1
|
Espasandín L, Ramírez F, Ortega M, Villarino E, Chust G, Sbragaglia V, Coll M. Ocean Warming Effects on Catch and Revenue Composition in the Northwestern Mediterranean Sea. GLOBAL CHANGE BIOLOGY 2025; 31:e70112. [PMID: 40116039 DOI: 10.1111/gcb.70112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/11/2024] [Accepted: 01/22/2025] [Indexed: 03/23/2025]
Abstract
Climate change-induced ocean warming can have profound implications for marine ecosystems and the socioeconomic activities dependent on them, affecting the catch composition, and fisheries revenue. Our study evaluates spatio-temporal changes in the Northwestern Mediterranean marine fisheries catch and revenue composition tied to ocean warming and disentangles the different underlying processes. To do so, we analyzed the weighted mean thermal affinity of the catch (Mean Temperature of the Catch: MTC) and revenue (Mean Temperature of Revenue: MTR) across different taxonomic groups, fishing fleets, and fishing harbors, using a 23-year time series of commercial landings. Results revealed changes in catch and revenue composition, with an overall temporal increase in the MTC (0.68°C per decade) and MTR (0.58°C per decade) linked to local sea temperature. The temporal increase in both indices prevailed across fishing fleets and taxonomic groups. The processes underpinning these changes over time were tropicalization (i.e. relative increase of warm-affinity species; 41.97% for MTC and 45.20% for MTR), and deborealization (i.e. relative decrease of cold-affinity species; 46.58% for MTC and 44.99% for MTR), with variability across dimensions. Deborealization particularly influenced pelagic fisheries (i.e. purse-seiners and surface longliners) and some commercially important species (e.g. European hake, blue whiting, and Norway lobster). Even if the temporal increase in MTC and MTR was consistent across taxonomic groups and fleets, the spatial dimension showed heterogeneity and temporal declines in some cases. In summary, our study provides valuable information about temporal changes in catch composition associated with local ocean warming and reveals potential cascading effects through the social-ecological system. In particular, we presented the MTR approach for the first time, evidencing ocean warming effects on revenue composition. We suggest that the correlation between changes in catch and revenue composition reveals the adaptive capacity, or fragility of specific fishing fleets and points to management priorities.
Collapse
Affiliation(s)
- Lucía Espasandín
- Department of Marine Renewable Resources, Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | - Francisco Ramírez
- Department of Marine Renewable Resources, Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | - Miquel Ortega
- Department of Marine Renewable Resources, Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | - Ernesto Villarino
- AZTI Marine Research Division, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| | - Guillem Chust
- AZTI Marine Research Division, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| | - Valerio Sbragaglia
- Department of Marine Renewable Resources, Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | - Marta Coll
- Department of Marine Renewable Resources, Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
- Ecopath International Initiative (EII), Barcelona, Spain
| |
Collapse
|
2
|
Francescangeli M, Aguzzi J, Chatzievangelou D, Clavel-Henry M, Bahamon N, Robinson NJ, Martínez E, Benadí AG, Toma DM, Del Rio J. 10-Years of imagery from a cabled-observatory reveals a decreasing trend in coastal fish biodiversity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 961:178139. [PMID: 39793142 DOI: 10.1016/j.scitotenv.2024.178139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 11/25/2024] [Accepted: 12/13/2024] [Indexed: 01/13/2025]
Abstract
Monitoring the effects of climate change and other multi-years processes on coastal ecosystems require long-term datasets that may extend into decades. One tool to achieve this are cabled seafloor observatories that can collect continual streams of environmental and biological data as long as the equipment is maintained. Here, we used 10-years of time-lapse images (every 30 mins) from the OBSEA seafloor cabled observatory located at 20 m depth, four km offshore from Vilanova i la Geltrú (Spain) coast, to characterize temporal trends in fish community dynamics. These temporal trends were compared to in situ and remotely-sensed (MODIS-Aqua) data on temperature, salinity, and chlorophyll-a concentration (Chl-a). We observed a reduction in fish diversity over time and an increase in species turnover. Specifically, there was a decrease in the relative abundance of fish species at the lowest trophic levels alongside an increase in predators, suggesting a top-down effect. Of temperature, salinity, and Chl-a, only salinity exhibited a significant change over time. Nevertheless, the Generalized Additive Models (GAMs) revealed significant correlations between fish biodiversity indices and both temperature and Chl-a. Following models results we concluded that environmental variables affected the local fish community only at seasonal level. Including more environmental variables, such as fishing activity and pollution, in the applied models may help explain the detected decreases in biodiversity.
Collapse
Affiliation(s)
- Marco Francescangeli
- SARTI Research Group, Electronic Department, Universitat Politècnica de Catalunya (UPC), Vilanova i la Geltrú, Spain.
| | - Jacopo Aguzzi
- Department of Marine Renewable Resources, Institute of Marine Science (ICM-CSIC), Barcelona, Spain; Stazione Anton Dhorn (SZN), Naples, Italy.
| | - Damianos Chatzievangelou
- Department of Marine Renewable Resources, Institute of Marine Science (ICM-CSIC), Barcelona, Spain
| | - Morane Clavel-Henry
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, 24148 Kiel, Germany
| | - Nixon Bahamon
- Department of Marine Renewable Resources, Institute of Marine Science (ICM-CSIC), Barcelona, Spain
| | - Nathan J Robinson
- Department of Marine Renewable Resources, Institute of Marine Science (ICM-CSIC), Barcelona, Spain; Fundación Oceanogràfic de la Comunitat Valenciana, Ciudad de las Artes y las Ciencias, Valencia, Spain
| | - Enoc Martínez
- SARTI Research Group, Electronic Department, Universitat Politècnica de Catalunya (UPC), Vilanova i la Geltrú, Spain
| | - Albert Garcia Benadí
- SARTI Research Group, Electronic Department, Universitat Politècnica de Catalunya (UPC), Vilanova i la Geltrú, Spain
| | - Daniel M Toma
- SARTI Research Group, Electronic Department, Universitat Politècnica de Catalunya (UPC), Vilanova i la Geltrú, Spain
| | - Joaquin Del Rio
- SARTI Research Group, Electronic Department, Universitat Politècnica de Catalunya (UPC), Vilanova i la Geltrú, Spain
| |
Collapse
|
3
|
Belarmino E, Cabral H, Garcia AM. Long-term trends in the functional structure of estuarine fish assemblages in a subtropical estuary and its relationships with local environmental variability, man-made changes, and climatic drivers. MARINE ENVIRONMENTAL RESEARCH 2024; 201:106698. [PMID: 39178708 DOI: 10.1016/j.marenvres.2024.106698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/26/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
Climate and anthropogenic impacts are prevalent in marine and estuarine ecosystems. Rapid environmental changes have altered biological diversity and the ecological services associated with ecosystems around the world. The consequences of these impacts on estuarine ecosystems are worrying, given that estuaries are essential habitats for maintaining the diversity of species functions, as they act as sources for larger ecosystems through the recruitment and replacement of species. Through long-term standardized monitoring (1996-2019), we evaluated the temporal variability of the functional structure of fish species in a subtropical estuary using Principal Component Analysis (PCA), and their relationship with environmental, climatic, and anthropogenic variables using Generalized Additive Models (GAM). We investigate the hypothesis that natural disturbances associated with El Niño events and anthropogenic ones related with changes in the estuary morphology will lead to a decrease in the diversity of functions of the fish assemblage in the Patos Lagoon Estuary in south Brazil (32°S). Our findings suggest an overall downward trend in the fish functional structure, especially in the second half (2006-2019) of the time series, which seems to be associated with a combination of abiotic effects (salinity and temperature), global climate phenomena (ENSO phases) and anthropogenic impacts (changes in the morphology of the estuarine mouth and its connection with the sea). These findings rise concern considering the current climate change scenario, where phenomena such as El Niño may become more frequent and intense. Therefore, the evidence from this study suggests that extreme natural climatic events in synergy with anthropogenic disturbances may imply biodiversity losses over time and, consequently, loss of ecosystem processes in a subtropical estuary.
