1
|
Evans MJ, MacGregor C, Lindenmayer D. A misleading tail: A long-term study of reptile responses to multiple disturbances undermined by a change in surveying techniques. PLoS One 2024; 19:e0305518. [PMID: 38875283 PMCID: PMC11178227 DOI: 10.1371/journal.pone.0305518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 06/01/2024] [Indexed: 06/16/2024] Open
Abstract
Long-term ecological monitoring is crucial to understanding the complex dynamics of ecosystems, communities, and populations. Despite this, monitoring data are lacking or rare for the vast majority of biodiversity. Here we report the results of 19 years (2003-2022) of continuous annual monitoring of reptile species at Booderee National Park (BNP) on the east coast of south-eastern Australia. We tested the effects of time, habitat type, fire, and climate on detections of five reptile species. Our study revealed declines in detections of two skink species over time (Lampropholis delicata and Ctenotus taeniolatus), which we suspect was partly driven by weather conditions influencing activity of these species. We also identified broad vegetation type associations for two congeneric species with L. delicata being associated with forested sites, and Lampropholis guichenoti associated with more shrubby sites. Our results also demonstrated a clear association between Cryptophis nigrescens and L. delicata and fire, with the probabilities of detection of both species decreasing with time since fire in the short term. At about the midway point of our study (in 2011), we were forced to make a change in the way our data were collected. The change heavily influenced our findings, and so breached the integrity of the time series in our dataset. We acknowledge that a simple but crucial step to mitigate this breach would have been to conduct calibration that allowed subsequent analysis to control for a change in field survey methodology. Whilst improvements in the effectiveness of field survey methods might be possible through new technologies, it is crucial to maintain the integrity of long-term datasets as data collection continues.
Collapse
Affiliation(s)
- Maldwyn John Evans
- Fenner School of Environment and Society, The Australian National University, Canberra, ACT, Australia
| | - Christopher MacGregor
- Fenner School of Environment and Society, The Australian National University, Canberra, ACT, Australia
| | - David Lindenmayer
- Fenner School of Environment and Society, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
2
|
Loughran CL, Wolf BO. Evaporative cooling via panting and its metabolic and water balance costs for lizards in the American Southwest. J Exp Biol 2023; 226:286687. [PMID: 36651236 DOI: 10.1242/jeb.243877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
In lizards there is considerable variation in the ability to dissipate environmental/endogenous heat loads through evaporative cooling via panting, which effects how long lizards can spend exposed to high solar heat loads. We recently described the differing capacities of lizards to depress body temperature (Tb) through evaporative cooling via panting. Here, we link panting and Tb depression with rates of evaporative water loss and its metabolic costs under high heat loads. We used flow-through respirometry to measure evaporative water loss rates and metabolism of 17 lizard species from the American Southwest while simultaneously measuring Tb. We exposed lizards to air temperatures (Ta) ranging from 35°C to their critical thermal maximum (CTmax) while marking the onset of panting. We then estimated pre-panting Q10 values for metabolism to partition increases in metabolism associated with the van't Hoff effect from the mechanical cost of panting with increasing heat loads. We found that evaporative cooling costs substantially varied among species, with panting effort significantly affecting lizards' evaporative capacity. Lizard evaporation rates ranged from 0.32 to 1.5 g H2O h-1, with individuals losing as much as 6% h-1 of body mass while panting. Lizards also experienced an increase of up to 7.9-fold in metabolic rate while panting, although the overall energetic costs of panting remained relatively low compared with evaporative water costs. Across species, there was a significant positive relationship between the overall rate of evaporative heat loss and the maximum Ta-Tb gradient a species could maintain. While evaporative cooling may be an effective mechanism for reducing Tb and extending activity in hot environments for many species, it has significant metabolic and water balance costs that should be considered, as habitats with high environmental heat loads can be especially costly to an animal's water budgets.
