1
|
Brown KT, Dellaert Z, Martynek MP, Durian J, Mass T, Putnam HM, Barott KL. Extreme Environmental Variability Induces Frontloading of Coral Biomineralisation Genes to Maintain Calcification Under pCO 2 Variability. Mol Ecol 2025; 34:e17603. [PMID: 39605240 DOI: 10.1111/mec.17603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
Corals residing in habitats that experience high-frequency seawater pCO2 variability may possess an enhanced capacity to cope with ocean acidification, yet we lack a clear understanding of the molecular toolkit enabling acclimatisation to environmental extremes or how life-long exposure to pCO2 variability influences biomineralisation. Here, we examined the gene expression responses and micro-skeletal characteristics of Pocillopora damicornis originating from the reef flat and reef slope of Heron Island, southern Great Barrier Reef. The reef flat and reef slope had similar mean seawater pCO2, but the reef flat experienced twice the mean daily pCO2 amplitude (range of 797 v. 399 μatm day-1, respectively). A controlled mesocosm experiment was conducted over 8 weeks, exposing P. damicornis from the reef slope and reef flat to stable (218 ± 9) or variable (911 ± 31) diel pCO2 fluctuations (μatm; mean ± SE). At the end of the exposure, P. damicornis originating from the reef flat demonstrated frontloading of 25% of the expressed genes regardless of treatment conditions, suggesting constitutive upregulation. This included higher expression of critical biomineralisation-related genes such as carbonic anhydrases, skeletal organic matrix proteins, and bicarbonate transporters. The observed frontloading corresponded with a 40% increase of the fastest deposited areas of the skeleton in reef flat corals grown under non-native, stable pCO2 conditions compared to reef slope conspecifics, suggesting a compensatory response that stems from acclimatisation to environmental extremes and/or relief from stressful pCO2 fluctuations. Under escalating ocean warming and acidification, corals acclimated to environmental variability warrant focused investigation and represent ideal candidates for active interventions to build reef resilience while societies adopt strict policies to limit climate change.
Collapse
Affiliation(s)
- Kristen T Brown
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- School of Biological Sciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Zoe Dellaert
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Marcelina P Martynek
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Julia Durian
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Oberlin College, Oberlin, Ohio, USA
| | - Tali Mass
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Katie L Barott
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Roik A, Wall M, Dobelmann M, Nietzer S, Brefeld D, Fiesinger A, Reverter M, Schupp PJ, Jackson M, Rutsch M, Strahl J. Trade-offs in a reef-building coral after six years of thermal acclimation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174589. [PMID: 38981551 DOI: 10.1016/j.scitotenv.2024.174589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/21/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024]
Abstract
There is growing evidence that reef-building corals can acclimate to novel and challenging thermal conditions. However, potential trade-offs that accompany acclimation remain largely unexplored. We investigated physiological trade-offs in colonies of a globally abundant coral species (Pocillopora acuta) that were acclimated ex situ to an elevated temperature of 31 °C (i.e., 1 °C above their bleaching threshold) for six years. By comparing them to conspecifics maintained at a cooler temperature, we found that the energy storage of corals was prioritized over skeletal growth at the elevated temperature. This was associated with the formation of higher density skeletons, lower calcification rates and consequently lower skeletal extension rates, which entails ramifications for future reef-building processes, structural complexity and reef community composition. Furthermore, symbionts were physiologically compromised at 31 °C and had overall lower energy reserves, likely due to increased exploitation by their host, resulting in an overall lower stress resilience of the holobiont. Our study shows how biological trade-offs of thermal acclimation unfold, helping to refine our picture of future coral reef trajectories. Importantly, our observations in this six-year study do not align with observations of short-term studies, where elevated temperatures were often associated with the depletion of energy reserves, highlighting the importance of studying acclimation of organisms at relevant biological scales.
Collapse
Affiliation(s)
- Anna Roik
- Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, 27570 Bremerhaven, Germany; Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg, 26129 Oldenburg, Germany.
| | - Marlene Wall
- Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, 27570 Bremerhaven, Germany; GEOMAR, Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Melina Dobelmann
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, Germany
| | - Samuel Nietzer
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, Germany
| | - David Brefeld
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, Germany
| | - Anna Fiesinger
- GEOMAR, Helmholtz Centre for Ocean Research, Kiel, Germany; Department of Biology, University of Konstanz, Konstanz, Germany
| | - Miriam Reverter
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Peter J Schupp
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg, 26129 Oldenburg, Germany; Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, Germany
| | - Matthew Jackson
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, Germany
| | - Marie Rutsch
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg, 26129 Oldenburg, Germany; Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, Germany
| | - Julia Strahl
- Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, 27570 Bremerhaven, Germany; Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg, 26129 Oldenburg, Germany.
| |
Collapse
|
3
|
Denis H, Selmoni O, Gossuin H, Jauffrais T, Butler CC, Lecellier G, Berteaux-Lecellier V. Climate adaptive loci revealed by seascape genomics correlate with phenotypic variation in heat tolerance of the coral Acropora millepora. Sci Rep 2024; 14:22179. [PMID: 39333135 PMCID: PMC11436834 DOI: 10.1038/s41598-024-67971-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/18/2024] [Indexed: 09/29/2024] Open
Abstract
One of the main challenges in coral reef conservation and restoration is the identification of coral populations resilient under global warming. Seascape genomics is a powerful tool to uncover genetic markers potentially involved in heat tolerance among large populations without prior information on phenotypes. Here, we aimed to provide first insights on the role of candidate heat associated loci identified using seascape genomics in driving the phenotypic response of Acropora millepora from New Caledonia to thermal stress. We subjected 7 colonies to a long-term ex-situ heat stress assay (4 °C above the maximum monthly mean) and investigated their physiological response along with their Symbiodiniaceae communities and genotypes. Despite sharing similar thermal histories and associated symbionts, these conspecific individuals differed greatly in their tolerance to heat stress. More importantly, the clustering of individuals based on their genotype at heat-associated loci matched the phenotypic variation in heat tolerance. Colonies that sustained on average lower mortality, higher Symbiodiniaceae/chlorophyll concentrations and photosynthetic efficiency under prolonged heat stress were also the closest based on their genotypes, although the low sample size prevented testing loci predictive accuracy. Together these preliminary results support the relevance of coupling seascape genomics and long-term heat stress experiments in the future, to evaluate the effect size of candidate heat associated loci and pave the way for genomic predictive models of corals heat tolerance.
Collapse
Affiliation(s)
- Hugo Denis
- UMR250/9220 ENTROPIE (IRD-CNRS-UR-IFREMER-UNC), Promenade Roger-Laroque, Noumea Cedex, New Caledonia.
- Ecole Doctorale 129, SU Sorbonne Université, 4, Place Jussieu, 75252, Paris, France.
| | - Oliver Selmoni
- Laboratory of Geographic Information Systems (LASIG), EPFL, Lausanne, Switzerland
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA
| | - Hugues Gossuin
- Laboratory of Marine Biology and Ecology, Aquarium des Lagons, Nouméa, New Caledonia
| | - Thierry Jauffrais
- UMR250/9220 ENTROPIE (IRD-CNRS-UR-IFREMER-UNC), Promenade Roger-Laroque, Noumea Cedex, New Caledonia
| | | | - Gaël Lecellier
- UMR250/9220 ENTROPIE (IRD-CNRS-UR-IFREMER-UNC), Promenade Roger-Laroque, Noumea Cedex, New Caledonia
- Institut des Sciences Exactes et Appliquées (ISEA) EA7484, 145, Avenue James Cook, BP R4 98 851, Nouméa, New Caledonia
| | | |
Collapse
|
4
|
Lamb AM, Peplow LM, Dungan AM, Ferguson SN, Harrison PL, Humphrey CA, McCutchan GA, Nitschke MR, van Oppen MJH. Interspecific hybridisation provides a low-risk option for increasing genetic diversity of reef-building corals. Biol Open 2024; 13:bio060482. [PMID: 39207257 PMCID: PMC11381923 DOI: 10.1242/bio.060482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024] Open
Abstract
Interspecific hybridisation increases genetic diversity and has played a significant role in the evolution of corals in the genus Acropora. In vitro fertilisation can be used to increase the frequency of hybridisation among corals, potentially enhancing their ability to adapt to climate change. Here, we assessed the field performance of hybrids derived from the highly cross-fertile coral species Acropora sarmentosa and Acropora florida from the Great Barrier Reef. Following outplanting to an inshore reef environment, the 10-month survivorship of the hybrid offspring groups was intermediate between that of the purebred groups, although not all pairwise comparisons were statistically significant. The A. florida purebreds, which had the lowest survivorship, were significantly larger at 10 months post-deployment compared to the other three groups. The four offspring groups harboured the same intracellular photosymbiont communities (Symbiodiniaceae), indicating that observed performance differences were due to the coral host and not photosymbiont communities. The limited differences in the performance of the groups and the lack of outbreeding depression of the F1 hybrids in the field suggest that interspecific hybridisation may be a useful method to boost the genetic diversity, and as such increase the adaptive capacity, of coral stock for restoration of degraded and potentially genetically eroded populations.
Collapse
Affiliation(s)
- Annika M Lamb
- Australian Institute of Marine Science, 1526 Cape Cleveland Road, Cape Cleveland 4810, Queensland, Australia
- School of Biosciences, The University of Melbourne, Grattan Street, Parkville VIC 3010
- AIMS@JCU - James Cook University, Townsville, QLD 4811, Australia
| | - Lesa M Peplow
- Australian Institute of Marine Science, 1526 Cape Cleveland Road, Cape Cleveland 4810, Queensland, Australia
| | - Ashley M Dungan
- School of Biosciences, The University of Melbourne, Grattan Street, Parkville VIC 3010
| | - Sophie N Ferguson
- Australian Institute of Marine Science, 1526 Cape Cleveland Road, Cape Cleveland 4810, Queensland, Australia
| | - Peter L Harrison
- Marine Ecology Research Centre - Southern Cross University, Lismore, NSW 2480
| | - Craig A Humphrey
- Australian Institute of Marine Science, 1526 Cape Cleveland Road, Cape Cleveland 4810, Queensland, Australia
| | - Guy A McCutchan
- Australian Institute of Marine Science, 1526 Cape Cleveland Road, Cape Cleveland 4810, Queensland, Australia
| | - Matthew R Nitschke
- Australian Institute of Marine Science, 1526 Cape Cleveland Road, Cape Cleveland 4810, Queensland, Australia
| | - Madeleine J H van Oppen
- Australian Institute of Marine Science, 1526 Cape Cleveland Road, Cape Cleveland 4810, Queensland, Australia
- School of Biosciences, The University of Melbourne, Grattan Street, Parkville VIC 3010
| |
Collapse
|
5
|
Jury CP, Toonen RJ. Widespread scope for coral adaptation under combined ocean warming and acidification. Proc Biol Sci 2024; 291:20241161. [PMID: 39317315 PMCID: PMC11421923 DOI: 10.1098/rspb.2024.1161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
Reef-building coral populations are at serious risk of collapse due to the combined effects of ocean warming and acidification. Nonetheless, many corals show potential to adapt to the changing ocean conditions. Here we examine the broad sense heritability (H2) of coral calcification rates across an ecologically and phylogenetically diverse sampling of eight of the primary reef-building corals across the Indo-Pacific. We show that all eight species exhibit relatively high heritability of calcification rates under combined warming and acidification (0.23-0.56). Furthermore, tolerance to each factor is positively correlated and the two factors do not interact in most of the species, contrary to the idea of trade-offs between temperature and pH sensitivity, and all eight species can co-evolve tolerance to elevated temperature and reduced pH. Using these values together with historical data, we estimate potential increases in thermal tolerance of 1.0-1.7°C over the next 50 years, depending on species. None of these species are probably capable of keeping up with a high global change scenario and climate change mitigation is essential if reefs are to persist. Such estimates are critical for our understanding of how corals may respond to global change, accurately parametrizing modelled responses, and predicting rapid evolution.