Collapse
Affiliation(s)
- Erika Belarmino
- Instituto de Oceanografia, Universidade Federal do Rio Grande, Rio Grande, (RS), Brazil.
| | - Henrique Cabral
- National Research Institute for Agriculture, Food and the Environment (INRAE), Bordeaux, France
| | | |
Collapse
|
4
|
D'Amen M, Bonora N, Azzurro E. Exploring the impact of temporal resolution on detecting shifts in the invasive species niche: Insights from Lessepsian fishes. J Anim Ecol 2024; 93:1225-1235. [PMID: 38937937 DOI: 10.1111/1365-2656.14137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/30/2024] [Indexed: 06/29/2024]
Abstract
In this study, we estimate the niche overlap between native and invaded ranges of 36 Lessepsian fish, focusing on how this estimate might vary in relation to the temporal resolution of sea surface temperature and salinity, which are the main niche axes determining their distribution. Specifically, we wanted to address the following questions: (i) Does the choice of temporal averaging method of variables influence the estimation of niche overlap for individual variables? (ii) Does this temporal resolution effect persist when conducting bivariate niche estimations? Niches overlap was estimated by calculating two indices and these analyses were repeated at two temporal resolutions, matching observations to the classic 'multidecadal' average of environmental conditions and to the corresponding annual average of records. Results are compared with verify whether differences can be detected in the magnitude of niche commonality measured at annual or multidecadal temporal resolution. The findings show that the temporal resolution of the data significantly influences estimates of overlap in the thermal niche. Specifically, our analysis indicates a considerable disparity between native and invasive niche regions for most species, particularly when evaluated over multidecadal periods compared with matching occurrence data to the annual mean values of years the occurrence was observed, that is matching occurrence data to a common average of 'present' conditions or to the annual mean values of years of observation. In particular, the largest overlaps between native and invaded niches occur along the salinity axis, regardless of temporal resolution. When considering both temperature and salinity together, the results remain unaffected by the temporal resolution of the environmental data. Almost 30% of the species show a different niche in their introduced range, and for the other species, the overlap between native and invaded ranges was reduced with respect to the univariate analyses.
Collapse
Affiliation(s)
- Manuela D'Amen
- Italian Institute for Environmental Protection and Research (ISPRA), Rome, Italy
- National Research Council Institute for Marine Biological Resources and Biotechnology (CNR-IRBIM) Largo Fiera della Pesca, Ancona, Italy
| | - Nico Bonora
- Italian Institute for Environmental Protection and Research (ISPRA), Rome, Italy
| | - Ernesto Azzurro
- National Research Council Institute for Marine Biological Resources and Biotechnology (CNR-IRBIM) Largo Fiera della Pesca, Ancona, Italy
- National Biodiversity Future Center, NBFC, Palermo, Italy
| |
Collapse
|
5
|
Chaikin S, Riva F, Marshall KE, Lessard JP, Belmaker J. Marine fishes experiencing high-velocity range shifts may not be climate change winners. Nat Ecol Evol 2024; 8:936-946. [PMID: 38459374 DOI: 10.1038/s41559-024-02350-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/28/2024] [Indexed: 03/10/2024]
Abstract
Climate change is driving the global redistribution of species. A common assumption is that rapid range shifts occur in tandem with overall stable or positive abundance trends throughout the range and thus these species may be considered as climate change 'winners'. However, although establishing the link between range shift velocities and population trends is crucial for predicting climate change impacts it has not been empirically tested. Using 2,572 estimates of changes in marine fish abundance spread across the world's oceans, we show that poleward range shifts are not necessarily associated with positive population trends. Species experiencing high-velocity range shifts seem to experience local population declines irrespective of the position throughout the species range. High range shift velocities of 17 km yr-1 are associated with a 50% decrease in population sizes over a period of 10 yr, which is dramatic compared to the overall stable population trends in non-shifting species. This pattern, however, mostly occurs in populations located in the poleward, colder, portion of the species range. The lack of a positive association between poleward range shift velocities and population trends at the coldest portion of the range contrasts with the view that rapid range shifts safeguard against local population declines. Instead, our work suggests that marine fishes experiencing rapid range shifts could be more vulnerable to climatic change and therefore should be carefully assessed for conservation status.
Collapse
Affiliation(s)
- Shahar Chaikin
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| | - Federico Riva
- Department of Environmental Geography, Institute for Environmental Studies (IVM), Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Katie E Marshall
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Jonathan Belmaker
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- The Steinhardt Museum of Natural History, Tel Aviv University, Tel-Aviv, Israel
| |
Collapse
|
6
|
Steger J, Bogi C, Lubinevsky H, Galil BS, Zuschin M, Albano PG. Ecological baselines in the Eastern Mediterranean Sea shifted long before the availability of observational time series. GLOBAL CHANGE BIOLOGY 2024; 30:e17272. [PMID: 38623753 DOI: 10.1111/gcb.17272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 04/17/2024]
Abstract
Native biodiversity loss and invasions by nonindigenous species (NIS) have massively altered ecosystems worldwide, but trajectories of taxonomic and functional reorganization remain poorly understood due to the scarcity of long-term data. Where ecological time series are available, their temporal coverage is often shorter than the history of anthropogenic changes, posing the risk of drawing misleading conclusions on systems' current states and future development. Focusing on the Eastern Mediterranean Sea, a region affected by massive biological invasions and the largest climate change-driven collapse of native marine biodiversity ever documented, we followed the taxonomic and functional evolution of an emerging "novel ecosystem", using a unique dataset on shelled mollusks sampled in 2005-2022 on the Israeli shelf. To quantify the alteration of observed assemblages relative to historical times, we also analyzed decades- to centuries-old ecological baselines reconstructed from radiometrically dated death assemblages, time-averaged accumulations of shells on the seafloor that constitute natural archives of past community states. Against expectations, we found no major loss of native biodiversity in the past two decades, suggesting that its collapse had occurred even earlier than 2005. Instead, assemblage taxonomic and functional richness increased, reflecting the diversification of NIS whose trait structure was, and has remained, different from the native one. The comparison with the death assemblage, however, revealed that modern assemblages are taxonomically and functionally much impoverished compared to historical communities. This implies that NIS did not compensate for the functional loss of native taxa, and that even the most complete observational dataset available for the region represents a shifted baseline that does not reflect the actual magnitude of anthropogenic changes. While highlighting the great value of observational time series, our results call for the integration of multiple information sources on past ecosystem states to better understand patterns of biodiversity loss in the Anthropocene.