Collapse
Affiliation(s)
- Caleb L Loughran
- Department of Biology, University of New Mexico, MSC03-2020, Albuquerque, NM 87131-0001, USA.,Department of Biology, New Mexico Highlands University, 810 National Avenue, Las Vegas, NM 87701, USA
| | - Blair O Wolf
- Department of Biology, University of New Mexico, MSC03-2020, Albuquerque, NM 87131-0001, USA
| |
Collapse
|
3
|
Flesch AD. Landcover change and habitat quality mediate impacts of temperature and precipitation on population dynamics of a threatened aridland predator. Anim Conserv 2022. [DOI: 10.1111/acv.12836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- A. D. Flesch
- School of Natural Resources and the Environment University of Arizona Tucson AZ USA
| |
Collapse
|
4
|
Wan X, Holyoak M, Yan C, Le Maho Y, Dirzo R, Krebs CJ, Stenseth NC, Zhang Z. Broad-scale climate variation drives the dynamics of animal populations: a global multi-taxa analysis. Biol Rev Camb Philos Soc 2022; 97:2174-2194. [PMID: 35942895 DOI: 10.1111/brv.12888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 01/07/2023]
Abstract
Climate is a major extrinsic factor affecting the population dynamics of many organisms. The Broad-Scale Climate Hypothesis (BSCH) was proposed by Elton to explain the large-scale synchronous population cycles of animals, but the extent of support and whether it differs among taxa and geographical regions is unclear. We reviewed publications examining the relationship between the population dynamics of multiple taxa worldwide and the two most commonly used broad-scale climate indices, El Niño-Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO). Our review and synthesis (based on 561 species from 221 papers) reveals that population changes of mammals, birds and insects are strongly affected by major oceanic shifts or irregular oceanic changes, particularly in ENSO- and NAO-influenced regions (Pacific and Atlantic, respectively), providing clear evidence supporting Elton's BSCH. Mammal and insect populations tended to increase during positive ENSO phases. Bird populations tended to increase in positive NAO phases. Some species showed dual associations with both positive and negative phases of the same climate index (ENSO or NAO). These findings indicate that some taxa or regions are more or less vulnerable to climate fluctuations and that some geographical areas show multiple weather effects related to ENSO or NAO phases. Beyond confirming that animal populations are influenced by broad-scale climate variation, we document extensive patterns of variation among taxa and observe that the direct biotic and abiotic mechanisms for these broad-scale climate factors affecting animal populations are very poorly understood. A practical implication of our research is that changes in ENSO or NAO can be used as early signals for pest management and wildlife conservation. We advocate integrative studies at both broad and local scales to unravel the omnipresent effects of climate on animal populations to help address the challenge of conserving biodiversity in this era of accelerated climate change.
Collapse
Affiliation(s)
- Xinru Wan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Marcel Holyoak
- Department of Environmental Science and Policy, University of California, California, Davis, 95616, USA
| | - Chuan Yan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yvon Le Maho
- Institut Pluridisciplinaire Hubert Curien (IPHC), Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, Strasbourg, 67000, France.,Centre Scientifique de Monaco, Monaco, 98000, Monaco
| | - Rodolfo Dirzo
- Department of Biology and Woods Institute for the Environment, Stanford University, Stanford, California, 94305, USA
| | - Charles J Krebs
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Nils Chr Stenseth
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, N-0316, Norway
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Mohanty NP, Wagener C, Herrel A, Thaker M. The ecology of sleep in non-avian reptiles. Biol Rev Camb Philos Soc 2021; 97:505-526. [PMID: 34708504 DOI: 10.1111/brv.12808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 10/10/2021] [Accepted: 10/18/2021] [Indexed: 01/10/2023]
Abstract
Sleep is ubiquitous in the animal kingdom and yet displays considerable variation in its extent and form in the wild. Ecological factors, such as predation, competition, and microclimate, therefore are likely to play a strong role in shaping characteristics of sleep. Despite the potential for ecological factors to influence various aspects of sleep, the ecological context of sleep in non-avian reptiles remains understudied and without systematic direction. In this review, we examine multiple aspects of reptilian sleep, including (i) habitat selection (sleep sites and their spatio-temporal distribution), (ii) individual-level traits, such as behaviour (sleep postures), morphology (limb morphometrics and body colour), and physiology (sleep architecture), as well as (iii) inter-individual interactions (intra- and inter-specific). Throughout, we discuss the evidence of predation, competition, and thermoregulation in influencing sleep traits and the possible evolutionary consequences of these sleep traits for reptile sociality, morphological specialisation, and habitat partitioning. We also review the ways in which sleep ecology interacts with urbanisation, biological invasions, and climate change. Overall, we not only provide a systematic evaluation of the conceptual and taxonomic biases in the existing literature on reptilian sleep, but also use this opportunity to organise the various ecological hypotheses for sleep characteristics. By highlighting the gaps and providing a prospectus of research directions, our review sets the stage for understanding sleep ecology in the natural world.