Collapse
Affiliation(s)
- Christopher P Jury
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa , Honolulu, HI 96744, USA
| | - Robert J Toonen
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa , Honolulu, HI 96744, USA
| |
Collapse
|
6
|
Williams A. Multiomics data integration, limitations, and prospects to reveal the metabolic activity of the coral holobiont. FEMS Microbiol Ecol 2024; 100:fiae058. [PMID: 38653719 PMCID: PMC11067971 DOI: 10.1093/femsec/fiae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/25/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024] Open
Abstract
Since their radiation in the Middle Triassic period ∼240 million years ago, stony corals have survived past climate fluctuations and five mass extinctions. Their long-term survival underscores the inherent resilience of corals, particularly when considering the nutrient-poor marine environments in which they have thrived. However, coral bleaching has emerged as a global threat to coral survival, requiring rapid advancements in coral research to understand holobiont stress responses and allow for interventions before extensive bleaching occurs. This review encompasses the potential, as well as the limits, of multiomics data applications when applied to the coral holobiont. Synopses for how different omics tools have been applied to date and their current restrictions are discussed, in addition to ways these restrictions may be overcome, such as recruiting new technology to studies, utilizing novel bioinformatics approaches, and generally integrating omics data. Lastly, this review presents considerations for the design of holobiont multiomics studies to support lab-to-field advancements of coral stress marker monitoring systems. Although much of the bleaching mechanism has eluded investigation to date, multiomic studies have already produced key findings regarding the holobiont's stress response, and have the potential to advance the field further.
Collapse
Affiliation(s)
- Amanda Williams
- Microbial Biology Graduate Program, Rutgers University, 76 Lipman Drive, New Brunswick, NJ 08901, United States
- Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Drive, New Brunswick, NJ 08901, United States
| |
Collapse
|
7
|
Klepac CN, Petrik CG, Karabelas E, Owens J, Hall ER, Muller EM. Assessing acute thermal assays as a rapid screening tool for coral restoration. Sci Rep 2024; 14:1898. [PMID: 38253660 PMCID: PMC10803358 DOI: 10.1038/s41598-024-51944-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Escalating environmental threats to coral reefs coincides with global advancements in coral restoration programs. To improve long-term efficacy, practitioners must consider incorporating genotypes resilient to ocean warming and disease while maintaining genetic diversity. Identifying such genotypes typically occurs under long-term exposures that mimic natural stressors, but these experiments can be time-consuming, costly, and introduce tank effects, hindering scalability for hundreds of nursery genotypes used for outplanting. Here, we evaluated the efficacy of the acute Coral Bleaching Automated Stress System (CBASS) against long-term exposures on the bleaching response of Acropora cervicornis, the dominant restoration species in Florida's Coral Reef. Comparing bleaching metrics, Fv/Fm, chlorophyll, and host protein, we observed similar responses between the long-term heat and the CBASS treatment of 34.3 °C, which was also the calculated bleaching threshold. This suggests the potential of CBASS as a rapid screening tool, with 90% of restoration genotypes exhibiting similar bleaching tolerances. However, variations in acute bleaching phenotypes arose from measurement timing and experiment heat accumulation, cautioning against generalizations solely based on metrics like Fv/Fm. These findings identify the need to better refine the tools necessary to quickly and effectively screen coral restoration genotypes and determine their relative tolerance for restoration interventions.
Collapse
Affiliation(s)
- C N Klepac
- Mote Marine Laboratory, International Center for Coral Reef Research and Restoration, Summerland Key, FL, USA.
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA.
| | - C G Petrik
- Mote Marine Laboratory, International Center for Coral Reef Research and Restoration, Summerland Key, FL, USA
- National Coral Reef Institute, Nova Southeastern University, Dania Beach, FL, USA
| | - E Karabelas
- Mote Marine Laboratory, International Center for Coral Reef Research and Restoration, Summerland Key, FL, USA
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - J Owens
- Mote Marine Laboratory, International Center for Coral Reef Research and Restoration, Summerland Key, FL, USA
- Tufts University, Worcester, MA, USA
| | - E R Hall
- Mote Marine Laboratory, International Center for Coral Reef Research and Restoration, Summerland Key, FL, USA
- Mote Marine Laboratory, Sarasota, FL, USA
| | - E M Muller
- Mote Marine Laboratory, International Center for Coral Reef Research and Restoration, Summerland Key, FL, USA
- Mote Marine Laboratory, Sarasota, FL, USA
| |
Collapse
|
8
|
Zhang Y, Luo L, Gan P, Chen X, Li X, Pang Y, Yu X, Yu K. Exposure to pentachlorophenol destructs the symbiotic relationship between zooxanthellae and host and induces pathema in coral Porites lutea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167956. [PMID: 37884147 DOI: 10.1016/j.scitotenv.2023.167956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
Stress from chemical pollutants is among the key issues that have adverse impacts on coral reefs. As a persistent organic pollutant, pentachlorophenol (PCP) has been detected in the seawater of Weizhou Island and was proved to have significant adverse effects on aquatic animals. However, little is known about its effects on scleractinian coral. Therefore, we investigated the response of the coral Porites lutea to PCP stress. Coral bleaching, photosynthesis parameters and antioxidant enzyme activities of P. lutea under PCP exposure were documented. After 96 h of exposure, significant tissue loss and bleaching occurred when the PCP concentration exceeded 100 μg/L. The density of symbiotic zooxanthellae decreased from 2.06 × 106 cells/cm2 to 0.93 × 106 cells/cm2 when the PCP concentration increased from 1 μg/L- 1000 μg/L. Long-term exposure of 120 days to PCP at 0.1 μg/L also led to coral bleaching, the maximum photochemical quantum yield of PSII in P. lutea nubbins significantly decreased to 0.482. The analysis of microbial community distribution indicated that the increase of the pathogenic bacterium Citrobacter may be one of the inducers of coral bleaching. Conjoint analysis of transcriptomics and proteomics showed that the metabolism of amino acids and carbohydrates in zooxanthellae was abnormal, leading to the destruction of its symbiotic relationship with the host. The immune system of the host was disrupted, which could be linked to the prevalence of coral pathema. The toxic responses of PCP on both zooxanthellae and its host were further confirmed by the upregulation of the differential metabolites including 1-naphthylamine and phosphatidylcholine, etc.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Lan Luo
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Pin Gan
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Xuan Chen
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Xiaoli Li
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Yan Pang
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Xiaopeng Yu
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Kefu Yu
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China.
| |
Collapse
|
9
|
Richards TJ, McGuigan K, Aguirre JD, Humanes A, Bozec YM, Mumby PJ, Riginos C. Moving beyond heritability in the search for coral adaptive potential. GLOBAL CHANGE BIOLOGY 2023; 29:3869-3882. [PMID: 37310164 DOI: 10.1111/gcb.16719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 06/14/2023]
Abstract
Global environmental change is happening at unprecedented rates. Coral reefs are among the ecosystems most threatened by global change. For wild populations to persist, they must adapt. Knowledge shortfalls about corals' complex ecological and evolutionary dynamics, however, stymie predictions about potential adaptation to future conditions. Here, we review adaptation through the lens of quantitative genetics. We argue that coral adaptation studies can benefit greatly from "wild" quantitative genetic methods, where traits are studied in wild populations undergoing natural selection, genomic relationship matrices can replace breeding experiments, and analyses can be extended to examine genetic constraints among traits. In addition, individuals with advantageous genotypes for anticipated future conditions can be identified. Finally, genomic genotyping supports simultaneous consideration of how genetic diversity is arrayed across geographic and environmental distances, providing greater context for predictions of phenotypic evolution at a metapopulation scale.
Collapse
Affiliation(s)
- Thomas J Richards
- School of Biological Sciences, The University of Queensland, Queensland, St Lucia, Australia
| | - Katrina McGuigan
- School of Biological Sciences, The University of Queensland, Queensland, St Lucia, Australia
| | - J David Aguirre
- School of Natural Sciences, Massey University, Auckland, New Zealand
| | - Adriana Humanes
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Yves-Marie Bozec
- School of Biological Sciences, The University of Queensland, Queensland, St Lucia, Australia
| | - Peter J Mumby
- School of Biological Sciences, The University of Queensland, Queensland, St Lucia, Australia
| | - Cynthia Riginos
- School of Biological Sciences, The University of Queensland, Queensland, St Lucia, Australia
| |
Collapse
|
10
|
Armstrong EJ, Lê-Hoang J, Carradec Q, Aury JM, Noel B, Hume BCC, Voolstra CR, Poulain J, Belser C, Paz-García DA, Cruaud C, Labadie K, Da Silva C, Moulin C, Boissin E, Bourdin G, Iwankow G, Romac S, Agostini S, Banaigs B, Boss E, Bowler C, de Vargas C, Douville E, Flores M, Forcioli D, Furla P, Galand PE, Gilson E, Lombard F, Pesant S, Reynaud S, Sullivan MB, Sunagawa S, Thomas OP, Troublé R, Thurber RV, Zoccola D, Planes S, Allemand D, Wincker P. Host transcriptomic plasticity and photosymbiotic fidelity underpin Pocillopora acclimatization across thermal regimes in the Pacific Ocean. Nat Commun 2023; 14:3056. [PMID: 37264036 PMCID: PMC10235041 DOI: 10.1038/s41467-023-38610-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/10/2023] [Indexed: 06/03/2023] Open
Abstract
Heat waves are causing declines in coral reefs globally. Coral thermal responses depend on multiple, interacting drivers, such as past thermal exposure, endosymbiont community composition, and host genotype. This makes the understanding of their relative roles in adaptive and/or plastic responses crucial for anticipating impacts of future warming. Here, we extracted DNA and RNA from 102 Pocillopora colonies collected from 32 sites on 11 islands across the Pacific Ocean to characterize host-photosymbiont fidelity and to investigate patterns of gene expression across a historical thermal gradient. We report high host-photosymbiont fidelity and show that coral and microalgal gene expression respond to different drivers. Differences in photosymbiotic association had only weak impacts on host gene expression, which was more strongly correlated with the historical thermal environment, whereas, photosymbiont gene expression was largely determined by microalgal lineage. Overall, our results reveal a three-tiered strategy of thermal acclimatization in Pocillopora underpinned by host-photosymbiont specificity, host transcriptomic plasticity, and differential photosymbiotic association under extreme warming.