Collapse
Affiliation(s)
- Jan Steger
- Department of Palaeontology, University of Vienna, Vienna, Austria
| | - Cesare Bogi
- Gruppo Malacologico Livornese, c/o Museo di Storia Naturale del Mediterraneo, Livorno, Italy
| | - Hadas Lubinevsky
- National Institute of Oceanography, Israel Oceanographic and Limnological Research, Haifa, Israel
| | - Bella S Galil
- The Steinhardt Museum of Natural History and Israel National Center for Biodiversity Studies, Tel Aviv University, Tel Aviv, Israel
| | - Martin Zuschin
- Department of Palaeontology, University of Vienna, Vienna, Austria
| | - Paolo G Albano
- Department of Palaeontology, University of Vienna, Vienna, Austria
- Department of Marine Animal Conservation and Public Engagement, Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
7
|
Chust G, Villarino E, McLean M, Mieszkowska N, Benedetti-Cecchi L, Bulleri F, Ravaglioli C, Borja A, Muxika I, Fernandes-Salvador JA, Ibaibarriaga L, Uriarte A, Revilla M, Villate F, Iriarte A, Uriarte I, Zervoudaki S, Carstensen J, Somerfield PJ, Queirós AM, McEvoy AJ, Auber A, Hidalgo M, Coll M, Garrabou J, Gómez-Gras D, Linares C, Ramírez F, Margarit N, Lepage M, Dambrine C, Lobry J, Peck MA, de la Barra P, van Leeuwen A, Rilov G, Yeruham E, Brind'Amour A, Lindegren M. Cross-basin and cross-taxa patterns of marine community tropicalization and deborealization in warming European seas. Nat Commun 2024; 15:2126. [PMID: 38459105 PMCID: PMC10923825 DOI: 10.1038/s41467-024-46526-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 03/01/2024] [Indexed: 03/10/2024] Open
Abstract
Ocean warming and acidification, decreases in dissolved oxygen concentrations, and changes in primary production are causing an unprecedented global redistribution of marine life. The identification of underlying ecological processes underpinning marine species turnover, particularly the prevalence of increases of warm-water species or declines of cold-water species, has been recently debated in the context of ocean warming. Here, we track changes in the mean thermal affinity of marine communities across European seas by calculating the Community Temperature Index for 65 biodiversity time series collected over four decades and containing 1,817 species from different communities (zooplankton, coastal benthos, pelagic and demersal invertebrates and fish). We show that most communities and sites have clearly responded to ongoing ocean warming via abundance increases of warm-water species (tropicalization, 54%) and decreases of cold-water species (deborealization, 18%). Tropicalization dominated Atlantic sites compared to semi-enclosed basins such as the Mediterranean and Baltic Seas, probably due to physical barrier constraints to connectivity and species colonization. Semi-enclosed basins appeared to be particularly vulnerable to ocean warming, experiencing the fastest rates of warming and biodiversity loss through deborealization.
Collapse
Affiliation(s)
- Guillem Chust
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi Ugartea z/g, 48395, Sukarrieta, Spain.
| | - Ernesto Villarino
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi Ugartea z/g, 48395, Sukarrieta, Spain
- Oregon State University, College of Earth, Ocean and Atmospheric Science, Corvallis, USA
| | - Matthew McLean
- Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Nova Mieszkowska
- Marine Biological Association, Citadel hill, Plymouth, Devon, PL1 2PB, UK
- University of Liverpool, Liverpool, UK
| | | | - Fabio Bulleri
- Dipartimento di Biologia, Università di Pisa, CoNISMa, Via Derna 1, 56126, Pisa, Italy
| | - Chiara Ravaglioli
- Dipartimento di Biologia, Università di Pisa, CoNISMa, Via Derna 1, 56126, Pisa, Italy
| | - Angel Borja
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi Ugartea z/g, 48395, Sukarrieta, Spain
| | - Iñigo Muxika
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi Ugartea z/g, 48395, Sukarrieta, Spain
| | - José A Fernandes-Salvador
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi Ugartea z/g, 48395, Sukarrieta, Spain
| | - Leire Ibaibarriaga
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi Ugartea z/g, 48395, Sukarrieta, Spain
| | - Ainhize Uriarte
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi Ugartea z/g, 48395, Sukarrieta, Spain
| | - Marta Revilla
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi Ugartea z/g, 48395, Sukarrieta, Spain
| | - Fernando Villate
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), PO Box 644, E-48080, Bilbao, Spain
- Research Centre for Experimental Marine Biology and Biotechnology Plentzia Marine Station PiE-UPV/EHU, Areatza Pasalekua z/g, E-48620, Plentzia, Spain
| | - Arantza Iriarte
- Research Centre for Experimental Marine Biology and Biotechnology Plentzia Marine Station PiE-UPV/EHU, Areatza Pasalekua z/g, E-48620, Plentzia, Spain
- Department of Plant Biology and Ecology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, E-01006, Gasteiz, Spain
| | - Ibon Uriarte
- Research Centre for Experimental Marine Biology and Biotechnology Plentzia Marine Station PiE-UPV/EHU, Areatza Pasalekua z/g, E-48620, Plentzia, Spain
- Department of Plant Biology and Ecology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, E-01006, Gasteiz, Spain
| | - Soultana Zervoudaki
- Institute of Oceanography, Hellenic Centre for Marine Research, Athens, Greece
| | - Jacob Carstensen
- Aarhus University, Department of Ecoscience, Frederiksborgvej 399, DK-4000, Roskilde, Denmark
| | - Paul J Somerfield
- Plymouth Marine Laboratory, Plymouth, UK
- University of Plymouth, Plymouth, UK
| | - Ana M Queirós
- Plymouth Marine Laboratory, Plymouth, UK
- University of Exeter, Exeter, UK
| | | | - Arnaud Auber
- IFREMER, Unité Halieutique Manche Mer du Nord, Laboratoire Ressources Halieutiques, 150 quai Gambetta, BP699, 62321, Boulogne-sur-Mer, France
| | - Manuel Hidalgo
- Spanish Institute of Oceanography (IEO, CSIC), Balearic Oceanographic Center (COB), Ecosystem Oceanography Group (GRECO), Moll de Ponent s/n, 07015, Palma, Spain
| | - Marta Coll
- Institute of Marine Science (ICM-CSIC), Passeig Marítim de la Barceloneta, n° 37-49, 08003, Barcelona, Spain
| | - Joaquim Garrabou
- Institute of Marine Science (ICM-CSIC), Passeig Marítim de la Barceloneta, n° 37-49, 08003, Barcelona, Spain
| | - Daniel Gómez-Gras
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kaneohe, Hawaii, USA
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Cristina Linares
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Francisco Ramírez
- Institute of Marine Science (ICM-CSIC), Passeig Marítim de la Barceloneta, n° 37-49, 08003, Barcelona, Spain
| | - Núria Margarit
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona (UB), Barcelona, Spain
| | - Mario Lepage
- INRAE, EABX Unit, Aquatic Ecosystems and Global Changes, 50 avenue de Verdun, 33612, Cestas, Cedex, France
| | - Chloé Dambrine
- INRAE, EABX Unit, Aquatic Ecosystems and Global Changes, 50 avenue de Verdun, 33612, Cestas, Cedex, France
| | - Jérémy Lobry
- INRAE, EABX Unit, Aquatic Ecosystems and Global Changes, 50 avenue de Verdun, 33612, Cestas, Cedex, France
| | - Myron A Peck
- Department of Coastal Systems, Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB, Den Burg (Texel), the Netherlands
| | - Paula de la Barra
- Department of Coastal Systems, Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB, Den Burg (Texel), the Netherlands
| | - Anieke van Leeuwen
- Department of Coastal Systems, Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB, Den Burg (Texel), the Netherlands
| | - Gil Rilov
- National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa, Israel
| | - Erez Yeruham
- National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa, Israel
| | - Anik Brind'Amour
- Ecosystem Dynamics and Sustainability (UMR DECOD), IFREMER, Institut Agro, INRAE, Rue de l'Ile d'Yeu, Nantes, France
| | - Martin Lindegren
- Centre for Ocean Life, National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs, Lyngby, Denmark
| |
Collapse
|
8
|
Invading bivalves replaced native Mediterranean bivalves, with little effect on the local benthic community. Biol Invasions 2022; 25:1441-1459. [PMID: 36570095 PMCID: PMC9764321 DOI: 10.1007/s10530-022-02986-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
The construction of the Suez Canal connected the Red Sea and the Mediterranean Sea, which allowed rapid marine bio-invasion. Over the last century, several bivalve species have invaded the Levantine basin, yet their distribution and impact on the benthic community have not been thoroughly studied. Large-scale benthic surveys along the rocky substrate of the Israeli Mediterranean coastline indicate that invading bivalves, such as Spondylus spinosus, Brachidontes pharaonis, and Pinctada radiata, now dominate the rocky environment, with densities of tens to hundreds of individuals per m2. No native bivalve specimens were found in any of the transects surveyed. The small-scale ecological effects of the established invading populations on the benthic community were examined over a year using an in-situ exclusion experiment where all invading bivalves were either physically removed or poisoned and kept in place to maintain the physical effect of the shells. Surprisingly, the experimental exclusion showed a little measurable effect of bivalve presence on the invertebrate community in close vicinity (~ 1 m). Bivalve presence had a small, but statistically significant, effect only on the community composition of macroalgae, increasing the abundance of some filamentous macroalgae and reducing the cover of turf. The generally low impact of bivalves removal could be due to (1) wave activity and local currents dispersing the bivalve excreta, (2) high grazing pressure, possibly by invading herbivorous fish, reducing the bottom-up effect of increased nutrient input by the bivalves, or (3) the natural complexity of the rocky habitat masking the contribution of the increased complexity associated with the bivalve's shell. We found that established invading bivalves have replaced native bivalve species, yet their exclusion has a negligible small-scale effect on the local benthic community. Supplementary Information The online version contains supplementary material available at 10.1007/s10530-022-02986-1.