Collapse
Affiliation(s)
- Nitya P Mohanty
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560 012, India
| | - Carla Wagener
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, Western Cape, 7600, South Africa
| | - Anthony Herrel
- Département Adaptations du Vivant, MECADEV UMR7179 CNRS/MNHN, Paris, France
| | - Maria Thaker
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560 012, India
| |
Collapse
|
6
|
Rugiero L, Capula M, Dendi D, Petrozzi F, Fa JE, Funk SM, Burke RL, Luiselli L. Testing hypotheses of habitat use and temporal activity in relation to body plan in a Mediterranean lizard community. CAN J ZOOL 2021. [DOI: 10.1139/cjz-2021-0083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A body plan (bauplan) is a suite of morphological characters shared by phylogenetically related animals at some point during their development. Despite its value, the bauplan concept is still rarely employed to characterize functional groups in community ecology. Here, we examine habitat use and spatio-temporal activity correlates of an entire seven-species community of lizards with different bauplans. The study was carried out in three locations in central Italy, encompassing a complex landscape with a patchy mosaic of a wide variety of habitats and microclimates. We tested four hypotheses regarding niche breadth, habitat use, and activity patterns. The first hypothesis, niche complementarity, in which species with similar body shapes should non-randomly partition available habitats, was not supported. By contrast, the hypotheses that larger bodied species should have a wider niche breadth, that slower species should inhabit habitat types of higher cover, and species inhabiting open sunny habitats should exhibit more seasonally variable activity patterns, were all supported by the data. Sympatric lizard communities in our study area were clearly organized by autecological constraints and eco-physiological attributes.
Collapse
Affiliation(s)
- Lorenzo Rugiero
- Institute for Development, Ecology, Conservation and Cooperation, via G. Tomasi di Lampedusa 33, I-00144 Rome, Italy
| | | | - Daniele Dendi
- Institute for Development, Ecology, Conservation and Cooperation, via G. Tomasi di Lampedusa 33, I-00144 Rome, Italy
- Department of Applied and Environmental Biology, Rivers State University of Science and Technology, P.M.B. 5080, Port Harcourt, Nigeria
- Department of Zoology, University of Lomé, Lomé, Togo
| | | | - Julia E. Fa
- Department of Natural Sciences, School of Science and the Environment, Manchester Metropolitan University, Manchester, M1 5GD, UK
- Center for International Forestry Research (CIFOR), CIFOR Headquarters, Bogor, 16115, Indonesia
| | | | | | - Luca Luiselli
- Institute for Development, Ecology, Conservation and Cooperation, via G. Tomasi di Lampedusa 33, I-00144 Rome, Italy
- Department of Applied and Environmental Biology, Rivers State University of Science and Technology, P.M.B. 5080, Port Harcourt, Nigeria
- Department of Zoology, University of Lomé, Lomé, Togo
| |
Collapse
|
7
|
Brizio MV, Cabezas-Cartes F, Fernández JB, Gómez Alés R, Avila LJ. Vulnerability to global warming of the critically endangered Añelo Sand Dunes Lizard (Liolaemus cuyumhue) from the Monte Desert, Patagonia Argentina. CAN J ZOOL 2021. [DOI: 10.1139/cjz-2020-0305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The body temperature of lizards is strongly influenced by the thermal quality of microhabitats, exploiting the favourable environmental temperatures, and avoiding exposure to extreme thermal conditions. For these reasons, reptile populations are considered to be especially vulnerable to changes in environmental temperatures produced by climate change. Here, we study the thermal physiology of the critically endangered Añelo Sand Dunes Lizard (Liolaemus cuyumhue Avila, Morando, Perez and Sites, 2009). We hypothesise that (i) there is a thermal coadaptation between optimal temperature for locomotor performance of L. cuyumhue and its thermal preference; (ii) L. cuyumhue lives in an environment with low thermal quality; and (iii) a rise in environmental temperatures due to global warming will impose a decrement in locomotor speed represented by lower warming tolerance and narrower thermal safety margins, increasing their already high vulnerability. We recorded field body temperatures (T b), preferred body temperatures (T pref), the operative temperature (T e), and the thermal sensitivity of locomotion at different body temperatures. Our results indicate that this lizard is not currently under environmental stress or exceeding its thermal limits, but that it is thermoregulating below T pref to avoid overheating, and that an increase in environmental temperature higher than 3.5 °C will strongly affect the use of microhabitats with direct sun exposure.