Collapse
Affiliation(s)
- Eric J Armstrong
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France.
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/ Tara Oceans-GOSEE, 3 rue Michel-Ange, 75016, Paris, France.
- PSL Université Paris: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan Cedex, France.
| | - Julie Lê-Hoang
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/ Tara Oceans-GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Quentin Carradec
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France.
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/ Tara Oceans-GOSEE, 3 rue Michel-Ange, 75016, Paris, France.
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/ Tara Oceans-GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Benjamin Noel
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/ Tara Oceans-GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Benjamin C C Hume
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | | | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/ Tara Oceans-GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Caroline Belser
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/ Tara Oceans-GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| | - David A Paz-García
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. IPN 195, La Paz, Baja California Sur, 23096, México
| | - Corinne Cruaud
- Genoscope, Institut François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Karine Labadie
- Genoscope, Institut François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Corinne Da Silva
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/ Tara Oceans-GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Clémentine Moulin
- Fondation Tara Océan, Base Tara, 8 rue de Prague, 75 012, Paris, France
| | - Emilie Boissin
- PSL Université Paris: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan Cedex, France
| | - Guillaume Bourdin
- School of Marine Sciences, University of Maine, Orono, 04469, ME, USA
| | - Guillaume Iwankow
- PSL Université Paris: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan Cedex, France
| | - Sarah Romac
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/ Tara Oceans-GOSEE, 3 rue Michel-Ange, 75016, Paris, France
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, 29680, Roscoff, France
| | - Sylvain Agostini
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka, Japan
| | - Bernard Banaigs
- PSL Université Paris: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan Cedex, France
| | - Emmanuel Boss
- School of Marine Sciences, University of Maine, Orono, 04469, ME, USA
| | - Chris Bowler
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/ Tara Oceans-GOSEE, 3 rue Michel-Ange, 75016, Paris, France
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR 8197, INSERM U1024, 46 rue d'Ulm, F-75005, Paris, France
| | - Colomban de Vargas
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/ Tara Oceans-GOSEE, 3 rue Michel-Ange, 75016, Paris, France
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, 29680, Roscoff, France
| | - Eric Douville
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| | - Michel Flores
- Weizmann Institute of Science, Department of Earth and Planetary Sciences, 76100, Rehovot, Israel
| | - Didier Forcioli
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Medical School, Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco, Principality of Monaco, Monaco
| | - Paola Furla
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Medical School, Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco, Principality of Monaco, Monaco
| | - Pierre E Galand
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, 66650, Banyuls sur mer, France
| | - Eric Gilson
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Medical School, Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco, Principality of Monaco, Monaco
- Department of Medical Genetics, CHU, Nice, France
| | - Fabien Lombard
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/ Tara Oceans-GOSEE, 3 rue Michel-Ange, 75016, Paris, France
- Sorbonne Université, Institut de la Mer de Villefranche sur mer, Laboratoire d'Océanographie de Villefranche, F-06230, Villefranche-sur-Mer, France
| | - Stéphane Pesant
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Stéphanie Reynaud
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco, Principality of Monaco, Monaco
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, MC-98000, Principality of Monaco, Monaco
| | - Matthew B Sullivan
- Departments of Microbiology and Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH, 43210, USA
| | - Shinichi Sunagawa
- Institute of Microbiology, Department of Biology, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Olivier P Thomas
- School of Biological and Chemical Sciences, Ryan institute, University of Galway, University Road H91TK33, Galway, Ireland
| | - Romain Troublé
- Fondation Tara Océan, Base Tara, 8 rue de Prague, 75 012, Paris, France
| | - Rebecca Vega Thurber
- Oregon State University, Department of Microbiology, 220 Nash Hall, 97331, Corvallis, OR, USA
| | - Didier Zoccola
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco, Principality of Monaco, Monaco
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, MC-98000, Principality of Monaco, Monaco
| | - Serge Planes
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 66860, Perpignan Cedex, France
| | - Denis Allemand
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco, Principality of Monaco, Monaco
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, MC-98000, Principality of Monaco, Monaco
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/ Tara Oceans-GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| |
Collapse
|
11
|
Lachs L, Humanes A, Pygas DR, Bythell JC, Mumby PJ, Ferrari R, Figueira WF, Beauchamp E, East HK, Edwards AJ, Golbuu Y, Martinez HM, Sommer B, van der Steeg E, Guest JR. No apparent trade-offs associated with heat tolerance in a reef-building coral. Commun Biol 2023; 6:400. [PMID: 37046074 PMCID: PMC10097654 DOI: 10.1038/s42003-023-04758-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/24/2023] [Indexed: 04/14/2023] Open
Abstract
As marine species adapt to climate change, their heat tolerance will likely be under strong selection. Yet trade-offs between heat tolerance and other life history traits could compromise natural adaptation or assisted evolution. This is particularly important for ecosystem engineers, such as reef-building corals, which support biodiversity yet are vulnerable to heatwave-induced mass bleaching and mortality. Here, we exposed 70 colonies of the reef-building coral Acropora digitifera to a long-term marine heatwave emulation experiment. We tested for trade-offs between heat tolerance and three traits measured from the colonies in situ - colony growth, fecundity, and symbiont community composition. Despite observing remarkable within-population variability in heat tolerance, all colonies were dominated by Cladocopium C40 symbionts. We found no evidence for trade-offs between heat tolerance and fecundity or growth. Contrary to expectations, positive associations emerged with growth, such that faster-growing colonies tended to bleach and die at higher levels of heat stress. Collectively, our results suggest that these corals exist on an energetic continuum where some high-performing individuals excel across multiple traits. Within populations, trade-offs between heat tolerance and growth or fecundity may not be major barriers to natural adaptation or the success of assisted evolution interventions.
Collapse
Affiliation(s)
- Liam Lachs
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | - Adriana Humanes
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Daniel R Pygas
- Australian Institute of Marine Sciences, Townsville, QLD, 4810, Australia
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - John C Bythell
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Peter J Mumby
- Marine Spatial Ecology Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD, 4072, Australia
- Palau International Coral Reef Center, Koror, 96940, Palau
| | - Renata Ferrari
- Australian Institute of Marine Sciences, Townsville, QLD, 4810, Australia
| | - Will F Figueira
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Elizabeth Beauchamp
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Holly K East
- Department of Geography and Environmental Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Alasdair J Edwards
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Yimnang Golbuu
- Palau International Coral Reef Center, Koror, 96940, Palau
| | - Helios M Martinez
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Brigitte Sommer
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Eveline van der Steeg
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - James R Guest
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
12
|
Walker NS, Nestor V, Golbuu Y, Palumbi SR. Coral bleaching resistance variation is linked to differential mortality and skeletal growth during recovery. Evol Appl 2023; 16:504-517. [PMID: 36793702 PMCID: PMC9923480 DOI: 10.1111/eva.13500] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 09/19/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022] Open
Abstract
The prevalence of global coral bleaching has focused much attention on the possibility of interventions to increase heat resistance. However, if high heat resistance is linked to fitness tradeoffs that may disadvantage corals in other areas, then a more holistic view of heat resilience may be beneficial. In particular, overall resilience of a species to heat stress is likely to be the product of both resistance to heat and recovery from heat stress. Here, we investigate heat resistance and recovery among individual Acropora hyacinthus colonies in Palau. We divided corals into low, moderate, and high heat resistance categories based on the number of days (4-9) needed to reach significant pigmentation loss due to experimental heat stress. Afterward, we deployed corals back onto a reef in a common garden 6-month recovery experiment that monitored chlorophyll a, mortality, and skeletal growth. Heat resistance was negatively correlated with mortality during early recovery (0-1 month) but not late recovery (4-6 months), and chlorophyll a concentration recovered in heat-stressed corals by 1-month postbleaching. However, moderate-resistance corals had significantly greater skeletal growth than high-resistance corals by 4 months of recovery. High- and low-resistance corals on average did not exhibit skeletal growth within the observed recovery period. These data suggest complex tradeoffs may exist between coral heat resistance and recovery and highlight the importance of incorporating multiple aspects of resilience into future reef management programs.
Collapse
Affiliation(s)
- Nia S. Walker
- Department of BiologyHopkins Marine Station of Stanford UniversityPacific GroveCaliforniaUSA
- Hawaiʻi Institute of Marine BiologyUniversity of Hawai‘i at MānoaKāneʻoheHawaiiUSA
| | | | | | - Stephen R. Palumbi
- Department of BiologyHopkins Marine Station of Stanford UniversityPacific GroveCaliforniaUSA
| |
Collapse
|
13
|
McLeod IM, Hein MY, Babcock R, Bay L, Bourne DG, Cook N, Doropoulos C, Gibbs M, Harrison P, Lockie S, van Oppen MJH, Mattocks N, Page CA, Randall CJ, Smith A, Smith HA, Suggett DJ, Taylor B, Vella KJ, Wachenfeld D, Boström-Einarsson L. Coral restoration and adaptation in Australia: The first five years. PLoS One 2022; 17:e0273325. [PMID: 36449458 PMCID: PMC9710771 DOI: 10.1371/journal.pone.0273325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
While coral reefs in Australia have historically been a showcase of conventional management informed by research, recent declines in coral cover have triggered efforts to innovate and integrate intervention and restoration actions into management frameworks. Here we outline the multi-faceted intervention approaches that have developed in Australia since 2017, from newly implemented in-water programs, research to enhance coral resilience and investigations into socio-economic perspectives on restoration goals. We describe in-water projects using coral gardening, substrate stabilisation, coral repositioning, macro-algae removal, and larval-based restoration techniques. Three areas of research focus are also presented to illustrate the breadth of Australian research on coral restoration, (1) the transdisciplinary Reef Restoration and Adaptation Program (RRAP), one of the world's largest research and development programs focused on coral reefs, (2) interventions to enhance coral performance under climate change, and (3) research into socio-cultural perspectives. Together, these projects and the recent research focus reflect an increasing urgency for action to confront the coral reef crisis, develop new and additional tools to manage coral reefs, and the consequent increase in funding opportunities and management appetite for implementation. The rapid progress in trialling and deploying coral restoration in Australia builds on decades of overseas experience, and advances in research and development are showing positive signs that coral restoration can be a valuable tool to improve resilience at local scales (i.e., high early survival rates across a variety of methods and coral species, strong community engagement with local stakeholders). RRAP is focused on creating interventions to help coral reefs at multiple scales, from micro scales (i.e., interventions targeting small areas within a specific reef site) to large scales (i.e., interventions targeting core ecosystem function and social-economic values at multiple select sites across the Great Barrier Reef) to resist, adapt to and recover from the impacts of climate change. None of these interventions aim to single-handedly restore the entirety of the Great Barrier Reef, nor do they negate the importance of urgent climate change mitigation action.