Collapse
|
9
|
Scientific progress made towards bridging the knowledge gap in the biology of Mediterranean marine fishes. PLoS One 2022; 17:e0277383. [DOI: 10.1371/journal.pone.0277383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/25/2022] [Indexed: 11/12/2022] Open
Abstract
The Mediterranean Sea is a renowned biodiversity hotspot influenced by multiple interacting ecological and human forces. A gap analysis on the biology of Mediterranean marine fishes was conducted in 2017, revealing the most studied species and biological characteristics, as well as identifying knowledge gaps and areas of potential future research. Here, we updated this gap analysis five years later by reviewing the literature containing information on the same eight biological characteristics, namely length-weight relationships, growth, maximum age, mortality, spawning, maturity, fecundity and diet, for the 722 fish species of the Mediterranean Sea. The results revealed a considerable knowledge gap as 37% of the species had no information for any of the studied characteristics, while 13% had information on only one characteristic. Out of all the biological characteristics, the smallest knowledge gap was found in the length-weight relationships (studied for 51% of the species, mainly in the eastern Mediterranean), while the least studied characteristic was mortality (studied for 10% of the species). The western and eastern Mediterranean Sea were leading forces in data collection exhibiting the narrowest gaps between current and desired knowledge. The most studied species across the entire region were the highly commercial European hake (Merluccius merluccius), red mullet (Mullus barbatus), European anchovy (Engraulis encrasicolus), European pilchard (Sardina pilchardus), common pandora (Pagellus erythrinus), and annular seabream (Diplodus annularis). The knowledge gap has shrunk by 6% during the last five years, with 40 new species having at least one study on their biology. Moreover, research has slightly shifted towards species that have been traditionally neglected, e.g., sharks, rays and chimaeras (chondrichthyans). It is recommended that research becomes less focused on commercial species and more targeted towards the identified gaps, vulnerable species (e.g., deep-sea species and chondrichthyans) and species that could potentially pose a threat (e.g., non-indigenous species) to the ecosystems of the everchanging Mediterranean Sea.
Collapse
|
10
|
Holzknecht M, Albano PG. The molluscan assemblage of a pristine Posidonia oceanica meadow in the eastern Mediterranean. MARINE BIODIVERSITY : A JOURNAL OF THE SENCKENBERG RESEARCH INSTITUTE 2022; 52:59. [PMID: 36254156 PMCID: PMC9560936 DOI: 10.1007/s12526-022-01292-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 07/21/2022] [Accepted: 07/28/2022] [Indexed: 06/16/2023]
Abstract
The seagrass Posidonia oceanica forms extensive meadows in the Mediterranean Sea. Studies on their associated highly diverse invertebrate assemblages are limited to the western Mediterranean. The eastern Mediterranean, however, is a basin undergoing rapid change due to the synergistic effects of climate warming, biological invasions and other human stressors that are driving native biodiversity to regional-scale collapses. We here surveyed the shelled molluscan assemblage of a Posidonia oceanica meadow in Plakias, south-western Crete, the first such study in the eastern Mediterranean Sea. This area has increased its yearly mean temperature by 1 °C in the last 20 years and is under heavy pressure by Lessepsian species. We sampled across a 5- to 20-m depth gradient, in two seasons to capture intra-annual variation and the leaf and rhizome strata separately. Against our expectations, the molluscan assemblage proved to be highly diverse, with species richness, dominant species and trophic guilds comparable to healthy western Mediterranean ones, and with a negligible non-indigenous component. The diversity of the native community (following the biotic resistance hypothesis) and oxygen supersaturation in the meadow may cause greater resistance to biological invasions and warming, respectively, suggesting that Posidonia oceanica meadows may act as a precious refugium for native biodiversity in the fast changing eastern Mediterranean Sea. Supplementary Information The online version contains supplementary material available at 10.1007/s12526-022-01292-2.
Collapse
Affiliation(s)
- Martina Holzknecht
- Department of Palaeontology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Paolo G. Albano
- Department of Palaeontology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
- Department of Animal Conservation and Public Engagement, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| |
Collapse
|
11
|
Agiadi K, Nawrot R, Albano PG, Koskeridou E, Zuschin M. Potential and limitations of applying the mean temperature approach to fossil otolith assemblages. ENVIRONMENTAL BIOLOGY OF FISHES 2022; 105:1269-1286. [PMID: 36313612 PMCID: PMC9592634 DOI: 10.1007/s10641-022-01252-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/02/2022] [Indexed: 06/16/2023]
Abstract
Evaluation of the impact of climatic changes on the composition of fish assemblages requires quantitative measures that can be compared across space and time. In this respect, the mean temperature of the catch (MTC) approach has been proven to be a very useful tool for monitoring the effect of climate change on fisheries catch. Lack of baseline data and deep-time analogues, however, prevent a more comprehensive evaluation. In this study, we explore the applicability of the mean temperature approach to fossil fish faunas by using otolith assemblage data from the eastern Mediterranean and the northern Adriatic coastal environments corresponding to the last 8000 years (Holocene) and the interval 2.58-1.80 Ma B. P. (Early Pleistocene). The calculated mean temperatures of the otolith assemblage (MTO) range from 13.5 to 17.3 °C. This case study shows that the MTO can successfully capture compositional shifts in marine fish faunas based on variations in their climatic affinity driven by regional climate differences. However, the index is sensitive to methodological choices and thus requires standardized sampling. Even though theoretical and methodological issues prevent direct comparisons between MTO and MTC values, the MTO offers a useful quantitative proxy for reconstructing spatial and temporal trends in the biogeographic affinity of fossil otolith assemblages.