Collapse
Affiliation(s)
- M. Victoria Brizio
- Facultad de Ciencias del Ambiente y la Salud, Universidad Nacional del Comahue, CONICET, Buenos Aires 1400, Neuquén, 8300b, Neuquén, Argentina
| | - Facundo Cabezas-Cartes
- Laboratorio de Ecofisiología e Historia de vida de Reptiles, Instituto de Investigaciones en Biodiversidad y Medio Ambiente (INIBIOMA–CONICET), Universidad Nacional del Comahue, Quintral 1250, San Carlos de Bariloche, 8400, Río Negro, Argentina
| | - Jimena B. Fernández
- Laboratorio de Ecofisiología e Historia de vida de Reptiles, Instituto de Investigaciones en Biodiversidad y Medio Ambiente (INIBIOMA–CONICET), Universidad Nacional del Comahue, Quintral 1250, San Carlos de Bariloche, 8400, Río Negro, Argentina
| | - Rodrigo Gómez Alés
- Departamento de Biología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de San Juan, CONICET, Av. Ignacio de la Roza 590 (O), Rivadavia, J5402DCS, San Juan, Argentina
| | - Luciano J. Avila
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC–CONICET), Puerto Madryn, 9120, Chubut, Argentina
| |
Collapse
|
8
|
Wang Z, Zhu W, Xu Y, Yu S, Zhang L, Zhou Z, Diao J. Effects of simazine and food deprivation chronic stress on energy allocation among the costly physiological processes of male lizards (Eremias argus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116139. [PMID: 33307394 DOI: 10.1016/j.envpol.2020.116139] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/10/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
The residue of simazine herbicide in the environment is known as one of pollutant stress for lizards by crippling its fitness on direct toxic effects and indirect food shortage via the food chain effects. Both stressors were considered in our experiment in the simazine exposure and food availability to lizards (Eremias argus). The results revealed that starvation significantly reduced the lizard's energy reserve and native immune function, while the accumulation of simazine in the liver was significantly increased. Simazine caused oxidative stress in the liver of lizards, but oxidative damage only occurred in the starved lizards. Simazine also changed the energy reserves, native immune function and detoxification of well-fed lizards, while the starved lizards showed different sensitivity to simazine. Simazine or starvation treatment independently activated the lizard HPA axis, but co-treatment caused the HPA axis inhibition. Besides, according to the variations on amino acid neurotransmitters, corticosterone hormone and thermoregulatory behavior, we inferred that lizards in threatens take the appropriate strategy on energy investment and allocation through neural, endocrine and behavioral pathways to maximize benefits in dilemma. Energy allocation was necessary, while suppression on any physiological process comes at a cost that is detrimental to long-term individual fitness.
Collapse
Affiliation(s)
- Zikang Wang
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Wenning Zhu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | | | - Simin Yu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Luyao Zhang
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Jinling Diao
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China.
| |
Collapse
|
9
|
Ridley AR, Wiley EM, Bourne AR, Cunningham SJ, Nelson-Flower MJ. Understanding the potential impact of climate change on the behavior and demography of social species: The pied babbler (Turdoides bicolor) as a case study. ADVANCES IN THE STUDY OF BEHAVIOR 2021. [DOI: 10.1016/bs.asb.2021.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Lara-Reséndiz RA, Galina-Tessaro P, Sinervo B, Miles DB, Valdez-Villavicencio JH, Valle-Jiménez FI, Méndez-de La Cruz FR. How will climate change impact fossorial lizard species? Two examples in the Baja California Peninsula. J Therm Biol 2020; 95:102811. [PMID: 33454041 DOI: 10.1016/j.jtherbio.2020.102811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/01/2020] [Accepted: 12/12/2020] [Indexed: 02/08/2023]
Abstract
Global climate change and the associated erosion of habitat suitability are pervasive threats to biodiversity. It is critical to identify specific stressors to assess a species vulnerability to extinction, especially in species with distinctive natural histories. Here, we present a combination of field, laboratory, and modeling approaches to evaluate the potential consequences of climate change on two endemic, fossorial lizards species (Anniella geronimensis and Bipes biporus) from Baja California, Mexico. We also include soil type in our models to refine the suitable areas using our mechanistic models. Results suggest that both species are at high risk of extinction by global climate change based on the thermal habitat suitability. The forecast for species persistence is most grave under the RCP8.5 scenario. On the one hand, suitable habitat for A. geronimensis diminishes at its southern distribution, but potential suitable expands towards the north. On the other hand, the suitable habitat for B. biporus will contract significantly with a concomitant reduction in its potential distribution. Because both species have low mobility and are restricted to low elevation, the potential for elevational and latitudinal dispersal to mitigate extinction risk along the Baja California Peninsula is unlikely. In addition each species has specialized thermal requirements (i.e., stenothermic) and soil type preferences to which they are adapted. Our ecophysiological models in combination with the type of soil are fundamental in developing conservation strategies.