Collapse
Affiliation(s)
- Ian M. McLeod
- TropWATER (Centre for Tropical Water and Aquatic Ecosystem Research), James Cook University, Townsville, Queensland, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Margaux Y. Hein
- TropWATER (Centre for Tropical Water and Aquatic Ecosystem Research), James Cook University, Townsville, Queensland, Australia
- MER Research and Consulting, The Office, Monaco, Monaco
- * E-mail:
| | - Russ Babcock
- CSIRO Oceans & Atmosphere, St Lucia, Queensland, Australia
| | - Line Bay
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - David G. Bourne
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- College of Science and Engineering, James Cook University, Townsville, Australia
| | - Nathan Cook
- TropWATER (Centre for Tropical Water and Aquatic Ecosystem Research), James Cook University, Townsville, Queensland, Australia
- Reef Ecologic, Townsville, Queensland, Australia
| | | | - Mark Gibbs
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Peter Harrison
- Marine Ecology Research Centre, Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
| | - Stewart Lockie
- The Cairns Institute, James Cook University, Cairns, Queensland, Australia
| | - Madeleine J. H. van Oppen
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Neil Mattocks
- Great Barrier Reef Marine Park Authority, Townsville, Queensland, Australia
| | - Cathie A. Page
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Carly J. Randall
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Adam Smith
- TropWATER (Centre for Tropical Water and Aquatic Ecosystem Research), James Cook University, Townsville, Queensland, Australia
- Reef Ecologic, Townsville, Queensland, Australia
| | - Hillary A. Smith
- College of Science and Engineering, James Cook University, Townsville, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Randwick, New South Wales, Australia
| | - David J. Suggett
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Bruce Taylor
- Land & Water, Commonwealth Scientific and Industrial Research Organisation, Dutton Park, Queensland, Australia
| | - Karen J. Vella
- School of Architecture and Built Environment, Queensland University of Technology, Brisbane, Australia
| | - David Wachenfeld
- Great Barrier Reef Marine Park Authority, Townsville, Queensland, Australia
| | - Lisa Boström-Einarsson
- TropWATER (Centre for Tropical Water and Aquatic Ecosystem Research), James Cook University, Townsville, Queensland, Australia
- Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster, United Kingdom
| |
Collapse
|
14
|
Alderdice R, Perna G, Cárdenas A, Hume BCC, Wolf M, Kühl M, Pernice M, Suggett DJ, Voolstra CR. Deoxygenation lowers the thermal threshold of coral bleaching. Sci Rep 2022; 12:18273. [PMID: 36316371 PMCID: PMC9622859 DOI: 10.1038/s41598-022-22604-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/17/2022] [Indexed: 12/02/2022] Open
Abstract
Exposure to deoxygenation from climate warming and pollution is emerging as a contributing factor of coral bleaching and mortality. However, the combined effects of heating and deoxygenation on bleaching susceptibility remain unknown. Here, we employed short-term thermal stress assays to show that deoxygenated seawater can lower the thermal limit of an Acropora coral by as much as 1 °C or 0.4 °C based on bleaching index scores or dark-acclimated photosynthetic efficiencies, respectively. Using RNA-Seq, we show similar stress responses to heat with and without deoxygenated seawater, both activating putative key genes of the hypoxia-inducible factor response system indicative of cellular hypoxia. We also detect distinct deoxygenation responses, including a disruption of O2-dependent photo-reception/-protection, redox status, and activation of an immune response prior to the onset of bleaching. Thus, corals are even more vulnerable when faced with heat stress in deoxygenated waters. This highlights the need to integrate dissolved O2 measurements into global monitoring programs of coral reefs.
Collapse
Affiliation(s)
- Rachel Alderdice
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany.
| | - Gabriela Perna
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Anny Cárdenas
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Benjamin C C Hume
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Martin Wolf
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Michael Kühl
- Marine Biology Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000, Helsingør, Denmark
| | - Mathieu Pernice
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - David J Suggett
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | | |
Collapse
|
15
|
DeFilippo LB, McManus LC, Schindler DE, Pinsky ML, Colton MA, Fox HE, Tekwa EW, Palumbi SR, Essington TE, Webster MM. Assessing the potential for demographic restoration and assisted evolution to build climate resilience in coral reefs. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2650. [PMID: 35538738 PMCID: PMC9788104 DOI: 10.1002/eap.2650] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Interest is growing in developing conservation strategies to restore and maintain coral reef ecosystems in the face of mounting anthropogenic stressors, particularly climate warming and associated mass bleaching events. One such approach is to propagate coral colonies ex situ and transplant them to degraded reef areas to augment habitat for reef-dependent fauna, prevent colonization from spatial competitors, and enhance coral reproductive output. In addition to such "demographic restoration" efforts, manipulating the thermal tolerance of outplanted colonies through assisted relocation, selective breeding, or genetic engineering is being considered for enhancing rates of evolutionary adaptation to warming. Although research into such "assisted evolution" strategies has been growing, their expected performance remains unclear. We evaluated the potential outcomes of demographic restoration and assisted evolution in climate change scenarios using an eco-evolutionary simulation model. We found that supplementing reefs with pre-existing genotypes (demographic restoration) offers little climate resilience benefits unless input levels are large and maintained for centuries. Supplementation with thermally resistant colonies was successful at improving coral cover at lower input levels, but only if maintained for at least a century. Overall, we found that, although demographic restoration and assisted evolution have the potential to improve long-term coral cover, both approaches had a limited impact in preventing severe declines under climate change scenarios. Conversely, with sufficient natural genetic variance and time, corals could readily adapt to warming temperatures, suggesting that restoration approaches focused on building genetic variance may outperform those based solely on introducing heat-tolerant genotypes.
Collapse
Affiliation(s)
- Lukas B. DeFilippo
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashingtonUSA
- Present address:
Resource Assessment and Conservation Engineering DivisionNOAA Alaska Fisheries Science CenterSeattleWashingtonUSA
| | - Lisa C. McManus
- Department of Ecology, Evolution, and Natural ResourcesRutgers UniversityNew BrunswickNew JerseyUSA
- Hawaiʻi Institute of Marine BiologyUniversity of Hawaiʻi at ManoaKaneʻoheHawaiiUSA
| | - Daniel E. Schindler
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashingtonUSA
| | - Malin L. Pinsky
- Department of Ecology, Evolution, and Natural ResourcesRutgers UniversityNew BrunswickNew JerseyUSA
| | | | | | - E. W. Tekwa
- Department of Ecology, Evolution, and Natural ResourcesRutgers UniversityNew BrunswickNew JerseyUSA
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Stephen R. Palumbi
- Department of Biology, Hopkins Marine StationStanford UniversityPacific GroveCaliforniaUSA
| | - Timothy E. Essington
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashingtonUSA
| | - Michael M. Webster
- Department of Environmental StudiesNew York UniversityNew YorkNew YorkUSA
| |
Collapse
|
16
|
MacKnight NJ, Dimos BA, Beavers KM, Muller EM, Brandt ME, Mydlarz LD. Disease resistance in coral is mediated by distinct adaptive and plastic gene expression profiles. SCIENCE ADVANCES 2022; 8:eabo6153. [PMID: 36179017 PMCID: PMC9524840 DOI: 10.1126/sciadv.abo6153] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Infectious diseases are an increasing threat to coral reefs, resulting in altered community structure and hindering the functional contributions of disease-susceptible species. We exposed seven reef-building coral species from the Caribbean to white plague disease and determined processes involved in (i) lesion progression, (ii) within-species gene expression plasticity, and (iii) expression-level adaptation among species that lead to differences in disease risk. Gene expression networks enriched in immune genes and cytoskeletal arrangement processes were correlated to lesion progression rates. Whether or not a coral developed a lesion was mediated by plasticity in genes involved in extracellular matrix maintenance, autophagy, and apoptosis, while resistant coral species had constitutively higher expression of intracellular protein trafficking. This study offers insight into the process involved in lesion progression and within- and between-species dynamics that lead to differences in disease risk that is evident on current Caribbean reefs.
Collapse
Affiliation(s)
- Nicholas J. MacKnight
- University of Texas at Arlington, 337 Life Science Building, Arlington, TX 76019, USA
| | - Bradford A. Dimos
- University of Texas at Arlington, 337 Life Science Building, Arlington, TX 76019, USA
| | - Kelsey M. Beavers
- University of Texas at Arlington, 337 Life Science Building, Arlington, TX 76019, USA
| | - Erinn M. Muller
- Mote Marine Laboratory, 1600 Ken Thompson Pkwy, Sarasota, FL 34236, USA
| | - Marilyn E. Brandt
- University of the Virgin Islands, 2 John Brewers Bay, St. Thomas, VI 00802, USA
| | - Laura D. Mydlarz
- University of Texas at Arlington, 337 Life Science Building, Arlington, TX 76019, USA
- Corresponding author.
| |
Collapse
|
17
|
Humanes A, Lachs L, Beauchamp EA, Bythell JC, Edwards AJ, Golbuu Y, Martinez HM, Palmowski P, Treumann A, van der Steeg E, van Hooidonk R, Guest JR. Within-population variability in coral heat tolerance indicates climate adaptation potential. Proc Biol Sci 2022; 289:20220872. [PMID: 36043280 PMCID: PMC9428547 DOI: 10.1098/rspb.2022.0872] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Coral reefs are facing unprecedented mass bleaching and mortality events due to marine heatwaves and climate change. To avoid extirpation, corals must adapt. Individual variation in heat tolerance and its heritability underpin the potential for coral adaptation. However, the magnitude of heat tolerance variability within coral populations is largely unresolved. We address this knowledge gap by exposing corals from a single reef to an experimental marine heatwave. We found that double the heat stress dosage was required to induce bleaching in the most-tolerant 10%, compared to the least-tolerant 10% of the population. By the end of the heat stress exposure, all of the least-tolerant corals were dead, whereas the most-tolerant remained alive. To contextualize the scale of this result over the coming century, we show that under an ambitious future emissions scenario, such differences in coral heat tolerance thresholds equate to up to 17 years delay until the onset of annual bleaching and mortality conditions. However, this delay is limited to only 10 years under a high emissions scenario. Our results show substantial variability in coral heat tolerance which suggests scope for natural or assisted evolution to limit the impacts of climate change in the short-term. For coral reefs to persist through the coming century, coral adaptation must keep pace with ocean warming, and ambitious emissions reductions must be realized.
Collapse
Affiliation(s)
- Adriana Humanes
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Liam Lachs
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Elizabeth A Beauchamp
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - John C Bythell
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Alasdair J Edwards
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | | | - Helios M Martinez
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Paweł Palmowski
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Achim Treumann
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Eveline van der Steeg
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Ruben van Hooidonk
- Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA.,Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL 33149, USA
| | - James R Guest
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
18
|
Drury C, Dilworth J, Majerová E, Caruso C, Greer JB. Expression plasticity regulates intraspecific variation in the acclimatization potential of a reef-building coral. Nat Commun 2022; 13:4790. [PMID: 35970904 PMCID: PMC9378650 DOI: 10.1038/s41467-022-32452-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/01/2022] [Indexed: 11/09/2022] Open
Abstract
Phenotypic plasticity is an important ecological and evolutionary response for organisms experiencing environmental change, but the ubiquity of this capacity within coral species and across symbiont communities is unknown. We exposed ten genotypes of the reef-building coral Montipora capitata with divergent symbiont communities to four thermal pre-exposure profiles and quantified gene expression before stress testing 4 months later. Here we show two pre-exposure profiles significantly enhance thermal tolerance despite broadly different expression patterns and substantial variation in acclimatization potential based on coral genotype. There was no relationship between a genotype's basal thermal sensitivity and ability to acquire heat tolerance, including in corals harboring naturally tolerant symbionts, which illustrates the potential for additive improvements in coral response to climate change. These results represent durable improvements from short-term stress hardening of reef-building corals and substantial cryptic complexity in the capacity for plasticity.