Collapse
Affiliation(s)
- Konstantina Agiadi
- Department of Palaeontology, University of Vienna, Althanstrasse 14, UZA II, 1090 Vienna, Austria
| | - Rafał Nawrot
- Department of Palaeontology, University of Vienna, Althanstrasse 14, UZA II, 1090 Vienna, Austria
| | - Paolo G. Albano
- Department of Animal Conservation and Public Engagement, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Efterpi Koskeridou
- National and Kapodistrian University of Athens, Panepistimioupolis, 15784 Athens, Greece
| | - Martin Zuschin
- Department of Palaeontology, University of Vienna, Althanstrasse 14, UZA II, 1090 Vienna, Austria
| |
Collapse
|
12
|
Li Y, Ma S, Fu C, Li J, Tian Y, Sun P, Ju P, Liu S. Seasonal differences in the relationship between biodiversity and ecosystem functioning in an overexploited shelf sea ecosystem. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Yuru Li
- Key Laboratory of Mariculture Ministry of Education Ocean University of China Qingdao China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System Ocean University of China Qingdao China
| | - Shuyang Ma
- Key Laboratory of Mariculture Ministry of Education Ocean University of China Qingdao China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System Ocean University of China Qingdao China
| | - Caihong Fu
- Pacific Biological Station, Fisheries and Oceans Canada Nanaimo British Columbia Canada
| | - Jianchao Li
- Key Laboratory of Mariculture Ministry of Education Ocean University of China Qingdao China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System Ocean University of China Qingdao China
| | - Yongjun Tian
- Key Laboratory of Mariculture Ministry of Education Ocean University of China Qingdao China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System Ocean University of China Qingdao China
- Laboratory for Marine Fisheries Science and Food Production Processes Pilot National Laboratory for Marine Science and Technology Qingdao China
| | - Peng Sun
- Key Laboratory of Mariculture Ministry of Education Ocean University of China Qingdao China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System Ocean University of China Qingdao China
| | - Peilong Ju
- Key Laboratory of Mariculture Ministry of Education Ocean University of China Qingdao China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System Ocean University of China Qingdao China
| | - Shude Liu
- Shandong Hydrobios Resources Conservation and Management Center Yantai China
| |
Collapse
|
13
|
Trindade-Santos I, Moyes F, Magurran AE. Global patterns in functional rarity of marine fish. Nat Commun 2022; 13:877. [PMID: 35169123 PMCID: PMC8847455 DOI: 10.1038/s41467-022-28488-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 01/28/2022] [Indexed: 11/08/2022] Open
Abstract
Rare species, which represent a large fraction of the taxa in ecological assemblages, account for much of the biological diversity on Earth. These species make substantial contributions to ecosystem functioning, and are targets of conservation policy. Here we adopt an integrated approach, combining information on the rarity of species trait combinations, and their spatial restrictedness, to quantify the biogeography of rare fish (a taxon with almost 13,000 species) in the world's oceans. We find concentrations of rarity, in excess of what is predicted by a null expectation, near the coasts and at higher latitudes. We also observe mismatches between these rarity hotspots and marine protected areas. This pattern is repeated for both major groupings of fish, the Actinopterygii (bony fish) and Elasmobranchii (sharks, skates and rays). These results uncover global patterns of rarity that were not apparent from earlier work, and highlight the importance of using metrics that incorporate information on functional traits in the conservation and management of global marine fishes.
Collapse
Affiliation(s)
- Isaac Trindade-Santos
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland, UK.
| | - Faye Moyes
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland, UK
| | - Anne E Magurran
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland, UK
| |
Collapse
|
14
|
Tarkan AS, Tricarico E, Vilizzi L, Bİlge G, Ekmekçİ FG, Filiz H, Giannetto D, İlhan A, Kİllİ N, Kirankaya ŞG, Koutsikos N, Kozic S, Kurtul I, Lazzaro L, Marchini A, Occhipinti-Ambrogi A, Perdikaris C, Piria M, Pompei L, Sari H, Smeti E, Stasolla G, Top N, Tsiamis K, Vardakas L, Yapici S, Yoğurtçuoğlu B, Copp GH. Risk of invasiveness of non-native aquatic species in the eastern Mediterranean region under current and projected climate conditions. THE EUROPEAN ZOOLOGICAL JOURNAL 2021. [DOI: 10.1080/24750263.2021.1980624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- A. S. Tarkan
- Department of Basic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, Muğla, Turkey
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - E. Tricarico
- Department of Biology, University of Florence, Florence, Italy
| | - L. Vilizzi
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - G. Bİlge
- Department of Basic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - F. G. Ekmekçİ
- Hydrobiology Section, Department of Biology, Faculty of Science, Hacettepe University, Çankaya-Ankara, Turkey
| | - H. Filiz
- Department of Basic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - D. Giannetto
- Department of Biology, Faculty of Science, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - A. İlhan
- Faculty of Fisheries, Ege University, Bornova, İzmir, Turkey
| | - N. Kİllİ
- Department of Basic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Ş. G. Kirankaya
- Department of Biology, Faculty of Arts and Science, Düzce University, Düzce, Turkey
| | - N. Koutsikos
- Institute of Marine Biological Resources & Inland Waters, Hellenic Centre for Marine Research, Anavissos, Attica, Greece
| | - S. Kozic
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - I. Kurtul
- Faculty of Fisheries, Ege University, Bornova, İzmir, Turkey
| | - L. Lazzaro
- Department of Biology, University of Florence, Florence, Italy
| | - A. Marchini
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
| | | | - C. Perdikaris
- Department of Fisheries, Regional Unit of Thesprotia, Epirus, Igoumenitsa, Greece
| | - M. Piria
- Department of Fisheries, Apiculture, Wildlife Management and Special Zoology, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| | - L. Pompei
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - H. Sari
- Faculty of Fisheries, Ege University, Bornova, İzmir, Turkey
| | - E. Smeti
- Institute of Marine Biological Resources & Inland Waters, Hellenic Centre for Marine Research, Anavissos, Attica, Greece
| | | | - N. Top
- Department of Basic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - K. Tsiamis
- Institute of Marine Biological Resources & Inland Waters, Hellenic Centre for Marine Research, Anavissos, Attica, Greece
| | - L. Vardakas
- Institute of Marine Biological Resources & Inland Waters, Hellenic Centre for Marine Research, Anavissos, Attica, Greece
| | - S. Yapici
- Department of Basic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - B. Yoğurtçuoğlu
- Hydrobiology Section, Department of Biology, Faculty of Science, Hacettepe University, Çankaya-Ankara, Turkey
| | - G. H. Copp
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
- Centre for Environment, Fisheries and Aquaculture Science, Lowestoft, Suffolk, UK
- Centre for Ecology, Environment and Sustainability, Bournemouth University, Poole, Dorset, UK
- Life Sciences Graduate Programme, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
15
|
Boulanger E, Benestan L, Guerin PE, Dalongeville A, Mouillot D, Manel S. Climate differently influences the genomic patterns of two sympatric marine fish species. J Anim Ecol 2021; 91:1180-1195. [PMID: 34716929 DOI: 10.1111/1365-2656.13623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022]
Abstract
Climate influences population genetic variation in marine species. Capturing these impacts remains challenging for marine fishes which disperse over large geographical scales spanning steep environmental gradients. It requires the extensive spatial sampling of individuals or populations, representative of seascape heterogeneity, combined with a set of highly informative molecular markers capable of revealing climatic-associated genetic variations. We explored how space, dispersal and environment shape the genomic patterns of two sympatric fish species in the Mediterranean Sea, which ranks among the oceanic basins most affected by climate change and human pressure. We hypothesized that the population structure and climate-associated genomic signatures of selection would be stronger in the less mobile species, as restricted gene flow tends to facilitate the fixation of locally adapted alleles. To test our hypothesis, we genotyped two species with contrasting dispersal abilities: the white seabream Diplodus sargus and the striped red mullet Mullus surmuletus. We collected 823 individuals and used genotyping by sequencing (GBS) to detect 8,206 single nucleotide polymorphisms (SNPs) for the seabream and 2,794 for the mullet. For each species, we identified highly differentiated genomic regions (i.e. outliers) and disentangled the relative contribution of space, dispersal and environmental variables (climate, marine primary productivity) on the outliers' genetic structure to test the prevalence of gene flow and local adaptation. We observed contrasting patterns of gene flow and adaptive genetic variation between the two species. The seabream showed a distinct Alboran sea population and panmixia across the Mediterranean Sea. The mullet revealed additional differentiation within the Mediterranean Sea that was significantly correlated to summer and winter temperatures, as well as marine primary productivity. Functional annotation of the climate-associated outlier SNPs then identified candidate genes involved in heat tolerance that could be examined to further predict species' responses to climate change. Our results illustrate the key steps of a comparative seascape genomics study aiming to unravel the evolutionary processes at play in marine species, to better anticipate their response to climate change. Defining population adaptation capacities and environmental niches can then serve to incorporate evolutionary processes into species conservation planning.