Collapse
Affiliation(s)
- Rafael A Lara-Reséndiz
- Centro de Investigaciones Biológicas del Noroeste, Playa Palo de Santa Rita Sur, C.P. 23096, La Paz, Baja California Sur, Mexico; Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Centro de Zoología Aplicada and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Córdoba, Argentina.
| | - Patricia Galina-Tessaro
- Centro de Investigaciones Biológicas del Noroeste, Playa Palo de Santa Rita Sur, C.P. 23096, La Paz, Baja California Sur, Mexico
| | - Barry Sinervo
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Donald B Miles
- Department of Biological Sciences, Ohio University, Athens, OH, USA
| | | | - Fernando I Valle-Jiménez
- Centro de Investigaciones Biológicas del Noroeste, Playa Palo de Santa Rita Sur, C.P. 23096, La Paz, Baja California Sur, Mexico
| | - Fausto R Méndez-de La Cruz
- Laboratorio de Herpetología, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Coyoacán, A.P. 70515, C.P. 04510, Mexico
| |
Collapse
|
11
|
Evaporative water loss simulation improves models’ prediction of habitat suitability for a high-elevation forest skink. Oecologia 2020; 192:657-669. [DOI: 10.1007/s00442-020-04597-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/10/2020] [Indexed: 10/25/2022]
|
12
|
Larios E, González EJ, Rosen PC, Pate A, Holm P. Population projections of an endangered cactus suggest little impact of climate change. Oecologia 2020; 192:439-448. [PMID: 31938884 DOI: 10.1007/s00442-020-04595-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/07/2020] [Indexed: 11/26/2022]
Abstract
Population projections coupled with downscaled climate projections are a powerful tool that allows predicting future population dynamics of vulnerable plants in the face of a changing climate. Traditional approaches used to predict the vulnerability of plants to climate change (e.g. species distribution models) fail to mechanistically describe the basis of a population's dynamics and thus cannot be expected to correctly predict its temporal trends. In this study, we used a 23-year demographic dataset of the acuña cactus, an endangered species, to predict its population dynamics to the end of the century. We used integral projection models to describe its vital rates and population dynamics in relation to plant volume and key climatic variables. We used the resulting climate-driven IPM along with climatic projections to predict the population growth rates from 1991 to 2099. We found the average population growth rate of this population between 1991 and 2013 to be 0.70 (95% CI 0.61-0.79). This result confirms that the population of acuña cactus has been declining and that this decline is due to demographic structure and climate conditions. However, the projection model also predicts that, up to 2080, the population will remain relatively stable mainly due to the survival of its existing adult individuals. Notwithstanding, the long-term viability of the populations can only be achieved through the recruitment of new individuals.
Collapse
Affiliation(s)
- Eugenio Larios
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA
- Ecología para la Conservación del Gran Desierto, A.C., Hermosillo, Sonora, Mexico
| | - Edgar J González
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | - Philip C Rosen
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA
| | - Ami Pate
- Organ Pipe Cactus National Monument, National Park Service, Ajo, AZ, USA
| | - Peter Holm
- Organ Pipe Cactus National Monument, National Park Service, Ajo, AZ, USA
| |
Collapse
|
13
|
Vargas-García S, Argaez V, Solano-Zavaleta I, Zúñiga-Vega JJ. Population dynamics of three lizard species from the genus Sceloporus: short-term changes in demographic parameters. Integr Zool 2019; 14:542-560. [PMID: 30983099 PMCID: PMC6899941 DOI: 10.1111/1749-4877.12396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Most demographic studies focus on numerical changes that occur within populations across years. However, typically studies at an interannual scale do not provide information on the particular times of the year (particular months or seasons) when rates of survival, recruitment, or migration increase or decrease due to physiological, behavioral or ecological processes. These monthly or seasonal changes in demographic parameters may lead to substantial variations in population abundance. In this study, we collected capture–mark–recapture data on 3 species of lizards of the genus Sceloporus (Sceloporus torquatus, Sceloporus grammicus and Sceloporus megalepidurus) found in ecologically similar habitats to examine potential changes in demographic rates among 3 different climatic seasons: rainy, cold‐dry and warm‐dry seasons. We tested different hypotheses about the effect of these seasons on survival, recruitment of new adults, and temporary emigration. We found that during the season with severe thermal constraints, the cold‐dry season, survival of S. torquatus decreased markedly. We also detected a considerable increase in the recruitment rate of S. grammicus during the rainy season, when these lizards are establishing territories and finding mates. In contrast, we found no evidence of intra‐annual changes in the rate of temporary emigration. In addition, we calculated abundance and population growth rates for each species and for each season. Our study represents a significant contribution to the understanding of intra‐annual demographic variation in lizards.