Collapse
Affiliation(s)
| | - Jenna Dilworth
- Hawai'i Institute of Marine Biology, Kāne'ohe, HI, USA
- University of Southern California, Los Angeles, CA, USA
| | - Eva Majerová
- Hawai'i Institute of Marine Biology, Kāne'ohe, HI, USA
| | - Carlo Caruso
- Hawai'i Institute of Marine Biology, Kāne'ohe, HI, USA
| | - Justin B Greer
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA, USA
| |
Collapse
|
19
|
van Woesik R, Shlesinger T, Grottoli AG, Toonen RJ, Vega Thurber R, Warner ME, Marie Hulver A, Chapron L, McLachlan RH, Albright R, Crandall E, DeCarlo TM, Donovan MK, Eirin‐Lopez J, Harrison HB, Heron SF, Huang D, Humanes A, Krueger T, Madin JS, Manzello D, McManus LC, Matz M, Muller EM, Rodriguez‐Lanetty M, Vega‐Rodriguez M, Voolstra CR, Zaneveld J. Coral-bleaching responses to climate change across biological scales. GLOBAL CHANGE BIOLOGY 2022; 28:4229-4250. [PMID: 35475552 PMCID: PMC9545801 DOI: 10.1111/gcb.16192] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 05/26/2023]
Abstract
The global impacts of climate change are evident in every marine ecosystem. On coral reefs, mass coral bleaching and mortality have emerged as ubiquitous responses to ocean warming, yet one of the greatest challenges of this epiphenomenon is linking information across scientific disciplines and spatial and temporal scales. Here we review some of the seminal and recent coral-bleaching discoveries from an ecological, physiological, and molecular perspective. We also evaluate which data and processes can improve predictive models and provide a conceptual framework that integrates measurements across biological scales. Taking an integrative approach across biological and spatial scales, using for example hierarchical models to estimate major coral-reef processes, will not only rapidly advance coral-reef science but will also provide necessary information to guide decision-making and conservation efforts. To conserve reefs, we encourage implementing mesoscale sanctuaries (thousands of km2 ) that transcend national boundaries. Such networks of protected reefs will provide reef connectivity, through larval dispersal that transverse thermal environments, and genotypic repositories that may become essential units of selection for environmentally diverse locations. Together, multinational networks may be the best chance corals have to persist through climate change, while humanity struggles to reduce emissions of greenhouse gases to net zero.
Collapse
Affiliation(s)
- Robert van Woesik
- Institute for Global EcologyFlorida Institute of TechnologyMelbourneFloridaUSA
| | - Tom Shlesinger
- Institute for Global EcologyFlorida Institute of TechnologyMelbourneFloridaUSA
| | | | - Rob J. Toonen
- Hawai'i Institute of Marine Biology, KāneʻoheUniversity of Hawaiʻi at MānoaHonoluluHawaiiUSA
| | | | - Mark E. Warner
- School of Marine Science and PolicyUniversity of DelawareLewesDelawareUSA
| | - Ann Marie Hulver
- School of Earth SciencesThe Ohio State UniversityColumbusOhioUSA
| | - Leila Chapron
- School of Earth SciencesThe Ohio State UniversityColumbusOhioUSA
| | - Rowan H. McLachlan
- School of Earth SciencesThe Ohio State UniversityColumbusOhioUSA
- Department of MicrobiologyOregon State UniversityCorvallisOregonUSA
| | | | - Eric Crandall
- Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | | | - Mary K. Donovan
- Center for Global Discovery and Conservation Science and School of Geographical Sciences and Urban PlanningArizona State UniversityTempeArizonaUSA
| | - Jose Eirin‐Lopez
- Institute of EnvironmentFlorida International UniversityMiamiFloridaUSA
| | - Hugo B. Harrison
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
| | - Scott F. Heron
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- Physics and Marine Geophysical LaboratoryJames Cook UniversityTownsvilleQueenslandAustralia
| | - Danwei Huang
- Department of Biological SciencesNational University of SingaporeSingapore
| | - Adriana Humanes
- School of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Thomas Krueger
- Department of BiochemistryUniversity of CambridgeCambridgeUnited Kingdom
| | - Joshua S. Madin
- Hawai'i Institute of Marine Biology, KāneʻoheUniversity of Hawaiʻi at MānoaHonoluluHawaiiUSA
| | - Derek Manzello
- Center for Satellite Applications and ResearchSatellite Oceanography & Climate DivisionNational Oceanic and Atmospheric AdministrationCollege ParkMarylandUSA
| | - Lisa C. McManus
- Hawai'i Institute of Marine Biology, KāneʻoheUniversity of Hawaiʻi at MānoaHonoluluHawaiiUSA
| | - Mikhail Matz
- Department of Integrative BiologyUniversity of Texas at AustinAustinTexasUSA
| | | | | | | | | | - Jesse Zaneveld
- Division of Biological SciencesUniversity of WashingtonBothellWashingtonUSA
| |
Collapse
|
20
|
Schlecker L, Page C, Matz M, Wright RM. Mechanisms and potential immune tradeoffs of accelerated coral growth induced by microfragmentation. PeerJ 2022; 10:e13158. [PMID: 35368334 PMCID: PMC8973463 DOI: 10.7717/peerj.13158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/02/2022] [Indexed: 01/12/2023] Open
Abstract
Microfragmentation is the act of cutting corals into small pieces (~1 cm2) to accelerate the growth rates of corals relative to growth rates observed when maintaining larger-sized fragments. This rapid tissue and skeletal expansion technique offers great potential for supporting reef restoration, yet the biological processes and tradeoffs involved in microfragmentation-mediated accelerated growth are not well understood. Here we compared growth rates across a range of successively smaller fragment sizes in multiple genets of reef-building corals, Orbicella faveolata and Montastraea cavernosa. Our results confirm prior findings that smaller initial sizes confer accelerated growth after four months of recovery in a raceway. O. faveolata transcript levels associated with growth rate include genes encoding carbonic anhydrase and glutamic acid-rich proteins, which have been previously implicated in coral biomineralization, as well as a number of unannotated transcripts that warrant further characterization. Innate immunity enzyme activity assays and gene expression results suggest a potential tradeoff between growth rate after microfragmentation and immune investment. Microfragmentation-based restoration practices have had great success on Caribbean reefs, despite widespread mortality among wild corals due to infectious diseases. Future studies should continue to examine potential immune tradeoffs throughout the microfragmentation recovery period that may affect growout survival and disease transmission after outplanting.
Collapse
Affiliation(s)
| | | | - Mikhail Matz
- University of Texas at Austin, Austin, Texas, United States
| | - Rachel M. Wright
- Smith College, Northampton, Massachusetts, United States
- University of Texas at Austin, Austin, Texas, United States
| |
Collapse
|
21
|
Lin Z, Wang L, Chen M, Zheng X, Chen J. Proteome and microbiota analyses characterizing dynamic coral-algae-microbe tripartite interactions under simulated rapid ocean acidification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152266. [PMID: 34896508 DOI: 10.1016/j.scitotenv.2021.152266] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Ocean acidification (OA) is a pressing issue currently and in the future for coral reefs. The importance of maintenance interactions among partners of the holobiont association in the stress response is well appreciated; however, the candidate molecular and microbial mechanisms that underlie holobiont stress resilience or susceptibility remain unclear. Here, to assess the effects of rapid pH change on coral holobionts at both the protein and microbe levels, combined proteomics and microbiota analyses of the scleractinian coral Galaxea fascicularis exposed to three relevant OA scenarios, including current (pHT = 8.15), preindustrial (pHT = 8.45) and future IPCC-2100 scenarios (pHT = 7.85), were conducted. The results demonstrated that pH changes had no significant effect on the physiological calcification rate of G. fascicularis in a 10-day experiment; however, significant differences were recorded in the proteome and 16S profiling. Proteome variance analysis identified some of the core biological pathways in coral holobionts, including coral host infection and immune defence, and maintaining metabolic compatibility involved in energy homeostasis, nutrient cycling, antibiotic activity and carbon budgets of coral-Symbiodiniaceae interactions were key mechanisms in the early OA stress response. Furthermore, microbiota changes indicate substantial microbial community and functional disturbances in response to OA stress, potentially compromising holobiont health and fitness. Our results may help to elucidate many complex mechanisms to describe scleractinian coral holobiont responses to OA and raise interesting questions for future studies.
Collapse
Affiliation(s)
- Zhenyue Lin
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China; Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| | - Liuying Wang
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Mingliang Chen
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| | - Xinqing Zheng
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, State Oceanic Administration, Xiamen, Fujian 361005, China
| | - Jianming Chen
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China.
| |
Collapse
|
22
|
Bairos-Novak KR, Hoogenboom MO, van Oppen MJH, Connolly SR. Coral adaptation to climate change: Meta-analysis reveals high heritability across multiple traits. GLOBAL CHANGE BIOLOGY 2021; 27:5694-5710. [PMID: 34482591 DOI: 10.1111/gcb.15829] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Anthropogenic climate change is a rapidly intensifying selection pressure on biodiversity across the globe and, particularly, on the world's coral reefs. The rate of adaptation to climate change is proportional to the amount of phenotypic variation that can be inherited by subsequent generations (i.e., narrow-sense heritability, h2 ). Thus, traits that have higher heritability (e.g., h2 > 0.5) are likely to adapt to future conditions faster than traits with lower heritability (e.g., h2 < 0.1). Here, we synthesize 95 heritability estimates across 19 species of reef-building corals. Our meta-analysis reveals low heritability (h2 < 0.25) of gene expression metrics, intermediate heritability (h2 = 0.25-0.50) of photochemistry, growth, and bleaching, and high heritability (h2 > 0.50) for metrics related to survival and immune responses. Some of these values are higher than typically observed in other taxa, such as survival and growth, while others were more comparable, such as gene expression and photochemistry. There was no detectable effect of temperature on heritability, but narrow-sense heritability estimates were generally lower than broad-sense estimates, indicative of significant non-additive genetic variation across traits. Trait heritability also varied depending on coral life stage, with bleaching and growth in juveniles generally having lower heritability compared to bleaching and growth in larvae and adults. These differences may be the result of previous stabilizing selection on juveniles or may be due to constrained evolution resulting from genetic trade-offs or genetic correlations between growth and thermotolerance. While we find no evidence that heritability decreases under temperature stress, explicit tests of the heritability of thermal tolerance itself-such as coral thermal reaction norm shape-are lacking. Nevertheless, our findings overall reveal high trait heritability for the majority of coral traits, suggesting corals may have a greater potential to adapt to climate change than has been assumed in recent evolutionary models.