Collapse
Affiliation(s)
- Emilie Boulanger
- CEFE, University of Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France.,MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Laura Benestan
- CEFE, University of Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
| | - Pierre-Edouard Guerin
- CEFE, University of Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
| | | | - David Mouillot
- MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Montpellier, France.,Institut Universitaire de France, Paris, France
| | - Stéphanie Manel
- CEFE, University of Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
| |
Collapse
|
16
|
Lavender E, Fox CJ, Burrows MT. Modelling the impacts of climate change on thermal habitat suitability for shallow-water marine fish at a global scale. PLoS One 2021; 16:e0258184. [PMID: 34606498 PMCID: PMC8489719 DOI: 10.1371/journal.pone.0258184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 09/21/2021] [Indexed: 11/19/2022] Open
Abstract
Understanding and predicting the response of marine communities to climate change at large spatial scales, and distilling this information for policymakers, are prerequisites for ecosystem-based management. Changes in thermal habitat suitability across species’ distributions are especially concerning because of their implications for abundance, affecting species’ conservation, trophic interactions and fisheries. However, most predictive studies of the effects of climate change have tended to be sub-global in scale and focused on shifts in species’ range edges or commercially exploited species. Here, we develop a widely applicable methodology based on climate response curves to predict global-scale changes in thermal habitat suitability. We apply the approach across the distributions of 2,293 shallow-water fish species under Representative Concentration Pathways 4.5 and 8.5 by 2050–2100. We find a clear pattern of predicted declines in thermal habitat suitability in the tropics versus general increases at higher latitudes. The Indo-Pacific, the Caribbean and western Africa emerge as the areas of most concern, where high species richness and the strongest declines in thermal habitat suitability coincide. This reflects a pattern of consistently narrow thermal ranges, with most species in these regions already exposed to temperatures above inferred thermal optima. In contrast, in temperate regions, such as northern Europe, where most species live below thermal optima and thermal ranges are wider, positive changes in thermal habitat suitability suggest that these areas are likely to emerge as the greatest beneficiaries of climate change, despite strong predicted temperature increases.
Collapse
Affiliation(s)
- Edward Lavender
- The Scottish Association for Marine Science, Scottish Marine Institute, Dunstaffnage, Oban, Argyll, Scotland
- * E-mail:
| | - Clive J. Fox
- The Scottish Association for Marine Science, Scottish Marine Institute, Dunstaffnage, Oban, Argyll, Scotland
| | - Michael T. Burrows
- The Scottish Association for Marine Science, Scottish Marine Institute, Dunstaffnage, Oban, Argyll, Scotland
| |
Collapse
|
17
|
Steger J, Dunne B, Zuschin M, Albano PG. Bad neighbors? Niche overlap and asymmetric competition between native and Lessepsian limpets in the Eastern Mediterranean rocky intertidal. MARINE POLLUTION BULLETIN 2021; 171:112703. [PMID: 34330002 DOI: 10.1016/j.marpolbul.2021.112703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/29/2021] [Accepted: 07/03/2021] [Indexed: 06/13/2023]
Abstract
The Eastern Mediterranean Sea hosts more non-indigenous species than any other marine region, yet their impacts on the native biota remain poorly understood. Focusing on mollusks from the Israeli rocky intertidal, we explored the hypothesis that this abiotically harsh habitat supports a limited trait diversity, and thus may promote niche overlap and competition between native and non-indigenous species. Indeed, native and non-indigenous assemblage components often had a highly similar trait composition, caused by functionally similar native (Patella caerulea) and non-indigenous (Cellana rota) limpets. Body size of P. caerulea decreased with increasing C. rota prevalence, but not vice versa, indicating potential asymmetric competition. Although both species have coexisted in Israel for >15 years, a rapid 'replacement' of native limpets by C. rota has been reported for a thermally polluted site, suggesting that competition and regionally rapid climate-related seawater warming might interact to progressively erode native limpet performance along the Israeli coast.
Collapse
Affiliation(s)
- Jan Steger
- Department of Palaeontology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Beata Dunne
- Department of Palaeontology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Martin Zuschin
- Department of Palaeontology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Paolo G Albano
- Department of Palaeontology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria; Department of Animal Conservation and Public Engagement, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
18
|
Kleitou P, Crocetta F, Giakoumi S, Giovos I, Hall-Spencer JM, Kalogirou S, Kletou D, Moutopoulos DK, Rees S. Fishery reforms for the management of non-indigenous species. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 280:111690. [PMID: 33246748 DOI: 10.1016/j.jenvman.2020.111690] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Marine ecosystems are undergoing major transformations due to the establishment and spread of Non-Indigenous Species (NIS). Some of these organisms have adverse effects, for example by reducing biodiversity and causing ecosystem shifts. Others have upsides, such as benefits to fisheries or replacing lost ecological functions and strengthening biogenic complexity. Stopping the spread of NIS is virtually impossible and so the societal challenge is how to limit the socioeconomic, health, and ecological risks, and sustainably exploit the benefits provided by these organisms. We propose a move away from the notion that NIS have only negative effects, and suggest a turn towards an Ecosystem-Based Fishery Management approach for NIS (EBFM-NIS) in the Mediterranean Sea, the world's most invaded marine region. A structured, iterative, and adaptive framework that considers the range of costs and benefits to ecosystems, ecosystem services, and fisheries is set out to determine whether NIS stocks should be managed using sustainable or unsustainable exploitation. We propose fishery reforms such as multiannual plans, annual catch limits, technical measures for sustainable exploitation, and legitimization of unlimited fishing of selected NIS and introduction of a radical new license for NIS fishing for unsustainable exploitation. Depending on local conditions, investment strategies can be included within the EBFM-NIS framework to protect/enhance natural assets to improve ecosystem resilience against NIS, as well as fishery assets to improve the performance of NIS fisheries. Examples of the former include the enhancement of Marine Protected Areas, harvesting of invasive NIS within MPAs, and protection of overfished predators and key species. Examples of the latter include market promotion and valorisation of NIS products, development of novel NIS products, and innovative/alternative NIS fishing such as fishery-related tourism ('pescatourism'). The application of the suggested EBFM-NIS would create jobs, protect and enhance ecosystem services, and help to meet the United Nations Sustainable Development Goal 14: Conserve and sustainably use the oceans, seas, and marine resources for sustainable development.