Collapse
Affiliation(s)
- Selene Vargas-García
- Graduate Program in Biological Sciences, National Autonomous University of Mexico, University City, Mexico City, México
| | - Víctor Argaez
- Graduate Program in Biological Sciences, National Autonomous University of Mexico, University City, Mexico City, México
| | - Israel Solano-Zavaleta
- Department of Ecology and Natural Resources, Faculty of Sciences, National Autonomous University of Mexico, University City, Mexico City, México
| | - J Jaime Zúñiga-Vega
- Department of Ecology and Natural Resources, Faculty of Sciences, National Autonomous University of Mexico, University City, Mexico City, México
| |
Collapse
|
14
|
Falaschi M, Manenti R, Thuiller W, Ficetola GF. Continental-scale determinants of population trends in European amphibians and reptiles. GLOBAL CHANGE BIOLOGY 2019; 25:3504-3515. [PMID: 31220393 DOI: 10.1111/gcb.14739] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 05/29/2019] [Accepted: 06/13/2019] [Indexed: 06/09/2023]
Abstract
The continuous decline of biodiversity is determined by the complex and joint effects of multiple environmental drivers. Still, a large part of past global change studies reporting and explaining biodiversity trends have focused on a single driver. Therefore, we are often unable to attribute biodiversity changes to different drivers, since a multivariable design is required to disentangle joint effects and interactions. In this work, we used a meta-regression within a Bayesian framework to analyze 843 time series of population abundance from 17 European amphibian and reptile species over the last 45 years. We investigated the relative effects of climate change, alien species, habitat availability, and habitat change in driving trends of population abundance over time, and evaluated how the importance of these factors differs across species. A large number of populations (54%) declined, but differences between species were strong, with some species showing positive trends. Populations declined more often in areas with a high number of alien species, and in areas where climate change has caused loss of suitability. Habitat features showed small variation over the last 25 years, with an average loss of suitable habitat of 0.1%/year per population. Still, a strong interaction between habitat availability and the richness of alien species indicated that the negative impact of alien species was particularly strong for populations living in landscapes with less suitable habitat. Furthermore, when excluding the two commonest species, habitat loss was the main correlate of negative population trends for the remaining species. By analyzing trends for multiple species across a broad spatial scale, we identify alien species, climate change, and habitat changes as the major drivers of European amphibian and reptile decline.
Collapse
Affiliation(s)
- Mattia Falaschi
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Raoul Manenti
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Wilfried Thuiller
- Laboratoire d'Écologie Alpine (LECA), Université Grenoble Alpes, University of Savoie Mont Blanc, CNRS, Grenoble, France
| | - Gentile Francesco Ficetola
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
- Laboratoire d'Écologie Alpine (LECA), Université Grenoble Alpes, University of Savoie Mont Blanc, CNRS, Grenoble, France
| |
Collapse
|
15
|
Grimm‐Seyfarth A, Mihoub J, Henle K. Functional traits determine the different effects of prey, predators, and climatic extremes on desert reptiles. Ecosphere 2019. [DOI: 10.1002/ecs2.2865] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Annegret Grimm‐Seyfarth
- Department of Conservation Biology UFZ – Helmholtz Centre for Environmental Research Permoserstraße 15 04318 Leipzig Germany
- Plant Ecology and Nature Conservation University of Potsdam Am Mühlenberg 3 14476 Potsdam Germany
| | - Jean‐Baptiste Mihoub
- Department of Conservation Biology UFZ – Helmholtz Centre for Environmental Research Permoserstraße 15 04318 Leipzig Germany
- UPMC Université Paris 06 Muséum National d'Histoire Naturelle CNRS CESCO UMR 7204 Sorbonne Universités Paris France
| | - Klaus Henle
- Department of Conservation Biology UFZ – Helmholtz Centre for Environmental Research Permoserstraße 15 04318 Leipzig Germany
| |
Collapse
|
16
|
Lara-Resendiz RA, Galina-Tessaro P, Pérez-Delgadillo AG, Valdez-Villavicencio JH, Méndez-de La Cruz FR. Efectos del cambio climático en una especie de lagartija termófila de amplia distribución (Dipsosaurus dorsalis): un enfoque ecofisiológico. REV MEX BIODIVERS 2019. [DOI: 10.22201/ib.20078706e.2019.90.2888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
17
|
Hodgson MJ, Schwanz LE. Drop it like it's hot: Interpopulation variation in thermal phenotypes shows counter-gradient pattern. J Therm Biol 2019; 83:178-186. [PMID: 31331517 DOI: 10.1016/j.jtherbio.2019.05.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 05/17/2019] [Accepted: 05/19/2019] [Indexed: 01/06/2023]
Abstract