Collapse
Affiliation(s)
- Kevin R Bairos-Novak
- College of Science and Engineering and ARCCOE for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Mia O Hoogenboom
- College of Science and Engineering and ARCCOE for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Madeleine J H van Oppen
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Sean R Connolly
- College of Science and Engineering and ARCCOE for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- Smithsonian Tropical Research Institute, Panama City, Panama
| |
Collapse
|
23
|
Cunning R, Parker KE, Johnson-Sapp K, Karp RF, Wen AD, Williamson OM, Bartels E, D'Alessandro M, Gilliam DS, Hanson G, Levy J, Lirman D, Maxwell K, Million WC, Moulding AL, Moura A, Muller EM, Nedimyer K, Reckenbeil B, van Hooidonk R, Dahlgren C, Kenkel C, Parkinson JE, Baker AC. Census of heat tolerance among Florida's threatened staghorn corals finds resilient individuals throughout existing nursery populations. Proc Biol Sci 2021; 288:20211613. [PMID: 34666521 DOI: 10.1098/rspb.2021.1613] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The rapid loss of reef-building corals owing to ocean warming is driving the development of interventions such as coral propagation and restoration, selective breeding and assisted gene flow. Many of these interventions target naturally heat-tolerant individuals to boost climate resilience, but the challenges of quickly and reliably quantifying heat tolerance and identifying thermotolerant individuals have hampered implementation. Here, we used coral bleaching automated stress systems to perform rapid, standardized heat tolerance assays on 229 colonies of Acropora cervicornis across six coral nurseries spanning Florida's Coral Reef, USA. Analysis of heat stress dose-response curves for each colony revealed a broad range in thermal tolerance among individuals (approx. 2.5°C range in Fv/Fm ED50), with highly reproducible rankings across independent tests (r = 0.76). Most phenotypic variation occurred within nurseries rather than between them, pointing to a potentially dominant role of fixed genetic effects in setting thermal tolerance and widespread distribution of tolerant individuals throughout the population. The identification of tolerant individuals provides immediately actionable information to optimize nursery and restoration programmes for Florida's threatened staghorn corals. This work further provides a blueprint for future efforts to identify and source thermally tolerant corals for conservation interventions worldwide.
Collapse
Affiliation(s)
- Ross Cunning
- Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, Chicago, IL, USA
| | - Katherine E Parker
- Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, Chicago, IL, USA
| | - Kelsey Johnson-Sapp
- Department of Marine Biology and Ecology, University of Miami, Miami, FL, USA
| | - Richard F Karp
- Department of Marine Biology and Ecology, University of Miami, Miami, FL, USA
| | - Alexandra D Wen
- Department of Marine Biology and Ecology, University of Miami, Miami, FL, USA
| | - Olivia M Williamson
- Department of Marine Biology and Ecology, University of Miami, Miami, FL, USA
| | - Erich Bartels
- Elizabeth Moore International Center for Coral Reef Research and Restoration, Mote Marine Laboratory, Summerland Key, FL, USA
| | | | - David S Gilliam
- Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL, USA
| | - Grace Hanson
- Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL, USA
| | - Jessica Levy
- Coral Restoration Foundation, Key Largo, FL, USA
| | - Diego Lirman
- Department of Marine Biology and Ecology, University of Miami, Miami, FL, USA
| | - Kerry Maxwell
- Florida Fish and Wildlife Conservation, Marathon, FL, USA
| | - Wyatt C Million
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Alison L Moulding
- Protected Resources Division, NOAA Fisheries Southeast Regional Office, St Petersburg, FL, USA
| | - Amelia Moura
- Coral Restoration Foundation, Key Largo, FL, USA
| | - Erinn M Muller
- Coral Health and Disease Program, Mote Marine Laboratory, Sarasota, FL, USA
| | | | | | - Ruben van Hooidonk
- Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA.,Ocean Chemistry and Ecosystems Division, NOAA Atlantic Oceanographic and Meteorological Laboratory, Miami, FL, USA
| | | | - Carly Kenkel
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - John E Parkinson
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Andrew C Baker
- Department of Marine Biology and Ecology, University of Miami, Miami, FL, USA
| |
Collapse
|
24
|
Muller EM, Dungan AM, Million WC, Eaton KR, Petrik C, Bartels E, Hall ER, Kenkel CD. Heritable variation and lack of tradeoffs suggest adaptive capacity in Acropora cervicornis despite negative synergism under climate change scenarios. Proc Biol Sci 2021; 288:20210923. [PMID: 34641725 PMCID: PMC8511747 DOI: 10.1098/rspb.2021.0923] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/21/2021] [Indexed: 12/31/2022] Open
Abstract
Knowledge of multi-stressor interactions and the potential for tradeoffs among tolerance traits is essential for developing intervention strategies for the conservation and restoration of reef ecosystems in a changing climate. Thermal extremes and acidification are two major co-occurring stresses predicted to limit the recovery of vital Caribbean reef-building corals. Here, we conducted an aquarium-based experiment to quantify the effects of increased water temperatures and pCO2 individually and in concert on 12 genotypes of the endangered branching coral Acropora cervicornis, currently being reared and outplanted for large-scale coral restoration. Quantification of 12 host, symbiont and holobiont traits throughout the two-month-long experiment showed several synergistic negative effects, where the combined stress treatment often caused a greater reduction in physiological function than the individual stressors alone. However, we found significant genetic variation for most traits and positive trait correlations among treatments indicating an apparent lack of tradeoffs, suggesting that adaptive evolution will not be constrained. Our results suggest that it may be possible to incorporate climate-resistant coral genotypes into restoration and selective breeding programmes, potentially accelerating adaptation.
Collapse
Affiliation(s)
| | - Ashley M. Dungan
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Wyatt C. Million
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | | | - Chelsea Petrik
- Mote Marine Laboratory, International Center for Coral Reef Research and Restoration, Summerland Key, FL, USA
| | - Erich Bartels
- Mote Marine Laboratory, International Center for Coral Reef Research and Restoration, Summerland Key, FL, USA
| | | | - Carly D. Kenkel
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
25
|
Abstract
The ability of corals to adapt to global warming may involve trade-offs among the traits that influence their success as the foundational species of coral reefs.
Collapse
Affiliation(s)
- Line K Bay
- Reef Recovery, Restoration and Adaptation, Australian Institute of Marine Science, Townsville, Australia
| | - Emily J Howells
- National Marine Science Centre, Southern Cross University, Coffs Harbour, Australia
| |
Collapse
|
26
|
Cornwell B, Armstrong K, Walker NS, Lippert M, Nestor V, Golbuu Y, Palumbi SR. Widespread variation in heat tolerance and symbiont load are associated with growth tradeoffs in the coral Acropora hyacinthus in Palau. eLife 2021; 10:64790. [PMID: 34387190 PMCID: PMC8457836 DOI: 10.7554/elife.64790] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 08/06/2021] [Indexed: 12/20/2022] Open
Abstract
Climate change is dramatically changing ecosystem composition and productivity, leading scientists to consider the best approaches to map natural resistance and foster ecosystem resilience in the face of these changes. Here, we present results from a large-scale experimental assessment of coral bleaching resistance, a critical trait for coral population persistence as oceans warm, in 221 colonies of the coral Acropora hyacinthus across 37 reefs in Palau. We find that bleaching-resistant individuals inhabit most reefs but are found more often in warmer microhabitats. Our survey also found wide variation in symbiont concentration among colonies, and that colonies with lower symbiont load tended to be more bleaching-resistant. By contrast, our data show that low symbiont load comes at the cost of lower growth rate, a tradeoff that may operate widely among corals across environments. Corals with high bleaching resistance have been suggested as a source for habitat restoration or selective breeding in order to increase coral reef resilience to climate change. Our maps show where these resistant corals can be found, but the existence of tradeoffs with heat resistance may suggest caution in unilateral use of this one trait in restoration.