Collapse
Affiliation(s)
- Periklis Kleitou
- School of Biological and Marine Sciences, University of Plymouth PL4 8AA, Plymouth, United Kingdom; Marine & Environmental Research (MER) Lab Ltd, 202 Amathountos Avenue, Marina Gardens, Block B, Limassol, 4533, Cyprus.
| | - Fabio Crocetta
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, I-80121, Napoli, Italy.
| | - Sylvaine Giakoumi
- Centre for Biodiversity and Conservation Science, School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia.
| | - Ioannis Giovos
- Marine & Environmental Research (MER) Lab Ltd, 202 Amathountos Avenue, Marina Gardens, Block B, Limassol, 4533, Cyprus; iSea, Environmental Organisation for the Preservation of the Aquatic Ecosystems, Thessaloniki, Greece.
| | - Jason M Hall-Spencer
- School of Biological and Marine Sciences, University of Plymouth PL4 8AA, Plymouth, United Kingdom; Shimoda Marine Research Center, University of Tsukuba, Shizuoka, 415-0025, Japan.
| | - Stefanos Kalogirou
- Hellenic Centre for Marine Research, Hydrobiological Station of Rhodes, Rhodes, Greece.
| | - Demetris Kletou
- Marine & Environmental Research (MER) Lab Ltd, 202 Amathountos Avenue, Marina Gardens, Block B, Limassol, 4533, Cyprus.
| | - Dimitrios K Moutopoulos
- Department of Animal Production, Fisheries & Aquaculture, University of Patras, Mesolonghi, Greece.
| | - Siân Rees
- School of Biological and Marine Sciences, University of Plymouth PL4 8AA, Plymouth, United Kingdom.
| |
Collapse
|
19
|
Albano PG, Steger J, Bošnjak M, Dunne B, Guifarro Z, Turapova E, Hua Q, Kaufman DS, Rilov G, Zuschin M. Native biodiversity collapse in the eastern Mediterranean. Proc Biol Sci 2021; 288:20202469. [PMID: 33402072 PMCID: PMC7892420 DOI: 10.1098/rspb.2020.2469] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Global warming causes the poleward shift of the trailing edges of marine ectotherm species distributions. In the semi-enclosed Mediterranean Sea, continental masses and oceanographic barriers do not allow natural connectivity with thermophilic species pools: as trailing edges retreat, a net diversity loss occurs. We quantify this loss on the Israeli shelf, among the warmest areas in the Mediterranean, by comparing current native molluscan richness with the historical one obtained from surficial death assemblages. We recorded only 12% and 5% of historically present native species on shallow subtidal soft and hard substrates, respectively. This is the largest climate-driven regional-scale diversity loss in the oceans documented to date. By contrast, assemblages in the intertidal, more tolerant to climatic extremes, and in the cooler mesophotic zone show approximately 50% of the historical native richness. Importantly, approximately 60% of the recorded shallow subtidal native species do not reach reproductive size, making the shallow shelf a demographic sink. We predict that, as climate warms, this native biodiversity collapse will intensify and expand geographically, counteracted only by Indo-Pacific species entering from the Suez Canal. These assemblages, shaped by climate warming and biological invasions, give rise to a 'novel ecosystem' whose restoration to historical baselines is not achievable.
Collapse
Affiliation(s)
- Paolo G. Albano
- Department of Palaeontology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Jan Steger
- Department of Palaeontology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Marija Bošnjak
- Department of Palaeontology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
- Croatian Natural History Museum, Demetrova 1, Zagreb, Croatia
| | - Beata Dunne
- Department of Palaeontology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Zara Guifarro
- Department of Palaeontology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Elina Turapova
- Department of Palaeontology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Quan Hua
- Australian Nuclear Science and Technology Organisation, Kirrawee DC, New South Wales 2232, Australia
| | - Darrell S. Kaufman
- School of Earth and Sustainability, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Gil Rilov
- National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa 3108001, Israel
| | - Martin Zuschin
- Department of Palaeontology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
20
|
Burrows MT, Hawkins SJ, Moore JJ, Adams L, Sugden H, Firth L, Mieszkowska N. Global-scale species distributions predict temperature-related changes in species composition of rocky shore communities in Britain. GLOBAL CHANGE BIOLOGY 2020; 26:2093-2105. [PMID: 31859400 DOI: 10.1111/gcb.14968] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/29/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
Changes in rocky shore community composition as responses to climatic fluctuations and anthropogenic warming can be shown by changes in average species thermal affinities. In this study, we derived thermal affinities for European Atlantic rocky intertidal species by matching their known distributions to patterns in average annual sea surface temperature. Average thermal affinities (the Community Temperature Index, CTI) tracked patterns in sea surface temperature from Portugal to Norway, but CTI for communities of macroalgae and plant species changed less than those composed of animal species. This reduced response was in line with the expectation that communities with a smaller range of thermal affinities among species would change less in composition along thermal gradients and over time. Local-scale patterns in CTI over wave exposure gradients suggested that canopy macroalgae allow species with ranges centred in cooler than local temperatures ('cold-affinity') to persist in otherwise too-warm conditions. In annual surveys of rocky shores, communities of animal species in Shetland showed a shift in dominance towards warm-affinity species ('thermophilization') with local warming from 1980 to 2018 but the community of plant and macroalgal species did not. From 2002 to 2018, communities in southwest Britain showed the reverse trend in CTI: declining average thermal affinities over a period of modest temperature decline. Despite the cooling, trends in species abundance were in line with the general mechanism of direction and magnitude of long-term trends depending on the difference between species thermal affinities and local temperatures. Cold-affinity species increased during cooling and warm-affinity ones decreased. The consistency of responses across different communities and with general expectations based on species thermal characteristics suggests strong predictive accuracy of responses of community composition to anthropogenic warming.
Collapse
Affiliation(s)
| | - Stephen J Hawkins
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, UK
- Marine Biological Association, Plymouth, UK
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - J Jon Moore
- Aquatic Survey and Monitoring Ltd., Cosheston, UK
| | - Leoni Adams
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, UK
- Marine Biological Association, Plymouth, UK
| | - Heather Sugden
- The Dove Marine Laboratory, School of Natural and Environmental Sciences, Newcastle University, Cullercoats, UK
| | - Louise Firth
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Nova Mieszkowska
- Marine Biological Association, Plymouth, UK
- School of Environmental Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
21
|
Yeruham E, Shpigel M, Abelson A, Rilov G. Ocean warming and tropical invaders erode the performance of a key herbivore. Ecology 2019; 101:e02925. [DOI: 10.1002/ecy.2925] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 11/11/2022]
Affiliation(s)
- E. Yeruham
- Israel Oceanographic and Limnological Research National Institute of Oceanography P.O. Box 8030 Haifa 31080 Israel
- Marine Biology Department Charney School of Marine Science University of Haifa Haifa 3498838 Israel
| | - M. Shpigel
- The Interuniversity Institute for Marine Sciences in Eilat P.O. Box 469 Eilat 88103 Israel
- Morris Kahn Marine Research Station Department of Marine Biology Leon H. Charney School of Marine Sciences University of Haifa Haifa 3498838 Israel
| | - A. Abelson
- School of Zoology The George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv 69978 Israel
| | - G. Rilov
- Israel Oceanographic and Limnological Research National Institute of Oceanography P.O. Box 8030 Haifa 31080 Israel
- Marine Biology Department Charney School of Marine Science University of Haifa Haifa 3498838 Israel
| |
Collapse
|
22
|
McLean M, Mouillot D, Lindegren M, Villéger S, Engelhard G, Murgier J, Auber A. Fish communities diverge in species but converge in traits over three decades of warming. GLOBAL CHANGE BIOLOGY 2019; 25:3972-3984. [PMID: 31376310 DOI: 10.1111/gcb.14785] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/12/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
Describing the spatial and temporal dynamics of communities is essential for understanding the impacts of global environmental change on biodiversity and ecosystem functioning. Trait-based approaches can provide better insight than species-based (i.e. taxonomic) approaches into community assembly and ecosystem functioning, but comparing species and trait dynamics may reveal important patterns for understanding community responses to environmental change. Here, we used a 33-year database of fish monitoring to compare the spatio-temporal dynamics of taxonomic and trait structure in North Sea fish communities. We found that the majority of variation in both taxonomic and trait structure was explained by a pronounced spatial gradient, with distinct communities in the southern and northern North Sea related to depth, sea surface temperature, salinity and bed shear stress. Both taxonomic and trait structure changed significantly over time; however taxonomically, communities in the south and north diverged towards different species, becoming more dissimilar over time, yet they converged towards the same traits regardless of species differences. In particular, communities shifted towards smaller, faster growing species with higher thermal preferences and pelagic water column position. Although taxonomic structure changed over time, its spatial distribution remained relatively stable, whereas in trait structure, the southern zone of the North Sea shifted northward and expanded, leading to homogenization. Our findings suggest that global environmental change, notably climate warming, will lead to convergence towards traits more adapted for novel environments regardless of species composition.