Ectotherms utilise a complex array of behavioural and physiological mechanisms to cope with variation in suboptimal thermal environments. However, these mechanisms may be insufficient for population persistence under contemporary climate change, resulting in a greater need to understand how local populations respond to geographic variation in climate. In this study, we explored the potential for local adaptation and acclimation in thermal traits and behaviours using wild and captive populations of a small agamid lizard (the jacky lizard, Amphibolurus muricatus). We predicted that wild lizards from a high elevation site would have cooler thermal preferences compared to those at low elevation sites to match the more restricted thermal resources at higher, cooler elevations. We additionally explored whether variation in thermal traits was due to recent acclimation or fixed population differences, such as due to developmental plasticity or local adaptation. In contrast to our predictions, we found high-elevation lizards began panting at higher temperatures and had higher thermal preferences relative to lower elevation lizards. When allowed to bask freely, there was no difference in the intensity of basking or daily duration of time spent basking between lizards from different elevations. Although the high-elevation lizards appeared to show stronger acclimation to recent air temperatures compared to low-elevation lizards, this difference was not significant. Similarly, captive lizards acclimated under long and short basking regimes showed no major differences in thermal traits or basking behaviour. Our results are consistent with the presence of counter-gradient variation in thermal phenotypes of lizards, and suggest that these are driven by local adaptive responses or developmental effects rather than recent acclimation.
Collapse
Affiliation(s)
- Mitchell J Hodgson
- Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia.
| | - Lisa E Schwanz
- Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
18
|
Lemos-Espinal JA, Smith GR, Rorabaugh JC. A conservation checklist of the amphibians and reptiles of Sonora, Mexico, with updated species lists. Zookeys 2019; 829:131-160. [PMID: 30914839 PMCID: PMC6422993 DOI: 10.3897/zookeys.829.32146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/28/2019] [Indexed: 11/12/2022] Open
Abstract
Sonora has a rich natural diversity, including reptiles and amphibians. Sonora's location on the United States-Mexico border creates some unique conservation challenges for its wildlife. We compiled a list of the amphibian and reptile species currently known for Sonora, summarized the conservation status of these species, and compared our list of species with known species lists for adjacent states. The herpetofauna of Sonora comprises 200 species of amphibians and reptiles (38 amphibians and 162 reptiles). Overall, Sonora shares the most species with Chihuahua, Sinaloa, and Arizona. Approximately 11% of the amphibian and reptile species are IUCN listed, but 35.5% are placed in a protected category by SEMARNAT, and 32.6% are categorized as high risk by the Environmental Vulnerability Score.
Collapse
Affiliation(s)
- Julio A Lemos-Espinal
- Laboratorio de Ecología-UBIPRO, FES Iztacala UNAM, Avenida los Barrios 1, Los Reyes Iztacala, Tlalnepantla, edo. de Mexico, 54090, Mexico Universidad Nacional Autónoma de México Tlalnepantla Mexico
| | - Geoffrey R Smith
- Department of Biology, Denison University, Granville, Ohio 43023, USA Denison University Granville United States of America
| | - James C Rorabaugh
- P.O. Box 31, Saint David, Arizona 85630, USA Unaffilaited Phoenix United States of America
| |
Collapse
|
19
|
Diele-Viegas LM, Rocha CFD. Unraveling the influences of climate change in Lepidosauria (Reptilia). J Therm Biol 2018; 78:401-414. [PMID: 30509664 DOI: 10.1016/j.jtherbio.2018.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 10/25/2018] [Accepted: 11/12/2018] [Indexed: 12/30/2022]
Abstract
In recent decades, changes in climate have caused impacts on natural and human systems on all continents and across the oceans and many species have shifted their geographic ranges, seasonal activities, migration patterns, abundances and interactions in response to these changes. Projections of future climate change are uncertain, but the Earth's warming is likely to exceed 4.8 °C by the end of 21th century. The vulnerability of a population, species, group or system due to climate change is a function of impact of the changes on the evaluated system (exposure and sensitivity) and adaptive capacity as a response to this impact, and the relationship between these elements will determine the degree of species vulnerability. Predicting the potential future risks to biodiversity caused by climate change has become an extremely active field of research, and several studies in the last two decades had focused on determining possible impacts of climate change on Lepidosaurians, at a global, regional and local level. Here we conducted a systematic review of published studies in order to seek to what extent the accumulated knowledge currently allow us to identify potential trends or patterns regarding climate change effects on lizards, snakes, amphisbaenians and tuatara. We conducted a literature search among online literature databases/catalogues and recorded 255 studies addressing the influence of climate change on a total of 1918 species among 49 Lepidosaurian's families. The first study addressing this subject is dated 1999. Most of the studies focused on species distribution, followed by thermal biology, reproductive biology, behavior and genetics. We concluded that an integrative approach including most of these characteristics and also bioclimatic and environmental variables, may lead to consistent and truly effective strategies for species conservation, aiming to buffer the climate change effects on this group of reptiles.