Collapse
Affiliation(s)
- Brendan Cornwell
- Department of Biology, Hopkins Marine Station of Stanford University, Pacific Grove, United States
| | - Katrina Armstrong
- Department of Biology, Hopkins Marine Station of Stanford University, Pacific Grove, United States
| | - Nia S Walker
- Department of Biology, Hopkins Marine Station of Stanford University, Pacific Grove, United States
| | - Marilla Lippert
- Department of Biology, Hopkins Marine Station of Stanford University, Pacific Grove, United States
| | - Victor Nestor
- Research, Palau International Coral Reef Center, Koror, Palau
| | - Yimnang Golbuu
- Director, Palau International Coral Reef Center, Koror, Palau
| | - Stephen R Palumbi
- Department of Biology, Hopkins Marine Station of Stanford University, Pacific Grove, United States
| |
Collapse
|
27
|
Grottoli AG, Toonen RJ, Woesik R, Vega Thurber R, Warner ME, McLachlan RH, Price JT, Bahr KD, Baums IB, Castillo KD, Coffroth MA, Cunning R, Dobson KL, Donahue MJ, Hench JL, Iglesias‐Prieto R, Kemp DW, Kenkel CD, Kline DI, Kuffner IB, Matthews JL, Mayfield AB, Padilla‐Gamiño JL, Palumbi S, Voolstra CR, Weis VM, Wu HC. Increasing comparability among coral bleaching experiments. ECOLOGICAL APPLICATIONS 2021; 31:e02262. [PMID: 33222325 PMCID: PMC8243963 DOI: 10.1002/eap.2262] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/09/2020] [Indexed: 05/14/2023]
Affiliation(s)
- A. G. Grottoli
- School of Earth Sciences The Ohio State University Columbus Ohio43210USA
| | - R. J. Toonen
- Hawaiʻi Institute of Marine Biology University of Hawaiʻi at Mānoa Kāneʻohe Hawaii96744USA
| | - R. Woesik
- Department of Ocean Engineering and Marine Sciences Florida Institute of Technology Melbourne Florida32901USA
| | - R. Vega Thurber
- Department of Microbiology Oregon State University Corvallis Oregon97331USA
| | - M. E. Warner
- School of Marine Science and Policy University of Delaware Lewes Delaware19958USA
| | - R. H. McLachlan
- School of Earth Sciences The Ohio State University Columbus Ohio43210USA
| | - J. T. Price
- School of Earth Sciences The Ohio State University Columbus Ohio43210USA
| | - K. D. Bahr
- Department of Life Sciences Texas A&M University–Corpus Christi Corpus Christi Texas78412USA
| | - I. B. Baums
- Department of Biology Pennsylvania State University University Park Pennsylvania16802USA
| | - K. D. Castillo
- Department of Marine Sciences University of North Carolina at Chapel Hill Chapel Hill North Carolina27599USA
| | - M. A. Coffroth
- Department of Geology State University of New York at Buffalo Buffalo New York14260USA
| | - R. Cunning
- Daniel P. Hearther Center for Conservation and Research John G. Shedd Aquarium Chicago Illinois60605USA
| | - K. L. Dobson
- School of Earth Sciences The Ohio State University Columbus Ohio43210USA
| | - M. J. Donahue
- Hawaiʻi Institute of Marine Biology University of Hawaiʻi at Mānoa Kāneʻohe Hawaii96744USA
| | - J. L. Hench
- Nicholas School of the Environment Duke University Beaufort North Carolina28516USA
| | - R. Iglesias‐Prieto
- Department of Biology Pennsylvania State University University Park Pennsylvania16802USA
| | - D. W. Kemp
- Department of Biology University of Alabama at Birmingham Birmingham Alabama35233USA
| | - C. D. Kenkel
- Department of Biological Sciences University of Southern California Los Angeles California90089USA
| | - D. I. Kline
- Smithsonian Tropical Research Institute Washington D.C.20013USA
| | - I. B. Kuffner
- St Petersburg Coastal & Marine Science Center United States Geological Survey St Petersburg Florida33701USA
| | - J. L. Matthews
- Faculty of Science Climate Change Cluster University of Technology Sydney Broadway, Sydney New South Wales2007Australia
| | - A. B. Mayfield
- Oceanographic and Meteorological Laboratory Atlantic National Oceanic and Atmospheric Administration Miami Florida33149USA
- Cooperative Institute for Marine & Atmospheric Studies University of Miami Miami Florida33149USA
| | - J. L. Padilla‐Gamiño
- School of Aquatic and Fishery Sciences University of Washington Seattle Washington98117USA
| | - S. Palumbi
- Hopkins Marine Station Stanford University Pacific Grove California93950USA
| | - C. R. Voolstra
- Department of Biology University of Konstanz Konstanz78457Germany
| | - V. M. Weis
- Department of Integrative Biology Oregon State University Corvallis Oregon97331USA
| | - H. C. Wu
- Leibniz Centre for Tropical Marine Research Bremen28359Germany
| |
Collapse
|
28
|
Coral bleaching response is unaltered following acclimatization to reefs with distinct environmental conditions. Proc Natl Acad Sci U S A 2021; 118:2025435118. [PMID: 34050025 PMCID: PMC8179235 DOI: 10.1073/pnas.2025435118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ocean warming has caused catastrophic losses of corals on reefs worldwide and is intensifying faster than the adaptive rate of most coral populations that remain. Human interventions, such as propagation of heat-resistant corals, may help maintain reef function and delay further devastation of these valuable ecosystems as society confronts the climate crisis. However, exposing adult corals to a complex suite of new environmental conditions could lead to tradeoffs that alter their heat stress responses, and empirical data are needed to test the utility of this approach. Here, we show that corals transplanted to novel reef conditions did not exhibit changes in their heat stress response or negative fitness tradeoffs, supporting the inclusion of this approach in our management arsenal. Urgent action is needed to prevent the demise of coral reefs as the climate crisis leads to an increasingly warmer and more acidic ocean. Propagating climate change–resistant corals to restore degraded reefs is one promising strategy; however, empirical evidence is needed to determine whether stress resistance is affected by transplantation beyond a coral’s native reef. Here, we assessed the performance of bleaching-resistant individuals of two coral species following reciprocal transplantation between reefs with distinct pH, salinity, dissolved oxygen, sedimentation, and flow dynamics to determine whether heat stress response is altered following coral exposure to novel physicochemical conditions in situ. Critically, transplantation had no influence on coral heat stress responses, indicating that this trait was relatively fixed. In contrast, growth was highly plastic, and native performance was not predictive of performance in the novel environment. Coral metabolic rates and overall fitness were higher at the reef with higher flow, salinity, sedimentation, and diel fluctuations of pH and dissolved oxygen, and did not differ between native and cross-transplanted corals, indicating acclimatization via plasticity within just 3 mo. Conversely, cross-transplants at the second reef had higher fitness than native corals, thus increasing the fitness potential of the recipient population. This experiment was conducted during a nonbleaching year, so the potential benefits to recipient population fitness are likely enhanced during bleaching years. In summary, this study demonstrates that outplanting bleaching-resistant corals is a promising tool for elevating the resistance of coral populations to ocean warming.
Collapse
|
29
|
Kelley ER, Sleith RS, Matz MV, Wright RM. Gene expression associated with disease resistance and long-term growth in a reef-building coral. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210113. [PMID: 33996131 PMCID: PMC8059587 DOI: 10.1098/rsos.210113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Rampant coral disease, exacerbated by climate change and other anthropogenic stressors, threatens reefs worldwide, especially in the Caribbean. Physically isolated yet genetically connected reefs such as Flower Garden Banks National Marine Sanctuary (FGBNMS) may serve as potential refugia for degraded Caribbean reefs. However, little is known about the mechanisms and trade-offs of pathogen resistance in reef-building corals. Here, we measure pathogen resistance in Montastraea cavernosa from FGBNMS. We identified individual colonies that demonstrated resistance or susceptibility to Vibrio spp. in a controlled laboratory environment. Long-term growth patterns suggest no trade-off between disease resistance and calcification. Predictive (pre-exposure) gene expression highlights subtle differences between resistant and susceptible genets, encouraging future coral disease studies to investigate associations between resistance and replicative age and immune cell populations. Predictive gene expression associated with long-term growth underscores the role of transmembrane proteins involved in cell adhesion and cell-cell interactions, contributing to the growing body of knowledge surrounding genes that influence calcification in reef-building corals. Together these results demonstrate that coral genets from isolated sanctuaries such as FGBNMS can withstand pathogen challenges and potentially aid restoration efforts in degraded reefs. Furthermore, gene expression signatures associated with resistance and long-term growth help inform strategic assessment of coral health parameters.
Collapse
Affiliation(s)
- Emma R. Kelley
- Department of Biological Sciences, Smith College, Northampton, MA, USA
| | - Robin S. Sleith
- Department of Biological Sciences, Smith College, Northampton, MA, USA
| | - Mikhail V. Matz
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Rachel M. Wright
- Department of Biological Sciences, Smith College, Northampton, MA, USA
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
30
|
Marques JA, Flores F, Patel F, Bianchini A, Uthicke S, Negri AP. Acclimation history modulates effect size of calcareous algae (Halimeda opuntia) to herbicide exposure under future climate scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:140308. [PMID: 32846507 DOI: 10.1016/j.scitotenv.2020.140308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Tropical marine habitat-builders such as calcifying green algae can be susceptible to climate change (warming and acidification). This study evaluated the cumulative effects of ocean warming (OW), ocean acidification (OA) and the herbicide diuron on the calcifying green algae Halimeda opuntia. We also assessed the influence of acclimation history to experimental climate change conditions on physiological responses. H. opuntia were exposed for 15 days to orthogonal combinations of three climate scenarios [ambient (28 °C, pCO2 = 378 ppm), 2050 (29 °C, pCO2 = 567 ppm) and 2100 (30 °C, pCO2 = 721 ppm)] and to six diuron concentrations (up to 29 μg L-1). Half of the H. opuntia had been acclimated for eight months to the climate scenarios in a mesocosm approach, while the remaining half were not pre-acclimated, as is current practice in most experiments. Climate effects on quantum yield (ΔF/Fm'), photosynthesis and calcification in future climate scenarios were significantly stronger (by -24, -46 and +26%, respectively) in non-acclimated algae, suggesting experimental bias may exaggerate effects in organisms not appropriately acclimated to future-climate conditions. Thus, full analysis was done on acclimated plants only. Interactive effects of future climate scenarios and diuron were observed for ΔF/Fm', while the detrimental effects of climate and diuron on net photosynthesis and total antioxidant capacity (TAC) were additive. Calcification-related enzymes were negatively affected only by diuron, with inhibition of Ca-ATPase and upregulation of carbonic anhydrase. The combined and consistent physiological and biochemical evidence of negative impacts (across six indicators) of both herbicide and future-climate conditions on the health of H. opuntia highlights the need to address both climate change and water quality. Guideline values for contaminants may also need to be lowered considering 'climate adjusted thresholds'. Importantly, this study highlights the value of applying substantial future climate acclimation periods in experimental studies to avoid exaggerated organism responses to OW and OA.
Collapse
Affiliation(s)
- Joseane A Marques
- Programa de Pós-Graduação em Oceanografia Biológica, Universidade Federal do Rio Grande, RS, Brazil.
| | - Florita Flores
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia.
| | - Frances Patel
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia.
| | - Adalto Bianchini
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, RS, Brazil.
| | - Sven Uthicke
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia.
| | - Andrew P Negri
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia.
| |
Collapse
|
31
|
Yu X, Yu K, Huang W, Liang J, Qin Z, Chen B, Yao Q, Liao Z. Thermal acclimation increases heat tolerance of the scleractinian coral Acropora pruinosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 733:139319. [PMID: 32446076 DOI: 10.1016/j.scitotenv.2020.139319] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/28/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Field ecological observations indicate that scleractinian coral exposed to early thermal stress are likely to develop higher tolerance to subsequent heat stress. The causes of this phenomenon, however, remain enigmatic. To unravel the mechanisms underlying the increased heat tolerance, we applied different thermal treatments to the scleractinian coral Acropora pruinosa and studied the resulting differences in appearance, physiological index, Symbiodiniaceae and bacterial communities, and transcriptome response. We found that early heat stress improved the thermal tolerance of the coral holobiont. After thermal acclimation, the community structure and symbiotic bacterial diversity in the microbiota were reorganized, whereas those of Symbiodiniaceae remained stable. RNA-seq analysis revealed that the downregulated coral host genes were mainly involved in pathways relating to metabolism, particularly the nitrogen metabolism pathway. This indicates that thermal acclimation led to decrease in the metabolism level in the coral host, which might be a self-protection mechanism. We suggest that thermal acclimation may increase scleractinian coral thermal tolerance by slowing host metabolism, altering the dominant bacterial population, and increasing bacterial diversity. This study offers new insights into the adaptive potential of scleractinian coral to heat stress from global warming.
Collapse
Affiliation(s)
- Xiaopeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China; Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai), China.
| | - Wen Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Jiayuan Liang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhenjun Qin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Qiucui Yao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhiheng Liao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| |
Collapse
|
32
|
Matz MV, Treml EA, Haller BC. Estimating the potential for coral adaptation to global warming across the Indo-West Pacific. GLOBAL CHANGE BIOLOGY 2020; 26:3473-3481. [PMID: 32285562 DOI: 10.1111/gcb.15060] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 02/18/2020] [Accepted: 02/23/2020] [Indexed: 06/11/2023]
Abstract
The potential of reef-building corals to adapt to increasing sea-surface temperatures is often debated but has rarely been comprehensively modeled on a region-wide scale. We used individual-based simulations to model adaptation to warming in a coral metapopulation comprising 680 reefs and representing the whole of the Central Indo-West Pacific. Encouragingly, some reefs-most notably Vietnam, Japan, Taiwan, New Caledonia and the southern half of the Great Barrier Reef-exhibited high capacity for adaptation and, in our model, maintained coral cover even under a rapid "business-as-usual" warming scenario throughout the modeled period (200 years). Higher resilience of these reefs was observed under all tested parameter settings except the models prohibiting selection and/or migration during warming. At the same time, the majority of reefs in the region tended to collapse within the first 100 years of warming. The adaptive potential (odds of maintaining high coral cover) of a given reef could be predicted based on two metrics: the reef's present-day temperature, and the proportion of recruits immigrating from warmer locations. The latter metric explains the most variation in adaptive potential, and significantly correlates with actual coral cover changes observed throughout the region between the 1970s and the early 2000s. These findings will help prioritize coral conservation efforts and plan assisted gene flow interventions to boost the adaptive potential of specific coral populations.