Collapse
Affiliation(s)
- Matthew McLean
- Unité Halieutique de Manche et mer du Nord, IFREMER, Boulogne-sur-Mer, France
- MARBEC, Université de Montpellier, CNRS, IFREMER, IRD, Montpellier Cedex, France
| | - David Mouillot
- MARBEC, Université de Montpellier, CNRS, IFREMER, IRD, Montpellier Cedex, France
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, Australia
| | - Martin Lindegren
- Centre for Ocean Life, National Institute of Aquatic Resources, Technical University of Denmark, Lyngby, Denmark
| | - Sébastien Villéger
- MARBEC, Université de Montpellier, CNRS, IFREMER, IRD, Montpellier Cedex, France
| | - Georg Engelhard
- Centre for Environment, Fisheries & Aquaculture Science (Cefas), Lowestoft, UK
- Collaborative Centre for Sustainable Use of the Seas (CCSUS), University of East Anglia, Norwich, UK
| | - Juliette Murgier
- Unité Halieutique de Manche et mer du Nord, IFREMER, Boulogne-sur-Mer, France
| | - Arnaud Auber
- Unité Halieutique de Manche et mer du Nord, IFREMER, Boulogne-sur-Mer, France
| |
Collapse
|
23
|
McLean MJ, Mouillot D, Goascoz N, Schlaich I, Auber A. Functional reorganization of marine fish nurseries under climate warming. GLOBAL CHANGE BIOLOGY 2019; 25:660-674. [PMID: 30367735 DOI: 10.1111/gcb.14501] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/12/2018] [Accepted: 10/22/2018] [Indexed: 05/08/2023]
Abstract
While climate change is rapidly impacting marine species and ecosystems worldwide, the effects of climate warming on coastal fish nurseries have received little attention despite nurseries' fundamental roles in recruitment and population replenishment. Here, we used a 26-year time series (1987-2012) of fish monitoring in the Bay of Somme, a nursery in the Eastern English Channel (EEC), to examine the impacts of environmental and human drivers on the spatial and temporal dynamics of fish functional structure during a warming phase of the Atlantic Multidecadal Oscillation (AMO). We found that the nursery was initially dominated by fishes with r-selected life-history traits such as low trophic level, low age and size at maturity, and small offspring, which are highly sensitive to warming. The AMO, likely superimposed on climate change, induced rapid warming in the late 1990s (over 1°C from 1998 to 2003), leading to functional reorganization of fish communities, with a roughly 80% decline in overall fish abundance and increased dominance by K-selected fishes. Additionally, historical overfishing likely rendered the bay more vulnerable to climatic changes due to increased dominance by fishing-tolerant, yet climatically sensitive species. The drop in fish abundance not only altered fish functional structure within the Bay of Somme, but the EEC was likely impacted, as the EEC has been unable to recover from a regime shift in the late 1990s potentially, in part, due to failed replenishment from the bay. Given the collapse of r-selected fishes, we discuss how the combination of climate cycles and global warming could threaten marine fish nurseries worldwide, as nurseries are often dominated by r-selected species.
Collapse
Affiliation(s)
- Matthew J McLean
- IFREMER, Unité Halieutique de Manche et mer du Nord, Boulogne-sur-Mer, France
- MARBEC, Université de Montpellier, CNRS, IFREMER, IRD, Montpellier Cedex, France
| | - David Mouillot
- MARBEC, Université de Montpellier, CNRS, IFREMER, IRD, Montpellier Cedex, France
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland
| | - Nicolas Goascoz
- IFREMER, Laboratoire Ressources Halieutiques, Port-en-Bessin, France
| | - Ivan Schlaich
- IFREMER, Laboratoire Ressources Halieutiques, Port-en-Bessin, France
| | - Arnaud Auber
- IFREMER, Unité Halieutique de Manche et mer du Nord, Boulogne-sur-Mer, France
| |
Collapse
|
24
|
Corrales X, Coll M, Ofir E, Heymans JJ, Steenbeek J, Goren M, Edelist D, Gal G. Future scenarios of marine resources and ecosystem conditions in the Eastern Mediterranean under the impacts of fishing, alien species and sea warming. Sci Rep 2018; 8:14284. [PMID: 30250047 PMCID: PMC6155163 DOI: 10.1038/s41598-018-32666-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/07/2018] [Indexed: 11/17/2022] Open
Abstract
Using a temporal-dynamic calibrated Ecosim food web model, we assess the effects of future changes on marine resources and ecosystem conditions of the Israeli Mediterranean continental shelf. This region has been intensely invaded by Indo-Pacific species. The region is exposed to extreme environmental conditions, is subjected to high rates of climate change and has experienced intense fishing pressure. We test the impacts of a new set of fishing regulations currently being implemented, a continued increase in sea temperatures following IPCC projections, and a continued increase in alien species biomass. We first investigate the impacts of the stressors separately, and then we combine them to evaluate their cumulative effects. Our results show overall potential future benefits of fishing effort reductions, and detrimental impacts of increasing sea temperature and increasing biomass of alien species. Cumulative scenarios suggest that the beneficial effects of fisheries reduction may be dampened by the impact of increasing sea temperature and alien species when acting together. These results illustrate the importance of including stressors other than fisheries, such as climate change and biological invasions, in an ecosystem-based management approach. These results support the need for reducing local and regional stressors, such as fishing and biological invasions, in order to promote resilience to sea warming.
Collapse
Affiliation(s)
- X Corrales
- Kinneret Limnological Laboratory, Israel Oceanographic & Limnological Research, PO Box 447, Migdal, Israel. .,Institut de Ciències del Mar (ICM-CSIC), Passeig Marítim de la Barceloneta, n° 37-49, 08003, Barcelona, Spain.
| | - M Coll
- Institut de Ciències del Mar (ICM-CSIC), Passeig Marítim de la Barceloneta, n° 37-49, 08003, Barcelona, Spain.,Ecopath International Initiative Research Association, Barcelona, Spain
| | - E Ofir
- Kinneret Limnological Laboratory, Israel Oceanographic & Limnological Research, PO Box 447, Migdal, Israel
| | - J J Heymans
- Scottish Association for Marine Science, Scottish Marine Institute, Oban, PA, 371QA, Scotland.,European Marine Board, Wandelaarkaai 7, Oostende, 8400, Belgium
| | - J Steenbeek
- Institut de Ciències del Mar (ICM-CSIC), Passeig Marítim de la Barceloneta, n° 37-49, 08003, Barcelona, Spain.,Ecopath International Initiative Research Association, Barcelona, Spain
| | - M Goren
- Department of Zoology and The Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv, 69978, Israel
| | - D Edelist
- Leon Recanati Institute for Marine Studies, Charney School for Marine Sciences, Faculty of Natural Sciences, University of Haifa, Mont Carmel, Haifa, 31905, Israel
| | - G Gal
- Kinneret Limnological Laboratory, Israel Oceanographic & Limnological Research, PO Box 447, Migdal, Israel
| |
Collapse
|
25
|
Shifts in Eastern Mediterranean Fish Communities: Abundance Changes, Trait Overlap, and Possible Competition between Native and Non-Native Species. FISHES 2018. [DOI: 10.3390/fishes3020019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|