed respond to daylength with one aphid species (Acyrthosiphon pisum) reaching much lower population sizes at the northern daylength regime compared to under southern conditions. In contrast, in the same communities, another aphid species (Megoura viciae) reached higher population densities under northern conditions. This effect at the aphid level was driven by an indirect effect of daylength causing a change in competitive interaction strengths, with the different aphid species being more competitive at different daylength regimes. Additionally, increasing daylength also increased growth rates in M. viciae making it more competitive under summer long days. As such, the shift in daylength affected aphid population sizes by both direct and indirect effects, propagating through species interactions. However, contrary to expectations, parasitoids were not affected by daylength. Our results demonstrate that range expansion of whole communities due to climate change can indeed change interaction strengths between species within ecological communities with consequences for community dynamics. This study provides the first evidence of daylength affecting community dynamics, which could not be predicted from studying single species separately.
Collapse
Affiliation(s)
- Rachel C. Kehoe
- College of Life and Environmental SciencesUniversity of ExeterPenrynCornwallUK
| | - David Cruse
- Environment and Sustainability InstituteUniversity of ExeterPenrynCornwallUK
| | - Dirk Sanders
- Environment and Sustainability InstituteUniversity of ExeterPenrynCornwallUK
| | - Kevin J. Gaston
- Environment and Sustainability InstituteUniversity of ExeterPenrynCornwallUK
| | | |
Collapse
|