Collapse
Affiliation(s)
- Mikhail V Matz
- Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Eric A Treml
- Life and Environmental Sciences, Faculty of Science Engineering and Built Environment, Deakin University, Geelong, Vic., Australia
| | | |
Collapse
|
33
|
van der Zande RM, Achlatis M, Bender-Champ D, Kubicek A, Dove S, Hoegh-Guldberg O. Paradise lost: End-of-century warming and acidification under business-as-usual emissions have severe consequences for symbiotic corals. GLOBAL CHANGE BIOLOGY 2020; 26:2203-2219. [PMID: 31955493 DOI: 10.1111/gcb.14998] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/22/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Despite recent efforts to curtail greenhouse gas emissions, current global emission trajectories are still following the business-as-usual representative concentration pathway (RCP) 8.5 emission pathway. The resulting ocean warming and acidification have transformative impacts on coral reef ecosystems, detrimentally affecting coral physiology and health, and these impacts are predicted to worsen in the near future. In this study, we kept fragments of the symbiotic corals Acropora intermedia (thermally sensitive) and Porites lobata (thermally tolerant) for 7 weeks under an orthogonal design of predicted end-of-century RCP8.5 conditions for temperature and pCO2 (3.5°C and 570 ppm above present-day, respectively) to unravel how temperature and acidification, individually or interactively, influence metabolic and physiological performance. Our results pinpoint thermal stress as the dominant driver of deteriorating health in both species because of its propensity to destabilize coral-dinoflagellate symbiosis (bleaching). Acidification had no influence on metabolism but had a significant negative effect on skeleton growth, particularly when photosynthesis was absent such as in bleached corals or under dark conditions. Total loss of photosynthesis after bleaching caused an exhaustion of protein and lipid stores and collapse of calcification that ultimately led to A. intermedia mortality. Despite complete loss of symbionts from its tissue, P. lobata maintained small amounts of photosynthesis and experienced a weaker decline in lipid and protein reserves that presumably contributed to higher survival of this species. Our results indicate that ocean warming and acidification under business-as-usual CO2 emission scenarios will likely extirpate thermally sensitive coral species before the end of the century, while slowing the recovery of more thermally tolerant species from increasingly severe mass coral bleaching and mortality. This could ultimately lead to the gradual disappearance of tropical coral reefs globally, and a shift on surviving reefs to only the most resilient coral species.
Collapse
Affiliation(s)
- Rene M van der Zande
- Coral Reef Ecosystems Laboratory, School of Biological Sciences, The University of Queensland, St. Lucia, Qld, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, The University of Queensland, St. Lucia, Qld, Australia
| | - Michelle Achlatis
- Coral Reef Ecosystems Laboratory, School of Biological Sciences, The University of Queensland, St. Lucia, Qld, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, The University of Queensland, St. Lucia, Qld, Australia
| | - Dorothea Bender-Champ
- Coral Reef Ecosystems Laboratory, School of Biological Sciences, The University of Queensland, St. Lucia, Qld, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, The University of Queensland, St. Lucia, Qld, Australia
| | - Andreas Kubicek
- Coral Reef Ecosystems Laboratory, School of Biological Sciences, The University of Queensland, St. Lucia, Qld, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, The University of Queensland, St. Lucia, Qld, Australia
| | - Sophie Dove
- Coral Reef Ecosystems Laboratory, School of Biological Sciences, The University of Queensland, St. Lucia, Qld, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, The University of Queensland, St. Lucia, Qld, Australia
| | - Ove Hoegh-Guldberg
- Coral Reef Ecosystems Laboratory, School of Biological Sciences, The University of Queensland, St. Lucia, Qld, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, The University of Queensland, St. Lucia, Qld, Australia
- Global Change Institute, The University of Queensland, St. Lucia, Qld, Australia
| |
Collapse
|
34
|
Howe-Kerr LI, Bachelot B, Wright RM, Kenkel CD, Bay LK, Correa AMS. Symbiont community diversity is more variable in corals that respond poorly to stress. GLOBAL CHANGE BIOLOGY 2020; 26:2220-2234. [PMID: 32048447 DOI: 10.1111/gcb.14999] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 12/20/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Coral reefs are declining globally as climate change and local water quality press environmental conditions beyond the physiological tolerances of holobionts-the collective of the host and its microbial symbionts. To assess the relationship between symbiont composition and holobiont stress tolerance, community diversity metrics were quantified for dinoflagellate endosymbionts (Family: Symbiodiniaceae) from eight Acropora millepora genets that thrived under or responded poorly to various stressors. These eight selected genets represent the upper and lower tails of the response distribution of 40 coral genets that were exposed to four stress treatments (and control conditions) in a 10-day experiment. Specifically, four 'best performer' coral genets were analyzed at the end of the experiment because they survived high temperature, high pCO2 , bacterial exposure, or combined stressors, whereas four 'worst performer' genets were characterized because they experienced substantial mortality under these stressors. At the end of the experiment, seven of eight coral genets mainly hosted Cladocopium symbionts, whereas the eighth genet was dominated by both Cladocopium and Durusdinium symbionts. Symbiodiniaceae alpha and beta diversity were higher in worst performing genets than in best performing genets. Symbiont communities in worst performers also differed more after stress exposure relative to their controls (based on normalized proportional differences in beta diversity), than did best performers. A generalized joint attribute model estimated the influence of host genet and treatment on Symbiodiniaceae community composition and identified strong associations among particular symbionts and host genet performance, as well as weaker associations with treatment. Although dominant symbiont physiology and function contribute to host performance, these findings emphasize the importance of symbiont community diversity and stochasticity as components of host performance. Our findings also suggest that symbiont community diversity metrics may function as indicators of resilience and have potential applications in diverse disciplines from climate change adaptation to agriculture and medicine.
Collapse
Affiliation(s)
| | | | | | - Carly D Kenkel
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Line K Bay
- Australian Institute of Marine Science, Townsville, Qld, Australia
| | | |
Collapse
|
35
|
Drury C. Resilience in reef-building corals: The ecological and evolutionary importance of the host response to thermal stress. Mol Ecol 2020; 29:448-465. [PMID: 31845413 DOI: 10.1111/mec.15337] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 12/05/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023]
Abstract
Coral reefs are under extreme threat due to a number of stressors, but temperature increases due to changing climate are the most severe. Rising ocean temperatures coupled with local extremes lead to extensive bleaching, where the coral-algal symbiosis breaks down and corals may die, compromising the structure and function of reefs. Although the symbiotic nature of the coral colony has historically been a focus of research on coral resilience, the host itself is a foundational component in the response to thermal stress. Fixed effects in the coral host set trait baselines through evolutionary processes, acting on many loci of small effect to create mosaics of thermal tolerance across latitudes and individual coral reefs. These genomic differences can be strongly heritable, producing wide variation among clones of different genotypes or families of a specific larval cross. Phenotypic plasticity is overlaid on these baselines and a growing body of knowledge demonstrates the potential for acclimatization of reef-building corals through a variety of mechanisms that promote resilience and stress tolerance. The long-term persistence of coral reefs will require many of these mechanisms to adjust to warmer temperatures within a generation, bridging the gap to reproductive events that allow recombination of standing diversity and adaptive change. Business-as-usual climate scenarios will probably lead to the loss of some coral populations or species in the future, so the interaction between intragenerational effects and evolutionary pressure is critical for the survival of reefs.
Collapse
|
36
|
Suggett DJ, Smith DJ. Coral bleaching patterns are the outcome of complex biological and environmental networking. GLOBAL CHANGE BIOLOGY 2020; 26:68-79. [PMID: 31618499 DOI: 10.1111/gcb.14871] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 09/20/2019] [Indexed: 05/26/2023]
Abstract
Continued declines in coral reef health over the past three decades have been punctuated by severe mass coral bleaching-induced mortality events that have grown in intensity and frequency under climate change. Intensive global research efforts have therefore persistently focused on bleaching phenomena to understand where corals bleach, when and why-resulting in a large-yet still somewhat patchy-knowledge base. Particularly catastrophic bleaching-induced coral mortality events in the past 5 years have catalyzed calls for a more diverse set of reef management tools, extending far beyond climate mitigation and reef protection, to also include more aggressive interventions. However, the effectiveness of these various tools now rests on rapidly assimilating our knowledge base of coral bleaching into more integrated frameworks. Here, we consider how the past three decades of intensive coral bleaching research has established the basis for complex biological and environmental networks, which together regulate outcomes of bleaching severity. We discuss how we now have enough scaffold for conceptual biological and environmental frameworks underpinning bleaching susceptibility, but that new tools are urgently required to translate this to an operational system informing-and testing-bleaching outcomes. Specifically, adopting network models that can fully describe and predict metabolic functioning of coral holobionts, and how this functioning is regulated by complex doses and interactions among environmental factors. Identifying knowledge gaps limiting operation of such models is the logical step to immediately guide and prioritize future experiments and observations. We are at a time-critical point where we can implement new capacity to resolve how coral bleaching patterns emerge from complex biological-environmental networks, and so more effectively inform rapidly evolving ecological management and social adaptation frameworks aimed at securing the future of coral reefs.
Collapse
Affiliation(s)
- David J Suggett
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - David J Smith
- Coral Reef Research Unit, School of Biological Sciences, University of Essex, Colchester, UK
| |
Collapse
|
37
|
Parkinson JE, Baker AC, Baums IB, Davies SW, Grottoli AG, Kitchen SA, Matz MV, Miller MW, Shantz AA, Kenkel CD. Molecular tools for coral reef restoration: Beyond biomarker discovery. Conserv Lett 2019. [DOI: 10.1111/conl.12687] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- John Everett Parkinson
- SECORE International Miami Florida
- Department of Integrative BiologyUniversity of South Florida Tampa Florida
| | - Andrew C. Baker
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric ScienceUniversity of Miami Miami Florida
| | - Iliana B. Baums
- Department of BiologyPennsylvania State University University Park Pennsylvania
| | | | | | - Sheila A. Kitchen
- Department of BiologyPennsylvania State University University Park Pennsylvania
| | - Mikhail V. Matz
- Department of Integrative BiologyUniversity of Texas at Austin Austin Texas
| | | | - Andrew A. Shantz
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric ScienceUniversity of Miami Miami Florida
| | - Carly D. Kenkel
- Department of Biological SciencesUniversity of Southern California Los Angeles California
| |
Collapse
|