Collapse
|
20
|
Dupoué A, Rutschmann A, Le Galliard JF, Clobert J, Blaimont P, Sinervo B, Miles DB, Haussy C, Meylan S. Reduction in baseline corticosterone secretion correlates with climate warming and drying across wild lizard populations. J Anim Ecol 2018; 87:1331-1341. [PMID: 29701285 DOI: 10.1111/1365-2656.12843] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/12/2018] [Indexed: 12/25/2022]
Abstract
Climate change should lead to massive loss of biodiversity in most taxa, but the detailed physiological mechanisms underlying population extinction remain largely elusive so far. In vertebrates, baseline levels of hormones such as glucocorticoids (GCs) may be indicators of population state as their secretion to chronic stress can impair survival and reproduction. However, the relationship between GC secretion, climate change and population extinction risk remains unclear. In this study, we investigated whether levels of baseline corticosterone (the main GCs in reptiles) correlate with environmental conditions and associated extinction risk across wild populations of the common lizard Zootoca vivipara. First, we performed a cross-sectional comparison of baseline corticosterone levels along an altitudinal gradient among 14 populations. Then, we used a longitudinal study in eight populations to examine the changes in corticosterone levels following the exposure to a heatwave period. Unexpectedly, baseline corticosterone decreased with increasing thermal conditions at rest in females and was not correlated with extinction risk. In addition, baseline corticosterone levels decreased after exposure to an extreme heatwave period. This seasonal corticosterone decrease was more pronounced in populations without access to standing water. We suggest that low basal secretion of corticosterone may entail downregulating activity levels and limit exposure to adverse climatic conditions, especially to reduce water loss. These new insights suggest that rapid population decline might be preceded by a downregulation of the corticosterone secretion.
Collapse
Affiliation(s)
- Andréaz Dupoué
- CNRS, iEES Paris, UMR 7618, Sorbonne Université, Paris, France
| | - Alexis Rutschmann
- Station d'Ecologie Théorique et Expérimentale du CNRS à Moulis, UMR 5321, Saint Girons, France
| | - Jean François Le Galliard
- CNRS, iEES Paris, UMR 7618, Sorbonne Université, Paris, France.,Centre de recherche en écologie expérimentale et prédictive (CEREEP-Ecotron IleDeFrance), Ecole normale supérieure, CNRS, UMS 3194, PSL Research University, Saint-Pierre-lès-Nemours, France
| | - Jean Clobert
- Station d'Ecologie Théorique et Expérimentale du CNRS à Moulis, UMR 5321, Saint Girons, France
| | - Pauline Blaimont
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, California
| | - Barry Sinervo
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, California
| | - Donald B Miles
- Station d'Ecologie Théorique et Expérimentale du CNRS à Moulis, UMR 5321, Saint Girons, France.,Department of Biological Sciences, Ohio University, Athens, Ohio
| | - Claudy Haussy
- CNRS, iEES Paris, UMR 7618, Sorbonne Université, Paris, France
| | - Sandrine Meylan
- CNRS, iEES Paris, UMR 7618, Sorbonne Université, Paris, France.,ESPE de Paris, Sorbonne Université, Paris, France
| |
Collapse
|
21
|
Moral RA, Hinde J, Demétrio CGB, Reigada C, Godoy WAC. Models for Jointly Estimating Abundances of Two Unmarked Site-Associated Species Subject to Imperfect Detection. JOURNAL OF AGRICULTURAL, BIOLOGICAL AND ENVIRONMENTAL STATISTICS 2018. [DOI: 10.1007/s13253-017-0316-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|